A GENERAL THEOREM FOR THE CONSTRUCTION OF
BLOWING-UP SOLUTIONS TO SOME ELLIPTIC NONLINEAR
EQUATIONS VIA LYAPUNOV-SCHMIDT’S
FINITE-DIMENSIONAL REDUCTION

FREDERIC ROBERT AND JEROME VETOIS

ABSTRACT. We prove a general finite-dimensional reduction theorem for crit-
ical equations of scalar curvature type. Solutions of these equations are con-
structed as a sum of peaks. The use of this theorem reduces the proof of
existence of multi-peak solutions to some test-functions estimates and to the
analysis of the interactions of peaks.

1. INTRODUCTION AND STATEMENT OF THE RESULT

Let (M,g) be a compact Riemannian manifold of dimension n > 3 without
boundary. We let HZ(M) be the completion of C*°(M) for the norm || - a2 ==
-2+ V- |l2. Welet h € L>(M) be such that the operator A, + h is coercive,
that is A\ (Ag + h) > 0, where A, := —divy(V) is the Laplace-Beltrami operator.
Non-positive examples of such h’s are after the theorem. We define 2* := % and
H : R — R such that {H(z) = |z| for all x € R} or {H(z) = x4 := max{z,0} for
all z € R}. Given f € C%(M), q € (2,2*], and G € C?(H?(M)), we give a general

theorem to construct solutions v € HZ(M) to the equation
(1) Agv+hv = fH(v)? %0+ G'(v) in the distributional sense on M

of the form
k

v =1ug + Z W, 5.6, + remainder ,
i=1
where k € N, (Hi)izl,-n,k S {—1,+1}, ((51‘)1‘:1’...’]€ € (0,+OO), (fi)izlﬁ...’k € M are
the parameters, and the W, 5¢’s are peaks defined in (12) below and are C"' with
respect to the parameters. The function ug € HZ(M) is a distributional solution to

(2) Aguo + houo = foH (u0)* ~2ug + G (uo),

where hg € L®(M) is such that A\ (A, + hg) > 0, fo € C°(M), and Gy €
C?(H?(M)) is of subcritical type, see Definition 2.1 below. Examples of nonlin-
earities of subcritical type are maps like u — [, a(z)|u|” dz, where a € L>(M)
and 2 < r < 2*. Solutions to (1) and (2) are critical points respectively for the
functionals

1 1

J(v) = 3 /M (|Vv\§ + hv?) dvg—F(v); Jo(v) := 3 /M (|VU|Z + hov?) dvg—Fy(v),
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where dv, is the Riemannian element of volume, and
F(v) / fH(v)? dvg + G(v) and Fy(v / foH (v) 2 dvg + Go(v)
for all v € HZ(M). We introduce the kernel of the linearization of (2) by

3) Ko = {p € H{(M)/ Agp + how = Fy (uo)p} -

We get that d := dimgK( < 400 since the operator ¢ — (Ag + ho) " (Fy (uo)yp) is
compact on HZ(M). We let u € C'(B1(0) C RY, HZ(M)) be such that u(0) = uy,
and we assume that

(4) Ky = Span{H};{f’o (azLu(O))/Z =1, ad}’

where H};QO is the orthogonal projection on Ky with respect to the scalar product
(u,v) = (u,0)n, = [;,((Vu,Vv)g + houv)dvy. We consider a finite covering
(Uy)~yec of M of parallel type (see Definition 2.2), and we choose a correspondance
iy, €Cforallie{l, --- ,k}. Forany e >0, N >0, and k € N, we define

gi € U’yi
|52 7q—1| < ¢ and
k k
Dk(€7N) = ((51)2, (574)7,) S (0,8) x M7 s.t. (57 + + (6175]) SN
TR S W

forallz#j€{1,~~~,k}

We define the error term

(5)
R(z, (81)i, (60):) 1= |u(z +Zwm, i Ag+h>-1(F’(u<z>+iWm,&,&)) .

Theorem 1.1. We fir k € N, v5,Cy > 0, 0 € (0,1), hg € L>®(M) such that
M(Ay+ho) >0, fo € CO(M), ug € HE(M), and Gy € 05203( 2(M)) of subcritical
type. We define Kg as in (3), we let d be its dimension and 50 be a basis of K.
We fix (k)i € {—1,+1}*. Then there exist N > 0 and € > 0 such that for any q €
(2,2*)], h € L®(M), f € CO(M), G € CLY(H}(M)), and u € C*(B;(0), HZ(M))
such that

(6) u(0) = ug, l|lullcr(, (0),m2) < Co, fol&) = v foralli=1,---k,

(7) 1 = holloe + [1f = follcoar) + de2o (G, Go) + (2" —q) < e
(see Definition 2.3 for the distance dclza,e) and for any z € B1(0), if

(6) | dettrmie @ u(z)), - T s u \>VOHII8Z,U gz >0,

then there exists ¢ € C(B:(0)
U(Z) + Zf:l W"éiﬁi{i + QZ5(Z,
critical point of (z,(0;):, (&):i) —
we have that

-(0) X Dy(e,N), H3(M)) such that u(z,(8;)s, (&)i) =
(0:)i, (&)i) is a critical point of J iff (2, (0:)s, (&):) s a
J(u(z, (0;)i, (&):)) in B(0) X Dy (e, N). Moreover,

162, (03)is (€)i)ll gz < €~ R(z, (8:)s, (&),
where C is a constant depending on (M, g), k, vo, 0, Co, uog, ho, fo, and Gy.
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Miscellaneous remarks
1. The implicit definition of ¢(z, (8;)i, (&;);) is in (61) of Proposition 5.1.
2. In addition to Theorem 1.1, we have that

k
J(u(z, (6:)i, (§:))) — J(U(Z) + Z Wm,éi,gi)‘ < C-R(z,(6:)i, (&)i)*

for all (z,(d:)i, (&:)i)) € Be(0) x Dy(e, N), where C is a constant depending on
(]\4'79)7 k7 Lo, Co, Uup, Go.

3. Theorem 1.1 is valid under a little more general hypothesis on G. There exists
R > 0 depending only on (M, g), ug, and k such that the same conclusion of the
theorem holds if Gy and G satisfy the following

Go € C*(BR(0)), G € C**(Bx(0)), Gllc20(54(0)) < Co, |G = Golle2 (5,0 < &-

4. We have assumed for convenience a L*°—control of the potentials hy and h. If
they are only controled in L™/2, it suffices to include them in the perturbations G
and G.

5. As one checks, if h > 0 and h # 0, one gets A1 (A, + h) > 0. As a consequence,
AM(Ag+h —a) >0 for such h and all a < A1(Ay + h).

As a consequence of Theorem 1.1, finding solutions to (1) reduces to computing the
expansion of J(u(z, (6;)i, (§))) and controling the rest R(z, (;):, (&):). In particu-
lar, Theorem 1.1 covers the general reduction theory in the recent articles Esposito-
Pistoia—Vétois [6], Micheletti-Pistoia—Vétois [9], Pistoia—Vétois [10], and Robert—
Vétois [12]. This finite-reduction method is very classical and has proved to be very
powerful in the last decades to find blowing-up solutions to critical equations. The
litterature on this issue is abundant: here, we refer to the early reference Rey [11],
and to Brendle [3], Brendle-Marques [4], del Pino-Musso-Pacard-Pistoia [5], and
Guo-Li-Wei [8] for more recent references. The list of constributions above does
not pretend to exhaustivity: we refer to the references of the above papers and also
to the monograph [1] by Ambrosetti-Malchiodi for further bibliographic comple-
ments. A general reference on Lyapunov-Schmidt’s reduction, including the group
action point of view, is the monograph [7] by Falaleev—Loginov—Sidorov—Sinitsyn.

2. DEFINITIONS AND NOTATIONS

2.1. Nonlinearities of subcritical type.

Definition 2.1. Let Gy € C*(H?(M)). We say that Go is of subcritical type
if for all sequences (up)p, (Vp)p, (Wp)p € HE(M) converging weakly respectively to
u,v,w € H¥(M), we have that

Go(up) = Go(u), Go(up)(vp) = Go(u)(v), and G (up)(vp, wp) — GG (u) (v, w)
when p — 400.
2.2. Covering of parallel type.
Definition 2.2. We say that (U,),cc is a covering of parallel type if U,U, = M

and for any v € C, U, is open and there exists n smooth vector fields 657) U, —

TM such that for any & € U,, {GS’Y) &), el (&)} is an orthonormal basis of
Te M, the tangent space at the point €.
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Since (M, g) is compact, it follows from the Gram-Schmidt orthogonalisation proce-
dure that a finite covering of parallel type always exists. A manifold is parallelizable
if there exists a smooth global orthonormal basis.

