A GENERAL THEOREM FOR THE CONSTRUCTION OF BLOWING-UP SOLUTIONS TO SOME ELLIPTIC NONLINEAR EQUATIONS VIA LYAPUNOV-SCHMIDT'S FINITE-DIMENSIONAL REDUCTION

FRÉDÉRIC ROBERT AND JÉRÔME VÉTOIS

ABSTRACT. We prove a general finite-dimensional reduction theorem for critical equations of scalar curvature type. Solutions of these equations are constructed as a sum of peaks. The use of this theorem reduces the proof of existence of multi-peak solutions to some test-functions estimates and to the analysis of the interactions of peaks.

1. Introduction and statement of the result

Let (M,g) be a compact Riemannian manifold of dimension $n \geq 3$ without boundary. We let $H_1^2(M)$ be the completion of $C^{\infty}(M)$ for the norm $\|\cdot\|_{H_1^2} := \|\cdot\|_2 + \|\nabla\cdot\|_2$. We let $h \in L^{\infty}(M)$ be such that the operator $\Delta_g + h$ is coercive, that is $\lambda_1(\Delta_g + h) > 0$, where $\Delta_g := -\text{div}_g(\nabla)$ is the Laplace-Beltrami operator. Non-positive examples of such h's are after the theorem. We define $2^* := \frac{2n}{n-2}$ and $H : \mathbb{R} \to \mathbb{R}$ such that $\{H(x) = |x| \text{ for all } x \in \mathbb{R}\}$ or $\{H(x) = x_+ := \max\{x, 0\} \text{ for all } x \in \mathbb{R}\}$. Given $f \in C^0(M)$, $g \in (2, 2^*]$, and $G \in C^2(H_1^2(M))$, we give a general theorem to construct solutions $v \in H_1^2(M)$ to the equation

(1) $\Delta_g v + hv = fH(v)^{q-2}v + G'(v)$ in the distributional sense on M of the form

$$v = u_0 + \sum_{i=1}^k W_{\kappa_i, \delta_i, \xi_i} + \text{ remainder },$$

where $k \in \mathbb{N}$, $(\kappa_i)_{i=1,\dots,k} \in \{-1,+1\}$, $(\delta_i)_{i=1,\dots,k} \in (0,+\infty)$, $(\xi_i)_{i=1,\dots,k} \in M$ are the parameters, and the $W_{\kappa,\delta,\xi}$'s are peaks defined in (12) below and are C^1 with respect to the parameters. The function $u_0 \in H^2_1(M)$ is a distributional solution to

(2)
$$\Delta_g u_0 + h_0 u_0 = f_0 H(u_0)^{2^* - 2} u_0 + G'_0(u_0),$$

where $h_0 \in L^{\infty}(M)$ is such that $\lambda_1(\Delta_g + h_0) > 0$, $f_0 \in C^0(M)$, and $G_0 \in C^2(H_1^2(M))$ is of subcritical type, see Definition 2.1 below. Examples of nonlinearities of subcritical type are maps like $u \mapsto \int_M a(x)|u|^r dx$, where $a \in L^{\infty}(M)$ and $2 \le r < 2^*$. Solutions to (1) and (2) are critical points respectively for the functionals

$$J(v) := \frac{1}{2} \int_{M} \left(|\nabla v|_{g}^{2} + hv^{2} \right) \, dv_{g} - F(v) \, ; \, J_{0}(v) := \frac{1}{2} \int_{M} \left(|\nabla v|_{g}^{2} + h_{0}v^{2} \right) \, dv_{g} - F_{0}(v),$$

Date: January 30, 2013.

Published in Concentration Analysis and Applications to PDE (ICTS Workshop, Bangalore, 2012), Trends in Mathematics, Birkhäuser/Springer Basel, 2013, 85–116.

where dv_q is the Riemannian element of volume, and

$$F(v) := \frac{1}{q} \int_{M} fH(v)^{q} dv_{g} + G(v) \text{ and } F_{0}(v) := \frac{1}{2^{\star}} \int_{M} f_{0}H(v)^{2^{\star}} dv_{g} + G_{0}(v)$$

for all $v \in H_1^2(M)$. We introduce the kernel of the linearization of (2) by

(3)
$$K_0 := \left\{ \varphi \in H_1^2(M) / \Delta_g \varphi + h_0 \varphi = F_0''(u_0) \varphi \right\}.$$

We get that $d := \dim_{\mathbb{R}} K_0 < +\infty$ since the operator $\varphi \mapsto (\Delta_g + h_0)^{-1}(F_0''(u_0)\varphi)$ is compact on $H_1^2(M)$. We let $u \in C^1(B_1(0) \subset \mathbb{R}^d, H_1^2(M))$ be such that $u(0) = u_0$, and we assume that

(4)
$$K_0 = \operatorname{Span}\{\Pi_{K_0}^{h_0}(\partial_{z_i}u(0))/i = 1, \cdots, d\},\$$

where $\Pi_{K_0}^{h_0}$ is the orthogonal projection on K_0 with respect to the scalar product $(u,v)\mapsto (u,v)_{h_0}:=\int_M((\nabla u,\nabla v)_g+h_0uv)\,dv_g$. We consider a finite covering $(U_\gamma)_{\gamma\in\mathcal{C}}$ of M of parallel type (see Definition 2.2), and we choose a correspondence $i\mapsto \gamma_i\in\mathcal{C}$ for all $i\in\{1,\cdots,k\}$. For any $\varepsilon>0$, N>0, and $k\in\mathbb{N}$, we define

$$\mathcal{D}_{k}(\varepsilon, N) := \left\{ ((\delta_{i})_{i}, (\xi_{i})_{i}) \in (0, \varepsilon)^{k} \times M^{k} \text{ s.t. } \left\{ \begin{array}{c} \xi_{i} \in U_{\gamma_{i}} \\ |\delta_{i}^{2^{*}-q} - 1| < \varepsilon \text{ and} \\ \frac{\delta_{i}}{\delta_{j}} + \frac{\delta_{j}}{\delta_{i}} + \frac{d_{g}(\xi_{i}, \xi_{j})^{2}}{\delta_{i}\delta_{j}} > N \\ \text{for all } i \neq j \in \{1, \dots, k\} \end{array} \right\} \right\}.$$

We define the error term

(5)

$$R(z,(\delta_i)_i,(\xi_i)_i) := \left\| u(z) + \sum_{i=1}^k W_{\kappa_i,\delta_i,\xi_i} - (\Delta_g + h)^{-1} \left(F' \left(u(z) + \sum_{i=1}^k W_{\kappa_i,\delta_i,\xi_i} \right) \right) \right\|_{H^2_1}.$$

Theorem 1.1. We fix $k \in \mathbb{N}$, $\nu_0, C_0 > 0$, $\theta \in (0,1)$, $h_0 \in L^{\infty}(M)$ such that $\lambda_1(\Delta_g + h_0) > 0$, $f_0 \in C^0(M)$, $u_0 \in H_1^2(M)$, and $G_0 \in C^{2,\theta}_{loc}(H_1^2(M))$ of subcritical type. We define K_0 as in (3), we let d be its dimension and β_0 be a basis of K_0 . We fix $(\kappa_i)_i \in \{-1, +1\}^k$. Then there exist N > 0 and $\varepsilon > 0$ such that for any $q \in (2, 2^*]$, $h \in L^{\infty}(M)$, $f \in C^0(M)$, $G \in C^{2,\theta}_{loc}(H_1^2(M))$, and $u \in C^1(B_1(0), H_1^2(M))$ such that

(6)
$$u(0) = u_0, \|u\|_{C^1(B_1(0), H_1^2)} \le C_0, f_0(\xi_i) \ge \nu_0 \text{ for all } i = 1, \dots, k,$$

(7)
$$||h - h_0||_{\infty} + ||f - f_0||_{C^0(M)} + d_{C_B^{2,\theta}}(G, G_0) + (2^* - q) < \varepsilon,$$

(see Definition 2.3 for the distance $d_{C_B^{2,\theta}}$) and for any $z \in B_1(0)$, if

(8)
$$\left| \det_{\beta_0} (\Pi_{K_0}^{h_0}(\partial_{z_1} u(z)), \cdots, \Pi_{K_0}^{h_0}(\partial_{z_d} u(z))) \right| \ge \nu_0 \prod_{i=1}^d \|\partial_{z_i} u(z)\|_{H_1^2} > 0,$$

then there exists $\phi \in C^1(B_{\varepsilon}(0) \times \mathcal{D}_k(\varepsilon, N), H_1^2(M))$ such that $u(z, (\delta_i)_i, (\xi_i)_i) := u(z) + \sum_{i=1}^k W_{\kappa_i, \delta_i, \xi_i} + \phi(z, (\delta_i)_i, (\xi_i)_i)$ is a critical point of J iff $(z, (\delta_i)_i, (\xi_i)_i)$ is a critical point of $(z, (\delta_i)_i, (\xi_i)_i) \mapsto J(u(z, (\delta_i)_i, (\xi_i)_i))$ in $B_{\varepsilon}(0) \times \mathcal{D}_k(\varepsilon, N)$. Moreover, we have that

$$\|\phi(z,(\delta_i)_i,(\xi_i)_i)\|_{H_1^2} \le C \cdot R(z,(\delta_i)_i,(\xi_i)_i),$$

where C is a constant depending on (M,g), k, ν_0 , θ , C_0 , u_0 , h_0 , f_0 , and G_0 .

Miscellaneous remarks

- **1.** The implicit definition of $\phi(z,(\delta_i)_i,(\xi_i)_i)$ is in (61) of Proposition 5.1.
- 2. In addition to Theorem 1.1, we have that

$$\left| J(u(z,(\delta_i)_i,(\xi_i))) - J\left(u(z) + \sum_{i=1}^k W_{\kappa_i,\delta_i,\xi_i}\right) \right| \le C \cdot R(z,(\delta_i)_i,(\xi_i)_i)^2$$

for all $(z, (\delta_i)_i, (\xi_i)_i) \in B_{\varepsilon}(0) \times \mathcal{D}_k(\varepsilon, N)$, where C is a constant depending on $(M, g), k, \nu_0, C_0, u_0, G_0$.

3. Theorem 1.1 is valid under a little more general hypothesis on G. There exists $\tilde{R} > 0$ depending only on (M, g), u_0 , and k such that the same conclusion of the theorem holds if G_0 and G satisfy the following

$$G_0 \in C^2(B_{\tilde{R}}(0)), \, G \in C^{2,\theta}(B_{\tilde{R}}(0)), \, \|G\|_{C^{2,\theta}(B_{\tilde{R}}(0))} \leq C_0, \, \|G - G_0\|_{C^2(B_{\tilde{R}}(0))} < \varepsilon \,.$$

- **4.** We have assumed for convenience a L^{∞} -control of the potentials h_0 and h. If they are only controlled in $L^{n/2}$, it suffices to include them in the perturbations G_0 and G.
- **5.** As one checks, if $h \ge 0$ and $h \ne 0$, one gets $\lambda_1(\Delta_g + h) > 0$. As a consequence, $\lambda_1(\Delta_g + h \alpha) > 0$ for such h and all $\alpha < \lambda_1(\Delta_g + h)$.

As a consequence of Theorem 1.1, finding solutions to (1) reduces to computing the expansion of $J(u(z,(\delta_i)_i,(\xi_i)))$ and controling the rest $R(z,(\delta_i)_i,(\xi_i)_i)$. In particular, Theorem 1.1 covers the general reduction theory in the recent articles Esposito-Pistoia–Vétois [6], Micheletti–Pistoia–Vétois [9], Pistoia–Vétois [10], and Robert–Vétois [12]. This finite-reduction method is very classical and has proved to be very powerful in the last decades to find blowing-up solutions to critical equations. The litterature on this issue is abundant: here, we refer to the early reference Rey [11], and to Brendle [3], Brendle–Marques [4], del Pino–Musso–Pacard–Pistoia [5], and Guo–Li–Wei [8] for more recent references. The list of constributions above does not pretend to exhaustivity: we refer to the references of the above papers and also to the monograph [1] by Ambrosetti–Malchiodi for further bibliographic complements. A general reference on Lyapunov-Schmidt's reduction, including the group action point of view, is the monograph [7] by Falaleev–Loginov–Sidorov–Sinitsyn.

2. Definitions and notations

2.1. Nonlinearities of subcritical type.

Definition 2.1. Let $G_0 \in C^2(H_1^2(M))$. We say that G_0 is of subcritical type if for all sequences $(u_p)_p, (v_p)_p, (w_p)_p \in H_1^2(M)$ converging weakly respectively to $u, v, w \in H_1^2(M)$, we have that

$$G_0(u_p) \to G_0(u)$$
, $G_0'(u_p)(v_p) \to G_0'(u)(v)$, and $G_0''(u_p)(v_p, w_p) \to G_0''(u)(v, w)$
when $p \to +\infty$.

2.2. Covering of parallel type.

Definition 2.2. We say that $(U_{\gamma})_{\gamma \in \mathcal{C}}$ is a covering of parallel type if $\bigcup_{\gamma} U_{\gamma} = M$ and for any $\gamma \in \mathcal{C}$, U_{γ} is open and there exists n smooth vector fields $e_i^{(\gamma)} : U_{\gamma} \to TM$ such that for any $\xi \in U_{\gamma}$, $\{e_1^{(\gamma)}(\xi), \dots, e_n^{(\gamma)}(\xi)\}$ is an orthonormal basis of $T_{\xi}M$, the tangent space at the point ξ .

Since (M,g) is compact, it follows from the Gram-Schmidt orthogonalisation procedure that a finite covering of *parallel type* always exists. A manifold is parallelizable if there exists a smooth global orthonormal basis.

In the sequel, we let $(U_{\gamma})_{\gamma \in \mathcal{C}}$ be a fixed finite covering of parallel type of M. With a slight abuse of notation, for any $\gamma \in \mathcal{C}$, and any $\xi \in U_{\gamma}$, we define $e_j(\xi) = e_j^{(\gamma)}(\xi)$ for $j = 1, \dots, n$, where $e_j^{(\gamma)}$ is as in Definition 2.2. In other words, for any $\gamma \in \mathcal{C}$, there exists n smooth maps $e_1, \dots, e_j : U_{\gamma} \to TM$ such that for any $\xi \in U_{\gamma}$, $(e_1(\xi), \dots, e_n(\xi))$ is an orthonormal basis of $T_{\xi}M$. We can then assimilate smoothly the tangent space $T_{\xi}M$ at $\xi \in U_{\gamma}$ to \mathbb{R}^n via the map

(9)
$$\Phi_{\xi}: \mathbb{R}^{n} \to T_{\xi}M \\
X \mapsto \sum_{j=1}^{n} X^{j} e_{j}(\xi).$$

2.3. The distance on $C_B^{2,\theta}$.

Definition 2.3. Let E be a Banach space. We define $C_B^{2,\theta}(E)$ as the set of functions that are in $C^{2,\theta}(B)$ for any bounded open set $B \subset E$: we endow $C_B^{2,\theta}(E)$ with the topology inherited from the natural associated family of semi-norms. This topology is metrizable with the distance

$$d_{C_B^{2,\theta}}(G_1,G_2) := \sup_{p \in \mathbb{N}} \frac{\|G_1 - G_2\|_{C^{2,\theta}(B_p(0))}}{2^p(1 + \|G_1 - G_2\|_{C^{2,\theta}(B_p(0))})} \text{ for all } G_1, G_2 \in C_B^{2,\theta}(E).$$

2.4. The peaks $W_{\kappa,\delta,\xi}$. We consider a function $\Lambda \in C^{\infty}(M \times M)$ such that, defining $\Lambda_{\xi} := \Lambda(\xi,\cdot)$ for all $\xi \in M$, we have that

(10)
$$\Lambda_{\xi} > 0 \text{ and } \Lambda_{\xi}(\xi) = 1 \text{ for all } \xi \in M.$$

We then define a metric $g_{\xi} := \Lambda_{\xi}^{\frac{4}{n-2}} g$ for all $\xi \in M$ conformal to g. Since Λ is continuous, there exists C > 0 such that

$$\frac{1}{C}g \le g_{\xi} \le Cg$$

for all $\xi \in M$. The compactness of M yields the existence of $r_0 > 0$ such that the injectivity radius of the metric g_{ξ} satisfies $i_{g_{\xi}}(M) \geq r_0$ for all $\xi \in M$. We let $\chi \in C^{\infty}(\mathbb{R})$ be such that $\chi(t) = 1$ for $t \leq r_0/3$, $\chi(t) = 0$ for all $t \geq r_0/2$ and $0 \leq \chi \leq 1$.

For $\kappa \in \{-1, +1\}$, $\delta > 0$, and $\xi \in M$ such that $f_0(\xi) > 0$, a bubble is defined as

(12)
$$W_{\kappa,\delta,\xi}(x) := \kappa \chi(d_{g_{\xi}}(x,\xi)) \Lambda_{\xi}(x) \left(\frac{\delta \sqrt{\frac{n(n-2)}{f_{0}(\xi)}}}{\delta^{2} + d_{g_{\xi}}(x,\xi)^{2}} \right)^{\frac{n-2}{2}} + B_{\delta,\xi}(x)$$

for all $x \in M$, where $(\delta, \xi) \mapsto B_{\delta, \xi}$ is C^1 from $(0, +\infty) \times M$ to $H_1^2(M)$ and

(13)
$$||B_{\delta,\xi}||_{H_{\bullet}^{2}} + \delta ||\partial_{\delta}B_{\delta,\xi}||_{H_{\bullet}^{2}} + \delta ||\nabla_{\xi}B_{\delta,\xi}||_{H_{\bullet}^{2}} \le \epsilon(\delta)$$

for all $\delta > 0$ and $\xi \in M$, where $\lim_{\delta \to 0} \epsilon(\delta) = 0$. If $H = (\cdot)_+$, we require that $\kappa = 1$.

