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Abstract. For a smooth, compact Riemannian manifold (M, g) of dimension N ≥ 3, we are
interested in the critical equation

∆gu+

(
N − 2

4(N − 1)
Sg +εh

)
u = u

N+2
N−2 in M , u > 0 in M ,

where ∆g is the Laplace–Beltrami operator, Sg is the Scalar curvature of (M, g), h ∈ C0,α (M),
and ε is a small parameter.

1. Introduction

Letting (M, g) be a smooth, compact Riemannian N–manifold, N ≥ 3, we consider the
solutions u ∈ C2,α of the problem

∆gu+ κu = cup, u > 0 in M , (1.1)

where ∆g := − divg∇ is the Laplace–Beltrami operator, κ ∈ C0,α (M), α ∈ (0, 1), c ∈ R, and
p > 1.

When κ = αN Sg and p = 2∗ − 1, where αN := N−2
4(N−1) , Sg is the Scalar curvature of (M, g)

and 2∗ := 2N
N−2 is the critical Sobolev exponent, equation (1.1) reads as

∆gu+
N − 2

4(N − 1)
Sg u = cu

N+2
N−2 , u > 0 in M , (1.2)

and is referred to in the literature as the Yamabe problem. The constant c can be restricted
to the values −1/1 or 0 depending on whether the Yamabe invariant of (M, g), namely

µg(M) = inf
g̃∈[g]

(
Volg̃ (M)

2−N
N

∫
M

Sg̃ dvg̃

)
has negative/positive sign or vanishes, respectively, where [g] = {φg : φ ∈ C∞(M), φ > 0} is
the conformal class of g and Volg̃ (M) is the volume of the manifold (M, g̃). If u is a solution
of (1.2), then the metric g̃ = u4/(N−2)g has constant Scalar curvature and belongs to [g].

The Yamabe problem, raised by H. Yamabe [42] in ’60, was firstly solved by Trudinger [41]
when µg(M) ≤ 0. In this case, the solution is unique (up to a normalization when µg(M) = 0).
In general, a solution of (1.2) can be found by a direct constrained minimization method. As
shown by Aubin [1], the inequality

µg(M) < µg0(S
N), (1.3)

where (SN , g0) is the round sphere, is the key ingredient to show compactness of minimiz-
ing sequences, a non-trivial fact in view of the non-compactness of the Sobolev embedding
H2

1 (M) ↪→ L2∗(M). (SN , g0) has already constant Scalar curvature. For manifolds (M, g)
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which are not conformally equivalent to (SN , g0) ((M, g) 6= (SN , g0) for short) with µg(M) > 0,
the Yamabe equation (1.2) has been solved via (1.3) by:

• Aubin [1] in the non-locally conformally flat case with N ≥ 6, by exploiting the non-
vanishing of the Weyl curvature tensor Weylg of (M, g) in the construction of local test
functions;
• Schoen [37] when either N = 3, 4, 5 or (M, g) 6= (SN , g0) is locally conformally flat, by

exploiting the Positive Mass Theorem by Schoen–Yau [39, 40] in the construction of
global test functions

(see also Lee–Parker [22] for a unified approach).

From now on, we restrict our attention to the case where (M, g) has positive Yamabe in-
variant µg(M) > 0. When (M, g) 6= (SN , g0), Schoen [38] addressed the question of the
compactness of Yamabe metrics, and he proved the compactness to be true in the locally con-
formally flat case [38]. Recently, compactness of Yamabe metrics has been proved to be true
for a general manifold (M, g) 6= (SN , g0) of dimension N ≤ 24 by Khuri–Marques–Schoen [21].
Unexpectedly, compactness of Yamabe metrics has revealed to be false in general in dimen-
sions N ≥ 25 by Brendle [5] and Brendle–Marques [6]. Previous contributions where the
compactness of Yamabe metrics is proved in lower dimensions are by Li–Zhu [27] (N = 3),
Druet [10] (N ≤ 5), Marques [28] (N ≤ 7), and Li–Zhang [24–26] (N ≤ 11). In all these
results, it is shown that sequences of solutions (uk)k∈N of (1.1) with κ ≡ αN Sg, c = 1, and
exponents (pk)k∈N in [1 + ε0, 2

∗ − 1], ε0 > 0 fixed, are pre-compact in C2,α(M), α ∈ (0, 1).