In the sequel, we let (U,)~ec be a fixed finite covering of parallel type of M. With

a slight abuse of notation, for any v € C, and any § € U,,, we define ¢;(§) = 657) &)
Q0]

for j =1,---,n, where ;" is as in Definition 2.2. In other words, for any v € C,
there exists m smooth maps ey,---,e; : U, — TM such that for any { € U,,
(e1(§), -+ ,en(§)) is an orthonormal basis of T¢ M. We can then assimilate smoothly
the tangent space T¢ M at £ € U, to R™ via the map
o) be: R* TeM

X = Z;L:1 X7e; ().

2.3. The distance on 0123,9.

Definition 2.3. Let E be a Banach space. We define C%e(E) as the set of functions

that are in C*%(B) for any bounded open set B C E: we endow Cée(E) with the
topology inherited from the natural associated family of semi-norms. This topology
is metrizable with the distance

G1 — Ga||c2,
dcj‘_;;" (G1,G3) :==sup I 2lle2e(B,0)

or all G1,Go € CX°(E).
SUD 3501+ [Gr = Gallome s, 0 2 C0 G2 € O (E)

2.4. The peaks W, s5¢. We consider a function A € C°°(M x M) such that,
defining A¢ := A(E, -) for all £ € M, we have that

(10) Ae >0and Ag(€) =1 for all £ € M.

_4
n—

We then define a metric g¢ := A/ ?g for all £ € M conformal to g. Since A is
continuous, there exists C' > 0 such that

1
11 Zg< g <
(11) Cgfgngg

for all £ € M. The compactness of M yields the existence of ry > 0 such that
the injectivity radius of the metric g satisfies iy, (M) > 7o for all § € M. We let
X € C*(R) be such that x(¢) = 1 for t < ro/3, x(¢t) = 0 for all t > ry/2 and
0<x<1

For k € {—1,+1}, 0 > 0, and £ € M such that fo(§) > 0, a bubble is defined as
n(n—2) n—2

(12 vmmm:wmw@mm(yﬂﬁgw> + Big(a)

for all # € M, where (8,€) — Bs¢ is C* from (0, 400) x M to Hf(M) and

(13) [ Bs.ellrz + 6110 Bs el 2 + 0] Ve Bs,e

2 < €(6)

for all 6 > 0 and & € M, where lims_,g€(d) = 0. If H = (-)4, we require that x = 1.
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2.5. Derivatives of the peaks. We let D#(R"™) be the completion of C°(R™) for
the norm u +— ||Vu|2. Given a > 0, we are interested in solutions U € D?(R") to
the equation

(14) Agyal, = aU? ~! in R,

where Eucl is the Euclidean metric. As one checks, the Lie group (0, +00) x R"
(with the relevant structure) leaves the solution to (14) invariant via the action

(15) (6,20) € (0,400) x R 5 62 Uy (57 — ).
For a > 0, we define
[n(n=2)\ "z°
Ua(x) := (1-1-|(£1E2> for all z € R™.

As easily checked, we have that U, € D?(R") is a solution to (14). Therefore, the
action of the Lie algebra of (0, +00) x R™ yields elements of the set Kpg of solutions
V € D?(R") of the linearized equation

(16) AguaV = (2° = 1)aU2 ~2V in R™
Conversely, it follows from Bianchi-Egnell [2] that this actions is onto, that is

KBE = Span{‘/}/] = Ov e ,TL}7

where
(n—2)/4 2
2 a (9 _n—2 _ |I| -1
Vo = _ — (0 Ua 1) L =1 = 7T @ >
0 nz(mnm) 950 7 Ual07))o= 1+ |z2)%
(n-2)/4
—1 a €4
Vi — (2 OpUs=—9 _ forallj=1,---,m.
T n =2 (n(n—2)) T (|2t oretd "

The functions V; form an orthonormal basis of Kgg for the scalar product (u, v) —
Jzn (Vu, Vv) dz. Rescaling and pulling-back on M, for any § > 0, £ € M, and
X € T M, we define

o WT—z dQE (l‘,f)Q - (52
(1) Zae) = X A3 5
5 (D) (@), X)ge (o)
(0% + dg, (2,6)%) %
for all x € M. We let (Uy) be as in Definition 2.2. Here and in the sequel, expg5

denotes the exponential map at the point { € M with respect to the metric g¢. For
veC, €U, and 6 >0, we define

(18) Zse, x () = x(dge (2,€))Ae(2)d

(19) Z57§7j = Z5,£,ej(£i) for j = 1, Y 1 and Zg,f,o = Zg,é,

where the e;(£)’s are defined in Definition 2.2: we have omitted the index -y for
clearness. Since the isometric assimilation (9) of the tangent space to R™ is smooth
with respect to £ € Uy, we define

eipgsz R™ — M

(20) X o exp (Be(X)).
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2.6. Sobolev inequalities. It follows from Sobolev’s Theorem that D?%(R") is
embedded continuously in L?" (R") and that for any ¢ € D?(R™), we have that

(21) llles < K(n,2)[Vepll with K (n,2) := 2(n (n —2)wi/") 712,

On the compact manifold (M, g), H?(M) is embedded in L?" (M) and there exists
A > 0 such that for any ¢ € HZ(M), we have that

(22) [6ll2r < All@l 2 -

2.7. Riesz correspondence. We let ¢y > 0 be such that for h € L*° (M) such that
|h—holls < €0, we have that ||h]|oc < ||holloc+1 and A1 (Ag+h) > A1 (Ag+ho)/2 >
0. With a slight abuse of notation, we define

Ay+h: H}(M) — (HZ2(M))
u = (v (u,0)h = [,,(Vu, Vv)g + huv) dog)

and its inverse is denoted as (A,+h)~!. For 1 € Lt (M), it follows from Sobolev’s
Theorem (see (22)) that the map T- : v — [,, Tv dv, is defined and continuous for
v € H(M): we will then write (A, + h)~1(7) := (A, + h)~1(T;). It then follows
from regularity theory that for ||h — hol|| < €, we have that

(23) 1(Ag + 1)~ () gz < Clhoseo)I7ll 22,
where C'(hg,e0) > 0 depends only on (M, g), hg € L*°(M), and g > 0.

2.8. Notation. In the sequel, C,Cy,Cs, - - - will denote positive constants depend-
ing only on (M, g), k, vy, 0, Co, ug, ho, fo, and Gp. We will often use the same
notation C or C; (i > 1) for different constants from line to line, and even in the
same line.

The notation wgp....(x) will denote a constant depending on a,b,---, z, (M, g), k,
v, 0, Co, uo, ho, fo, and Gy and such that lim,_,; wg p,...(z) = 0, where [ € {0, 400}
will be explicit for each statement.

3. PRELIMINARY COMPUTATIONS 1: RESCALING AND PULL-BACK

The objective of this section and the following is to express qualitatively the
transfer of the action of (0,+00) x R™ on D%(R") to an infinitesimal action on
HZ(M). We fix v € C, where C is as in Definition 2.2. We choose a function
F € C™®(M x M) such that F(§,z) = 0 if dg (§,2) > ro for §,x € M. For
¢ € D}(R™), we define for £ € U, and § > 0

(24) Rescl (¢)(x) == F(€,2)0~ " (87 (expl) (x))

for all z € M. This transformation is the infinitesimal transfer via the exponential
map of the action (0,+00) x R™ on D?(R") defined in (15). As a preliminary
remark, it follows from (19) that

(1) (2)
(25) Zs, 6.5 = Rescg, ¢, (V) and Wi, ¢, 5, = Rescy, ¢, (U1) + Bs, e,

with FO(€,2) := x(dg, (2,€))Ae(2), FO (€, 2) = ki fo(§) ™2 M x(dge (2,€))Ag ()
forall &,z € M.
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Proposition 3.1. For all ¢ € D}(R™), § > 0, and & € U,, there hold Rescs¢(p) €
H2(M) and
(26) | Rescs ¢ (@)l 2 < CL(F)llellp2 ,

where Cy(F) > 0 is independent of £ € U, § > 0, and ¢ € D?(R™). Moreover, for
all p, € D}(R™), and for all §, R > 0 and & € U.,,, we have that

(27) / oo (VResci (), VRescsc(v)), dvg, — F(£,6)? / (Ve, Vi) pua da
B (©) ¢ R™
S w17F)@aw(R) + w2’F,4p7¢(6),
(28) / .. IVResci ()2, dvg, < w1 ppp(R) + wa,pu(6),
M\B(€)
(29) | IRescle@) duye < wrg(9)

where IMp_, 4 0o W1, 70,4 (R) = lims_yo wo e (0) = lims_o w3, 7, (6) = 0.