2.5. **Derivatives of the peaks.** We let $D_1^2(\mathbb{R}^n)$ be the completion of $C_c^{\infty}(\mathbb{R}^n)$ for the norm $u \mapsto \|\nabla u\|_2$. Given a > 0, we are interested in solutions $U \in D_1^2(\mathbb{R}^n)$ to the equation

(14)
$$\Delta_{\text{Eucl}} U_a = a U_a^{2^* - 1} \text{ in } \mathbb{R}^n,$$

where Eucl is the Euclidean metric. As one checks, the Lie group $(0, +\infty) \times \mathbb{R}^n$ (with the relevant structure) leaves the solution to (14) invariant via the action

$$(5) \qquad (\delta, x_0) \in (0, +\infty) \times \mathbb{R}^n \mapsto \delta^{-\frac{n-2}{2}} U_a(\delta^{-1}(\cdot - x_0)).$$

For a > 0, we define

$$U_a(x) := \left(\frac{\sqrt{\frac{n(n-2)}{a}}}{1+|x|^2}\right)^{\frac{n-2}{2}}$$
 for all $x \in \mathbb{R}^n$.

As easily checked, we have that $U_a \in D_1^2(\mathbb{R}^n)$ is a solution to (14). Therefore, the action of the Lie algebra of $(0, +\infty) \times \mathbb{R}^n$ yields elements of the set K_{BE} of solutions $V \in D_1^2(\mathbb{R}^n)$ of the linearized equation

(16)
$$\Delta_{\text{Eucl}}V = (2^{\star} - 1)aU_a^{2^{\star} - 2}V \text{ in } \mathbb{R}^n.$$

Conversely, it follows from Bianchi-Egnell [2] that this actions is onto, that is

$$K_{BE} = \operatorname{Span}\{V_j / j = 0, \cdots, n\},$$

where

$$V_0 := \frac{2}{n-2} \left(\frac{a}{n(n-2)} \right)^{(n-2)/4} \frac{\partial}{\partial \delta} (\delta^{-\frac{n-2}{2}} U_a(\delta^{-1} \cdot))_{\delta=1} = \frac{|x|^2 - 1}{(1+|x|^2)^{\frac{n}{2}}},$$

$$V_j := \frac{-1}{n-2} \left(\frac{a}{n(n-2)} \right)^{(n-2)/4} \partial_{x_j} U_a = \frac{x_j}{(1+|x|^2)^{\frac{n}{2}}} \text{ for all } j = 1, \dots, n.$$

The functions V_j form an orthonormal basis of K_{BE} for the scalar product $(u, v) \mapsto \int_{\mathbb{R}^n} (\nabla u, \nabla v) dx$. Rescaling and pulling-back on M, for any $\delta > 0$, $\xi \in M$, and $X \in T_{\xi}M$, we define

(17)
$$Z_{\delta,\xi}(x) := \chi(d_{g_{\xi}}(x,\xi))\Lambda_{\xi}(x)\delta^{\frac{n-2}{2}} \frac{d_{g_{\xi}}(x,\xi)^{2} - \delta^{2}}{(\delta^{2} + d_{g_{\xi}}(x,\xi)^{2})^{\frac{n}{2}}},$$

(18)
$$Z_{\delta,\xi,X}(x) := \chi(d_{g_{\xi}}(x,\xi))\Lambda_{\xi}(x)\delta^{\frac{n}{2}} \frac{\langle (\exp_{\xi}^{g_{\xi}})^{-1}(x), X \rangle_{g_{\xi}(\xi)}}{(\delta^{2} + d_{g_{\xi}}(x,\xi)^{2})^{\frac{n}{2}}}$$

for all $x \in M$. We let $(U_{\gamma})_{\gamma}$ be as in Definition 2.2. Here and in the sequel, $\exp_{\xi}^{g_{\xi}}$ denotes the exponential map at the point $\xi \in M$ with respect to the metric g_{ξ} . For $\gamma \in \mathcal{C}, \xi \in U_{\gamma}$, and $\delta > 0$, we define

(19)
$$Z_{\delta,\xi,j} := Z_{\delta,\xi,e_j(\xi_i)} \text{ for } j = 1,\cdots,n \text{ and } Z_{\delta,\xi,0} := Z_{\delta,\xi},$$

where the $e_j(\xi)$'s are defined in Definition 2.2: we have omitted the index γ for clearness. Since the isometric assimilation (9) of the tangent space to \mathbb{R}^n is smooth with respect to $\xi \in U_{\gamma}$, we define

(20)
$$\begin{array}{cccc} \exp^{g_{\xi}}_{\xi} : & \mathbb{R}^{n} & \to & M \\ X & \mapsto & \exp^{g_{\xi}}_{\xi} \left(\Phi_{\xi}(X) \right). \end{array}$$

2.6. Sobolev inequalities. It follows from Sobolev's Theorem that $D_1^2(\mathbb{R}^n)$ is embedded continuously in $L^{2^*}(\mathbb{R}^n)$ and that for any $\varphi \in D_1^2(\mathbb{R}^n)$, we have that

(21)
$$\|\varphi\|_{2^*} \le K(n,2) \|\nabla \varphi\|_2 \text{ with } K(n,2) := 2(n(n-2)\omega_n^{2/n})^{-1/2}.$$

On the compact manifold (M, g), $H_1^2(M)$ is embedded in $L^{2^*}(M)$ and there exists A > 0 such that for any $\phi \in H_1^2(M)$, we have that

$$\|\phi\|_{2^*} \le A\|\phi\|_{H_1^2}.$$

2.7. **Riesz correspondence.** We let $\epsilon_0 > 0$ be such that for $h \in L^{\infty}(M)$ such that $||h-h_0||_{\infty} < \varepsilon_0$, we have that $||h||_{\infty} \le ||h_0||_{\infty} + 1$ and $\lambda_1(\Delta_g + h) \ge \lambda_1(\Delta_g + h_0)/2 > 0$. With a slight abuse of notation, we define

$$\left\{ \begin{array}{ccc} \Delta_g + h : & H_1^2(M) & \to & (H_1^2(M))' \\ & u & \mapsto & \left(v \mapsto (u, v)_h := \int_M ((\nabla u, \nabla v)_g + huv) \, dv_g \right) \end{array} \right\}$$

and its inverse is denoted as $(\Delta_g + h)^{-1}$. For $\tau \in L^{\frac{2n}{n+2}}(M)$, it follows from Sobolev's Theorem (see (22)) that the map $T_\tau : v \mapsto \int_M \tau v \, dv_g$ is defined and continuous for $v \in H^2_1(M)$: we will then write $(\Delta_g + h)^{-1}(\tau) := (\Delta_g + h)^{-1}(T_\tau)$. It then follows from regularity theory that for $||h - h_0|| < \varepsilon_0$, we have that

(23)
$$\|(\Delta_g + h)^{-1}(\tau)\|_{H_1^2} \le C(h_0, \varepsilon_0) \|\tau\|_{\frac{2n}{2-2}},$$

where $C(h_0, \varepsilon_0) > 0$ depends only on $(M, g), h_0 \in L^{\infty}(M)$, and $\varepsilon_0 > 0$.

2.8. **Notation.** In the sequel, C, C_1, C_2, \cdots will denote positive constants depending only on (M, g), k, ν_0 , θ , C_0 , u_0 , h_0 , f_0 , and G_0 . We will often use the same notation C or C_i $(i \ge 1)$ for different constants from line to line, and even in the same line.

The notation $\omega_{a,b,\cdots}(x)$ will denote a constant depending on $a,b,\cdots,x,$ (M,g), k, $\nu_0,$ $\theta,$ $C_0,$ $u_0,$ $h_0,$ $f_0,$ and G_0 and such that $\lim_{x\to l}\omega_{a,b,\cdots}(x)=0$, where $l\in\{0,+\infty\}$ will be explicit for each statement.

3. Preliminary computations 1: rescaling and pull-back

The objective of this section and the following is to express qualitatively the transfer of the action of $(0,+\infty)\times\mathbb{R}^n$ on $D^2_1(\mathbb{R}^n)$ to an infinitesimal action on $H^2_1(M)$. We fix $\gamma\in\mathcal{C}$, where \mathcal{C} is as in Definition 2.2. We choose a function $F\in C^\infty(M\times M)$ such that $F(\xi,x)=0$ if $d_{g_\xi}(\xi,x)\geq r_0$ for $\xi,x\in M$. For $\varphi\in D^2_1(\mathbb{R}^n)$, we define for $\xi\in U_\gamma$ and $\delta>0$

(24)
$$\operatorname{Resc}_{\delta,\xi}^{F}(\varphi)(x) := F(\xi,x)\delta^{-\frac{n-2}{2}}\varphi\left(\delta^{-1}(\exp_{\xi}^{g_{\xi}})^{-1}(x)\right)$$

for all $x \in M$. This transformation is the infinitesimal transfer via the exponential map of the action $(0, +\infty) \times \mathbb{R}^n$ on $D_1^2(\mathbb{R}^n)$ defined in (15). As a preliminary remark, it follows from (19) that

(25)
$$Z_{\delta_{i},\xi_{i},j} = \operatorname{Resc}_{\delta_{i},\xi_{i}}^{F^{(1)}}(V_{j}) \text{ and } W_{\kappa_{i},\xi_{i},\delta_{i}} = \operatorname{Resc}_{\delta_{i},\xi_{i}}^{F^{(2)}}(U_{1}) + B_{\delta_{i},\xi_{i}},$$
 with $F^{(1)}(\xi,x) := \chi(d_{g_{\xi}}(x,\xi))\Lambda_{\xi}(x), F^{(2)}(\xi,x) := \kappa_{i}f_{0}(\xi)^{-(n-2)/4}\chi(d_{g_{\xi}}(x,\xi))\Lambda_{\xi}(x)$ for all $\xi, x \in M$.

Proposition 3.1. For all $\varphi \in D_1^2(\mathbb{R}^n)$, $\delta > 0$, and $\xi \in U_{\gamma}$, there hold $Resc_{\delta,\xi}(\varphi) \in H_1^2(M)$ and

(26)
$$\|Resc_{\delta,\xi}^F(\varphi)\|_{H_1^2} \le C_1(F) \|\varphi\|_{D_1^2},$$

where $C_1(F) > 0$ is independent of $\xi \in U_{\gamma}$, $\delta > 0$, and $\varphi \in D_1^2(\mathbb{R}^n)$. Moreover, for all $\varphi, \psi \in D_1^2(\mathbb{R}^n)$, and for all $\delta, R > 0$ and $\xi \in U_{\gamma}$, we have that

(27)
$$\left| \int_{B_{R\delta}^{g_{\xi}}(\xi)} \left(\nabla Resc_{\delta,\xi}^{F}(\varphi), \nabla Resc_{\delta,\xi}^{F}(\psi) \right)_{g_{\xi}} dv_{g_{\xi}} - F(\xi,\xi)^{2} \int_{\mathbb{R}^{n}} (\nabla \varphi, \nabla \psi)_{\text{Eucl}} dx \right| \\ \leq \omega_{1,F,\varphi,\psi}(R) + \omega_{2,F,\varphi,\psi}(\delta),$$

(28)
$$\int_{M \setminus B_{\rho_{\xi}}^{g_{\xi}}(\xi)} |\nabla Resc_{\delta,\xi}^{F}(\varphi)|_{g_{\xi}}^{2} dv_{g_{\xi}} \leq \omega_{1,F,\varphi,\psi}(R) + \omega_{2,\varphi,\psi}(\delta),$$

(29)
$$\int_{M} |Resc_{\delta,\xi}^{F}(\varphi)|^{2} dv_{g_{\xi}} \leq \omega_{3,F,\varphi}(\delta),$$

where $\lim_{R\to +\infty} \omega_{1,F,\varphi,\psi}(R) = \lim_{\delta\to 0} \omega_{2,F,\varphi,\psi}(\delta) = \lim_{\delta\to 0} \omega_{3,F,\varphi}(\delta) = 0.$

Proof of Proposition 3.1: We fix $\varphi, \psi \in D_1^2(\mathbb{R}^n)$. We consider a domain $D \subset M$. A change of variable yields

$$\int_{D} \left(\nabla \operatorname{Resc}_{\delta,\xi}^{F}(\varphi), \nabla \operatorname{Resc}_{\delta,\xi}^{F}(\psi) \right)_{g_{\xi}} dv_{g_{\xi}} = \int_{D_{\delta,\xi}} (\nabla (\phi_{\delta,\xi}\varphi), \nabla (\phi_{\delta,\xi}\psi))_{g_{\delta,\xi}} dv_{g_{\delta,\xi}},$$

where
$$D_{\delta,\xi} := \delta^{-1}(\tilde{\exp}_{\xi}^{g_{\xi}})^{-1}(D \cap B_{r_0}^{g_{\xi}}(\xi)), g_{\delta,\xi}(x) := ((\tilde{\exp}_{\xi}^{g_{\xi}})^{\star}g)(\delta x)$$
 and
$$\phi_{\delta,\xi}(x) := F(\xi,\tilde{\exp}_{\xi}^{g_{\xi}}(\delta x))$$

for all $x \in \mathbb{R}^n$. Integrating (30) by parts yields

(31)
$$\int_{D} \left(\nabla \operatorname{Resc}_{\delta,\xi}^{F}(\varphi), \nabla \operatorname{Resc}_{\delta,\xi}^{F}(\psi) \right)_{g_{\xi}} dv_{g_{\xi}}$$
$$= \int_{D_{\delta,\xi}} \left(\phi_{\delta,\xi}^{2}(\nabla \varphi, \nabla \psi)_{g_{\delta,\xi}} + \phi_{\delta,\xi}(\Delta_{g_{\delta,\xi}}\phi_{\delta,\xi}) \varphi \psi \right) dv_{g_{\delta,\xi}}.$$

Since F is smooth, there exists C(F) > 0 such that

(32)
$$\begin{cases} |\phi_{\delta,\xi}(x) - \phi_{\delta,\xi}(0)| \le C(F)\delta|x|, & |\phi_{\delta,\xi}\Delta_{g_{\delta,\xi}}\phi_{\delta,\xi}(x)| \le C(F)\delta^{2}, \\ |g_{\delta,\xi}(x) - g_{\delta,\xi}(0)| \le C(F)\delta \operatorname{Eucl}, & \operatorname{and} |dv_{g_{\delta,\xi}}(x) - dx| \le C(F)\delta dx \end{cases}$$

for all $x \in B_{r_0/\delta}(0) \subset \mathbb{R}^n$. Since $\phi_{\delta,\xi}(0) = F(\xi,\xi)$ and $g_{\delta,\xi}(0) = \text{Eucl}$ the Euclidean metric in \mathbb{R}^n , plugging (32) into (31) yields

$$\left| \int_{D} \left(\nabla \operatorname{Resc}_{\delta,\xi}^{F}(\varphi), \nabla \operatorname{Resc}_{\delta,\xi}^{F}(\psi) \right)_{g_{\xi}} dv_{g_{\xi}} - F(\xi,\xi)^{2} \int_{D_{\delta,\xi}} (\nabla \varphi, \nabla \psi)_{\operatorname{Eucl}} dx \right|$$

$$\leq C(F) \int_{D_{\delta,\xi}} (\delta |\nabla \varphi| \cdot |\nabla \psi| + \delta^{2} |\varphi| \cdot |\psi|) dx$$

$$(33) \qquad \leq C(F)\delta \|\nabla \varphi\|_{2} \|\nabla \psi\|_{2} + C(F)\sqrt{\delta^{2} \int_{B_{r_{0}/\delta}(0)} \varphi^{2} \, dx} \cdot \sqrt{\delta^{2} \int_{B_{r_{0}/\delta}(0)} \psi^{2} \, dx} \, .$$

Independently, for any R > 0, we have that

$$\delta^{2} \int_{B_{r_{0}/\delta}(0)} \varphi^{2} dx \leq \delta^{2} \int_{B_{r_{0}/\delta}(0) \setminus B_{R}(0)} \varphi^{2} dx + \delta^{2} \int_{B_{R}(0)} \varphi^{2} dx$$

$$\leq \delta^{2} \cdot \left(\int_{B_{r_{0}/\delta}(0) \setminus B_{R}(0)} dx \right)^{\frac{2}{n}} \left(\int_{B_{r_{0}/\delta}(0) \setminus B_{R}(0)} |\varphi|^{2^{*}} dx \right)^{\frac{2}{2^{*}}}$$

$$+ \delta^{2} \cdot \left(\int_{B_{R}(0)} dx \right)^{\frac{2}{n}} \left(\int_{B_{R}(0)} |\varphi|^{2^{*}} dx \right)^{\frac{2}{2^{*}}}$$

$$\leq Cr_{0}^{2} \left(\int_{\mathbb{R}^{n} \setminus B_{R}(0)} |\varphi|^{2^{*}} dx \right)^{\frac{2}{2^{*}}} + C\delta^{2} R^{2} \left(\int_{\mathbb{R}^{n}} |\varphi|^{2^{*}} dx \right)^{\frac{2}{2^{*}}}.$$

$$(34)$$

Since $\varphi \in D^2_1(\mathbb{R}^n)$, it follows from Sobolev's inequality (21) that $\varphi \in L^{2^*}(\mathbb{R}^n)$ and

(35)
$$\lim_{\delta \to 0} \delta^2 \int_{B_{r_0/\delta}(0)} \varphi^2 dx = 0.$$

As a consequence, for all $\xi \in U_{\gamma}$, all $\delta > 0$, and all domain $D \subset M$, we have that

(36)
$$\left| \int_{D} \left(\nabla \operatorname{Resc}_{\delta,\xi}^{F}(\varphi), \nabla \operatorname{Resc}_{\delta,\xi}^{F}(\psi) \right)_{g_{\xi}} dv_{g_{\xi}} - F(\xi,\xi)^{2} \int_{D_{\delta,\xi}} (\nabla \varphi, \nabla \psi)_{\operatorname{Eucl}} dx \right| \leq \omega_{4,F,\varphi,\psi}(\delta),$$

where $\lim_{\delta\to 0} \omega_{4,F,\varphi,\psi}(\delta) = 0$. Taking alernatively $D := B_{R\delta}^{g_{\xi}}(\xi)$ or $D := M \setminus B_{R\delta}^{g_{\xi}}(\xi)$, and letting $R \to +\infty$ yields (27) and (28). Taking R = 0 in (34), taking D := M and $\psi = \varphi$ in (33), and using Sobolev's inequality (21), we get that

(37)
$$\int_{M} \left| \nabla \operatorname{Resc}_{\delta,\xi}^{F}(\varphi) \right|_{g_{\xi}}^{2} dv_{g_{\xi}} \leq C(F) \int_{\mathbb{R}^{n}} \left| \nabla \varphi \right|^{2} dx + C(F) \left(\int_{\mathbb{R}^{n}} |\varphi|^{2^{\star}} dx \right)^{\frac{2}{2^{\star}}}$$

for $\delta < 1$. A change of variable and Hölder's inequality yields

$$\int_{M} \operatorname{Resc}_{\delta,\xi}(\varphi)^{2} dv_{g_{\xi}} = \delta^{2} \int_{B_{\pi_{0}/\delta}(0)} |\phi_{\delta,\xi}\varphi|^{2} dv_{g_{\delta,\xi}} \leq C(F) \delta^{2} \int_{B_{\pi_{0}/\delta}(0)} \varphi^{2} dx.$$

Assertion (29) follows from inequality (11), (35), and the latest inequality. Assertion (26) follows from (37), inequality (11), Sobolev's inequality (21), and (29). \Box

As a consequence, we get the following orthogonality property:

Proposition 3.2. Let $\varphi, \psi \in D_1^2(\mathbb{R}^n)$ be two functions and $h \in L^{\infty}(M)$ such that $||h||_{\infty} < C_1$. Then for any $((\delta_i)_i, (\xi_i)_i) \in \mathcal{D}_k(\varepsilon, N)$, we have that

$$\left| (Resc_{\delta_{i},\xi_{i}}^{F}(\varphi), Resc_{\delta_{j},\xi_{j}}^{F}(\psi))_{h} - \delta_{i,j}F(\xi,\xi) \int_{\mathbb{D}^{n}} (\nabla \varphi, \nabla \psi) \, dx \right| \leq \omega_{5,F,C_{1},\varphi,\psi}(\varepsilon,N)$$

for all $i, j \in \{1, ..., k\}$, where $\lim_{\varepsilon \to 0} \lim_{N \to +\infty} \omega_{5, F, C_1, \varphi, \psi}(\varepsilon, N) = 0$. Here, $\delta_{i,j} = 1$ if i = j and 0 otherwise.