When κ 6≡ αN Sg, the situation is different. When κ < αN Sg, Druet [9,10] (see also Druet–
Hebey [13] and Druet–Hebey–Vétois [16]) proved that compactness does hold for equation
(1.1) with c = 1 and exponents p in the range [1 + ε0, 2

∗ − 1], for all dimensions N ≥ 3 (in
case N = 3, it is possible to write a more refined condition on the mass, see Li–Zhu [27]).
As shown in Micheletti–Pistoia–Vétois [29] and Pistoia–Vétois [32], in dimensions N ≥ 4,
such a compactness result does not hold when κ (ξ0) > αn Sg (ξ0) at some point ξ0 ∈ M with
a nondegeneracy assumption at ξ0, and, see [29], compactness does not hold either in the
supercritical range p > 2∗ − 1 when κ (ξ0) < αN Sg (ξ0) at some point ξ0 ∈ M . We also
refer to Robert–Vétois [36, Theorem 2.3] where a special non-compactness result is obtained
in dimension N = 6 for potentials κ > αN Sg (see also Druet [9] and Druet–Hebey [11, 12]
in case of (M, g) = (SN , g0) with N = 6). In the locally conformally flat case with N ≥ 4,
Hebey–Vaugon [19] proved that there always exists g̃ ∈ [g] such that the equation ∆g̃u +
αN maxM(Sg̃)u = u2

∗−1 in M is not compact. In case (M, g) = (SN , g0) with N ≥ 5 and when
(κ − αN Sg) is a positive constant, Chen–Wei–Yan [8] proved that equation (1.1) with c = 1
and p = 2∗ − 1 is not compact (see also the constructions by Hebey–Wei [20] in case N = 3).

When the potential κ varies, for manifolds (M, g) 6= (SN , g0) with µg(M) > 0, Druet [10]
(see also Druet–Hebey [14]) proved that sequences of solutions (uk)k∈N of (1.1) with c = 1,
exponents (pk)k∈N in [1 + ε0, 2

∗ − 1], and potentials (κk)k∈N, are pre-compact in C2,α(M),
α ∈ (0, 1), when n = 3, 4, 5 provided that κk ≤ αn Sg. The same result is strongly expected to
be true in the locally conformally flat case and generally for N ≤ 24.

The aim of the paper is to investigate the effect of positive perturbations of the geometric
potential by exhibiting the failure of compactness properties for the equation

∆gu+ (αN Sg +εh)u = u2
∗−1, u > 0 in M , (1.4)

where h ∈ C0,α (M), α ∈ (0, 1), with maxM h > 0 and ε > 0 is a small parameter.



BLOW-UP SOLUTIONS FOR LINEAR PERTURBATIONS OF THE YAMABE EQUATION 3

A family (uε)ε of solutions to equation (1.4) is said to blow up at some point ξ0 ∈M if there
holds supU uε → +∞ as ε→ 0, for all neighborhoods U of ξ0 in M . Letting

E(ξ) :=
h(ξ)∣∣Weylg(ξ)

∣∣
g

,

our main result is:

Theorem 1.1. Let (M, g) 6= (SN , g0) be a smooth, compact, non-locally conformally flat
Riemannian manifold with N ≥ 6 and µg(M) > 0. Let h ∈ C0,α (M), α ∈ (0, 1), so that
maxM h > 0 and inf{|Weylg(x)|g : h(x) > 0} > 0. Then for ε > 0 small, equation (1.4) has a
solution uε such that the family (uε)ε blows up, up to a sub-sequence, as ε→ 0 at some point
ξ0 so that E(ξ0) = maxM E .