Proof of Proposition 3.1: We fix ¢, € D?(R™). We consider a domain D C M. A
change of variable yields
(30)

(VReSC?,E(QO)? VRGSC(I;E (¢))gg dvyg = / (V(d)é,&@)v v(¢5,£¢))96,5 dvgg,g )

D Ds ¢

where Ds ¢ 1= 5‘1(efipg§)_1(D N B2 (€)), gse(x) := ((ef(pgg)*g)(dx) and
5.¢(x) = F (&, exp{* (6x))
for all z € R™. Integrating (30) by parts yields

(31) /D (VRescgé(go),VRescgj&(w))g& dvg,

= /D (qsag(v‘;pa vd’)gs,g + Cb&,&(Ags,g QS(S,E)‘P@[}) dvga,g :
5.6
Since F' is smooth, there exists C'(F) > 0 such that
) { |06.6(x) — P56 (0)] < C(F)d|al, |d5,6A; ¢ Ps.e(@)] < C(F)?,
32

|95,¢(x) — g5.¢(0)] < C(F)0 Eucl, and |dvy, () — dz| < C(F)d dx

for all € B,,/5(0) C R™. Since ¢5.¢(0) = F(£,&) and g5¢(0) = Eucl the Euclidean
metric in R”, plugging (32) into (31) yields

/D (VRescgg (90)7 VRGSC(IS:,E (W)gé dvgg - F(fa §)2 / (V% v'(/J)Eucl dx

D(51§

< o(F) /D 61Vl - [V9| + 82| - [¢]) d

5,€
(33) < C(F)S|Vel| Vel + C(F), /52 / P du- |52 / 0 da
Byq5(0) Byq/6(0)
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Independently, for any R > 0, we have that

52/ <p2dx§52/ ¢2dx+§2/ ©* dx
By /5(0) By, /5(0)\Br(0) Br(0)

2 2
x

n 2
<% (/ dsc) (/ lo|? dx)
By /5(0)\Br(0) By /5(0)\Br(0)
2 2
+62. / dx
Br(0)
2
* 27* * 2*
(34) <Crd </ || dz) + C6*R? (/ || da;> .
Rn\BR(O) n

Since ¢ € D?(R"), it follows from Sobolev’s inequality (21) that ¢ € L?"(R") and
(35) lim &2 / O’ dr=0.
0=0 Biy/5(0)

As a consequence, for all £ € Uy, all 6 > 0, and all domain D C M, we have that

(36) /D (VRescgg(@)» VRGSC(gF:E (w))% dvgs - F(£7 5)2 / (v§07 v’@[])Eucl dz

D(;,g

< w4, Fp,y(9),

where lims_,0 wa, F,p.5 () = 0. Taking alernatively D := B (&) or D := M\ Biss(£),
and letting R — 400 yields (27) and (28). Taking R = 0 in (34), taking D := M
and ¢ = ¢ in (33), and using Sobolev’s inequality (21), we get that

2
¥

(37) / |VResc(5F§(g0)|2 dvg, gC(F)/ |Vg0\2dx+C(F) (/ |ap|2* dx)
M ’ 9¢ R™ R"

for § < 1. A change of variable and Holder’s inequality yields

/RGSC&f(%’)QdUgg:(SZ / (65,601 dvg, , < C(F) / o dr.
M By /5(0) Biy/5(0)

Assertion (29) follows from inequality (11), (35), and the latest inequality. Assertion
(26) follows from (37), inequality (11), Sobolev’s inequality (21), and (29). O

As a consequence, we get the following orthogonality property:
Proposition 3.2. Let ¢,v € D}(R") be two functions and h € L (M) such that
Ihloo < Ci. Then for any ((6:)i, (&)i) € Di(e, N), we have that

(RescE ¢, (9), Rescl ¢ (4))n — 8:3F(£,€) / (Vo Vo) di

n

< ws, k1,00 (6 N)

for alli,j € {1,..,k}, where im._,0. N 400 W5 F,Cy 0,0 (€, N) = 0. Here, 6, ; =1 if
1 =j and 0 otherwise.
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Proof of Proposition 3.2: We let R > 0 be a positive number. We have that

J<f
M\B;, (€)

- o
M\BY, (&) BYs. (€)NBYs (&)

It follows from (11), and assertions (28) and (26) of Proposition 3.1 that

(38) ‘ / (VRescy, ¢, (), VRescy, ¢ (1))g dv
. .

(39) / ‘(VRescg’gi (), VRescgj{j (1/)))9‘ dvg
M\BY,;. (6)

<] IVResE (@, dog, - [Resc, ¢ (D)l < wnpins(R),
M\By5. (€)

where limp_s 1 oo wWe F .o (R) = 0.

We first assume that i # j. If Bg; (&) N Bfs, (&) = 0, we get (42) from (38)
and (39). We assume that B (&) N B%ﬁj (&) # 0 and ¢ # j. Then we have
that dg(&,&;) < R(6; +6;). Since ((0:)i, (&)i) € Dr(e, N), exchanging i and j if
necessary, we then get that for N large enough and € small enough that

5 2(1+ R?)
40 - < —.
(40) 5T N
Therefore, using (26), we get that
/ ‘(VRescf;_’&((p),VRescgj_’gj(z/J))g dvy
B%ai(fi)an:mj(fj)
< IResch e (Dlmpoan | [ o [VResel ¢ (W)l det,
By (€)NB (&)

(41) <cPlelog [ V[ da.

65 'eXpg. (Bgg, (§:))NBR(0)

Via Lebesque’s theorem, it follows from (40) that for R > 0 fixed, the right-hand-
side above is as small as desired for N > 0 large. Plugging together (38), (39), and
(41), we get that for ¢ # j,

(42) ‘ / (VRescs, ¢, (¢), VRescs, ¢ (1)) g dvg| < wr ppp(N),
M

where limy_, 4 oo w7, 7,45 (N) = 0.
We now assume that ¢ = j. For R > 0 fixed, we have that |g¢, — g| < C(R)d;g on
Brs, (&) since Ag, (&) = 1. We then get with (26) that

(43)

/gg (VRescéFi,gi(gp),VReSCZﬁi (1)) g dvg
BRsl (51)

_ / e (VRescgi@ (@),VRescg,éi (1/}))_% dvgsi
BR,sli (Et)

< C(F, R)(siHReSCQgi (‘P)”HfHReSCg,gj (1/J)||H12 < C(F, R, 0,9)0; .
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Proposition 3.2 then follows from (42), (39), (27), (29), and (43). O
As a corollary, we get an orthogonality property for the Zs, ¢, ;’s defined in (19):

Corollary 3.3. Let h € L>°(M) be such that |||l < C1. For any i,i’ € {1,..,k}
and any j,j" € {0,..,n}, we have that

((Zs,.61.55 Zo,0 0.3 )n — 0000055 IV V5 15| < wg g, (8, N),
where ime—0, N—+o0 Wy &, (e,N)=0. Here, 6, » =1 ifi =1 and 0 otherwise.
Proof of Corollary 3.3: Taking F(&,x) := x(dg.(x,§))Ae(x), the corollary is a

direct consequence of (25), Proposition 3.4 above, and the fact that the V;’s form
an orthogonal family of D?(R"). O

We now deal with the nonlinear interactions of different rescalings:

Proposition 3.4. Let ,1) € D?(R") be two functions. Then for any i # j €
{1,.,k} and all r,s > 0 such that 1 <r+ s < 2*, we have that

(44) / (RescE ¢ (@) | RescE ¢ (9)° dvy < wo, o (e, V),
M
where im0, N—s 400 Wy, F,p, (€, N) = 0.

Proof of Proposition 3.4: We let R > 0 be a positive number. We have that

@) [ Resef (o) Resch g ) dvy < [ e [
M MBS (€) MBS (€))

RS;

By, (€)NBgs (€5

RS;

It follows from (11), Holder’s inequality, (26), and Sobolev’s embedding (22) that

/ ve. |Resc§7§i(<p)|’“|Rescg7§j ()|° dvg
M\Bpgy, (&)

L
*

2

< 2= (4o s o . s
< (Volg(M)) MBS (61) ‘Res%,gi(sﬁﬂ dvg, : ||ReSC5j,§j ()13
R§; \S

T
2%

() . :
< (Voly(M)) ™= (/ . (0)'*”'2 da:> - C(F)||Rescs, ¢, (v)l372
n R

(16) < C(F) - (1+ Vol, (M) - ( [ da:> Nl < 0 (),
R™\Br(0)

where limp_, 4 oo W10, 74,5 (R) = 0.