Proof of Proposition 3.2: We let R > 0 be a positive number. We have that

$$(38) \left| \int_{M} (\nabla \operatorname{Resc}_{\delta_{i},\xi_{i}}^{F}(\varphi), \nabla \operatorname{Resc}_{\delta_{j},\xi_{j}}^{F}(\psi))_{g} dv_{g} \right| \leq \int_{M \setminus B_{R\delta_{i}}^{g}(\xi_{i})} \cdots + \int_{M \setminus B_{R\delta_{i}}^{g}(\xi_{j})} \cdots + \int_{B_{R\delta_{i}}^{g}(\xi_{i}) \cap B_{R\delta_{j}}^{g}(\xi_{j})} \cdots \right|$$

It follows from (11), and assertions (28) and (26) of Proposition 3.1 that

$$(39) \int_{M \setminus B_{R\delta_{i}}^{g}(\xi)} \left| (\nabla \operatorname{Resc}_{\delta_{i},\xi_{i}}^{F}(\varphi), \nabla \operatorname{Resc}_{\delta_{j},\xi_{j}}^{F}(\psi))_{g} \right| dv_{g}$$

$$\leq \sqrt{\int_{M \setminus B_{R\delta_{i}}^{g_{\xi}}(\xi)} |\nabla \operatorname{Resc}_{\delta_{i},\xi_{i}}^{F}(\varphi)|_{g_{\xi}}^{2} dv_{g_{\xi}}} \cdot \|\operatorname{Resc}_{\delta_{j},\xi_{j}}^{F}(\psi)\|_{H_{1}^{2}} \leq \omega_{6,F,\varphi,\psi}(R),$$

where $\lim_{R\to+\infty} \omega_{6,F,\varphi,\psi}(R) = 0$.

We first assume that $i \neq j$. If $B_{R\delta_i}^g(\xi_i) \cap B_{R\delta_j}^g(\xi_j) = \emptyset$, we get (42) from (38) and (39). We assume that $B_{R\delta_i}^g(\xi_i) \cap B_{R\delta_j}^g(\xi_j) \neq \emptyset$ and $i \neq j$. Then we have that $d_g(\xi_i, \xi_j) < R(\delta_i + \delta_j)$. Since $((\delta_i)_i, (\xi_i)_i) \in \mathcal{D}_k(\varepsilon, N)$, exchanging i and j if necessary, we then get that for N large enough and ε small enough that

$$\frac{\delta_i}{\delta_j} < \frac{2(1+R^2)}{N} \,.$$

Therefore, using (26), we get that

$$\int_{B_{R\delta_{i}}^{g}(\xi_{i})\cap B_{R\delta_{j}}^{g}(\xi_{j})} \left| (\nabla \operatorname{Resc}_{\delta_{i},\xi_{i}}^{F}(\varphi), \nabla \operatorname{Resc}_{\delta_{j},\xi_{j}}^{F}(\psi))_{g} \right| dv_{g}$$

$$\leq \|\operatorname{Resc}_{\delta_{i},\xi_{i}}^{F}(\varphi)\|_{H_{1}^{2}(M)} \cdot \sqrt{\int_{B_{R\delta_{i}}^{g_{\xi_{j}}}(\xi_{i})\cap B_{R\delta_{j}}^{g_{\xi_{j}}}(\xi_{j})} |\nabla \operatorname{Resc}_{\delta_{j},\xi_{j}}^{F}(\psi)|_{g_{\xi_{j}}} dv_{\xi_{j}}$$

$$\leq C(F) \|\varphi\|_{D_{1}^{2}} \cdot \sqrt{\int_{\delta_{j}^{-1} \operatorname{exp}_{\xi_{j}}^{-1}(B_{R\delta_{i}}^{g_{\xi_{j}}}(\xi_{i}))\cap B_{R}(0)} |\nabla \psi|_{\operatorname{Eucl}}^{2} dx .$$

$$(41)$$

Via Lebesque's theorem, it follows from (40) that for R > 0 fixed, the right-handside above is as small as desired for N > 0 large. Plugging together (38), (39), and (41), we get that for $i \neq j$,

(42)
$$\left| \int_{M} (\nabla \operatorname{Resc}_{\delta_{i},\xi_{i}}^{F}(\varphi), \nabla \operatorname{Resc}_{\delta_{j},\xi_{j}}^{F}(\psi))_{g} dv_{g} \right| \leq \omega_{7,F,\varphi,\psi}(N),$$

where $\lim_{N\to+\infty} \omega_{7,F,\varphi,\psi}(N) = 0$.

We now assume that i = j. For R > 0 fixed, we have that $|g_{\xi_i} - g| \le C(R)\delta_i g$ on $B_{R\delta_i}(\xi_i)$ since $\Lambda_{\xi_i}(\xi_i) = 1$. We then get with (26) that

$$(43) \left| \int_{B_{R\delta_{i}}^{g_{\xi_{i}}}(\xi_{i})} (\nabla \operatorname{Resc}_{\delta_{i},\xi_{i}}^{F}(\varphi), \nabla \operatorname{Resc}_{\xi_{i},\delta_{i}}^{F}(\psi))_{g} dv_{g} \right|$$

$$- \int_{B_{R\delta_{i}}^{g_{\xi_{i}}}(\xi_{i})} (\nabla \operatorname{Resc}_{\delta_{i},\xi_{i}}^{F}(\varphi), \nabla \operatorname{Resc}_{\xi_{i},\delta_{i}}^{F}(\psi))_{g_{\xi_{i}}} dv_{g_{\xi_{i}}}$$

$$\leq C(F, R)\delta_{i} \|\operatorname{Resc}_{\delta_{i},\xi_{i}}^{F}(\varphi)\|_{H_{1}^{2}} \|\operatorname{Resc}_{\delta_{j},\xi_{j}}^{F}(\psi)\|_{H_{1}^{2}} \leq C(F, R, \varphi, \psi)\delta_{i}.$$

Proposition 3.2 then follows from (42), (39), (27), (29), and (43).

As a corollary, we get an orthogonality property for the $Z_{\delta_i,\xi_i,j}$'s defined in (19):

Corollary 3.3. Let $h \in L^{\infty}(M)$ be such that $||h||_{\infty} \leq \tilde{C}_1$. For any $i, i' \in \{1, ..., k\}$ and any $j, j' \in \{0, ..., n\}$, we have that

$$\left| (Z_{\delta_i,\xi_i,j}, Z_{\delta_{i'},\xi_{i'},j'})_h - \delta_{i,i'}\delta_{j,j'} \|\nabla V_j\|_2^2 \right| \le \omega_{8,\tilde{C}_1}(\varepsilon, N),$$

where $\lim_{\varepsilon \to 0, N \to +\infty} \omega_{8,\tilde{C}_1}(\varepsilon, N) = 0$. Here, $\delta_{i,i'} = 1$ if i = i' and 0 otherwise.

Proof of Corollary 3.3: Taking $F(\xi,x) := \chi(d_{g_{\xi}}(x,\xi))\Lambda_{\xi}(x)$, the corollary is a direct consequence of (25), Proposition 3.4 above, and the fact that the V_j 's form an orthogonal family of $D_1^2(\mathbb{R}^n)$.

We now deal with the nonlinear interactions of different rescalings:

Proposition 3.4. Let $\varphi, \psi \in D_1^2(\mathbb{R}^n)$ be two functions. Then for any $i \neq j \in \{1,..,k\}$ and all $r, s \geq 0$ such that $1 \leq r + s \leq 2^*$, we have that

(44)
$$\int_{M} |Resc_{\delta_{i},\xi_{i}}^{F}(\varphi)|^{r} |Resc_{\delta_{j},\xi_{j}}^{F}(\varphi)|^{s} dv_{g} \leq \omega_{9,F,\varphi,\psi}(\varepsilon,N),$$

where $\lim_{\varepsilon \to 0, N \to +\infty} \omega_{9,F,\varphi,\psi}(\varepsilon, N) = 0$.

Proof of Proposition 3.4: We let R > 0 be a positive number. We have that

$$(45) \int_{M} |\operatorname{Resc}_{\delta_{i},\xi_{i}}^{F}(\varphi)|^{r} |\operatorname{Resc}_{\delta_{j},\xi_{j}}^{F}(\psi)|^{s} dv_{g} \leq \int_{M \setminus B_{R\delta_{i}}^{g_{\xi_{i}}}(\xi_{i})} \cdots + \int_{M \setminus B_{R\delta_{j}}^{g_{\xi_{j}}}(\xi_{j})} \cdots + \int_{B_{R\delta_{i}}^{g_{\xi_{i}}}(\xi_{i}) \cap B_{R\delta_{i}}^{g_{\xi_{j}}}(\xi_{j})} \cdots$$

It follows from (11), Hölder's inequality, (26), and Sobolev's embedding (22) that

$$\int_{M \setminus B_{R\delta_{i}}^{g_{\xi_{i}}}(\xi_{i})} |\operatorname{Resc}_{\delta_{i},\xi_{i}}^{F}(\varphi)|^{r} |\operatorname{Resc}_{\delta_{j},\xi_{j}}^{F}(\psi)|^{s} dv_{g}$$

$$\leq (Vol_{g}(M))^{\frac{2^{\star} - (r+s)}{2^{\star}}} \left(\int_{M \setminus B_{R\delta_{i}}^{g_{\xi_{i}}}(\xi_{i})} |\operatorname{Resc}_{\delta_{i},\xi_{i}}^{F}(\varphi)|^{2^{\star}} dv_{g_{\xi}} \right)^{\frac{r}{2^{\star}}} \cdot \|\operatorname{Resc}_{\delta_{j},\xi_{j}}^{F}(\psi)\|_{2^{\star}}^{s}$$

$$\leq (Vol_{g}(M))^{\frac{2^{\star} - (r+s)}{2^{\star}}} \left(\int_{\mathbb{R}^{n} \setminus B_{R}(0)} |\varphi|^{2^{\star}} dx \right)^{\frac{r}{2^{\star}}} \cdot C(F) \|\operatorname{Resc}_{\delta_{j},\xi_{j}}^{F}(\psi)\|_{H_{1}^{2}}^{s}$$

$$(46) \leq C(F) \cdot (1 + Vol_{g}(M)) \cdot \left(\int_{\mathbb{R}^{n} \setminus B_{R}(0)} |\varphi|^{2^{\star}} dx \right)^{\frac{r}{2^{\star}}} \cdot \|\psi\|_{D_{1}^{2}}^{s} \leq \omega_{10,F,\varphi,\psi}(R),$$

where $\lim_{R\to+\infty} \omega_{10,F,\varphi,\psi}(R) = 0$.

We now assume that $B_{R\delta_i}^{g_{\xi_i}}(\xi_i) \cap B_{R\delta_j}^{g_{\xi_j}}(\xi_j) \neq \emptyset$ and $i \neq j$. Then we have that $d_g(\xi_i, \xi_j) < C_1R(\delta_i + \delta_j)$, where $C_1 > 0$. Since $((\delta_i)_i, (\xi_i)_i) \in \mathcal{D}_k(\varepsilon, N)$, up to exchanging i and j if necessary, we then get that

$$\frac{\delta_i}{\delta_j} < \frac{2(1 + C_1^2 R^2)}{N} \,.$$

Therefore, using the comparison between g_{ξ_i} and g_{ξ_j} given by (11), we get that

$$\int_{B_{R\delta_{i}}^{g_{\xi_{i}}}(\xi_{i})\cap B_{R\delta_{j}}^{g_{\xi_{j}}}(\xi_{j})} |\operatorname{Resc}_{\delta_{i},\xi_{i}}^{F}(\varphi)|^{r} |\operatorname{Resc}_{\delta_{j},\xi_{j}}^{F}(\psi)|^{s} dv_{g}$$

$$\leq (Vol_{g}(M))^{\frac{2^{*}-(r+s)}{2^{*}}} \|\operatorname{Resc}_{\delta_{i},\xi_{i}}^{F}(\varphi)\|_{L^{2^{*}}(M)}^{r}$$

$$\times \left(\int_{B_{C_{8}R\delta_{i}}^{g_{\xi_{j}}}(\xi_{i})\cap B_{R\delta_{j}}^{g_{\xi_{j}}}(\xi_{j})} |\operatorname{Resc}_{\delta_{j},\xi_{j}}^{F}(\psi)|^{2^{*}} dv_{g_{\xi}}\right)^{\frac{s}{2^{*}}}$$

$$\leq C(F) \|\operatorname{Resc}_{\delta_{i},\xi_{i}}^{F}(\varphi)\|_{H_{1}^{2}} \cdot \left(\int_{\delta_{j}^{-1}} \operatorname{exp}_{\xi_{j}}^{-1}(B_{C_{2}R\delta_{i}}^{g_{\xi_{j}}}(\xi_{i}))\cap B_{R}(0)} |\psi|^{2^{*}} dv_{g_{\xi}}\right)^{\frac{s}{2^{*}}}$$

$$\leq C(F) \|\varphi\|_{D_{1}^{2}} \cdot \left(\int_{\delta_{j}^{-1}} \operatorname{exp}_{\xi_{j}}^{-1}(B_{C_{2}R\delta_{i}}^{g_{\xi_{j}}}(\xi_{i}))\cap B_{R}(0)} |\psi|^{2^{*}} dv_{g_{\xi}}\right)^{\frac{s}{2^{*}}}$$

$$(48) \qquad \leq C(F) \|\varphi\|_{D_{1}^{2}} \cdot \left(\int_{\delta_{j}^{-1}} \operatorname{exp}_{\xi_{j}}^{-1}(B_{C_{2}R\delta_{i}}^{g_{\xi_{j}}}(\xi_{i}))\cap B_{R}(0)} |\psi|^{2^{*}} dv_{g_{\xi}}\right)^{\frac{s}{2^{*}}}.$$

Via Lebesque's theorem, it follows from (47) that for R > 0 fixed, the right-hand-side above is as small as desired for N > 0 large. Plugging (46) and (48) into (45) yields (44). This ends the proof of Proposition 3.4.

The last tool introduced here is the inverse rescaling. Let $\tilde{F} \in C^{\infty}(M \times \mathbb{R}^n)$ be such that $\tilde{F}(\xi, z) = 0$ if $|z| \geq r_0$. Let $\phi \in H_1^2(M)$ be a function. For $\xi \in U_{\gamma}$ and $\delta > 0$, we define

(49)
$$\widetilde{\mathrm{Resc}}_{\delta,\xi}^{\tilde{F}}(\phi)(x) := \tilde{F}(\xi,\delta|x|)\delta^{\frac{n-2}{2}}\phi \circ \widetilde{\exp}_{\xi}(\delta x)$$

for all $x \in \mathbb{R}^n$.

Proposition 3.5. For any $\phi \in H_1^2(M)$, $\xi \in U_{\gamma}$, and $\delta > 0$, then $\tilde{Resc}_{\delta,\xi}^{\tilde{F}}(\phi) \in D_1^2(\mathbb{R}^n)$. In addition, if $||h||_{\infty} \leq \tilde{C}_1$, then

$$\|R\tilde{esc}_{\delta,\xi}^{\tilde{F}}(\phi)\|_{D_1^2} \le C(\tilde{C}_1)\|\phi\|_{H_1^2(M)}.$$

Proof of Proposition 3.5: By density, it is enough to prove the result for $\phi \in C^{\infty}(M)$. Then, $\tilde{\operatorname{Resc}}_{\delta,\xi}(\phi) \in C_c^{\infty}(\mathbb{R}^n)$. A change of variable yields

$$\begin{split} \int_{\mathbb{R}^n} |\nabla \tilde{\mathrm{Resc}}_{\delta,\xi}^{\tilde{F}}(\phi)|_{\mathrm{Eucl}}^2 \, dx \\ &= \int_{B_{r_0}^{g_{\xi}}(\xi)} |\nabla (\tilde{F}(\xi, (\tilde{\mathrm{exp}}_{\xi}^{g_{\xi}})^{-1})) \phi|_{(\tilde{\mathrm{exp}}_{\xi}^{g_{\xi}})^{-1})^{\star} \, \mathrm{Eucl}}^2 \, dv_{(\tilde{\mathrm{exp}}_{\xi}^{g_{\xi}})^{-1})^{\star} \, \mathrm{Eucl}} \, . \end{split}$$

Since $F \in C^{\infty}(M \times \mathbb{R}^n)$ and (11) holds, we have that $(\exp_{\xi}^{g_{\xi}})^{-1})^{\star}$ Eucl $\leq Cg$ and

$$\int_{\mathbb{R}^n} |\nabla \tilde{\operatorname{Resc}}_{\delta,\xi}^{\tilde{F}}(\phi)|_{\operatorname{Eucl}}^2 dx \le C(\tilde{F}) \|\phi\|_{H_1^2(M)}^2$$

for all $\phi \in C^{\infty}(M)$. Proposition 3.5 then follows by density.