Introducing the “reduced energy” Ẽ : (0,∞)×M → R defined as

Ẽ(d, ξ) = c2d
2h(ξ)− c3d4

∣∣Weylg(ξ)
∣∣2
g

with c2, c3 > 0, Theorem 1.1 is an easy consequence of the following more general result:

Theorem 1.2. Let (M, g) 6= (SN , g0) be a smooth, compact, non-locally conformally flat
Riemannian manifold with N ≥ 6 and µg(M) > 0, and h ∈ C0,α (M), α ∈ (0, 1). Assume that

there exists a C0–stable critical set D ⊂ (0,∞) ×M of Ẽ. Then for ε > 0 small, equation
(1.4) has a solution uε such that the family (uε)ε blows up, up to a sub-sequence, at some
ξ0 ∈ π(D), where π : (0,∞)×M →M is the projection operator onto the second component.

According to Li [23], we say that a compact set D ⊂ (0,∞)×M of critical points of Ẽ is a

C0–stable critical set of Ẽ if for any compact neighborhood U of D in (0,∞)×M , there exists

δ > 0 such that, if J ∈ C1 (U) and ‖J − Ẽ‖C0(U) ≤ δ, then J has at least one critical point
in U .

Given ξ ∈M so that h(ξ) > 0, define d(ξ) as

d(ξ) =

 c2h(ξ)

2c3
∣∣Weylg (ξ)

∣∣2
g

1/2

with the convention that d(ξ) = +∞ if Weylg(ξ) = 0. Given ξ ∈ M with h(ξ) > 0, the

function Ẽ is increasing for d ∈ (0, d(ξ)) and, if d(ξ) < +∞, achieves its global maximum in
d at d(ξ). Since

Ẽ(d(ξ), ξ) =
c22h

2(ξ)

4c3
∣∣Weylg (ξ)

∣∣2
g

=
c22
4c3

E(ξ)2,

in order to derive Theorem 1.1, the set D in Theorem 1.2 is constructed as

D = {(d(ξ), ξ) : ξ ∈M s.t. E(ξ) = max
M

E},

which is clearly a C0–stable critical set of Ẽ. Since d(ξ) is a maximum point of Ẽ in d, neither

minimum points of E, nor saddle points of E can provide any C0–stable critical set of Ẽ.

Let us finally compare problem (1.4) with its Euclidean counter-part on a smooth bounded
domain Ω ⊂ RN , N ≥ 4, with homogeneous Dirichlet boundary condition:

∆Euclu+ λu = u2
∗−1 in Ω, u > 0 in Ω, u = on ∂Ω. (1.5)
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For λ ≥ 0, a direct minimization method (for the corresponding Rayleigh quotient) never
gives rise to any solution of (1.5), and no solutions exist at all if Ω is star-shaped as shown
by Pohožaev [33]. Moreover, following the arguments developed by Ben Ayed–El Mehdi–
Grossi–Rey [3], problem (1.5) has never any solution with a single blow-up point as λ → 0+.
The effect of the geometry, which is crucial to provide a solution for the Yamabe problem
(corresponding to λ = 0 in (1.5)) by minimization, is also relevant to producing solutions of
(1.4) (corresponding to λ→ 0+ in (1.5)) with a single blow-up point as stated in Theorem 1.1.
When λ < 0, solutions of (1.5) can be found by direct minimization as shown by Brezis–
Nirenberg [7], and exhibit a single blow-up point as λ→ 0− as shown by Han [18], in contrast
with the compactness property proved by Druet [9,10]. Solutions of (1.5) with a single blow-up
point, see Rey [34, 35], and with multiple blow-up points, see Bahri–Li–Rey [2] and Musso–
Pistoia [30], as λ→ 0− have been constructed in a very general way.