We now assume that Blgggi &) n Bf;gj (&) # 0 and i # j. Then we have that
dy(&,¢&) < C1R(6; + 6;), where C7 > 0. Since ((6;)s, (&):) € Di(e, N), up to
exchanging ¢ and j if necessary, we then get that

5 _2(1+ CiR?)

(47) 5, < i
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Therefore, using the comparison between ge, and ge; given by (11), we get that

L e o IR (O Resch ¢ )1 o
y, (€)M stj J

R&;

2* —(r+s)
< (Volg(M)) =% HReSCS& @22 any

(/. | |Resc£;,57.(w>|2*dvg>
( BZZJRM(@)QB;EJ (&) o )

5

s

3

s

o

< C(F)|[Rescs, ¢, (@)l - </6

“lexps (B ))NB
j expgj( C2R5i(§7’))n R(O)

> dv%)

48)  <CF)lglp: / L [ dvy,
87 1eXp (Boyns, (€))NBR(0)

CoRS;

Via Lebesque’s theorem, it follows from (47) that for R > 0 fixed, the right-hand-
side above is as small as desired for N > 0 large. Plugging (46) and (48) into (45)
yields (44). This ends the proof of Proposition 3.4. O

The last tool introduced here is the inverse rescaling. Let F e Q> (M x R™) be
such that F'(§,2) = 0 if |2| > ry. Let ¢ € HZ(M) be a function. For ¢ € U, and
6§ > 0, we define

(49) Rescy ¢(9)(x) = F(£,6|2])5"F ¢ o epe (62)

for all z € R™.

Proposition 3.5. For any ¢ € H}(M), £ € U,, and § > 0, then Réscgg(gb) €
D2(R™). In addition, if ||h||s < C1, then

- B -
| Resc;s ¢ (9)llp2 < C(C) |l a2 (ary-

Proof of Proposition 3.5: By density, it is enough to prove the result for ¢ €
C*(M). Then, Réscgg((b) € C°(R™). A change of variable yields

~ F
| IVRéscl (@) do
_ - < geN—1Y) 112
- ng © |V(F(§7 (expgﬁ) ))¢|(8Xp§£)_1)* Eucl dv(ef(pg&)fw* Eucl *
ro
Since F' € C*°(M x R™) and (11) holds, we have that (ef(pgé)*l)* Eucl < Cg and

~ F I

for all ¢ € C°°(M). Proposition 3.5 then follows by density. O

4. PRELIMINARY COMPUTATIONS 2: ESTIMATES OF DERIVATIVES

This section is devoted to the proof of the following estimates:
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Proposition 4.1. For vy € C, for any £ € U, and § > 0, we have that

n—2 n(n?))n‘*_2 1
50 Wi se = K mn— 2 2 (Zeso+o(1)),
(50) Wane =52 (e2) 5 (esa o))

n—2 n(n —2) T

51 ey, Wi e (M) = (Zess+o(l
ay o Wass =5 (D) T s+ o)
for all j =1,--- ,n, where |Jo(1)||gz < w11(6) and lims_ow11(d) = 0. Moreover,
we have that
(52) 0105 Z¢ 6.5l 2 < C and 8||VeZesjlluz < C,

where C > 0 is independent of £ € U, and § € (0,1). The partial derivatives along
the center £ € U, in (51) are defined in (56) below.

In other words, the differentiation of the rescaling along (0, +00) x M is essentially
the rescaling of the differentiation of U; along the Lie algebra of (0, 400) x R™ for
the action (15).

Proof of Proposition 4.1: Straightforward computations yield

n—2
n—2/nn-2)\ * 1
53 05 W56 = —— ) 5 Zeso+ OsBse,
( ) g ,0,€ K 2 ( fo(f) ) 5 £,0,0 + Os 9,€
1
(54) OsZesi =5 Rescly (®;) for all j =0,--- ,n,

where F1) (¢, ) := X(dge (2,€))A¢(x) for &,z € M and ®; € DI(R™) are such that

n—2 4 2 n 2
nz= +2 -1
z el —(n )Jﬂ and ®;(x) = —(|w| )naijz forj=1,..,n
(14 [af?) ™= 2(1+ |=[?) 2
for all z € R™. It then follows from (13), (53), (26), (54) that (50) and the first
inequality of (52) hold.

@0(37) =

We now focus on the derivatives along the center £. Since the Ws ¢’s and the Z5 ¢ ;s
enjoy the same representation (25), we work with the function

Wie(x) == W(,2)5 "= V(5 (expl) *(2))

for all z € M, where V € D}(R") is such that 9;V € D?(R") for all j =1,---,n
and ¥ € C*(U, x M) is such that ¥(§,z) = 0 if dg, (v,§) > 9. For 7 € R", we
define 7(t) := efipg§ (t7), and we consider

(55) Ws 7y := W(T(t),) V(07tee),
where O := (exp¢®) ™" with definition (20). We then define

d
(56) Ko Wae = 7 Warw) g

for 7 = (0,---,0,1,0,---,0) being the j** vector of the canonical basis of R™.
Straightforward computations yield

d

T (W5Tt))|t 0 Resc +Z(5 1Resc\1"‘ (OV),
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. . k
where Wo (€, z) 1= dW (¢ (d(expgg)o(TLO) and U (¢, x) = \I/(f,:c)% (@;(t) (x))‘tzo
fork=1,.,nand £ € Uy, v € M. We define

V() = Wi (€, 2) = Uy (6, ) FW (€, ), where FU(€, ) := x(dye (x, €)) Ae ()
forall k=1,--- ,nand £,z € M. We then have that

d .
T (Waf(t))|t:0 = 25 1‘I/k(§7€)ReSC(sg (OkV)
k=1

+ Resc )+ Z 6~ 1Resc\1”“ (OV).
Since Wy (€, €) = 0, it follows from Proposition 3.1 that

(57) S 5710012,\/(6),

H?

d L (1)
= Mo 1o = D07 Wk(€,O)Rescie (OkV)
k=1

where lims_,g w12(8) = 0. We are left with computing ¥ (£, £). We define X (¢) :=
O7)(§) and for ¢ small. In particular, X and £ are smooth with respect to ¢ small.
The definition of ©, Taylor expansions, and the fact that X (0) = 0 yield

~ 1 F(t ~ 1 F(t
0= (expgs) o expz(i)) (X)) = (expgf) o equ(i)) (tX'(0) + o(t))
~ 1 F(t ~ 1 F(t
— (expgg) o expi(i))( )+ td((expgg) o expi(x) (X'(0)) + o(t)
. -1, . -1 .
= (Cngg) (7(t)) + td((cxpgg) ) cxpf )O(X’(O)) + o(t)
=t7+tX'(0) + o(t)
when ¢ — 0. Therefore X’(0) = —7. Since 7 = (0,---,0,1,0,---,) (the 5" vector),
we then get that Uy (&, &) = =¥ (,€) if k = j and 0 otherwise. Then (57) rewrites

< 571(-012,\/(5)»
H

(58) Hd (w

-1 O
a 5,e>zp§5(ﬁ))|t:0 =07 W(& &)Rescs ¢ (@V)‘

where lims_,g w12(d) = 0. The assertion (51) and the second assertion of (52) follow
from the expressions (25) and (55), and from (13) and (58). O

5. INVERSION AND FIXED-POINT ARGUMENT
For ((6:), (&):) € (0,+00)F x M*¥, we define
K5)en: = Span{Zs, ¢, 5 Zs, e, s 0/t =1, k,w; € Te, M, ¢ € Ko} .
We let {¢1, -, @4} be an orthonormal basis of Ky for (-,-)p,. We then have that
(59)  Ks)ie), =Span{Zs, ¢, js @1 /i=1,---,k,j=0,--- ,n,l=1,---,d}.