This section is devoted to the proof of the following estimates:

4. Preliminary computations 2: estimates of derivatives

Proposition 4.1. For $\gamma \in \mathcal{C}$, for any $\xi \in U_{\gamma}$ and $\delta > 0$, we have that

(50)
$$\partial_{\delta} W_{\kappa,\delta,\xi} = \kappa \frac{n-2}{2} \left(\frac{n(n-2)}{f_0(\xi)} \right)^{\frac{n-2}{4}} \cdot \frac{1}{\delta} \cdot \left(Z_{\xi,\delta,0} + o(1) \right),$$

(51)
$$\partial_{(\xi)_j} W_{\kappa,\delta,\xi} = \kappa \frac{n-2}{2} \left(\frac{n(n-2)}{f_0(\xi)} \right)^{\frac{n-2}{4}} \cdot \frac{1}{\delta} \cdot (Z_{\xi,\delta,j} + o(1))$$

for all $j=1,\dots,n$, where $||o(1)||_{H_1^2} \leq \omega_{11}(\delta)$ and $\lim_{\delta \to 0} \omega_{11}(\delta) = 0$. Moreover, we have that

(52)
$$\delta \|\partial_{\delta} Z_{\xi,\delta,j}\|_{H_1^2} \leq C \text{ and } \delta \|\nabla_{\xi} Z_{\xi,\delta,j}\|_{H_1^2} \leq C,$$

where C > 0 is independent of $\xi \in U_{\gamma}$ and $\delta \in (0,1)$. The partial derivatives along the center $\xi \in U_{\gamma}$ in (51) are defined in (56) below.

In other words, the differentiation of the rescaling along $(0, +\infty) \times M$ is essentially the rescaling of the differentiation of U_1 along the Lie algebra of $(0, +\infty) \times \mathbb{R}^n$ for the action (15).

Proof of Proposition 4.1: Straightforward computations yield

(53)
$$\partial_{\delta} W_{\kappa,\delta,\xi} = \kappa \frac{n-2}{2} \left(\frac{n(n-2)}{f_0(\xi)} \right)^{\frac{n-2}{4}} \cdot \frac{1}{\delta} \cdot Z_{\xi,\delta,0} + \partial_{\delta} B_{\delta,\xi} \,,$$

(54)
$$\partial_{\delta} Z_{\xi,\delta,j} = \frac{1}{\delta} \cdot \operatorname{Resc}_{\delta,\xi}^{F^{(1)}}(\Phi_j) \text{ for all } j = 0, \dots, n,$$

where $F^{(1)}(\xi, x) := \chi(d_{q_{\xi}}(x, \xi))\Lambda_{\xi}(x)$ for $\xi, x \in M$ and $\Phi_j \in D_1^2(\mathbb{R}^n)$ are such that

$$\Phi_0(x) := \frac{\frac{n-2}{2}|x|^4 - (n+2)|x|^2 + \frac{n-2}{2}}{(1+|x|^2)^{\frac{n+2}{2}}} \text{ and } \Phi_j(x) := \frac{n(|x|^2-1)x_j}{2(1+|x|^2)^{\frac{n+2}{2}}} \text{ for } j=1,..,n$$

for all $x \in \mathbb{R}^n$. It then follows from (13), (53), (26), (54) that (50) and the first inequality of (52) hold.

We now focus on the derivatives along the center ξ . Since the $W_{\delta,\xi}$'s and the $Z_{\delta,\xi,j}$'s enjoy the same representation (25), we work with the function

$$\mathcal{W}_{\delta,\xi}(x) := \Psi(\xi,x) \delta^{-\frac{n-2}{2}} V\left(\delta^{-1}(\exp_{\xi}^{g_{\xi}})^{-1}(x)\right)$$

for all $x \in M$, where $V \in D_1^2(\mathbb{R}^n)$ is such that $\partial_j V \in D_1^2(\mathbb{R}^n)$ for all $j = 1, \dots, n$ and $\Psi \in C^{\infty}(U_{\gamma} \times M)$ is such that $\Psi(\xi, x) = 0$ if $d_{g_{\xi}}(x, \xi) \geq r_0$. For $\vec{\tau} \in \mathbb{R}^n$, we define $\vec{\tau}(t) := \exp_{\xi}^{g_{\xi}}(t\vec{\tau})$, and we consider

(55)
$$\mathcal{W}_{\delta, \vec{r}(t)} := \Psi(\vec{\tau}(t), \cdot) \delta^{-\frac{n-2}{2}} V\left(\delta^{-1}\Theta_{\xi}\right),$$

where $\Theta_{\xi} := (\exp_{\xi}^{g_{\xi}})^{-1}$ with definition (20). We then define

(56)
$$\partial_{(\xi)_j} \mathcal{W}_{\delta,\xi} := \frac{d}{dt} \left(\mathcal{W}_{\delta,\vec{\tau}(t)} \right)_{|t=0}$$

for $\vec{\tau} = (0, \dots, 0, 1, 0, \dots, 0)$ being the j^{th} vector of the canonical basis of \mathbb{R}^n . Straightforward computations yield

$$\frac{d}{dt} \left(\mathcal{W}_{\delta, \vec{\tau}(t)} \right)_{|t=0} = \operatorname{Resc}_{\delta, \xi}^{\Psi_0}(V) + \sum_{k=1}^n \delta^{-1} \operatorname{Resc}_{\delta, \xi}^{\Psi_k}(\partial_k V),$$

where $\Psi_0(\xi, x) := d\Psi_{(\xi, x)}(d(\tilde{\exp}_{\xi}^{g_{\xi}})_0(\vec{\tau}), 0)$ and $\Psi_k(\xi, x) := \Psi(\xi, x) \frac{d}{dt} (\Theta_{\vec{\tau}(t)}(x))_{|t=0}^k$ for k = 1, ..., n and $\xi \in U_{\gamma}, x \in M$. We define

$$\tilde{\Psi}_k(\xi, x) := \Psi_k(\xi, x) - \Psi_k(\xi, \xi) F^{(1)}(\xi, x), \text{ where } F^{(1)}(\xi, x) := \chi(d_{q_{\xi}}(x, \xi)) \Lambda_{\xi}(x)$$

for all $k = 1, \dots, n$ and $\xi, x \in M$. We then have that

$$\frac{d}{dt} \left(\mathcal{W}_{\delta, \vec{\tau}(t)} \right)_{|t=0} = \sum_{k=1}^{n} \delta^{-1} \Psi_{k}(\xi, \xi) \operatorname{Resc}_{\delta, \xi}^{F^{(1)}}(\partial_{k} V)
+ \operatorname{Resc}_{\delta, \xi}^{\Psi_{0}}(V) + \sum_{k=1}^{n} \delta^{-1} \operatorname{Resc}_{\delta, \xi}^{\tilde{\Psi}_{k}}(\partial_{k} V).$$

Since $\tilde{\Psi}_k(\xi,\xi) = 0$, it follows from Proposition 3.1 that

(57)
$$\left\| \frac{d}{dt} \left(\mathcal{W}_{\delta, \vec{\tau}(t)} \right)_{|t=0} - \sum_{k=1}^{n} \delta^{-1} \Psi_k(\xi, \xi) \operatorname{Resc}_{\delta, \xi}^{F^{(1)}}(\partial_k V) \right\|_{H^2} \leq \delta^{-1} \omega_{12, V}(\delta),$$

where $\lim_{\delta\to 0} \omega_{12}(\delta) = 0$. We are left with computing $\Psi_k(\xi,\xi)$. We define $X(t) := \Theta_{\vec{\tau}(t)}(\xi)$ and for t small. In particular, X and ξ are smooth with respect to t small. The definition of Θ , Taylor expansions, and the fact that X(0) = 0 yield

$$\begin{split} 0 &= \left(\exp_{\xi}^{g_{\xi}} \right)^{-1} \circ \exp_{\vec{\tau}(t)}^{g_{\vec{\tau}(t)}}(X(t)) = \left(\exp_{\xi}^{g_{\xi}} \right)^{-1} \circ \exp_{\vec{\tau}(t)}^{g_{\vec{\tau}(t)}}(tX'(0) + o(t)) \\ &= \left(\exp_{\xi}^{g_{\xi}} \right)^{-1} \circ \exp_{\vec{\tau}(t)}^{g_{\vec{\tau}(t)}}(0) + td \big(\left(\exp_{\xi}^{g_{\xi}} \right)^{-1} \circ \exp_{\vec{\tau}(t)}^{g_{\vec{\tau}(t)}} \big)_{0}(X'(0)) + o(t) \\ &= \left(\exp_{\xi}^{g_{\xi}} \right)^{-1} (\vec{\tau}(t)) + td \big(\left(\exp_{\xi}^{g_{\xi}} \right)^{-1} \circ \exp_{\xi}^{g_{\xi}} \big)_{0}(X'(0)) + o(t) \\ &= t\vec{\tau} + tX'(0) + o(t) \end{split}$$

when $t \to 0$. Therefore $X'(0) = -\vec{\tau}$. Since $\vec{\tau} = (0, \dots, 0, 1, 0, \dots,)$ (the j^{th} vector), we then get that $\Psi_k(\xi, \xi) = -\Psi(\xi, \xi)$ if k = j and 0 otherwise. Then (57) rewrites

(58)
$$\left\| \frac{d}{dt} \left(\mathcal{W}_{\delta, \tilde{\exp}^{g_{\xi}}_{\xi}(t\vec{\tau})} \right)_{|t=0} - \delta^{-1} \Psi(\xi, \xi) \operatorname{Resc}_{\delta, \xi}^{F^{(1)}}(\partial_{j} V) \right\|_{H^{2}_{\tau}} \leq \delta^{-1} \omega_{12, V}(\delta),$$

where $\lim_{\delta\to 0} \omega_{12}(\delta) = 0$. The assertion (51) and the second assertion of (52) follow from the expressions (25) and (55), and from (13) and (58).

5. Inversion and fixed-point argument

For
$$((\delta_i)_i, (\xi_i)_i) \in (0, +\infty)^k \times M^k$$
, we define

$$K_{(\delta_{i})_{i},(\xi_{i})_{i}}:=\operatorname{Span}\left\{Z_{\delta_{i},\xi_{i}}\;;\;Z_{\delta_{i},\xi_{i},\omega_{i}}\;;\;\varphi\:/\:i=1,\cdots,k\:,\:\omega_{i}\in T_{\xi_{i}}M\:,\:\varphi\in K_{0}\right\}.$$

We let $\{\varphi_1, \dots, \varphi_d\}$ be an orthonormal basis of K_0 for $(\cdot, \cdot)_{h_0}$. We then have that

(59)
$$K_{(\delta_i)_{i,j}(\xi_i)_i} = \operatorname{Span} \{ Z_{\delta_i,\xi_{i,j}}; \varphi_l / i = 1, \dots, k, j = 0, \dots, n, l = 1, \dots, d \}.$$

It follows from (25), (26), and (29) that the $Z_{\delta_i,\xi_i,j}$'s go weakly to 0 in $H_1^2(M)$ when $\delta_i \to 0$ uniformly with respect to $\xi_i \in U_{\gamma(i)}$. It follows from Corollary 3.3 that for $\varepsilon > 0$ small enough and N > 0 large enough, the $Z_{\delta_i,\xi_i,j}$'s $(i = 1, \dots, k$ and $j = 0, \dots, n)$ form an "almost" orthogonal family. Therefore, the generating family in (59) is "almost" orthogonal for $(\delta_i)_i, (\xi_i)_i \in \mathcal{D}_k(\varepsilon, N)$ for $\varepsilon > 0$ small and N > 0 large, and therefore, $\dim_{\mathbb{R}} K_{(\delta_i)_i, (\xi_i)_i} = k(n+1) + d$. We define $K_{(\delta_i)_i, (\xi_i)_i}^{\perp}$ as the orthogonal of $K_{(\delta_i)_i, (\xi_i)_i}$ in $H_1^2(M)$ for the scalar product $(\cdot, \cdot)_h$.

We define $\Pi_{K(\delta_i)_i,(\xi_i)_i}: H_1^2(M) \to H_1^2(M)$ and $\Pi_{K_{(\delta_i)_i,(\xi_i)_i}^{\perp}}: H_1^2(M) \to H_1^2(M)$ respectively as the orthogonal projection on $K_{(\delta_i)_i,(\xi_i)_i}$ and $K_{(\delta_i)_i,(\xi_i)_i}^{\perp}$ with respect to the scalar product $(\cdot,\cdot)_h$. As easily checked, $v \in H_1^2(M)$ is a solution to (1) iff

(60)
$$\Pi_{K_{(\delta_i)_i,(\xi_i)_i}^{\perp}} \left(v - (\Delta_g + h)^{-1}(F'(v)) \right) = 0 \\
\text{and } \Pi_{K_{(\delta_i)_i,(\xi_i)_i}} \left(v - (\Delta_g + h)^{-1}(F'(v)) \right) = 0.$$

In this section, we solve the first equation of (60):

Proposition 5.1. Under the hypotheses of Theorem 1.1, there exists N > 0 and $\varepsilon > 0$ such that for any $h \in L^{\infty}(M)$, $f \in C^{0}(M)$, $G \in C^{2,\theta}_{loc}(H^{2}_{1}(M))$, and $u \in C^{1}(B_{1}(0), H^{2}_{1}(M))$ such that (6), (7), and (8) hold, there exists $\phi \in C^{1}(B_{\varepsilon}(0) \times \mathcal{D}_{k}(\varepsilon, N), H^{2}_{1}(M))$ such that

$$u(z, (\delta_i)_i, (\xi_i)_i) := u(z) + \sum_{i=1}^k W_{\kappa_i, \delta_i, \xi_i} + \phi(z, (\delta_i)_i, (\xi_i)_i)$$

is a solution to

(61)
$$\Pi_{K_{(\delta_i)_i,(\xi_i)_i}^{\perp}} \left(u(z,(\delta_i)_i,(\xi_i)_i) - (\Delta_g + h)^{-1} (F'(u(z,(\delta_i)_i,(\xi_i)_i))) \right) = 0$$

for all $(z, (\delta_i)_i, (\xi_i)_i) \in B_{\varepsilon}(0) \times \mathcal{D}_k(\varepsilon, N)$. In addition, we have that

$$\phi(z, (\delta_i)_i, (\xi_i)_i) \in K^{\perp}_{(\delta_i)_i, (\xi_i)_i} \text{ and } \|\phi(z, (\delta_i)_i, (\xi_i)_i)\|_{H^2_1} \leq C \cdot R(z, (\delta_i)_i, (\xi_i)_i),$$

where C is a constant depending on (M, g), k, ν_0 , θ , C_0 , u_0 , h_0 , f_0 , and G_0 . The remainder $R(z, (\delta_i)_i, (\xi_i)_i)$ is defined in (5). Moreover, we have that

$$R(z, (\delta_i)_i, (\xi_i)_i) \le \omega_{13}(\varepsilon, N)$$

for all $z \in B_{\varepsilon}(0)$ and $((\delta_i)_i, (\xi_i)_i) \in \mathcal{D}_k(\varepsilon, N)$, where $\lim_{\varepsilon \to 0, N \to +\infty} \omega_{13}(\varepsilon, N) = 0$.

5.1. Inversion of the linearized operator.

Proposition 5.2. Under the hypotheses of Theorem 1.1, there exists c > 0, there exists N > 0 and $\varepsilon > 0$ such that for $h \in L^{\infty}(M)$, $f \in C^{0}(M)$, $G \in C^{2,\theta}_{loc}(H^{2}_{1}(M))$, and $u \in C^{1}(B_{1}(0), H^{2}_{1}(M))$ such that (6), (7), and (8) hold, then there exists c > 0 such that for any $z \in B_{\varepsilon}(0)$ and $((\delta_{i})_{i}, (\xi_{i})_{i}) \in \mathcal{D}_{k}(\varepsilon, N)$, we have that

(62)
$$||L_{z,(\delta_i)_i,(\xi_i)_i}(\varphi)||_{H_1^2} \ge c||\varphi||_{H_1^2}$$

for all $\varphi \in H_1^2(M)$, where

$$\begin{cases} L_{z,(\delta_{i})_{i},(\xi_{i})_{i}} : \\ \begin{cases} K_{(\delta_{i})_{i},(\xi_{i})_{i}}^{\perp} & \rightarrow \\ \varphi & \mapsto & \Pi_{K_{(\delta_{i})_{i},(\xi_{i})_{i}}^{\perp}} \left(\varphi - (\Delta_{g} + h)^{-1} (F''(u(z,(\delta_{i})_{i},(\xi_{i})_{i})\varphi)) \right) \end{cases} \end{cases}$$

In particular, $L_{z,(\delta_i)_i,(\xi_i)_i}$ is a bi-continuous isomorphism.