We attack the existence issue of blowing-up solutions by a perturbative method, referred
to in the literature as the non-linear Lyapunov–Schmidt reduction. Such a method is well
known and the main point is to produce a suitable ansatz for the solutions. In the non-locally
conformally flat case with N ≥ 6 the basic ansatz is like in Aubin [1], but, see Section 2,
needs to be slightly corrected via linearization so to account for the local geometry. A similar
idea has been used for the prescribed Q−curvature problem by Pistoia–Vaira [31], the fourth-
order analogue of the Yamabe problem. An alternative and more geometrical approach can be
devised based on the conformal covariance of ∆g+αN Sg. The main point is to allow the metric
g to vary in the conformal class so to gain flatness at each point ξ ∈ M , and this approach
allows us, see Esposito–Pistoia–Vétois [17], to cover in an unified way also the remaining cases
N = 4, 5 or (M, g) locally conformally flat with N ≥ 6 (the case N = 3 is always excluded by
the compactness result of Li–Zhu [27]). The aim of this paper is at the same time to advertise
the general result contained in [17], and to provide a simpler and more intuitive proof in a
special case. Thanks to the solvability theory of the linearized operator, we are led to study
critical points of a finite-dimensional functional Jε, and a key step is to obtain in Section 3

an asymptotic expansion of Jε by identifying the “reduced energy” Ẽ as the main order term.
In Section 4, we describe the main steps of the non-linear Lyapunov-Schmidt reduction, and
we deduce our general result Theorem 1.2.

2. The correcting term towards an improved ansatz

Letting

U(r) =

(√
N(N − 2)

1 + r2

)N−2
2

, (2.1)

we aim to solve

∆V + pUp−1V =
1

3

N∑
i,j=1

Rij(ξ)
yiyj

|y|
∂rU + αN Sg(ξ)U , (2.2)

where p = N+2
N−2 and Rij are the components of the Ricci tensor Ricg of (M, g) in geodesic

coordinates. Here, ∆ =
N∑
i=1

∂2

∂y2i
is the Euclidean laplacian with the standard sign convention,

and U(|y|) is the unique positive radial solution of −∆U = Up with U(0) = max
RN

U = [N(N −

2)]
N−2

4 .
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Since Sg(ξ) =
N∑
i=1

Rii(ξ), a straightforward computation shows that

V (y) = [N(N − 2)]
N−2

4

(
|y|2 + 3

12(1 + |y|2)N2

N∑
i,j=1

Rij(ξ)y
iyj − Sg(ξ)

24(N − 1)

|y|4 + 3

(1 + |y|2)N2

)
(2.3)

is a solution of (2.2) as we were searching for.

Let 0 < r0 < ig(M), where ig(M) is the injectivity radius of (M, g). Take χ a smooth cutoff
function such that 0 ≤ χ ≤ 1 in R, χ ≡ 1 in [−r0/2, r0/2], and χ ≡ 0 out of [−r0, r0]. For any
point ξ in M and for any positive real number µ, we define the functions Uµ,ξ and Vµ,ξ on M
by

Uµ,ξ(z) = χ (dg(z, ξ))Uµ (dg(z, ξ)) , Vµ,ξ(z) = χ (dg(z, ξ))Vµ
(
exp−1ξ (z)

)
,

where dg is the geodesic distance in (M, g) and exp−1ξ is the geodesic coordinate system. Here,
Uµ and Vµ are defined as

Uµ(x) = µ−
N−2

2 U

(
x

µ

)
, Vµ(x) = µ−

N−2
2 V

(
x

µ

)
,

obtained by scaling U and V in (2.1) and (2.3), respectively. Since µg(M) > 0 implies the

coercivity of the conformal laplacian ∆g +αN Sg, let i∗ : L
2N
N+2 (M)→ H1

g (M) be the bounded

operator defined as follows: the function u = i∗(w) is the unique solution in H1
g (M) of the

equation ∆gu+ αN Sg u = w in M . Problem (1.4) re-writes as

u = i∗ [up+ − εhu] , (2.4)

and we look for solutions of (2.4) in the form

uε(z) =Wµ,ξ(z) + φε(z), Wµ,ξ = Uµ,ξ + µ2Vµ,ξ , (2.5)

where ξ ∈M , µ > 0 is small and φε is a small remainder term.

First of all, we introduce the error term

Rµ,ξ =Wµ,ξ − i∗
[
(Wµ,ξ)

p
+ − εhWµ,ξ

]
. (2.6)

We want to point out that the choice of the ansatz in (2.5) with the extra term Vµ,ξ is motivated
by the need that the error term has to be small enough. Indeed, the error term is estimated
as follows.