It follows from (25), (26), and (29) that the Zs, ¢, ;’s go weakly to 0 in HE(M)
when §; — 0 uniformly with respect to & € U,;). It follows from Corollary 3.3
that for ¢ > 0 small enough and N > 0 large enough, the Zs, ¢, ;’s (i = 1,--- ,k
and 7 = 0,--- ,n) form an "almost” orthogonal family. Therefore, the generating
family in (59) is "almost” orthogonal for ( l)l, (&) € Di(e, N) for € > 0 small and
N > 0 large, and therefore, dimg Ks,), (¢,), = k(n + 1) +d. We define K( AR

as the orthogonal of K (s,), (¢,), in le(M) for the scalar product (-, )p.
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We define HK((;’L')M(Ei)i : H%(M) — H%(M) and HK(J:si)iv(fi)i : H%(M) — H%(M)

respectively as the orthogonal projection on Ks,), (¢,), and K, (L&')i (€ with respect

i

to the scalar product (-,-),. As easily checked, v € HZ(M) is a solution to (1) iff
_ -1 ’ —
(60) HK&i)q‘,v(fi)i (U (Ag + h) (F_SU))/) 0
and HK(fii)iv(ii)i (U - (Ag + h) (F (U))) =0.
In this section, we solve the first equation of (60):

Proposition 5.1. Under the hypotheses of Theorem 1.1, there exists N > 0 and
e > 0 such that for any h € L>(M), f € CO(M), G € C2(H2(M)), and u €

loc
C1(B1(0), H3(M)) such that (6), (7), and (8) hold, there exists ¢ € C*(B.(0) x
Di(e,N), HZ(M)) such that

k
u(za (51)27 (61)2) = u(z) + Z Wﬂiﬁi,& + ¢(Za (51)27 (61)2)

is a solution to -
(61) K e, (W2 (00)i5 (€)i) = (Ag + h)7HEF (u(z, (8:)i, (€):)))) = 0
for all (z,(6;)s, (&)i) € B<(0) X Dg(e, N). In addition, we have that

&(z, (0)is (€)i) € Kis,y, ey, and [|6(2, (8:)i, (E)illgz < C - R(z, (6:)i, (&i)i),

where C' is a constant depending on (M, g), k, vy, 0, Co, ug, ho, fo, and Go. The
remainder R(z, (0;):,(&):) is defined in (5). Moreover, we have that

R(z,(0:)i, (&)i) < wiz(e, N)
for all z € B(0) and ((0:)i, (&:)i) € Di(e, N), where lim._,o N 400 w13(e, N) = 0.
5.1. Inversion of the linearized operator.

Proposition 5.2. Under the hypotheses of Theorem 1.1, there exists ¢ > 0, there
exists N > 0 and € > 0 such that for h € L>~(M), f € C°(M), G € C’fog(le(M)),
and u € CY(B1(0), HZ(M)) such that (6), (7), and (8) hold, then there exists ¢ > 0
such that for any z € B:(0) and ((0;):, (&):) € Di(e, N), we have that

(62) Iz (P2 = cllellmz
for all p € HZ(M), where

Loy

1 1
Kooy = K(éi)ml&)i” .
@ o I (o — (Ag+h)HE" (ulz, (6:)s, (&)i) )

In particular, L (s,); (¢:)s) 5 @ bi-continuous isomorphism.

L
(85)i:(&i)4

Proof of Proposition 5.2: We prove (62) by contradiction. We assume that there
exist (¢a)a € (2,2%], (ha)a € LX(M), (fa)a € C°(M), (24)a € B1(0), (ta)a €
CH(B1(0); HZ(M)), (Ga)a € CEE(HZ(M)), (8;.0)a, and (€i.a)a fori=1,---  k and
(ba)a € HE(M) such that

(63) i e = holloe + 1o~ folleo + gz (G, Go) =0,
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(64) lim §;, =0, lim (5 =1, lim z,=0, lim ¢, =2",

a——+00 a—4oo ©% a——+00 a—+0o0

(65)  ua(0) =wuo, [[uallcr (s, (0),52) < Co, fol&ia) = 1o foralli=1,--- k,

. 51'04 6'(1 d(&iaf'a)Q

1 ; j, g\Si a0, S, _
(66) oI (% e T bada oo
and
(68) La(¢o¢) = 0(1)3

where lim,—, 10 0(1) = 0 in HZ(M) and
Lo = Ly (51.0)i(600) a0 Ko = K5, ) (¢00): -

In the sequel, all convergences are with respect to a subsequence of «. It follows
from the boundedness of (¢ )q in (67) that there exists ¢ € H(M) such that

(69) b0 — ¢ weakly in HZ (M) when a — +00.

It follows from (68) that there exist (A¥), € R and (ul), € R for i € {1,--- ,k},
je€{0,---,n},and | € {1,--- ,d} such that

(70)

k d
bo = (Dg +ha)™! (F(;/ (Ua(za) + Wi,a)%) =o()+Y N Ziju+ > uhor,
i=1 irj =1
where lim,_,00(1) =0 in HZ(M) and
(71) / SuH(v)1® dvy + Ga(v)
for all v € HZ(M) and

VVLOZ = W"'@iy(si,avfi,a and ZiJ,Oé = Z5i,m§q,,a,j for all ¢ € {17 T 7k}7 JE {Ov T 7n}'

It follows from Proposition 3.1 that for any ¢ € {1,--- ,k} and j € {0,--- ,n}, we
have that

(72) Wia—0and Z; j, — 0 weakly in Hf (M) when o — +00.
Since ¢, € KX, for any i = 1,--- ,k and any j = 0,--- ,n, we have that
(73) (Das Ziija)ha =0 and (¢a,@)n, =0 for all p € K.

It follows from the local C?—convergence (63) of G, to Gg, from the continuity
properties of Gy (see Definition 2.1) and from (69) that

(74) 60 = (D +ha) ™ (g0 = DfaH (va(za) + Z Wia)"™ " 00)

- (Ag+h0) (GH(UO +Z)\ Zzya +Zﬂa@l



16 FREDERIC ROBERT AND JEROME VETOIS

where lim,_,00(1) = 0 in Hf(M) We define

ZZ|)\”| —|—Z|ua| for all a.

i=1 j=0
We fix ¢ € HZ(M). Tt then follows from (74) that

k —
(75) (¢ou @)ha - (Q(x - 1) /M faH(ua(Zoz) + Z Wi,(x) : 2¢(x§0dvg
=1

d

—Go(uo)(¢,9) = 0a(1) (14 Aa)) ([l a2) +ZA” g @) hat Y HalP1 P)hg

=1
Here and in the sequel, lim,—s 400 04(1) — 0 umformly with respect to ¢ € HZ(M).

Step 1: We first bound the p!’s. We fix p € HZ(M). Tt follows from (63), (64)
(65), (25), and (26) that the family (foH (uq (za)—i—Zf:l Wi a)% 2¢4)q is uniformly
bounded in L**/("+2) (M) and converges a.e. to foH (ug)? ~2¢ when o — +o0. It
then follows from integration theory that the convergence holds weakly in L (M)'.
Therefore, passing to the limit o — +o0 in (75) for p € HZ(M) fixed, we get that

(76) (b hny — (2 — 1) / foH (u0)?" ~26ip dvg — Gl (o) (6, 9)
d

= (6,9)no = F§/(10)($ ) = 0a(1) (14 Aa) + D 1601 0)ng -

=1
Passing to the limit &t — oo in the second equality of (73) yields (¢, ¥)n, = 0 for
all ¢ € Ky. It then follows from (3) that F{(uo)(¢, ¢) = (¢, ©)n, = 0, and then

d
Zﬂla(@h L)D)ho = Oa(l) (1 + Aoc)
=1

for all ¢ € Ky. Since {¢;/1=1,---,d} is an orthonormal basis of Ky, we get that

d
(77) Z\ual—oa (1+Aa),
where lim, ;100 04(1) = 0.
Step 2: We bound the A\%J’s. We fix ip € {1,--- ,k}. We fix p € D?(R") and define
Vig,a 1= Rescgo‘méioﬂ (¢), where F'(§,x) := x(dg, (§,7))A¢(x) for £, 0 € M.

In particular, it follows from Proposition 3.1 that

(78) Dig.o — 0 weakly in H7 (M) when a — +oc.
We define
bigor = Résc? 5. (o), where F (£, ) := _ xlzh for £ € M, z € R"™.
- Ae(espl* (@)

Note that it follows from Proposition 3.5 that (¢i,.a)a is bounded in D}(R™), and
then, there exists ¢;, € D(R") such that

(79) ino,a — (,57;0 in D?(R™) when o — +00.
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As easily checked, Rescgoﬁméioﬁ (hig.c) = ot Ta, where (7o) o is bounded in HZ (M)
with support in M \ ng:oa“ (ro/3). It then follows from (28) and (29) that
(80)

(Rescgo,a,aio,a(<13i07a)aRGSCZU,Q,%,Q(@))M = (%vReSCgO,a,aiO,u(@))hQ +0a(1),

where lim, 400 00(1) = 0. Applying (75) to ¢;, o yields

k qo—2
(¢0¢7 Spio,a)ha - (Q(x - 1) /M faH(ua(za) + Z Wi,a) ¢a§0ig,a dvg

i=1
=G (u0)(@, Pig,a) = 0a(1) (1 + Aq) (H‘Pio,a”Hf)
d
+ Z N (Zi jas ia )b + Z 1, (@1, ©ig.a) ) ho -
iyJ =1

It then follows from (80), (33), (43), the properties of G (see Definition 2.1), (78),
and Proposition 3.2 that

- k qo—2
(81) (¢i0,a7 @)Eucl - (Qa - 1) /M faH<ua(za) + Z Wi,a) ¢a‘ﬂio,a dvg
=1

= Oa(l) (1 + Aa) + Z)‘f)?](‘/]a ()D)Eucl .