Proof of Proposition 5.2: We prove (62) by contradiction. We assume that there exist $(q_{\alpha})_{\alpha} \in (2, 2^{\star}], (h_{\alpha})_{\alpha} \in L^{\infty}(M), (f_{\alpha})_{\alpha} \in C^{0}(M), (z_{\alpha})_{\alpha} \in B_{1}(0), (u_{\alpha})_{\alpha} \in C^{1}(B_{1}(0); H_{1}^{2}(M)), (G_{\alpha})_{\alpha} \in C^{2,\theta}_{loc}(H_{1}^{2}(M)), (\delta_{i,\alpha})_{\alpha}, \text{ and } (\xi_{i,\alpha})_{\alpha} \text{ for } i = 1, \dots, k \text{ and } (\phi_{\alpha})_{\alpha} \in H_{1}^{2}(M) \text{ such that}$

(63)
$$\lim_{\alpha \to +\infty} \|h_{\alpha} - h_{0}\|_{\infty} + \|f_{\alpha} - f_{0}\|_{C^{0}} + d_{C_{R}^{2,\theta}}(G_{\alpha}, G_{0}) = 0,$$

(64)
$$\lim_{\alpha \to +\infty} \delta_{i,\alpha} = 0, \lim_{\alpha \to +\infty} \delta_{i,\alpha}^{2^{\star} - q_{\alpha}} = 1, \lim_{\alpha \to +\infty} z_{\alpha} = 0, \lim_{\alpha \to +\infty} q_{\alpha} = 2^{\star},$$

(65)
$$u_{\alpha}(0) = u_0, \|u_{\alpha}\|_{C^1(B_1(0), H_1^2)} \le C_0, f_0(\xi_{i,\alpha}) \ge \nu_0 \text{ for all } i = 1, \dots, k,$$

(66)
$$\lim_{\alpha \to +\infty} \left(\frac{\delta_{i,\alpha}}{\delta_{j,\alpha}} + \frac{\delta_{j,\alpha}}{\delta_{i,\alpha}} + \frac{d_g(\xi_{i,\alpha}, \xi_{j,\alpha})^2}{\delta_{i,\alpha}\delta_{j,\alpha}} \right) = +\infty,$$

(67)
$$\|\phi_{\alpha}\|_{H^{2}} = 1, \ \phi_{\alpha} \in K_{\alpha}^{\perp},$$

and

(68)
$$L_{\alpha}(\phi_{\alpha}) = o(1),$$

where $\lim_{\alpha \to +\infty} o(1) = 0$ in $H_1^2(M)$ and

$$L_{\alpha} := L_{z_{\alpha},(\delta_{i,\alpha})_i,(\xi_{i,\alpha})_i}$$
 and $K_{\alpha} := K_{(\delta_{i,\alpha})_i,(\xi_{i,\alpha})_i}$.

In the sequel, all convergences are with respect to a subsequence of α . It follows from the boundedness of $(\phi_{\alpha})_{\alpha}$ in (67) that there exists $\phi \in H_1^2(M)$ such that

(69)
$$\phi_{\alpha} \rightharpoonup \phi$$
 weakly in $H_1^2(M)$ when $\alpha \to +\infty$.

It follows from (68) that there exist $(\lambda_{\alpha}^{ij})_{\alpha} \in \mathbb{R}$ and $(\mu_{\alpha}^{l})_{\alpha} \in \mathbb{R}$ for $i \in \{1, \dots, k\}$, $j \in \{0, \dots, n\}$, and $l \in \{1, \dots, d\}$ such that (70)

$$\phi_{\alpha} - (\Delta_g + h_{\alpha})^{-1} \Big(F_{\alpha}'' \Big(u_{\alpha}(z_{\alpha}) + \sum_{i=1}^k W_{i,\alpha} \Big) \phi_{\alpha} \Big) = o(1) + \sum_{i,j} \lambda_{\alpha}^{ij} Z_{i,j,\alpha} + \sum_{l=1}^d \mu_{\alpha}^l \varphi_l ,$$

where $\lim_{\alpha\to 0} o(1) = 0$ in $H_1^2(M)$ and

(71)
$$F_{\alpha}(v) := \frac{1}{q_{\alpha}} \int_{M} f_{\alpha} H(v)^{q_{\alpha}} dv_{g} + G_{\alpha}(v)$$

for all $v \in H_1^2(M)$ and

$$W_{i,\alpha} := W_{\kappa_i,\delta_{i,\alpha},\xi_{i,\alpha}}$$
 and $Z_{i,j,\alpha} := Z_{\delta_{i,\alpha},\xi_{i,\alpha},j}$ for all $i \in \{1,\cdots,k\}, j \in \{0,\cdots,n\}$.

It follows from Proposition 3.1 that for any $i \in \{1, \dots, k\}$ and $j \in \{0, \dots, n\}$, we have that

(72)
$$W_{i,\alpha} \rightharpoonup 0$$
 and $Z_{i,i,\alpha} \rightharpoonup 0$ weakly in $H_1^2(M)$ when $\alpha \to +\infty$.

Since $\phi_{\alpha} \in K_{\alpha}^{\perp}$, for any $i = 1, \dots, k$ and any $j = 0, \dots, n$, we have that

(73)
$$(\phi_{\alpha}, Z_{i,j,\alpha})_{h_{\alpha}} = 0 \text{ and } (\phi_{\alpha}, \varphi)_{h_{\alpha}} = 0 \text{ for all } \varphi \in K_0.$$

It follows from the local C^2 -convergence (63) of G_{α} to G_0 , from the continuity properties of G_0 (see Definition 2.1) and from (69) that

(74)
$$\phi_{\alpha} - (\Delta_{g} + h_{\alpha})^{-1} \Big((q_{\alpha} - 1) f_{\alpha} H \Big(u_{\alpha}(z_{\alpha}) + \sum_{i=1}^{k} W_{i,\alpha} \Big)^{q_{\alpha} - 2} \phi_{\alpha} \Big)$$
$$- (\Delta_{g} + h_{0})^{-1} (G_{0}''(u_{0})\phi) = o(1) + \sum_{i,j} \lambda_{\alpha}^{ij} Z_{i,j,\alpha} + \sum_{l=1}^{d} \mu_{\alpha}^{l} \varphi_{l}$$

where $\lim_{\alpha\to 0} o(1) = 0$ in $H_1^2(M)$. We define

$$\Lambda_{\alpha} := \sum_{i=1}^k \sum_{j=0}^n |\lambda_{\alpha}^{ij}| + \sum_{l=1}^d |\mu_{\alpha}^l| \text{ for all } \alpha.$$

We fix $\varphi \in H_1^2(M)$. It then follows from (74) that

(75)
$$(\phi_{\alpha}, \varphi)_{h_{\alpha}} - (q_{\alpha} - 1) \int_{M} f_{\alpha} H\left(u_{\alpha}(z_{\alpha}) + \sum_{i=1}^{k} W_{i,\alpha}\right)^{q_{\alpha} - 2} \phi_{\alpha} \varphi \, dv_{g}$$

$$-G_0''(u_0)(\phi,\varphi) = o_{\alpha}(1) (1 + \Lambda_{\alpha}) (\|\varphi\|_{H_1^2}) + \sum_{i,j} \lambda_{\alpha}^{ij} (Z_{i,j,\alpha},\varphi)_{h_{\alpha}} + \sum_{l=1}^d \mu_{\alpha}^l (\varphi_l,\varphi)_{h_0}.$$

Here and in the sequel, $\lim_{\alpha \to +\infty} o_{\alpha}(1) \to 0$ uniformly with respect to $\varphi \in H_1^2(M)$.

Step 1: We first bound the μ_{α}^{l} 's. We fix $\varphi \in H_{1}^{2}(M)$. It follows from (63), (64) (65), (25), and (26) that the family $(f_{\alpha}H(u_{\alpha}(z_{\alpha})+\sum_{i=1}^{k}W_{i,\alpha})^{q_{\alpha}-2}\phi_{\alpha})_{\alpha}$ is uniformly bounded in $L^{2n/(n+2)}(M)$ and converges a.e. to $f_{0}H(u_{0})^{2^{*}-2}\phi$ when $\alpha \to +\infty$. It then follows from integration theory that the convergence holds weakly in $L^{2^{*}}(M)'$. Therefore, passing to the limit $\alpha \to +\infty$ in (75) for $\varphi \in H_{1}^{2}(M)$ fixed, we get that

(76)
$$(\phi, \varphi)_{h_0} - (2^* - 1) \int_M f_0 H(u_0)^{2^* - 2} \phi \varphi \, dv_g - G_0''(u_0)(\phi, \varphi)$$

$$= (\phi, \varphi)_{h_0} - F_0''(u_0)(\phi, \varphi) = o_\alpha(1) (1 + \Lambda_\alpha) + \sum_{l=1}^d \mu_\alpha^l(\varphi_l, \varphi)_{h_0}.$$

Passing to the limit $\alpha \to +\infty$ in the second equality of (73) yields $(\phi, \varphi)_{h_0} = 0$ for all $\varphi \in K_0$. It then follows from (3) that $F_0''(u_0)(\varphi, \phi) = (\phi, \varphi)_{h_0} = 0$, and then

$$\sum_{l=1}^{d} \mu_{\alpha}^{l}(\varphi_{l}, \varphi)_{h_{0}} = o_{\alpha}(1) (1 + \Lambda_{\alpha})$$

for all $\varphi \in K_0$. Since $\{\varphi_l/l = 1, \dots, d\}$ is an orthonormal basis of K_0 , we get that

(77)
$$\sum_{l=1}^{d} |\mu_{\alpha}^{l}| = o_{\alpha}(1) (1 + \Lambda_{\alpha}),$$

where $\lim_{\alpha \to +\infty} o_{\alpha}(1) = 0$.

Step 2: We bound the λ_{α}^{ij} 's. We fix $i_0 \in \{1, \dots, k\}$. We fix $\varphi \in D_1^2(\mathbb{R}^n)$ and define $\varphi_{i_0,\alpha} := \operatorname{Resc}_{\xi_{i_0,\alpha},\delta_{i_0,\alpha}}^F(\varphi)$, where $F(\xi,x) := \chi(d_{g_{\xi}}(\xi,x))\Lambda_{\xi}(x)$ for $\xi, x \in M$.

In particular, it follows from Proposition 3.1 that

(78)
$$\varphi_{i_0,\alpha} \to 0$$
 weakly in $H_1^2(M)$ when $\alpha \to +\infty$.

We define

$$\tilde{\phi}_{i_0,\alpha} := \tilde{\mathrm{Resc}}_{\xi_{i_0,\alpha},\delta_{i_0,\alpha}}^{\tilde{F}}(\phi_\alpha), \text{ where } \tilde{F}(\xi,x) := \frac{\chi(|x|)}{\Lambda_{\xi}(\tilde{\exp}_{\xi}^{g_{\xi}}(x))} \text{ for } \xi \in M, \, x \in \mathbb{R}^n.$$

Note that it follows from Proposition 3.5 that $(\tilde{\phi}_{i_0,\alpha})_{\alpha}$ is bounded in $D_1^2(\mathbb{R}^n)$, and then, there exists $\tilde{\phi}_{i_0} \in D_1^2(\mathbb{R}^n)$ such that

(79)
$$\tilde{\phi}_{i_0,\alpha} \rightharpoonup \tilde{\phi}_{i_0} \text{ in } D_1^2(\mathbb{R}^n) \text{ when } \alpha \to +\infty.$$

As easily checked, $\operatorname{Resc}_{\xi_{i_0,\alpha},\delta_{i_0,\alpha}}^F(\tilde{\phi}_{i_0,\alpha}) = \phi_{\alpha} + \tau_{\alpha}$, where $(\tau_{\alpha})_{\alpha}$ is bounded in $H_1^2(M)$ with support in $M \setminus B_{\xi_{i_0,\alpha}}^{g_{\xi_{i_0,\alpha}}}(r_0/3)$. It then follows from (28) and (29) that (80)

 $\left(\operatorname{Resc}_{\xi_{i_0,\alpha},\delta_{i_0,\alpha}}^F(\tilde{\phi}_{i_0,\alpha}), \operatorname{Resc}_{\xi_{i_0,\alpha},\delta_{i_0,\alpha}}^F(\varphi)\right)_{h_{\alpha}} = \left(\phi_{\alpha}, \operatorname{Resc}_{\xi_{i_0,\alpha},\delta_{i_0,\alpha}}^F(\varphi)\right)_{h_{\alpha}} + o_{\alpha}(1),$ where $\lim_{\alpha \to +\infty} o_{\alpha}(1) = 0$. Applying (75) to $\varphi_{i_0,\alpha}$ yields

$$(\phi_{\alpha}, \varphi_{i_{0},\alpha})_{h_{\alpha}} - (q_{\alpha} - 1) \int_{M} f_{\alpha} H\left(u_{\alpha}(z_{\alpha}) + \sum_{i=1}^{k} W_{i,\alpha}\right)^{q_{\alpha} - 2} \phi_{\alpha} \varphi_{i_{0},\alpha} dv_{g}$$

$$-G''_{0}(u_{0})(\phi, \varphi_{i_{0},\alpha}) = o_{\alpha}(1) (1 + \Lambda_{\alpha}) (\|\varphi_{i_{0},\alpha}\|_{H_{1}^{2}})$$

$$+ \sum_{i,j} \lambda_{\alpha}^{ij} (Z_{i,j,\alpha}, \varphi_{i_{0},\alpha})_{h_{\alpha}} + \sum_{l=1}^{d} \mu_{\alpha}^{l} (\varphi_{l}, \varphi_{i_{0},\alpha}))_{h_{0}}.$$

It then follows from (80), (33), (43), the properties of G_0 (see Definition 2.1), (78), and Proposition 3.2 that

(81)
$$(\tilde{\phi}_{i_0,\alpha}, \varphi)_{\text{Eucl}} - (q_{\alpha} - 1) \int_M f_{\alpha} H \left(u_{\alpha}(z_{\alpha}) + \sum_{i=1}^k W_{i,\alpha} \right)^{q_{\alpha} - 2} \phi_{\alpha} \varphi_{i_0,\alpha} \, dv_g$$

$$= o_{\alpha}(1) \left(1 + \Lambda_{\alpha} \right) + \sum_{i} \lambda_{\alpha}^{i_0,i}(V_j, \varphi)_{\text{Eucl}} \, .$$

Without loss of generality, we can assume that $\theta < \min\{1, 2^* - 2\}$. Then, there exists $C(\theta) > 0$ such that

$$\left| H\left(\sum_{i=0}^{k} X_{i}\right)^{q_{\alpha}-2} - H(X_{0})^{q_{\alpha}-2} \right| \leq C(\theta)|X_{0}|^{\theta} \sum_{i\neq 0}^{k} |X_{i}|^{q_{\alpha}-2-\theta} + C(\theta) \sum_{i\neq 0} |X_{i}|^{q_{\alpha}-2}$$

for all $X_i \in \mathbb{R}$, $i = 0, \dots, k$. As a consequence, we get that

$$\begin{split} & \left| \int_{M} f_{\alpha} \left(H \left(u_{\alpha}(z_{\alpha}) + \sum_{i=1}^{k} W_{i,\alpha} \right)^{q_{\alpha}-2} - H(W_{i_{0},\alpha})^{q_{\alpha}-2} \right) \phi_{\alpha} \varphi_{i_{0},\alpha} \, dv_{g} \right| \\ & \leq C \int_{M} \left(|W_{i_{0},\alpha}|^{\theta} |u_{\alpha}(z_{\alpha})|^{q_{\alpha}-2-\theta} + \sum_{i \neq i_{0}} |W_{i_{0},\alpha}|^{\theta} |W_{i,\alpha}|^{q_{\alpha}-2-\theta} \right) |\phi_{\alpha}| \cdot |\varphi_{i_{0},\alpha}| \, dv_{g} \\ & + C \int_{M} \left(|u_{\alpha}(z_{\alpha})|^{q_{\alpha}-2} + \sum_{i \neq i_{0}} |W_{i,\alpha}|^{q_{\alpha}-2} \right) |\phi_{\alpha}| \cdot |\varphi_{i_{0},\alpha}| \, dv_{g} \\ & \leq C \int_{M} |W_{i_{0},\alpha}|^{\theta} |\varphi_{i_{0},\alpha}| \cdot |\phi_{\alpha}| \cdot |u_{\alpha}(z_{\alpha})|^{q_{\alpha}-2-\theta} \, dv_{g} \\ & + C \int_{M} |\varphi_{i_{0},\alpha}| \cdot |\phi_{\alpha}| \cdot |u_{\alpha}(z_{\alpha})|^{q_{\alpha}-2} \, dv_{g} \\ & + C \sum_{i \neq i_{0}} ||W_{i_{0},\alpha}|^{\theta} |W_{i,\alpha}|^{(q_{\alpha}-2-\theta)} ||_{2^{*}/(2^{*}-2)} ||\varphi_{i_{0},\alpha}||_{2^{*}} ||\phi_{\alpha}||_{2^{*}} \\ & + C \sum_{i \neq i_{0}} ||W_{i,\alpha}|^{q_{\alpha}-2} \varphi_{i_{0},\alpha}||_{2^{*}/(2^{*}-1)} ||\phi_{\alpha}||_{2^{*}}. \end{split}$$

Since $(|\varphi_{i_0,\alpha}|\cdot|\phi_{\alpha}|)_{\alpha}$ goes to 0 almost everywhere and is bounded in $L^{2^{\star}/2}(M)$, since $(|W_{i_0,\alpha}|^{\theta}|\varphi_{i_0,\alpha}|\cdot|\phi_{\alpha}|)_{\alpha}$ goes to 0 almost everywhere and is bounded in $L^{2^{\star}/(2+\theta)}(M)$,

it follows from standard integration theory and Proposition 3.4 that

$$\int_{M} f_{\alpha} \left(H\left(u(z_{\alpha}) + \sum_{i=1}^{k} W_{i,\alpha}\right)^{q_{\alpha}-2} - H(W_{i_{0},\alpha})^{q_{\alpha}-2} \right) \phi_{\alpha} \varphi_{i_{0},\alpha} dv_{g} \to 0$$

when $\alpha \to +\infty$. Plugging this limit in (81) yields

(82)
$$(\tilde{\phi}_{i_0,\alpha},\varphi)_{\text{Eucl}} - (q_{\alpha} - 1) \int_M f_{\alpha} H(W_{i_0,\alpha})^{q_{\alpha} - 2} \phi_{\alpha} \varphi_{i_0,\alpha} dv_g$$

$$= o_{\alpha}(1) (1 + \Lambda_{\alpha}) + \sum_{i} \lambda_{\alpha}^{i_0 j} (V_j, \varphi)_{\text{Eucl}}.$$