Lemma 2.1. Let N ≥ 6. There exists a positive constant C0 > 0 such that for any µ small
and ξ in M there holds

‖Rµ,ξ‖ ≤ C0



µ
N−2

2 + εµ2| lnµ| 23 if N = 6

µ
N−2

2 + εµ2 if N = 7

µ3| lnµ| 58 + εµ2 if N = 8
µ3 + εµ2 if N = 9

µ2N+2
N−2 + εµ2 if N ≥ 10.

(2.7)

Proof. It is enough to estimate the L
2N
N+2 –norm of

∆gWµ,ξ + (αN Sg +εh)Wµ,ξ − (Wµ,ξ)
p
+ .

Since Uµ,ξ ◦ expξ is radially symmetric in B0(r0), we have that

∆gUµ,ξ
(
expξ x

)
= −∆

(
Uµ,ξ ◦ expξ

)
(x)− 1

2
∂r(ln |g|)∂r

(
Uµ,ξ ◦ expξ

)
(x),
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where |g| := det g. In geodesic coordinates, we have the Taylor expansion

|g| = 1− 1

3

N∑
i,j=1

Rij(ξ)x
ixj + O(|x|3) (2.8)

(see for example Lee–Parker [22]), yielding to

∆gUµ,ξ
(
expξ x

)
= −χ(|x|)∆Uµ(x) +

χ(|x|)
3

N∑
i,j=1

Rij(ξ)x
ixj

|x|
∂rUµ(x)

+ O
(
µ
N−2

2 + |x|2|∇Uµ|
)

= Upµ,ξ
(
expξ x

)
+
χ(|x|)

3

N∑
i,j=1

Rij(ξ)x
ixj

|x|
∂rUµ(x) + O

(
µ
N−2

2 + |x|2|∇Uµ|
)

(2.9)

in view of −∆Uµ = Up
µ. Similarly, we have that

∆gVµ,ξ
(
expξ x

)
= −χ(|x|)∆Vµ(x) + O

(
µ
N−6

2 + |x||∇Vµ|
)
.

Since by (2.2) we have that

∆(µ2Vµ) + pUp−1
µ (µ2Vµ) =

1

3

N∑
i,j=1

Rij(ξ)
xixj

|x|
∂rUµ + αN Sg(ξ)Uµ, (2.10)

by (2.9)–(2.10) we get that

‖∆gWµ,ξ + αN SgWµ,ξ − Upµ,ξ − pµ
2Up−1µ,ξ Vµ,ξ‖L 2N

N+2 (M)
=


O
(
µ
N−2

2

)
if N = 6, 7

O
(
µ3| lnµ| 58

)
if N = 8

O (µ3) if N ≥ 9.

(2.11)

Since

‖hWµ,ξ‖
L

2N
N+2 (M)

=

{
O
(
µ2| lnµ| 23

)
if N = 6

O (µ2) if N ≥ 7

and

‖ (Wµ,ξ)
p
+ − U

p
µ,ξ − p U

p−1
µ,ξ

(
µ2Vµ,ξ

)
‖
L

2N
N+2 (M)

=

 O
(
µ4| lnµ| 23

)
if N = 6

O
(
µ2N+2

N−2

)
if N ≥ 7

in view of |(a+ b)p+ − ap − pap−1b| = O(|b|p) for all a > 0 and b ∈ R, by (2.11) we deduce the
validity of (2.7). �

3. The reduced energy

Introduce the Euler-Lagrange functional Jε : H1
g(M)→ R corresponding to equation (1.4):

Jε(u) :=
1

2

∫
M

|∇u|2gdvg +
1

2

∫
M

(αN Sg +εh)u2dvg −
1

p+ 1

∫
M

up+1
+ dvg .