J

Without loss of generality, we can assume that § < min{1,2* — 2}. Then, there

exists C'(#) > 0 such that
k qo—2 k

'H(ZX) — H(Xq)% 2| < C(0)|Xol” Y |Xil ™0+ C(0) Y |X;

i=0 i#0 i#0

for all X; € R, i=0,---,k. As a consequence, we get that

k qa—2
‘ / fa (H <ua (Za) + Z Wi,a) - H(Wio,a)qa2> (ba@io,a dvg
M

i=1

qa—2

< C/M <|Wio,a|9|uo¢(za)qu29 + Z |Wi0,a‘0|Wi,a q(,(29> ‘¢a| : |80i07a| d’Ug

i#ig
v | (|ua(za>|%—2 'y |Wi,a|%—2) (bl - [oi0.al v,
M .
i#i0
= C/ Wipal?|@io.al - [Bal - |ta(za)]92 27 du,
M
+C/ |<Pio,oz : |¢a| : |ua(za)‘qa72 dvg
M
+C 3 Wi ol Wial @272 5u o) ligsall2 [ balo-
i#ig
+O S IWial®™ 2 0i all2s s 1)l dalla--
i#ig

Since (|@ig.al-|dal)a goes to 0 almost everywhere and is bounded in L?"/2(M), since
([Wiy.al?[0i0.0l-|dal)a goes to 0 almost everywhere and is bounded in L2"/+9) (M),
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it follows from standard integration theory and Proposition 3.4 that

k qo—2
/ fa (H <u(za) +y° Wm> - H(Wio,a)%2> baPig.a dvg — 0
M i=1

when o — +o00. Plugging this limit in (81) yields

(82)  ($io.c0r @)mct — (g — 1) /M S (Wig )™~ baipig o dvy

= Oa(l) (1 + Aa) + Z )\Z)j(vj’ @)Eucl-
J

For any R > 0, we have that

a2
‘ /M\B‘q&io,a ol (Wiy,a)™ ™ dapig.a dvg

RS; (§ig.a)

0,

< Wil 1ol [

9850 ,a
M BREiO,a (fio,u)

1/2
|<Pio,oc|2 dvg)

< Cllell L2\ Br(0)) -
Since ¢ € L* (R™), we get that

83 li li H (Wi )22 boin o dvg =0.
) Al f gt oy T i) e diy

0

A change of variable, (63) and (64) yield
/gsi o f(xH (Wio,a)qa_2 ¢a@io,a dvg
B}:moY a(gio,a)

o

~ Y&, e an 2 -
:/ fa(Engq;O[_)a (61'0,04')) (51'207aq ) H("{iUfo(&o‘a)) ¢i01a¢dvga
Br(0) !

(84) - / U12*_2Q~5i070490dw + 0(1)’
Br(0)

where ¢, := (eipggio’a)*g(éioya-), and we have used that k; = 1 if H = (-)4.

Q.o

Moreover, it follows from Hoélder’s inequality that

/ U2 2, pds
R"\Br(0)

Plugging (83), (84), and (85) into (82), and using (79) yields

(85) < N 3o B0, 2 2

(86) (Gi0: @)iuer — (2° — 1) / U pde
= Oa(l) (1 + Aoc) + Z Affj(‘/jy @)Eucl .
J

It follows from (73), from (80), (33), and (43) that
(87) ((757503 ‘/j)Eucl =0 for allj =0,---,n.
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Since the V}’s are solutions to (16), we then get that fRn Ulg*_2(];io‘/j dx = 0 for all
j =0,---,n. Since the V;’s are orthogonal in D}(R"), taking ¢ := V; in (86) yields
(88) Nod = 0,(1) (1 +A,) forallig=1,--- ,kand j=0,--- ,n.
Step 3: It follows from (77) and (88) that A, = 0,(1) (1 + Ay), and then A, =
0a(1) when o — 0. As a consequence, (76) rewrites Ag¢ + hoo = F((uo)¢, and

then ¢ € Ky. Moreover, passing to the limit & — 400 in the second equation of
(73) yields ¢ € Kg-. Therefore ¢ = 0, and then (69) rewrites

bo — 0 weakly in HZ(M) when a — 4o0.

Similarly, (86) rewrites Aguagi, = (2% — 1)U12*72q~5i0 with ¢;, € D?(R™). Then
$i, € Kpr (see Subsection 2.5). On the other hand, (87) yields ¢;, € Kip.
Therefore ¢;, = 0, and then (79) rewrites

éio,a — 0 weakly in D(R") when a — 400
for any ig = 1,--- , k. Since ¢ = 0, taking ¢ := @4 in (75) yields

k qa—2
6l = (= 1) [ faH(uaua) " zwm> 32 duy + o1)

=1
k
(89) <c /M e (za) |12 ~262 dug + €'Y /M (Wi a1 =262 dvy + 0a(1),
=1

where lim, s 1+ o, 04(1) = 0. Since ¢, — 0 when o — 400, it follows from integration
theory that [}, [ua(za)]% 292 dvg — 0 when v — +o00. For any i € {1,--- ,k}, on
the one hand, for any R > 0, we have that

[ Wial® 26 du, < Cllal </ |Wi,a|2*dvg>
M\BR51~1;(§1‘,&) M\B ’ (gi,a)

Ré; o

(ga—2)/2"
(90) < Cllgalids ( [ v ) ,
R\ BRr(0)

and then

da —2
2%

lim  lim W; o9 262 dv, = 0.
R—+400 a—+00 M\Blg;io’a (fio 2 ‘ z,a‘ (ba 9
ig,a ’

On the other hand, we have that

(91) /gg. Wial® 205 dvg < C U2y 0 du.
BR;;Z)YZ (g'io,a) BR(O)

Since Qj;i,a — 0 when @ — 400, it follows from integration theory that the right-
hand side in (91) above goes to 0 as @ — +o00. Plugging this latest result and (90)
into (89) yields ||¢alln, = o(1) when o« — +o00. A contradiction with (67). This
proves (62).

We write L. (5,),,(¢,), = 1d — L, where L is a compact operator. It then follows
from (62) and Fredholm theory that L. (s,), ), is a bi-continuous isomorphism.
This ends the proof of Proposition 5.2 (]
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5.2. Rough control of the rest. We prove the following proposition:
Proposition 5.3. We have that

(92) R(z,(6i)i, (&)i) < wia(e, N)

for all (z,(0:)i,(&)i) € Be(0) X Dy(e, N), where lime_0 N 400 w14(g, N) = 0.
Proof of Proposition 5.3: We argue by contradiction. We assume that there ex-
ist (ga)a € (2,2%], (ha)a € L®(M wa € CO(M), (2a)a € B1(0), (ua)a €

), (
CL(B1(0); HA(M)), (Ga)a € Ciot (HZ(M)), (81,0)a and (§i,a)a fori=1,-- k and
co > 0 such that

(93) Jim 1ha = holloo + | fa = follco + dezo (Ga, Go) =
(94) OLEI-{I-I 510{_0 al_l)I}_loo(S’ 7(£%Za:OaQETOOQa:2 s

(95) uoc(o) =Uo, ||uaHC'1(Bl(0),H12) < 007 fo(fi,a) > W for all i = 17 T 7k7

(96) Jim (g;z + (;Z: + dg(gzzéf;aﬁ) = +o0,
and

(97) Ro = R(za, (0i,a)i (§i,a)i) > co for all a € N.
We define W; o := Wy, 5, ... In particular, Proposition 3.1 yields
(98) Wio — 0 weakly in H7 (M) when a — +oc.

Defining H,, (z) = H(z)% 2z and F, as in (71), we have that
k k
R, = Ua(za) + Z Wia — (Ag + ha)71 (F(; (Ua(za) + Z W“”)) ‘

=1 =1

< Hua(za) — (Ag + ha) "t (Fl(ualza))))

H?

[

3 W (8 ), (W)
=1

H?

S YRS CACNENE 5 Wia) = Filua(ca))

i=1

=3 o) (W)

HE
The control (95) yields limgy_s o0 Ua(2a) = up in HZ(M). The convergence (93)
then yields

lim Hua Za) — (A —&—ha)_l(Fé[(ua(za)))HH12

a— 400

= |Juo — (Ag + ho) " (F§(uo))| 12 = 0.