For any R > 0, we have that

$$\left| \int_{M \setminus B_{R\delta_{i_0,\alpha}}^{g_{\xi_{i_0,\alpha}}}(\xi_{i_0,\alpha})} f_{\alpha} H\left(W_{i_0,\alpha}\right)^{q_{\alpha}-2} \phi_{\alpha} \varphi_{i_0,\alpha} \, dv_g \right|$$

$$\leq C \|W_{i_0,\alpha}\|_{2^{\star}}^{q_{\alpha}-2} \|\phi_{\alpha}\|_{2^{\star}} \left(\int_{M \setminus B_{R\delta_{i_0,\alpha}}^{g_{\xi_{i_0,\alpha}}}(\xi_{i_0,\alpha})} |\varphi_{i_0,\alpha}|^{2^{\star}} \, dv_g \right)^{1/2^{\star}}$$

$$\leq C \|\varphi\|_{L^{2^{\star}}(\mathbb{R}^n \setminus B_{R}(0))}.$$

Since $\varphi \in L^{2^*}(\mathbb{R}^n)$, we get that

(83)
$$\lim_{R \to +\infty} \lim_{\alpha \to +\infty} \int_{M \setminus B_{R\delta}^{g_{\xi_{i_0,\alpha}}}} f_{\alpha} H\left(W_{i_0,\alpha}\right)^{q_{\alpha}-2} \phi_{\alpha} \varphi_{i_0,\alpha} dv_g = 0.$$

A change of variable, (63) and (64) yield

$$\int_{B_{R\delta_{i_{0},\alpha}}^{g_{\xi_{i_{0},\alpha}}}} f_{\alpha} H\left(W_{i_{0},\alpha}\right)^{q_{\alpha}-2} \phi_{\alpha} \varphi_{i_{0},\alpha} dv_{g}$$

$$= \int_{B_{R}(0)} f_{\alpha} \left(\tilde{\exp}_{\xi_{i_{0},\alpha}}^{g_{\xi_{i_{0},\alpha}}} (\delta_{i_{0},\alpha} \cdot)\right) \left(\delta_{i_{0},\alpha}^{2^{\star}-q_{\alpha}}\right)^{\frac{n-2}{2}} H\left(\kappa_{i} U_{f_{0}(\xi_{i_{0},\alpha})}\right)^{q_{\alpha}-2} \tilde{\phi}_{i_{0},\alpha} \varphi dv_{g_{\alpha}}$$

$$(84) = \int_{B_{R}(0)} U_{1}^{2^{\star}-2} \tilde{\phi}_{i_{0},\alpha} \varphi dx + o(1),$$

where $g_{\alpha} := (\exp_{\xi_{i_0,\alpha}}^{g_{\xi_{i_0,\alpha}}})^* g(\delta_{i_0,\alpha})$, and we have used that $\kappa_i = 1$ if $H = (\cdot)_+$. Moreover, it follows from Hölder's inequality that

(85)
$$\left| \int_{\mathbb{R}^n \setminus B_R(0)} U_1^{2^* - 2} \tilde{\phi}_{i_0, \alpha} \varphi \, dx \right| \le C \|U_1\|_{L^{2^*}(\mathbb{R}^n \setminus B_R(0))}^{2^* - 2} \|\tilde{\phi}_{i_0, \alpha}\|_{2^*} \|\varphi\|_{2^*}.$$

Plugging (83), (84), and (85) into (82), and using (79) yields

(86)
$$(\tilde{\phi}_{i_0}, \varphi)_{\text{Eucl}} - (2^* - 1) \int_{\mathbb{R}^n} U_1^{2^* - 2} \tilde{\phi}_{i_0} \varphi \, dx$$

$$= o_{\alpha}(1) \left(1 + \Lambda_{\alpha} \right) + \sum_{j} \lambda_{\alpha}^{i_0 j} (V_j, \varphi)_{\text{Eucl}}.$$

It follows from (73), from (80), (33), and (43) that

(87)
$$(\tilde{\phi}_{i_0}, V_j)_{\text{Eucl}} = 0 \text{ for all } j = 0, \dots, n.$$

Since the V_j 's are solutions to (16), we then get that $\int_{\mathbb{R}^n} U_1^{2^*-2} \tilde{\phi}_{i_0} V_j dx = 0$ for all $j = 0, \dots, n$. Since the V_j 's are orthogonal in $D_1^2(\mathbb{R}^n)$, taking $\varphi := V_j$ in (86) yields

(88)
$$\lambda^{i_0,j} = o_{\alpha}(1) (1 + \Lambda_{\alpha}) \text{ for all } i_0 = 1, \dots, k \text{ and } j = 0, \dots, n.$$

Step 3: It follows from (77) and (88) that $\Lambda_{\alpha} = o_{\alpha}(1) (1 + \Lambda_{\alpha})$, and then $\Lambda_{\alpha} = o_{\alpha}(1)$ when $\alpha \to 0$. As a consequence, (76) rewrites $\Delta_g \phi + h_0 \phi = F_0''(u_0) \phi$, and then $\phi \in K_0$. Moreover, passing to the limit $\alpha \to +\infty$ in the second equation of (73) yields $\phi \in K_0^{\perp}$. Therefore $\phi = 0$, and then (69) rewrites

$$\phi_{\alpha} \rightharpoonup 0$$
 weakly in $H_1^2(M)$ when $\alpha \to +\infty$.

Similarly, (86) rewrites $\Delta_{\text{Eucl}}\tilde{\phi}_{i_0} = (2^* - 1)U_1^{2^* - 2}\tilde{\phi}_{i_0}$ with $\tilde{\phi}_{i_0} \in D_1^2(\mathbb{R}^n)$. Then $\tilde{\phi}_{i_0} \in K_{BE}$ (see Subsection 2.5). On the other hand, (87) yields $\tilde{\phi}_{i_0} \in K_{BE}^{\perp}$. Therefore $\tilde{\phi}_{i_0} \equiv 0$, and then (79) rewrites

$$\tilde{\phi}_{i_0,\alpha} \rightharpoonup 0$$
 weakly in $D_1^2(\mathbb{R}^n)$ when $\alpha \to +\infty$

for any $i_0 = 1, \dots, k$. Since $\phi \equiv 0$, taking $\varphi := \phi_{\alpha}$ in (75) yields

$$\|\phi_{\alpha}\|_{h_{\alpha}}^{2} = (q_{\alpha} - 1) \int_{M} f_{\alpha} H\left(u_{\alpha}(z_{\alpha}) + \sum_{i=1}^{k} W_{i,\alpha}\right)^{q_{\alpha} - 2} \phi_{\alpha}^{2} dv_{g} + o(1)$$

$$(89) \qquad \leq C \int_{M} |u_{\alpha}(z_{\alpha})|^{q_{\alpha} - 2} \phi_{\alpha}^{2} dv_{g} + C \sum_{i=1}^{k} \int_{M} |W_{i,\alpha}|^{q_{\alpha} - 2} \phi_{\alpha}^{2} dv_{g} + o_{\alpha}(1),$$

where $\lim_{\alpha \to +\infty} o_{\alpha}(1) = 0$. Since $\phi_{\alpha} \to 0$ when $\alpha \to +\infty$, it follows from integration theory that $\int_{M} |u_{\alpha}(z_{\alpha})|^{q_{\alpha}-2} \phi_{\alpha}^{2} dv_{g} \to 0$ when $\alpha \to +\infty$. For any $i \in \{1, \dots, k\}$, on the one hand, for any R > 0, we have that

$$\int_{M \setminus B_{R\delta_{i,\alpha}}^{g_{\xi_{i,\alpha}}}(\xi_{i,\alpha})} |W_{i,\alpha}|^{q_{\alpha}-2} \phi_{\alpha}^{2} \, dv_{g} \leq C \|\phi_{\alpha}\|_{2^{\star}}^{2} \left(\int_{M \setminus B_{R\delta_{i,\alpha}}^{g_{\xi_{i,\alpha}}}(\xi_{i,\alpha})} |W_{i,\alpha}|^{2^{\star}} \, dv_{g} \right)^{\frac{q_{\alpha}-2}{2^{\star}}} \\
\leq C \|\phi_{\alpha}\|_{H_{1}^{2}}^{2} \left(\int_{\mathbb{R}^{n} \setminus B_{R}(0)} U_{1}^{2^{\star}} \right)^{(q_{\alpha}-2)/2^{\star}}, \tag{90}$$

and then

$$\lim_{R\to +\infty} \lim_{\alpha\to +\infty} \int_{M\backslash B^{g_{\xi_{i_0},\alpha}}_{R\delta_{i_0,\alpha}}(\xi_{i_0,\alpha})} |W_{i,\alpha}|^{q_\alpha-2} \phi_\alpha^2 \, dv_g = 0.$$

On the other hand, we have that

(91)
$$\int_{B_{R\delta_{i_0,\alpha}}^{g_{\xi_{i_0,\alpha}}}(\xi_{i_0,\alpha})} |W_{i,\alpha}|^{q_{\alpha}-2} \phi_{\alpha}^2 \, dv_g \le C \int_{B_R(0)} U_1^{q_{\alpha}-2} \tilde{\phi}_{i,\alpha} \, dx \, .$$

Since $\tilde{\phi}_{i,\alpha} \to 0$ when $\alpha \to +\infty$, it follows from integration theory that the right-hand side in (91) above goes to 0 as $\alpha \to +\infty$. Plugging this latest result and (90) into (89) yields $\|\phi_{\alpha}\|_{h_{\alpha}} = o(1)$ when $\alpha \to +\infty$. A contradiction with (67). This proves (62).

We write $L_{z,(\delta_i)_i,(\xi_i)_i} := Id - \tilde{L}$, where \tilde{L} is a compact operator. It then follows from (62) and Fredholm theory that $L_{z,(\delta_i)_i,(\xi_i)_i}$ is a bi-continuous isomorphism. This ends the proof of Proposition 5.2

5.2. Rough control of the rest. We prove the following proposition:

Proposition 5.3. We have that

(92)
$$R(z, (\delta_i)_i, (\xi_i)_i) \le \omega_{14}(\varepsilon, N)$$

for all
$$(z, (\delta_i)_i, (\xi_i)_i) \in B_{\varepsilon}(0) \times \mathcal{D}_k(\varepsilon, N)$$
, where $\lim_{\varepsilon \to 0, N \to +\infty} \omega_{14}(\varepsilon, N) = 0$.

Proof of Proposition 5.3: We argue by contradiction. We assume that there exist $(q_{\alpha})_{\alpha} \in (2,2^{*}], (h_{\alpha})_{\alpha} \in L^{\infty}(M), (f_{\alpha})_{\alpha} \in C^{0}(M), (z_{\alpha})_{\alpha} \in B_{1}(0), (u_{\alpha})_{\alpha} \in C^{1}(B_{1}(0); H_{1}^{2}(M)), (G_{\alpha})_{\alpha} \in C^{2,\theta}_{loc}(H_{1}^{2}(M)), (\delta_{i,\alpha})_{\alpha} \text{ and } (\xi_{i,\alpha})_{\alpha} \text{ for } i = 1, \dots, k \text{ and } c_{0} > 0 \text{ such that}$

(93)
$$\lim_{\alpha \to +\infty} \|h_{\alpha} - h_{0}\|_{\infty} + \|f_{\alpha} - f_{0}\|_{C^{0}} + d_{C_{B}^{2,\theta}}(G_{\alpha}, G_{0}) = 0,$$

(94)
$$\lim_{\alpha \to +\infty} \delta_{i,\alpha} = 0, \lim_{\alpha \to +\infty} \delta_{i,\alpha}^{2^{\star} - q_{\alpha}} = 1, \lim_{\alpha \to 0} z_{\alpha} = 0, \lim_{\alpha \to +\infty} q_{\alpha} = 2^{\star},$$

(95)
$$u_{\alpha}(0) = u_0, \|u_{\alpha}\|_{C^1(B_1(0), H_1^2)} \le C_0, f_0(\xi_{i,\alpha}) \ge \nu_0 \text{ for all } i = 1, \dots, k,$$

(96)
$$\lim_{\alpha \to +\infty} \left(\frac{\delta_{i,\alpha}}{\delta_{j,\alpha}} + \frac{\delta_{j,\alpha}}{\delta_{i,\alpha}} + \frac{d_g(\xi_{i,\alpha}, \xi_{j,\alpha})^2}{\delta_{i,\alpha}\delta_{j,\alpha}} \right) = +\infty,$$

and

(97)
$$R_{\alpha} := R(z_{\alpha}, (\delta_{i,\alpha})_{i}, (\xi_{i,\alpha})_{i}) \geq c_{0} \text{ for all } \alpha \in \mathbb{N}.$$

We define $W_{i,\alpha} := W_{\kappa_i,\delta_{i,\alpha},\xi_{i,\alpha}}$. In particular, Proposition 3.1 yields

(98)
$$W_{i,\alpha} \rightharpoonup 0$$
 weakly in $H_1^2(M)$ when $\alpha \to +\infty$.

Defining $\tilde{H}_{q_{\alpha}}(x) = H(x)^{q_{\alpha}-2}x$ and F_{α} as in (71), we have that

$$R_{\alpha} = \left\| u_{\alpha}(z_{\alpha}) + \sum_{i=1}^{k} W_{i,\alpha} - (\Delta_{g} + h_{\alpha})^{-1} \left(F_{\alpha}' \left(u_{\alpha}(z_{\alpha}) + \sum_{i=1}^{k} W_{i,\alpha} \right) \right) \right\|_{H_{1}^{2}}$$

$$\leq \left\| u_{\alpha}(z_{\alpha}) - (\Delta_{g} + h_{\alpha})^{-1} \left(F_{\alpha}' (u_{\alpha}(z_{\alpha})) \right) \right\|_{H_{1}^{2}}$$

$$+ \sum_{i=1}^{k} \left\| W_{i,\alpha} - (\Delta_{g} + h_{\alpha})^{-1} \left(f_{\alpha} \tilde{H}_{q_{\alpha}}(W_{i,\alpha}) \right) \right\|_{H_{1}^{2}}$$

$$+ \left\| (\Delta_{g} + h_{\alpha})^{-1} \left(F_{\alpha}' \left(u_{\alpha}(z_{\alpha}) + \sum_{i=1}^{k} W_{i,\alpha} \right) - F_{\alpha}' (u_{\alpha}(z_{\alpha})) \right) \right\|_{H_{2}^{2}}$$

$$- \sum_{i=1}^{k} (\Delta_{g} + h_{\alpha})^{-1} \left(f_{\alpha} \tilde{H}_{q_{\alpha}}(W_{i,\alpha}) \right) \right\|_{H_{2}^{2}}.$$

The control (95) yields $\lim_{\alpha\to+\infty}u_{\alpha}(z_{\alpha})=u_0$ in $H_1^2(M)$. The convergence (93) then yields

$$\lim_{\alpha \to +\infty} \|u_{\alpha}(z_{\alpha}) - (\Delta_g + h_{\alpha})^{-1} (F'_{\alpha}(u_{\alpha}(z_{\alpha})))\|_{H_1^2}$$

$$= \|u_0 - (\Delta_g + h_0)^{-1} (F'_0(u_0))\|_{H_1^2} = 0.$$

Since $(u_{\alpha}(z_{\alpha}) + \sum_{i=1}^{k} W_{i,\alpha})_{\alpha} \rightharpoonup u_0$ weakly in $H_1^2(M)$, it follows from the convergence (93) of $(G_{\alpha})_{\alpha}$ and the Definition 2.1 of subcriticality of G_0 that

(99)
$$G'_{\alpha}\left(u_{\alpha}(z_{\alpha}) + \sum_{i=1}^{k} W_{i,\alpha}\right) \to G'_{0}(u_{0}) \text{ strongly in } H_{1}^{2}(M) \text{ when } \alpha \to +\infty.$$

As a consequence, we get with the Riesz correspondence (23) that

$$R_{\alpha} \le o(1) + \sum_{i=1}^{k} \left\| W_{i,\alpha} - (\Delta_g + h_{\alpha})^{-1} (f_{\alpha} \tilde{H}_{q_{\alpha}}(W_{i,\alpha})) \right\|_{H_1^2} + C \|A_{\alpha}\|_{\frac{2n}{n+2}},$$

where

$$A_{\alpha} := \tilde{H}_{q_{\alpha}} \left(u_{\alpha}(z_{\alpha}) + \sum_{i=1}^{k} W_{i,\alpha} \right) - \tilde{H}_{q_{\alpha}} (u_{\alpha}(z_{\alpha})) - \sum_{i=1}^{k} \tilde{H}_{q_{\alpha}} (W_{i,\alpha}).$$

As easily checked, for all family $(X_i)_{i=0,\dots,k} \in \mathbb{R}$, we have that

$$\left| \tilde{H}_{q_{\alpha}} \left(\sum_{i=0}^{k} X_i \right) - \sum_{i=0}^{k} \tilde{H}_{q_{\alpha}}(X_i) \right| \le C \sum_{i \ne j} |X_i| \cdot |X_j|^{q_{\alpha} - 2}$$

for all $\alpha \in \mathbb{N}$ large. Therefore, with Hölder's inequality, we get that

$$||A_{\alpha}||_{\frac{2n}{n+2}}^{\frac{2n}{n+2}} \le C \sum_{i} \int_{M} |u_{\alpha}(z_{\alpha})|^{\frac{2n}{n+2}} |W_{i,\alpha}|^{(q_{\alpha}-2)\frac{2n}{n+2}} dv_{g}$$

$$+ C \sum_{i} \int_{M} |u_{\alpha}(z_{\alpha})|^{(q_{\alpha}-2)\frac{2n}{n+2}} |W_{i,\alpha}|^{\frac{2n}{n+2}} dv_{g}$$

$$+ C \sum_{i \ne j} \int_{M} |W_{i,\alpha}|^{\frac{2n}{n+2}} |W_{j,\alpha}|^{(q_{\alpha}-2)\frac{2n}{n+2}} dv_{g}.$$

Since $u_{\alpha}(z_{\alpha}) \to u_0$ in $L^{2^*}(M)$, $(|W_{i,\alpha}|^{(q_{\alpha}-2)\frac{2n}{n+2}})_{\alpha}$ is bounded in $L^{(n+2)/4}(M)$ and goes to zero a.e. on M when $\alpha \to +\infty$, integration theory yields the convergence to 0 of the first term of the right-hand side when $\alpha \to +\infty$. Similarly, the second term goes to 0 as $\alpha \to +\infty$. The expression (25), the property (13), and Proposition 3.4 yield the convergence to 0 of the third term when $\alpha \to +\infty$. Therefore, we get that $(\|A_{\alpha}\|_{\frac{2n}{n+2}})_{\alpha} \to 0$ and then

$$R_{\alpha} \le o(1) + \sum_{i=1}^{k} \left\| W_{i,\alpha} - (\Delta_g + h_{\alpha})^{-1} \left(f_{\alpha} \tilde{H}_{q_{\alpha}}(W_{i,\alpha}) \right) \right\|_{H_1^2}.$$