The aim is to find an asymptotic expansion of Jε (Wµ,ξ). We have that:



BLOW-UP SOLUTIONS FOR LINEAR PERTURBATIONS OF THE YAMABE EQUATION 7

Proposition 3.1. The following expansions do hold as ε, µ→ 0:

Jε (Wµ,ξ) =
K−66

6
+

4

5
ω5

∣∣Weylg(ξ)
∣∣2
g
µ4 lnµ+

5

24
K−66 h(ξ)εµ2 + o

(
µ4 lnµ+ εµ2

)
(3.1)

when N = 6, and

Jε (Wµ,ξ) =
K−NN
N
− K−NN

24N(N − 4)(N − 6)

∣∣Weylg(ξ)
∣∣2
g
µ4 +

2(N − 1)K−NN h(ξ)

N(N − 2)(N − 4)
εµ2

+ o
(
µ4 + εµ2

)
(3.2)

when N ≥ 7, uniformly with respect to ξ ∈M , where KN is the best constant for the embedding
of D1,2

(
RN
)

into L2∗
(
RN
)
.

Proof. First, we have that

Jε
(
Uµ,ξ + µ2Vµ,ξ

)
− Jε (Uµ,ξ) = µ2

∫
M

[
〈∇Uµ,ξ,∇Vµ,ξ〉g + (αN Sg +εh)Uµ,ξVµ,ξ − Upµ,ξVµ,ξ

]
+

1

2
µ4

∫
M

[
|∇Vµ,ξ|2g − pU

p−1
µ,ξ V

2
µ,ξ

]
dvg +

1

2
µ4

∫
M

(αN Sg +εh) V2
µ,ξdvg

− 1

p+ 1

∫
M

[(
Uµ,ξ + µ2Vµ,ξ

)p+1

+
− Up+1

µ,ξ − (p+ 1)Upµ,ξµ
2Vµ,ξ −

1

2
p(p+ 1)Up−1µ,ξ µ

4V2
µ,ξ

]
dvg

= µ2

∫
M

[
∆gUµ,ξ + αN Sg Uµ,ξ − Upµ,ξ

]
Vµ,ξdvg +

1

2
µ4

∫
M

[
∆gVµ,ξ − pUp−1µ,ξ Vµ,ξ

]
Vµ,ξdvg

+

{
o (µ4 lnµ+ εµ2) if N = 6
o (µ4 + εµ2) if N ≥ 7

(3.3)

as µ→ 0, in view of∫
M

∣∣∣∣(Uµ,ξ + µ2Vµ,ξ
)p+1

+
− Up+1

µ,ξ − (p+ 1)Upµ,ξµ
2Vµ,ξ −

1

2
p(p+ 1)Up−1µ,ξ µ

4V2
µ,ξ

∣∣∣∣ dvg
= O

(
µ

4N
N−2

∫
M

|Vµ,ξ|
2N
N−2 dvg

)
= o

(
µ4
)

and
∫
M
V2
µ,ξdvg =

{
O (1) if N = 6
o (1) if N ≥ 7

as µ→ 0. Now, observe that there holds

µ2

∫
M

[
∆gUµ,ξ + αN Sg Uµ,ξ − Upµ,ξ

]
Vµ,ξdvg + µ4

∫
M

[
∆gVµ,ξ − pUp−1µ,ξ Vµ,ξ

]
Vµ,ξdvg

= µ2

∫
M

[
∆gWµ,ξ + αN SgWµ,ξ − Upµ,ξ − pµ

2Up−1µ,ξ Vµ,ξ
]
Vµ,ξdvg + O

(
µ4

∫
M

V2
µ,ξdvg

)
=

{
o (µ4 lnµ) if N = 6
o (µ4) if N ≥ 7

as µ→ 0, in view of (2.11). By (2.8) and

∆gVµ,ξ(expξ x) = −∆
(
Vµ,ξ ◦ expξ

)
(x)

+ O
(
|x|
∣∣∇ (Vµ,ξ ◦ expξ

)
(x)
∣∣+ |x|2

∣∣∇2
(
Vµ,ξ ◦ expξ

)
(x)
∣∣)

we deduce that∫
M

[
∆gVµ,ξ − pUp−1µ,ξ Vµ,ξ

]
Vµ,ξdvg = −

∫
B0(

r0
2µ

)

(
∆V + pUp−1V

)
V dy +

{
O (1) if N = 6
o (1) if N ≥ 7

(3.4)
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as µ→ 0. By (3.3) and (3.4), we get that