M
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Since (uq(za) + Zle Wia)a — uo weakly in Hf(M), it follows from the conver-
gence (93) of (Gy)q and the Definition 2.1 of subcriticality of G that

k
(99) G, (ua(za) + Z Wi,a) — G (up) strongly in H (M) when o — +oc.

i=1
As a consequence, we get with the Riesz correspondence (23) that

k
Ro < 0(1) + 3 ||Wia = (Ay + ha) ™ (fally, (Wia)

=1

+ CllAall 2,
H? nts
where
A, :=H,, (ua(za) + Z Wi,a) — Hy (ua(z4)) — ZH%(WZ-,Q).
; i=1
As easily checked, for all family (X;)i—o,... r € R, we have that

<Oy 1X| - |1Xg)?
i#]

- k k ~
‘Ha (ZX) —;an(xi)

i=0

for all @ € N large. Therefore, with Holder’s inequality, we get that
2n

n+2 E

n2<:}2 g C i /M |ua(za)

+CY | Jua(za)| D W o d,
T JIM

2 2
w2 W o] 4o Dat2 duy

[ A

+CZ/ |Wi,a|%|wj,a|(qa_2)%dvg'
iz * M

Since g (2q) — ug in L2 (M), (\Wi,a\(q”‘_m%)a is bounded in L("+2/4(M) and
goes to zero a.e. on M when @ — 400, integration theory yields the convergence to
0 of the first term of the right-hand side when o — +o00. Similarly, the second term
goes to 0 as a — 400. The expression (25), the property (13), and Proposition 3.4
yield the convergence to 0 of the third term when a@ — +o00. Therefore, we get that
(||Aa||%)a — 0 and then

Ry <o(1) + zk: HWza —(Ag+ha)™ (fo‘ﬁqa(Wi’a)) H
i=1

H?

We define

Sin /?(&—2)) 22
Wi?oc = X(dggi,u ('7 gi,a))Aii,a (52 e >

,Q + dggiﬁa ('7 fi,(l)Q
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so that W; o = kW), 4 o(1) when o — +00 (see (12)). Therefore, since s; = 1 if
H = ()4, (23) yields

R, <o +Z‘51W0 _ ha)—l(faﬂqa(mwga) -
0 — 0 qa_l 2n
(100) Souw+EQWAg+h@waa Fa( W5 2

In the sequel, 0(1)% denotes a function going to 0 in Ln%?(M) when a — +oo.

We define ¢, := 4(’:;21), and we let R, be the scalar curvature of g. We denote

Ly := Ay + ¢, Ry the conformal Laplacian. If ¢’ := w2 2g and w € C?(M)
positive, the conformal invariance properties of L, yields

L (¢) == ="' Ly(wp)

for all ¢ € C?(M). Using the expression of the Laplacian in radial coordinates,
omitting the index ¢ and writing r := dy, (z,§), we get that

(Ag + ha )Wy = LgW),, + (ha — cyRg) W}

= Lyz-a,, Wia+0(1) 2n = A7 7 Lo (AF'W,) + 0(1) 2,
= AZ 1Ay (X T gy (5717) +0(1) 25,
= A7 ' Apua (X(T)(S_%Ufo(é)(é_lr))

— OrIn\/|9¢|0; (X(T)(S_%?Ufo(&)(‘s )) +o(1) 2z,

1L+2
= A7 " Agua (X(T)(;*%Ufo(s)(flr))

57
+O | —2— ) +0(1) 2
(52 + TQ)T nt+2
= A§*71 AEucl ( e Ufo(&) )) + 0( ) 2p
* 2% —1
= A7) (T U (67') o)z,
I IR
:ﬁ@%ﬂ@&é P Up@'7) (1) 2

= fo©WLa)* ™" +o(1) 2o
= foWPa)* 7 +0(1) 2o, = fa(Wia)* ™" +0(1) 2o, -

n+2

Therefore, it follows from (100) that

k
0 \2*—1 0 \qa—1
(101) Ry <o(1) + CZ [(Wia)™ = = (W)™l 2, -
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We fix i € {1,--- ,k}. For any R > 0, a change of variable and (94) yields

/ysba(g ‘(WO )= (W)t

2n
n+2
dvg

2n
n+2

L N (L8 L e R
2n_
(102) <c ‘U?O(Za) —oz Freyet 1T = o(1)
Br(0)
when a — 400. Independently, we have that
2n
. 2
/ SN (UEN LA B
. . —
<O WL a0 / SN L
3%:11
<C U dx+C / Ut dx .
R™\ Bg(0) R™\Br(0)
Then
(103) lim  lim ‘(W,.?a)”l — (WP2,)a=! oy 0.

gge .
Roytooamtoo Jap\ g otie (¢ o)
i,

Plugging (102) and (103) into (101) yields R, = o(1) when o — +00, a contradic-
tion with (97). This proves Proposition 5.3. O

5.3. Proof of Proposition 5.1 via a fixed-point argument. We let ¢, N > 0
satisfy the hypotheses of Proposition 5.2 to be fixed later, and we let h, f, G, u satisfy
the hypotheses of Theorem 1.1. We consider (z, (6;)4, (§)i) € B:(0) x Di(e, N), and
we define K := K(s,), (¢,),- For any ¢ € K+ c H?(M), we have that

(104)

k k
g (U(Z) + Zwﬁiﬁi{i +¢ - (Ag + h)_l (F/ (u(z) + Z Wi, 6.6 + ¢>)> =
i=1 i=1
if and only if
¢ =T(9),
where T : K+ — K+ is such that
T(¢) =L ol o (Ayg +h)"H(N(9)) = L™ o Tk (R),
where L := L(5i)z‘>(§i)i7

k k
N(d)) =F (u(z) + Z Wm,Ei,gi + ¢)> —F (U(Z) + Z Wm,&,&)
i=1

i=1

k
" (u(z) + Z Wﬁi76i7§i> ¢
i=1
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and

k k
R:= U(Z) + Z WHi,(Shgi - (Ag + h’)il <F/ <U(Z) + Z Wm,éi,fi))'
=1 =1

We prove the existence of a solution to (104) via Picard’s Fixed Point Theorem.
We let ¢1,¢2 € K+ be two test-functions. Since . : HZ(M) — HZ(M) is
1-Lipschitz continuous, it follows from (62) that

IT(¢1) = T(¢2)llmz < CIN(¢1) = N(d2)| 12

k k
< C‘ F (u(z> + Z Wmﬁi,& + ¢1) —F (u(z) + Z WM,&,& + ¢2)
i=1 i=1
k
—F" (U(Z) + Z Wmﬁufi) (¢1 - ¢2)
i=1 (HE)Y
It then follows from the mean value inequality that
(105) 1T(¢1) = T(d2) |l mzary < C -5 [lé1 — b2z,
where
k
S = sup F// (u(z) + Z Wm,éi,ﬁi + (bl + t(¢2 - ¢1>)
t€[0,1] i=1
k
_F" (u(z) =+ Z Wni,ﬁi,§i> ‘
i=1 Hi—(H?)
< sup ([1Fllcaoqsgon - 61 +t(62 = 61l
te[0,1]
(106) < CllF oo - (191l + o2l )

with R = R(z, (8:), (&)) = lJu(2) |l 2 + X5, Wi siellmz +1, [ onllzs o1l a2 <
1. Tt then follows from (6) and Proposition 3.1 that R(z, (§;):, (&)i) < C. As easily
checked, for 2 < ¢ < 2*, we have that

F (), 62) = (g — 1) /M FH(0)2ns dvy + G () (1, 62)

for all v € HZ(M) and all 1,19 € HZ(M). Without loss of generality, we may
assume that 0 < 6 < 2* — 2. Requiring that € < 1 and using (6), we then get that

(107) [l c20 B4 0)) < C(R,0)
for € > 0 small enough. Plugging together (105), (106), and (107) yields
(108)  |IT(@1) = T(@2)llmzan < Cr - (I611% + 920z ) - o1 = d2llmz

for ¢1, p2 € K+ such that [¢1llzz, 1]l g2 < 1. Moreover, it follows from (23) and
(5) that

(109) IT0)|[ 2 < C|IR|[ gz < C2R(2, (6:)i, (&)i)-

We define
¢ :=2C3R(z,(0;)4, (&:)i)-
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We let ¢, o € K+ N B.(0): it then follows from (108) and (109) that
IT(¢1) = T(d2) |l m2(ary < 2C1(2C2)° R(2, (8:)i, (€0):)° - |61 — b2l 2

and
1T (@0l 2 < CaR(z, (6:)is (€):) + CL(2C2) O R(z, (6:)i, (€:)i) '
< (Co+ C2(2C2) PP R(z, (6:)1, (£):)?) - R(z, (8:)1, (&):)-
It follows from Proposition 5.3, that there exists € > 0 and N > 0 such that
1 1
N (£ < mi .
R(z,(6:)i, (&)i)” < min { C1CO21+0 7 4C5(2C)0 }

for all z € B.(0) and ((6;)4, (§:)i) € Di(e, N). It then follows that for such a choice,
the map T is 1/2—Lipschitz from B.(0) onto itself. It then follows from Picard’s
fixed point theorem that there exists a unique solution ¢(z, (6;), (&;):;) € B.(0)NK=+
to T(P(z, (6:)i, (§:)i)) = &(2, (8:)i, (&):), in particular