We define

$$W_{i,\alpha}^0 := \chi(d_{g_{\xi_{i,\alpha}}}(\cdot,\xi_{i,\alpha})) \Lambda_{\xi_{i,\alpha}} \left(\frac{\delta_{i,\alpha} \sqrt{\frac{n(n-2)}{f_0(\xi_{i,\alpha})}}}{\delta_{i,\alpha}^2 + d_{g_{\xi_{i,\alpha}}}(\cdot,\xi_{i,\alpha})^2} \right)^{\frac{n-2}{2}}$$

so that $W_{i,\alpha} = \kappa_i W_{i,\alpha}^0 + o(1)$ when $\alpha \to +\infty$ (see (12)). Therefore, since $\kappa_i = 1$ if $H = (\cdot)_+$, (23) yields

$$R_{\alpha} \leq o(1) + \sum_{i=1}^{k} \left\| \kappa_{i} W_{i,\alpha}^{0} - (\Delta_{g} + h_{\alpha})^{-1} (f_{\alpha} \tilde{H}_{q_{\alpha}} (\kappa_{i} W_{i,\alpha}^{0})) \right\|_{H_{1}^{2}}$$

$$\leq o(1) + \sum_{i=1}^{k} \left\| (\Delta_{g} + h_{\alpha}) W_{i,\alpha}^{0} - f_{\alpha} (W_{i,\alpha}^{0})^{q_{\alpha} - 1} \right\|_{\frac{2n}{n+2}}.$$

In the sequel, $o(1)\frac{2n}{n+2}$ denotes a function going to 0 in $L^{\frac{2n}{n+2}}(M)$ when $\alpha \to +\infty$. We define $c_n := \frac{n-2}{4(n-1)}$, and we let R_g be the scalar curvature of g. We denote $L_g := \Delta_g + c_n R_g$ the conformal Laplacian. If $g' := \varpi^{2^*-2}g$ and $\varpi \in C^2(M)$ positive, the conformal invariance properties of L_g yields

$$L_g'(\varphi) := \varpi^{1-2^*} L_g(\varpi \varphi)$$

for all $\varphi \in C^2(M)$. Using the expression of the Laplacian in radial coordinates, omitting the index i and writing $r := d_{q_{\varepsilon}}(x, \xi)$, we get that

$$\begin{split} (\Delta_g + h_\alpha) W^0_{i,\alpha} &= L_g W^0_{i,\alpha} + (h_\alpha - c_n R_g) W^0_{i,\alpha} \\ &= L_{\Lambda_\xi^{2-2*} g_\xi} W^0_{i,\alpha} + o(1)_{\frac{2n}{n+2}} = \Lambda_\xi^{2^*-1} L_{g_\xi} (\Lambda_\xi^{-1} W^0_{i,\alpha}) + o(1)_{\frac{2n}{n+2}} \\ &= \Lambda_\xi^{2^*-1} \Delta_{g_\xi} \left(\chi(r) \delta^{-\frac{n-2}{2}} U_{f_0(\xi)} (\delta^{-1} r) \right) + o(1)_{\frac{2n}{n+2}} \\ &= \Lambda_\xi^{2^*-1} \Delta_{\text{Eucl}} \left(\chi(r) \delta^{-\frac{n-2}{2}} U_{f_0(\xi)} (\delta^{-1} r) \right) \\ &- \partial_r \ln \sqrt{|g_\xi|} \partial_r \left(\chi(r) \delta^{-\frac{n-2}{2}} U_{f_0(\xi)} (\delta^{-1} r) \right) + o(1)_{\frac{2n}{n+2}} \\ &= \Lambda_\xi^{2^*-1} \Delta_{\text{Eucl}} \left(\chi(r) \delta^{-\frac{n-2}{2}} U_{f_0(\xi)} (\delta^{-1} r) \right) \\ &+ O\left(\frac{\delta^{\frac{n-2}{2}}}{(\delta^2 + r^2)^{\frac{n-2}{2}}} \right) + o(1)_{\frac{2n}{n+2}} \\ &= \Lambda_\xi^{2^*-1} \chi(r) \Delta_{\text{Eucl}} \left(\delta^{-\frac{n-2}{2}} U_{f_0(\xi)} (\delta^{-1} r) \right) + o(1)_{\frac{2n}{n+2}} \\ &= \Lambda_\xi^{2^*-1} \chi(r) f_0(\xi) \left(\delta^{-\frac{n-2}{2}} U_{f_0(\xi)} (\delta^{-1} r) \right)^{2^*-1} + o(1)_{\frac{2n}{n+2}} \\ &= f_0(\xi) \left(\chi(r) \Lambda_\xi \delta^{-\frac{n-2}{2}} U_{f_0(\xi)} (\delta^{-1} r) \right)^{2^*-1} + o(1)_{\frac{2n}{n+2}} \\ &= f_0(\xi) (W^0_{i,\alpha})^{2^*-1} + o(1)_{\frac{2n}{n+2}} \\ &= f_0(W^0_{i,\alpha})^{2^*-1} + o(1)_{\frac{2n}{n+2}} \\ &= f_0(W^0_{i,\alpha})^{2^*-1} + o(1)_{\frac{2n}{n+2}} \\ \end{split}$$

Therefore, it follows from (100) that

(101)
$$R_{\alpha} \le o(1) + C \sum_{i=1}^{k} \| (W_{i,\alpha}^{0})^{2^{*}-1} - (W_{i,\alpha}^{0})^{q_{\alpha}-1} \|_{\frac{2n}{n+2}}.$$

We fix $i \in \{1, \dots, k\}$. For any R > 0, a change of variable and (94) yields

$$\int_{B_{R\delta_{i,\alpha}}^{g_{\xi_{i,\alpha}}}} \left| (W_{i,\alpha}^{0})^{2^{*}-1} - (W_{i,\alpha}^{0})^{q_{\alpha}-1} \right|^{\frac{2n}{n+2}} dv_{g} \\
\leq C \int_{B_{R\delta_{i,\alpha}}^{g_{\xi_{i,\alpha}}}} \left| (W_{i,\alpha}^{0})^{2^{*}-1} - (W_{i,\alpha}^{0})^{q_{\alpha}-1} \right|^{\frac{2n}{n+2}} dv_{g_{\xi_{i,\alpha}}} \\
\leq C \int_{B_{R}(0)} \left| U_{f_{0}(\xi_{i,\alpha})}^{2^{*}-1} - \delta_{i,\alpha}^{\frac{n-2}{2}(2^{*}-q_{\alpha})} U_{f_{0}(\xi_{i,\alpha})}^{q_{\alpha}-1} \right|^{\frac{2n}{n+2}} dx = o(1)$$

when $\alpha \to +\infty$. Independently, we have that

$$\begin{split} & \int_{M \backslash B_{R\delta_{i,\alpha}}^{g_{\xi_{i,\alpha}}}(\xi_{i,\alpha})} \left| (W_{i,\alpha}^{0})^{2^{\star}-1} - (W_{i,\alpha}^{0})^{q_{\alpha}-1} \right|^{\frac{2n}{n+2}} dv_{g} \\ & \leq C \int_{M \backslash B_{R\delta_{i,\alpha}}^{g_{\xi_{i,\alpha}}}(\xi_{i,\alpha})} \left| W_{i,\alpha}^{0} \right|^{2^{\star}} dv_{g} + C \left(\int_{M \backslash B_{R\delta_{i,\alpha}}^{g_{\xi_{i,\alpha}}}(\xi_{i,\alpha})} \left| W_{i,\alpha}^{0} \right|^{2^{\star}} dv_{g} \right)^{\frac{q_{\alpha}-1}{2^{\star}-1}} \\ & \leq C \int_{\mathbb{R}^{n} \backslash B_{R}(0)} U_{1}^{2^{\star}} dx + C \left(\int_{\mathbb{R}^{n} \backslash B_{R}(0)} U_{1}^{2^{\star}} dx \right)^{\frac{q_{\alpha}-1}{2^{\star}-1}} . \end{split}$$

Then

(103)
$$\lim_{R \to +\infty} \lim_{\alpha \to +\infty} \int_{M \setminus B_{R\delta_{i,\alpha}}^{g_{\xi_{i,\alpha}}}(\xi_{i,\alpha})} \left| (W_{i,\alpha}^{0})^{2^{\star}-1} - (W_{i,\alpha}^{0})^{q_{\alpha}-1} \right|^{\frac{2n}{n+2}} dv_{g} = 0.$$

Plugging (102) and (103) into (101) yields $R_{\alpha} = o(1)$ when $\alpha \to +\infty$, a contradiction with (97). This proves Proposition 5.3.

5.3. Proof of Proposition 5.1 via a fixed-point argument. We let $\varepsilon, N > 0$ satisfy the hypotheses of Proposition 5.2 to be fixed later, and we let h, f, G, u satisfy the hypotheses of Theorem 1.1. We consider $(z, (\delta_i)_i, (\xi_i)_i) \in B_{\varepsilon}(0) \times \mathcal{D}_k(\varepsilon, N)$, and we define $K := K_{(\delta_i)_i, (\xi_i)_i}$. For any $\phi \in K^{\perp} \subset H_1^2(M)$, we have that (104)

$$\Pi_{K^{\perp}} \left(u(z) + \sum_{i=1}^{k} W_{\kappa_{i}, \delta_{i}, \xi_{i}} + \phi - (\Delta_{g} + h)^{-1} \left(F' \left(u(z) + \sum_{i=1}^{k} W_{\kappa_{i}, \delta_{i}, \xi_{i}} + \phi \right) \right) \right) = 0$$

if and only if

$$\phi = T(\phi),$$

where $T: K^{\perp} \to K^{\perp}$ is such that

$$T(\phi) := L^{-1} \circ \Pi_{K^{\perp}} \circ (\Delta_q + h)^{-1} (N(\phi)) - L^{-1} \circ \Pi_{K^{\perp}}(R),$$

where $L := L_{(\delta_i)_i,(\xi_i)_i}$,

$$N(\phi) := F'\left(u(z) + \sum_{i=1}^k W_{\kappa_i, \delta_i, \xi_i} + \phi\right) - F'\left(u(z) + \sum_{i=1}^k W_{\kappa_i, \delta_i, \xi_i}\right)$$
$$- F''\left(u(z) + \sum_{i=1}^k W_{\kappa_i, \delta_i, \xi_i}\right) \phi$$

and

$$R := u(z) + \sum_{i=1}^{k} W_{\kappa_i, \delta_i, \xi_i} - (\Delta_g + h)^{-1} \left(F' \left(u(z) + \sum_{i=1}^{k} W_{\kappa_i, \delta_i, \xi_i} \right) \right).$$

We prove the existence of a solution to (104) via Picard's Fixed Point Theorem. We let $\phi_1, \phi_2 \in K^{\perp}$ be two test-functions. Since $\Pi_{K^{\perp}}: H_1^2(M) \to H_1^2(M)$ is 1-Lipschitz continuous, it follows from (62) that

$$||T(\phi_1) - T(\phi_2)||_{H_1^2} \le C||N(\phi_1) - N(\phi_2)||_{H_1^2}$$

$$\le C||F'\left(u(z) + \sum_{i=1}^k W_{\kappa_i,\delta_i,\xi_i} + \phi_1\right) - F'\left(u(z) + \sum_{i=1}^k W_{\kappa_i,\delta_i,\xi_i} + \phi_2\right)$$

$$-F''\left(u(z) + \sum_{i=1}^k W_{\kappa_i,\delta_i,\xi_i}\right)(\phi_1 - \phi_2)||_{(H_1^2)'}.$$

It then follows from the mean value inequality that

(105)
$$||T(\phi_1) - T(\phi_2)||_{H_1^2(M)} \le C \cdot S \cdot ||\phi_1 - \phi_2||_{H_1^2}.$$

where

$$S := \sup_{t \in [0,1]} \left\| F'' \left(u(z) + \sum_{i=1}^{k} W_{\kappa_{i},\delta_{i},\xi_{i}} + \phi_{1} + t(\phi_{2} - \phi_{1}) \right) - F'' \left(u(z) + \sum_{i=1}^{k} W_{\kappa_{i},\delta_{i},\xi_{i}} \right) \right\|_{H_{1}^{2} \to (H_{1}^{2})'}$$

$$\leq \sup_{t \in [0,1]} \left(\|F\|_{C^{2,\theta}(B_{\tilde{R}}(0))} \cdot \|\phi_{1} + t(\phi_{2} - \phi_{1})\|_{H_{1}^{2}}^{\theta} \right)$$

$$\leq C \|F\|_{C^{2,\theta}(B_{\tilde{R}}(0))} \cdot \left(\|\phi_{1}\|_{H_{1}^{2}}^{\theta} + \|\phi_{2}\|_{H_{1}^{2}}^{\theta} \right),$$

$$(106)$$

with $\tilde{R} = \tilde{R}(z, (\delta_i)_i, (\xi_i)_i) := \|u(z)\|_{H_1^2} + \sum_{i=1} \|W_{\kappa_i, \delta_i, \xi_i}\|_{H_1^2} + 1, \|\phi_1\|_{H_1^2}, \|\phi_1\|_{H_1^2} \le 1$. It then follows from (6) and Proposition 3.1 that $\tilde{R}(z, (\delta_i)_i, (\xi_i)_i) \le C$. As easily checked, for $2 < q \le 2^*$, we have that

$$F''(v)(\psi_1, \psi_2) = (q-1) \int_M fH(v)^{q-2} \psi_1 \psi_2 \, dv_g + G''(v)(\psi_1, \psi_2)$$

for all $v \in H_1^2(M)$ and all $\psi_1, \psi_2 \in H_1^2(M)$. Without loss of generality, we may assume that $0 < \theta < 2^* - 2$. Requiring that $\varepsilon < 1$ and using (6), we then get that

(107)
$$||F||_{C^{2,\theta}(B_{\tilde{R}}(0))} \le C(\tilde{R},\theta)$$

for $\epsilon > 0$ small enough. Plugging together (105), (106), and (107) yields

$$(108) ||T(\phi_1) - T(\phi_2)||_{H_1^2(M)} \le C_1 \cdot \left(||\phi_1||_{H_2^2}^{\theta} + ||\phi_2||_{H_2^2}^{\theta} \right) \cdot ||\phi_1 - \phi_2||_{H_1^2}$$

for $\phi_1, \phi_2 \in K^{\perp}$ such that $\|\phi_1\|_{H_1^2}$, $\|\phi_1\|_{H_1^2} \leq 1$. Moreover, it follows from (23) and (5) that

(109)
$$||T(0)||_{H^{2}} \leq C||R||_{H^{2}} \leq C_{2}R(z,(\delta_{i})_{i},(\xi_{i})_{i}).$$

We define

$$c := 2C_2R(z, (\delta_i)_i, (\xi_i)_i).$$

We let $\phi_1, \phi_2 \in K^{\perp} \cap \overline{B}_c(0)$: it then follows from (108) and (109) that

$$||T(\phi_1) - T(\phi_2)||_{H_1^2(M)} \le 2C_1(2C_2)^{\theta}R(z, (\delta_i)_i, (\xi_i)_i)^{\theta} \cdot ||\phi_1 - \phi_2||_{H_1^2}$$

and

$$||T(\phi_1)||_{H_1^2} \le C_2 R(z, (\delta_i)_i, (\xi_i)_i) + C_1 (2C_2)^{1+\theta} R(z, (\delta_i)_i, (\xi_i)_i)^{1+\theta}$$

$$\le (C_2 + C_2 (2C_2)^{1+\theta} R(z, (\delta_i)_i, (\xi_i)_i)^{\theta}) \cdot R(z, (\delta_i)_i, (\xi_i)_i).$$

It follows from Proposition 5.3, that there exists $\varepsilon > 0$ and N > 0 such that

$$R(z, (\delta_i)_i, (\xi_i)_i)^{\theta} \le \min \left\{ \frac{1}{C_1 C_2^{\theta} 2^{1+\theta}} ; \frac{1}{4C_2 (2C_2)^{\theta}} \right\}$$

for all $z \in B_{\varepsilon}(0)$ and $((\delta_i)_i, (\xi_i)_i) \in \mathcal{D}_k(\varepsilon, N)$. It then follows that for such a choice, the map T is 1/2-Lipschitz from $\overline{B}_c(0)$ onto itself. It then follows from Picard's fixed point theorem that there exists a unique solution $\phi(z, (\delta_i)_i, (\xi_i)_i) \in \overline{B}_c(0) \cap K^{\perp}$ to $T(\phi(z, (\delta_i)_i, (\xi_i)_i)) = \phi(z, (\delta_i)_i, (\xi_i)_i)$, in particular

$$\|\phi(z,(\delta_i)_i,(\xi_i)_i)\|_{H_1^2} \le 2C_2R(z,(\delta_i)_i,(\xi_i)_i).$$

We are left with proving the C^1 -regularity of ϕ . We define the map

$$\mathcal{F}: \quad B_{\varepsilon}(0) \times \mathcal{D}_{k}(\varepsilon, N) \times H_{1}^{2}(M) \quad \to \quad H_{1}^{2}(M) \\ (z, (\delta_{i})_{i}, (\xi_{i})_{i}, \phi) \qquad \mapsto \quad \mathcal{F}(z, (\delta_{i})_{i}, (\xi_{i})_{i}, \phi),$$

where

$$\mathcal{F}(z, (\delta_i)_i, (\xi_i)_i, \phi) := \Pi_K(\phi) + \Pi_{K^{\perp}} \left(u(z) + \sum_{i=1}^k W_{\kappa_i, \delta_i, \xi_i} + \Pi_{K^{\perp}}(\phi) - (\Delta_g + h)^{-1} (F'(u(z) + \sum_{i=1}^k W_{\kappa_i, \delta_i, \xi_i} + \Pi_{K^{\perp}}(\phi))) \right).$$

It follows from Proposition 5.2 that the differential with respect to ϕ is an isomorphism of $H_1^2(M)$ for all $(z, (\delta_i)_i, (\xi_i)_i, \phi) \in B_{\varepsilon}(0) \times \mathcal{D}_k(\varepsilon, N) \times H_1^2(M)$, with $\|\phi\|_{H_1^2} < c_0$ for some $c_0 > 0$ small. Since $\mathcal{F}(z, (\delta_i)_i, (\xi_i)_i, \phi(z, (\delta_i)_i, (\xi_i)_i)) = 0$ for all $(z, (\delta_i)_i, (\xi_i)_i) \in B_{\varepsilon}(0) \times \mathcal{D}_k(\varepsilon, N)$, it follows from the implicit functions theorem that $(z, (\delta_i)_i, (\xi_i)_i) \mapsto \phi(z, (\delta_i)_i, (\xi_i)_i)$ is C^1 on $B_{\varepsilon}(0) \times \mathcal{D}_k(\varepsilon, N)$. This ends the proof of Proposition 5.1.

6. Equivalence of the critical points

We prove Theorem 1.1 in this section. With Proposition 5.1 above, this amounts to prove the equivalence of the critical points for $\varepsilon > 0$ small and N > 0 large. For $\varepsilon, N > 0$ satisfying the hypothesis of Proposition 5.1, there exists $\phi \in C^1(B_{\varepsilon}(0) \times \mathcal{D}_k(\varepsilon, N), H^1_1(M))$ such that

(110)
$$\Pi_{K_{(\delta_i)_i,(\xi_i)_i}^{\perp}} \left(u(z,(\delta_i)_i,(\xi_i)_i) - (\Delta_g + h)^{-1} (F'(u(z,(\delta_i)_i,(\xi_i)_i))) \right) = 0,$$

where

$$u(z, (\delta_i)_i, (\xi_i)_i) := u(z) + \sum_{i=1}^k W_{\kappa_i, \delta_i, \xi_i} + \phi(z, (\delta_i)_i, (\xi_i)_i),$$

and

$$(111) \ \phi(z,(\delta_i)_i,(\xi_i)_i) \in K_{(\delta_i)_i,(\xi_i)_i}^{\perp} \text{ and } \|\phi(z,(\delta_i)_i,(\xi_i)_i)\|_{H^2_1} \leq C \cdot R(z,(\delta_i)_i,(\xi_i)_i)$$

for $(z, (\delta_i)_i, (\xi_i)_i) \in \mathcal{D}_k(\varepsilon, N)$. By (59), it follows that there exist $\lambda^{ij}(z, (\delta_i)_i, (\xi_i)_i) \in \mathbb{R}$ $(i = 1, \dots, k \text{ and } j = 0, \dots, n)$ and $\mu^l(z, (\delta_i)_i, (\xi_i)_i) \in \mathbb{R}$ $(l = 1, \dots, d)$ such that

(112)
$$\Pi_{K_{(\delta_{i})_{i},(\xi_{i})_{i}}} \left(u(z,(\delta_{i})_{i},(\xi_{i})_{i}) - (\Delta_{g} + h)^{-1} (F'(u(z,(\delta_{i})_{i},(\xi_{i})_{i}))) \right)$$

$$= \sum_{i=1}^{k} \sum_{j=0}^{n} \lambda^{ij}(z,(\delta_{i})_{i},(\xi_{i})_{i}) Z_{\delta_{i},\xi_{i},j} + \sum_{l=1}^{d} \mu^{l}(z,(\delta_{i})_{i},(\xi_{i})_{i}) \varphi_{l}.$$

It then follows from (110) and (112) that for any $\varphi \in H_1^2(M)$, we have that

$$DJ(u(z, (\delta_{i})_{i}, (\xi_{i})_{i}))\varphi$$

$$= (u(z, (\delta_{i})_{i}, (\xi_{i})_{i}) - (\Delta_{g} + h)^{-1}(F'(u(z, (\delta_{i})_{i}, (\xi_{i})_{i}))), \varphi)_{h}$$

$$= \sum_{i=1}^{k} \sum_{j=0}^{n} \lambda^{ij}(z, (\delta_{i})_{i}, (\xi_{i})_{i}) (Z_{\delta_{i}, \xi_{i}, j}, \varphi)_{h} + \sum_{l=1}^{d} \mu^{l}(z, (\delta_{i})_{i}, (\xi_{i})_{i})(\varphi_{l}, \varphi)_{h}.$$
(113)

If $u(z,(\delta_i)_i,(\xi_i)_i)$ is a critical point of J, then $(z,(\delta_i)_i,(\xi_i)_i) \in B_{\varepsilon}(0) \times \mathcal{D}_k(\varepsilon,N)$ is a critical point for $(z,(\delta_i)_i,(\xi_i)_i) \mapsto J(u(z,(\delta_i)_i,(\xi_i)_i))$. Conversely, we assume that $(z,(\delta_i)_i,(\xi_i)_i) \in B_{\varepsilon}(0) \times \mathcal{D}_k(\varepsilon,N)$ is a critical point for the map $(z,(\delta_i)_i,(\xi_i)_i) \mapsto J(u(z,(\delta_i)_i,(\xi_i)_i))$. We then get that

(114)
$$0 = \frac{\partial}{\partial z_{l_0}} J(u(z, (\delta_i)_i, (\xi_i)_i))$$

$$= DJ(u(z, (\delta_i)_i, (\xi_i)_i)) \cdot (\partial_{l_0} u(z) + \partial_{z_{l_0}} \phi(z, (\delta_i)_i, (\xi_i)_i)),$$
(115)
$$0 = \frac{\partial}{\partial \delta_{i_0}} J(u(z, (\delta_i)_i, (\xi_i)_i))$$

$$= DJ(u(z, (\delta_i)_i, (\xi_i)_i)) \cdot (\partial_{\delta_{i_0}} W_{\alpha_{i_0}, \delta_{i_0}, \xi_{i_0}} + \partial_{\delta_{i_0}} \phi(z, (\delta_i)_i, (\xi_i)_i)),$$
(116)
$$0 = \frac{\partial}{\partial (\xi_{i_0})_{j_0}} J(u(z, (\delta_i)_i, (\xi_i)_i))$$

$$= DJ(u(z, (\delta_i)_i, (\xi_i)_i)) \cdot (\partial_{(\xi_{i_0})_{j_0}} W_{\alpha_{i_0}, \delta_{i_0}, \xi_{i_0}} + \partial_{(\xi_{i_0})_{j_0}} \phi(z, (\delta_i)_i, (\xi_i)_i))$$

for all $l_0 = 1, \dots, d$, $i_0 = 1, \dots, k$, and $j_0 = 0, \dots, n$. From now on, for the sake of clearness, we omit the variables $(z, (\delta_i)_i, (\xi_i)_i)$. We define

$$\Lambda := \sum_{i=1}^{k} \sum_{j=0}^{n} |\lambda^{ij}| + \sum_{l=1}^{d} |\mu^{l}|.$$

We are going to prove that $\Lambda = 0$, which will imply that $u(z, (\delta_i)_i, (\xi_i)_i)$ is a critical point of J due to (113).

6.1. Consequences of (114). It follows from (113) and (114) that

(117)
$$\sum_{i=1}^{k} \sum_{j=0}^{n} \lambda^{ij} \left((Z_{\delta_{i},\xi_{i},j}, \partial_{l_{0}} u)_{h} + (Z_{\delta_{i},\xi_{i},j}, \partial_{z_{l_{0}}} \phi)_{h} \right) + \sum_{l=1}^{d} \mu^{l} \left((\varphi_{l}, \partial_{l_{0}} u)_{h} + (\varphi_{l}, \partial_{z_{l_{0}}} \phi)_{h} \right) = 0.$$

It follows from (111) that

$$(Z_{\delta_i,\xi_i,j},\phi)_h = (\varphi_l,\phi)_h = 0.$$

Differentiating (118) with respect to z_{l_0} yields $(Z_{\delta_i,\xi_i,j},\partial_{z_{l_0}}\phi)_h = (\varphi_l,\partial_{z_{l_0}}\phi)_h = 0$, and therefore (117) rewrites

(119)
$$\sum_{i=1}^{k} \sum_{j=0}^{n} \lambda^{ij} (Z_{\delta_{i},\xi_{i},j}, \partial_{l_{0}} u)_{h} + \sum_{l=1}^{d} \mu^{l} (\varphi_{l}, \partial_{l_{0}} u)_{h} = 0,$$

and therefore, since $||h - h_0||_{\infty} < \varepsilon$, for all $l_0 = 1, ..., d$, (25), and (26) yield

(120)
$$\left| \sum_{l=1}^{d} \mu^{l} \left(\varphi_{l}, \frac{\prod_{K_{0}}^{h_{0}} (\partial_{l_{0}} u)}{\|\partial_{l_{0}} u\|_{H_{1}^{2}}} \right)_{h_{0}} \right| \leq C \cdot \varepsilon \cdot \Lambda + C \sup_{i,j} |\lambda^{ij}|,$$

where $\Pi_{K_0}^{h_0}$ is the orthogonal projection on K_0 (see (3) and (4)) with respect to the Hilbert structure $(\cdot, \cdot)_{h_0}$. We define the matrix $(A(z))_{ll'} := (\varphi_l, \Pi_{K_0}^{h_0}(\partial_{l'}u))_{h_0}$ for all $l, l' \in \{1, \dots, d\}$. With no loss of generality, we can assume that the basis β_0 is $\{\varphi_1, \dots, \varphi_d\}$: it then follows from (8) and Cramer's explicit formula that the coefficients of the inverse of the matrix A(z) are bounded from above by a constant C. Therefore, it follows from (120) that

(121)
$$\sum_{l=1}^{d} |\mu^{l}| \leq C \cdot \varepsilon \cdot \Lambda + C \sup_{i,j} |\lambda^{ij}|$$

for $(z, (\delta_i)_i, (\xi_i)_i) \in B_{\varepsilon}(0) \times \mathcal{D}_k(\varepsilon, N)$.

6.2. Consequences of (115). It follows from (113) and (115) that

(122)
$$\sum_{i=1}^{k} \sum_{j=0}^{n} \lambda^{ij} \left((Z_{\delta_{i},\xi_{i},j}, \partial_{\delta_{i_{0}}} W_{\delta_{i_{0}},\xi_{i_{0}}})_{h} + (Z_{\delta_{i},\xi_{i},j}, \partial_{\delta_{i_{0}}} \phi)_{h} \right) + \sum_{l=1}^{d} \mu^{l} \left((\varphi_{l}, \partial_{\delta_{i_{0}}} W_{\delta_{i_{0}},\xi_{i_{0}}})_{h} + (\varphi_{l}, \partial_{\delta_{i_{0}}} \phi)_{h} \right) = 0.$$

Differentiating (118) with respect to δ_{i_0} , we get that $(\varphi_l, \partial_{\delta_{i_0}} \phi)_h = 0$ and also $(\partial_{\delta_{i_0}} Z_{\delta_i, \xi_i, j}, \phi)_h + (Z_{\delta_i, \xi_i, j}, \partial_{\delta_{i_0}} \phi)_h = 0$, and therefore (122) rewrites

$$(123) \left| \sum_{i=1}^{k} \sum_{j=0}^{n} \lambda^{ij} \left(Z_{\delta_{i},\xi_{i},j}, \partial_{\delta_{i_{0}}} W_{\delta_{i_{0}},\xi_{i_{0}}} \right)_{h} \right|$$

$$\leq \sum_{l=1}^{d} |\mu^{l}| \cdot \left| (\varphi_{l}, \partial_{\delta_{i_{0}}} W_{\delta_{i_{0}},\xi_{i_{0}}})_{h} \right| + \sum_{i=1}^{k} \sum_{j=0}^{n} |\lambda^{ij}| \cdot \|\partial_{\delta_{i_{0}}} Z_{\delta_{i},\xi_{i},j} \|_{H_{1}^{2}} \|\phi\|_{H_{1}^{2}}$$

For any $i=1,\cdots,k$ and $j=0,\cdots,n$, it follows from (50) and Corollary 3.3 that

$$(Z_{\delta_{i},\xi_{i},j},\partial_{\delta_{i_{0}}}W_{\kappa_{i_{0}}\delta_{i_{0}},\xi_{i_{0}}})_{h}$$

$$=\kappa_{i_{0}}\frac{n-2}{2}\left(\frac{n(n-2)}{f_{0}(\xi_{i_{0}})}\right)^{\frac{n-2}{4}}\cdot\frac{1}{\delta_{i_{0}}}\cdot\left((Z_{\delta_{i},\xi_{i},j},Z_{\delta_{i_{0}},\xi_{i_{0}},0})_{h}+o(1)\right)$$

$$=\kappa_{i_{0}}\frac{n-2}{2}\left(\frac{n(n-2)}{f_{0}(\xi_{i_{0}})}\right)^{\frac{n-2}{4}}\cdot\frac{1}{\delta_{i_{0}}}\cdot\left(\delta_{i,i_{0}}\delta_{j,0}\|\nabla V_{0}\|_{2}+o(1)\right),$$

$$(124)$$

where $|o(1)| \leq \omega_{15}(\varepsilon, N)$ and $\lim_{\varepsilon \to 0, N \to +\infty} \omega_{15}(\varepsilon, N) = 0$. Plugging (124) into (123) and using (50) yield

$$\begin{split} |\lambda^{i_0,0}| \cdot \frac{n-2}{2} \left(\frac{n(n-2)}{f_0(\xi_{i_0})} \right)^{\frac{n-2}{4}} \cdot \frac{1}{\delta_{i_0}} \|\nabla V_0\|_2 \\ & \leq \left(\sum_{l=1}^d \frac{n-2}{2} \left(\frac{n(n-2)}{f_0(\xi_{i_0})} \right)^{\frac{n-2}{4}} \frac{1}{\delta_{i_0}} \left| (\varphi_l, Z_{\delta_{i_0}, \xi_{i_0}, 0})_h \right| \\ & + \sum_{j=0}^n \|\partial_{\delta_{i_0}} Z_{\delta_{i_0}, \xi_{i_0}, j} \|_{H_1^2} \|\phi\|_{H_1^2} + \delta_{i_0}^{-1} \omega_{12}(\varepsilon, N) \right) \cdot \Lambda \,. \end{split}$$

It then follows from (52) and (111), Proposition 3.1, and the expression (25) that

$$|\lambda^{i_0,0}| \le \omega_{16}(\varepsilon,N) \cdot \Lambda$$

for all $i_0 = 1, \dots, k$, where $\lim_{\varepsilon \to 0, N \to +\infty} \omega_{16}(\varepsilon, N) = 0$.

6.3. Conclusion for the equivalence. Arguing as above for (116), we get that

$$(126) |\lambda^{i_0,j}| \le \omega_{17}(\varepsilon,N) \cdot \Lambda$$

for all $i_0 = 1, \dots, k$ and $j = 1, \dots, n$, where $\lim_{\varepsilon \to 0, N \to +\infty} \omega_{17}(\varepsilon, N) = 0$. Summing (121), (125), and (126) yields

$$\Lambda = \sum_{i=1}^{k} \sum_{j=0}^{n} |\lambda^{ij}| + \sum_{l=1}^{d} |\mu^{l}| \le \omega_{18}(\varepsilon, N) \cdot \Lambda,$$

where $\lim_{\varepsilon\to 0, N\to +\infty} \omega_{18}(\varepsilon, N) = 0$. Therefore, there exists $\varepsilon, N > 0$ such that $\omega_{15}(\varepsilon, N) < 1/2$, and therefore, we get that $\Lambda = 0$. As mentioned earlier, this implies that $DJ(u(z, (\delta_i)_i, (\xi_i)_i)) = 0$, and then $u(z, (\delta_i)_i, (\xi_i)_i)$ is a critical point of J for $(z, (\delta_i)_i, (\xi_i)_i) \in B_{\varepsilon}(0) \times \mathcal{D}_k(\varepsilon, N)$. This ends the proof of Theorem 1.1. \square

References

- [1] A. Ambrosetti and A. Malchiodi, Perturbation methods and semilinear elliptic problems on \mathbb{R}^n , Progress in Mathematics, vol. 240, Birkhäuser Verlag, Basel, 2006.
- [2] G. Bianchi and H. Egnell, A note on the Sobolev inequality, J. Funct. Anal. 100 (1991), no. 1, 18–24.
- [3] S. Brendle, Blow-up phenomena for the Yamabe equation, J. Amer. Math. Soc. 21 (2008), no. 4, 951–979.
- [4] S. Brendle and F. C. Marques, Blow-up phenomena for the Yamabe equation. II, J. Differential Geom. 81 (2009), no. 2, 225–250.
- [5] M. del Pino, M. Musso, F. Pacard, and A. Pistoia, Large energy entire solutions for the Yamabe equation, J. Differential Equations 251 (2011), no. 9, 2568–2597.
- [6] P. Esposito, A. Pistoia, and J. Vétois, *The effect of linear perturbations on the Yamabe problem*, Math. Ann. doi:10.1007/S00208-013-0971-9 (to appear in print).
- [7] M. Falaleev, B. Loginov, N. Sidorov, and A. Sinitsyn, Lyapunov-Schmidt methods in nonlinear analysis and applications, Mathematics and its Applications, vol. 550, Kluwer Academic Publishers, Dordrecht, 2002.
- [8] Y. Guo, B. Li, and J. Wei, Large energy entire solutions for the Yamabe type problem of polyharmonic operator, J. Differential Equations 254 (2013), no. 1, 199–228.
- [9] A. M. Micheletti, A. Pistoia, and J. Vétois, Blow-up solutions for asymptotically critical elliptic equations, Indiana Univ. Math. J. 58 (2009), no. 4, 1719–1746.
- [10] A. Pistoia and J. Vétois, Sign-changing bubble towers for asymptotically critical elliptic equations on Riemannian manifolds, J. Differential Equations 254 (2013), no. 11, 4245–4278.
- [11] O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990), no. 1, 1–52.

[12] F. Robert and J. Vétois, Sign-Changing Blow-Up for Scalar Curvature Type Equations, Comm. in Partial Differential Equations 38 (2013), no. 8, 1437–1465.

Frédéric Robert, Institut Élie Cartan, Université de Lorraine, BP 70239, F-54506 Vandœuvre-lès-Nancy, France

 $E\text{-}mail\ address: \texttt{frederic.robert@univ-lorraine.fr}$

JÉRÔME VÉTOIS, UNIVERSITÉ DE NICE SOPHIA ANTIPOLIS, LABORATOIRE J. A. DIEUDONNÉ, CNRS UMR 6621, PARC VALROSE, F-06108 NICE CEDEX 2, FRANCE

 $E\text{-}mail\ address: \verb|vetois@unice.fr||$