(2, (0:)i, (&)i)ll g2 < 2C2R(2, (6:)i, (€i)i)-
We are left with proving the C''—regularity of ¢. We define the map

F: B.(0) x Dyle, N) x HX(M) — H2(M)
(2, (04)s, (&i)is ?) = F(z, ()i, (&), 9),

where

k
F(zv (61)17 (51)13 ¢) = HK(¢) + gr (u(z) + Z Wﬁi,&,yfi + g ((,25)

i=1

k
8y ) + Y Wasg 1Tk ().

i=1
It follows from Proposition 5.2 that the differential with respect to ¢ is an iso-
morphism of H?(M) for all (z,(8;):, (&)i, @) € B:(0) x Di(e, N) x HZ(M), with
[¢llzz < co for some co > 0 small. Since F(z, (6:)i, (&)is ¢(z, (0:)i, (§:)i)) = 0 for
all (z,(0;)s, (&)i) € B:(0) X Dg(e, N), it follows from the implicit functions theorem
that (z, (6;)i, (&)i) = &(2,(8:):, (&)i) is Ct on B.(0) x Di(e, N). This ends the
proof of Proposition 5.1. O

6. EQUIVALENCE OF THE CRITICAL POINTS

We prove Theorem 1.1 in this section. With Proposition 5.1 above, this amounts
to prove the equivalence of the critical points for ¢ > 0 small and N > 0 large. For
e, N > 0 satisfying the hypothesis of Proposition 5.1, there exists ¢ € C*(B.(0) x
Dy (e, N), H?(M) such that
(110) T (a8 (€)= (By + )M (F (u(z (i (€0):))) = 0.
where

k
u(z, (0i)i, (&)i) == u(z) + Z Wi, 6060 + 0(2,(6i)i5 (&i)i)s

i=1
and
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for (2, (6;):, (&)i) € Di(e, N). By (59), it follows that there exist A\ (z, (), (&;):) €
R(i=1,---,kand j =0,---,n) and p'(z, (6;):,(&)i) €ER (I =1,---,d) such that

(112) Tk, o, (w2 ()i (€)i) = (Ag + B)HEF (u(z, ( i)iv(gi)i))))
:ZZ ZJ Z, ’L’L7 62 Z)Z5§g+zu Zza(fz)z)

=1

It then follows from (110) and (112) that for any ¢ € H (M), we have that
DJ(u(z, (8:)i; (&)i))e
i)is

= (0= 02 (€)= (8 + B (F (w2, (B0 (6000)), ),
kK n d
(113) Z AZJ Z, z z;(gz)z) (Z6,i,§i,ja<p)h+zul( a( 1)1,(51)1)(<Pl7 ) .
i=1 j=0 =1

If u(z, (6:)i, (&)i) is a critical point of J, then (z, (6;)i, (§i)i) € Be(0) X Di(e, N) is a
critical point for (z, (6;), (&)i) — J(u(z, (6;), (fl) )). Conversely, we assume that
(2, (8:)i, (&)i) € Be(0) x Dy(e, N) is a critical point for the map (z, (6;)i, (&;)i) —
J(u(z, (6:)i,(&)i)). We then get that

(114) 0= o J(u(z, (6:)is (€)i))
= DJ( ( (51)17(&) )) (810U(Z) +82z0¢(2a(5i)ia(£i)i))v
0
(115) 0:851_0 J(u(z, (8:)i, (&)i)
= DJ(u(2, (8:)i, (€)i)- (051 Warsg 8110 + 014 0(2, (80)i, (§2)3))
0
(116) 0= mJ(U(& (0)is (&i)i)

= DJ(U(Z, (61)17 (52)2))(8(570)70 Wai0,5z‘0£i0 + a(fio)jo (b(Z, (61)17 (51)1))

forallly=1,---,d,i9p=1,--- ,k, and jo =0, - ,n. From now on, for the sake of
clearness, we omit the variables (z, (0;);, (&):). We define

A —ZZIA”HZI#I

=1 j=0

We are going to prove that A = 0, which will imply that u(z, (6;);, (&):) is a critical
point of J due to (113).

6.1. Consequences of (114). It follows from (113) and (114) that

kK n
(117) ZZ ((Zs,.61,5 O + (Zs, 1,55 Oz D))
=1 5=0
d
+ > i (1 B w)n + (91,02, 0)n) =0
=1

It follows from (111) that
(118) (Zs,60.5:9)n = (@1, ) = 0.
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Differentiating (118) with respect to z, yields (Zs, ¢, ;, 0z, ¢)n = (¢1, 0z, 0)n = 0,
and therefore (117) rewrites

k

n d
(119) Z Z /\ij(Z&t,Ei.,j’ Ayu)n + Z /u'l(‘Pl, yu)n =0,

i=1 j=0 1=1
and therefore, since ||h — holleo < €, for all lp = 1,..,d, (25), and (26) yield
= (o T O

o ol

=1 lo Ul Hg ho
where H}}{[’O is the orthogonal projection on Ky (see (3) and (4)) with respect to
the Hilbert structure (-,-)p,. We define the matrix (A(z))y := (@Z,H}}é’o (Oru))p,
for all 11" € {1,--- ,d}. With no loss of generality, we can assume that the basis
Bo is {1, -+ ,paq}: it then follows from (8) and Cramer’s explicit formula that the

coefficients of the inverse of the matrix A(z) are bounded from above by a constant
C'. Therefore, it follows from (120) that

(120) < C-e-A+Csup|A7],

1,7

d
(121) D IE < C e At Csup A7
=1

9

for (Z, (67,)7,7 (gz)z) S BE(O) X Dk(E,N).

6.2. Consequences of (115). It follows from (113) and (115) that

k n
(122) Z Z N ((Z(Si’fi’j’ a5i0 W5i07§i0 )+ (Z5i,§i WE 851'0 ¢)h)
i=1 j=0
d
+ Zul (1,05, W, €1, )1 + (01,05,,0)n) = 0.
=1

Differentiating (118) with respect to d;,, we get that (¢i,Js, #)n = 0 and also
(06:, 261,605 PIn + (Zs, 61,55 O5,, ®)n = 0, and therefore (122) rewrites

kK n
(123) | > N (Zs, 65,05, Wiy ),
i=1 j=0
d LI
<D 01 B, W e nl + D> [N | 105, Zsi il iz 1 Lz
pt i=1 j=0

Forany i=1,--- ,k and j =0,--- ,n, it follows from (50) and Corollary 3.3 that

(Z(si’fhj? 85710 WMO&O &g ) h

n—2 (n(n-—2) |
= Rip =5 (fo(%)) 5 ((Zs, 60,4 Zs,, £1.0)n + 0(1))

(124) = Kig n_2 <n;,:(£_l§)> o % (04,i095,0 | VVol|2 + 0(1))
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where |o(1)|] < wis(e, N) and lim. 0 N 400 wis(e, N) = 0. Plugging (124) into
(123) and using (50) yield

. —2 —2 1 1
a0 2 (”}7}5 ))) Il

d n—2 (nn-—2 =T 1
<(%%% () ale s

=1

n
3 105, Zoy 1y iz 1012 + a;lwm(e,zv)) A
j=0

It then follows from (52) and (111), Proposition 3.1, and the expression (25) that
(125) N0 < wige, N) - A

for all ig = 1,--- , k, where lim._,o, N 400 w16(e, N) = 0.

6.3. Conclusion for the equivalence. Arguing as above for (116), we get that
(126) IN©0T| < wig(e, N) - A

forallig=1,--- ,kand j =1,--- ,n, where lim._,o Ny +00 wi7(g, N) = 0. Summing
(121), (125), and (126) yields

k n d
A=Y N +IZ|M| < wis(e,N) - A,
=1

i=1 j=0

where lim._,0 N—y+o00 w1s(e, N) = 0. Therefore, there exists €, N > 0 such that
wis(e, N) < 1/2, and therefore, we get that A = 0. As mentioned earlier, this
implies that DJ(u(z, (6;):, (&)i)) = 0, and then u(z, (6;);, (&):) is a critical point
of J for (z,(8:):,(&)i) € B:(0) X Dg(e, N). This ends the proof of Theorem 1.1. OJ
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