Jε
(
Uµ,ξ + µ2Vµ,ξ

)
= Jε (Uµ,ξ) +

1

2
µ4

∫
B0(

r0
2µ

)

(
∆V + pUp−1V

)
V dy +

{
o (µ4 lnµ) if N = 6
o (µ4) if N ≥ 7

(3.5)
as µ→ 0. By (2.2)–(2.3) and easy symmetry properties we deduce that∫

B0(
r0
2µ

)

(
∆V + pUp−1V

)
V dy

= − [N(N − 2)]
N−2

2 (N − 2)

36

∫
B0(

r0
2µ

)

(
N∑

i,j=1

Rij(ξ)y
iyj

)2

|y|2 + 3

(1 + |y|2)N
dy

+
[N(N − 2)]

N−2
2 αN

72N(N − 1)
S2
g(ξ)

∫
B0(

r0
2µ

)

(7N − 10)|y|6 + 3(7N − 8)|y|4 + 3(7N − 10)|y|2 − 9N

(1 + |y|2)N
dy

= − [N(N − 2)]
N−2

2 (N − 2)

36

∫
B0(

r0
2µ

)

N∑
i,j,k,s=1

Eij(ξ) Eks(ξ)y
iyjykys

|y|2 + 3

(1 + |y|2)N
dy

− ωN−1
[N(N − 2)]

N−2
2 (N − 2)

576N2(N − 1)2
S2
g(ξ)

[
(N − 2)(N − 4)I

N+4
2

N + 3(N2 − 8N + 8)I
N+2

2
N

−3N(7N − 10)I
N
2
N + 9N2I

N−2
2

N

]
+ o(1) (3.6)

as µ → 0, where the Eij’s are the components of the traceless part Eg = Ricg−Sg
N
g of the

Ricci curvature Ricg of (M, g) in geodesic coordinates and

Iqp =


∫ +∞

0

rq

(1 + r)p
dr if p− q > 1

∫ r20
4µ2

0

rq

(1 + r)p
dr if p− q ≤ 1.

Since integration by parts yields to

Iqp+1 =
p− q − 1

p
Iqp and Iq+1

p+1 =
q + 1

p− q − 1
Iqp+1 (3.7)

as soon as p− q > 1, we have that

I
N
2
N =

N

N − 2
I
N−2

2
N =

N − 4

N + 2
I
N+2

2
N and I

N+4
2

N =

{
−2 lnµ+ O(1) if N = 6
(N+2)(N+4)
(N−4)(N−6)I

N
2
N if N ≥ 7

(3.8)

as µ→ 0, and it can be easily checked that

I
N
2
N =

NωN
2N−1 (N − 2)ωN−1

=
2K−NN

[N(N − 2)]
N−2

2 (N − 2)2ωN−1
(3.9)

(see Aubin [1]). Since for all i 6= j there holds∫
SN−1

(yi)4dvg0 = 3

∫
SN−1

(yi)2(yj)2dvg0 =
3

N(N + 2)

∫
SN−1

|y|4dvg0 ,



BLOW-UP SOLUTIONS FOR LINEAR PERTURBATIONS OF THE YAMABE EQUATION 9

by (3.6) and (3.8)–(3.9) we deduce that∫
B0(

r0
2µ

)

(
∆V + pUp−1V

)
V dy =

8

3
ω5|Eg(ξ)|2g lnµ+

16

225
ω5 S2

g(ξ) lnµ+ O(1) (3.10)

if N = 6, and∫
B0(

r0
2µ

)

(
∆V + pUp−1V

)
V dy = − 2N − 7

9N(N − 2)(N − 4)(N − 6)
K−NN |Eg(ξ)|2g

+
(N − 2)(N − 7)

36N2(N − 1)(N − 4)(N − 6)
K−NN S2

g(ξ) + o(1) (3.11)

if N ≥ 7. Inserting (3.10)–(3.11) into (3.5), by Lemma 3.2 below we deduce the validity of
(3.1)–(3.2). �

We are left with proving the following:

Lemma 3.2. The following expansions do hold as ε, µ→ 0:

Jε (Uµ,ξ) =
K−66

6
+

[
4

5

∣∣Weylg (ξ)
∣∣2
g
− 4

3
|Eg(ξ)|2g −

8

225
S2
g(ξ)

]
ω5µ

4 lnµ+
5

24
K−66 h(ξ)εµ2

+ o
(
µ4 lnµ+ εµ2

)
when N = 6, and

Jε (Uµ,ξ) =
K−NN
N

+

[
− K−NN

24N(N − 4)(N − 6)

∣∣Weylg(ξ)
∣∣2
g

+
(2N − 7)K−NN

18N(N − 2)(N − 4)(N − 6)
|Eg(ξ)|2g −

(N − 2)(N − 7)K−NN
72N2(N − 1)(N − 4)(N − 6)

Sg(ξ)
2

]
µ4

+
2(N − 1)K−NN

N(N − 2)(N − 4)
h(ξ)εµ2 + o

(
µ4 + εµ2

)
when N ≥ 7, uniformly with respect to ξ ∈M .

Proof. There hold

1

ωN−1rN−1

∫
∂Bξ(r)

hdσg = h (ξ) + O (r) , (3.12)

1

ωN−1rN−1

∫
∂Bξ(r)

Sg dσg = Sg (ξ)− 1

2N
Λg (ξ) r2 + O

(
r4
)
, (3.13)

1

ωN−1rN−1

∫
∂Bξ(r)

dσg = 1− 1

6N
Sg (ξ) r2 + Ag (ξ) r4 + O

(
r5
)
, (3.14)

as r → 0, uniformly with respect to ξ, where dσg is the volume element of ∂Bξ (r), ωN−1 is
the volume of the unit (N − 1)–sphere, and where (see (3.17)–(3.18))

Λg (ξ) = ∆g Sg (ξ) +
1

3
Sg (ξ)2 (3.15)

and

Ag (ξ) =
18∆g Sg (ξ) + 8 |Ricg (ξ)|2g − 3 |Rmg (ξ)|2g + 5 Sg (ξ)2

360N (N + 2)
. (3.16)
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The orthogonal decomposition of Riemann curvature is given by

|Rmg (ξ)|2g =
∣∣Weylg (ξ)

∣∣2
g

+
4

N − 2
|Eg (ξ)|2g +

2

N (N − 1)
Sg (ξ)2 , (3.17)

where Weylg is the Weyl curvature of g and Eg = Ricg−Sg
N
g is the traceless part of the Ricci

curvature of g. Moreover, we get

|Ricg (ξ)|2g = |Eg (ξ)|2g +
1

N
Sg (ξ)2 . (3.18)

By (3.8) and (3.14), we compute∫
M

|∇Uµ,ξ|2g dvg = [N(N − 2)]
N−2

2 (N − 2)2
∫ r0

2

0

µN−2r2

(µ2 + r2)N

∫
∂Bξ(r)

dσgdr + O
(
µN−2

)
(3.19)

= [N(N − 2)]
N−2

2 (N − 2)2ωN−1

×
∫ r0

2µ

0

rN+1

(1 + r2)N

(
1− 1

6N
Sg (ξ)µ2r2 + Ag (ξ)µ4r4 + O

(
µ5r5

))
dr + O

(
µN−2

)
=

[N(N − 2)]
N−2

2 (N − 2)2

2
ωN−1

×
(
I
N
2
N −

1

6N
I
N+2

2
N Sg (ξ)µ2 + I

N+4
2

N Ag (ξ)µ4 + O
(
I
N+5

2
N µ5 + µN−2

))

=


K−NN

(
1− N + 2

6N (N − 4)
Sg (ξ)µ2

)
− 9216 ω5Ag (ξ)µ4 lnµ+ O

(
µ4
)

if N = 6

K−NN

(
1− N + 2

6N (N − 4)
Sg (ξ)µ2 +

(N + 2) (N + 4)

(N − 4) (N − 6)
Ag (ξ)µ4

)
+ O

(
µ5
)

if N ≥ 7

in view of (3.9). Since by (3.7) there hold

I
N−2

2
N−2 =

4(N − 1)(N − 2)

N(N − 4)
I
N
2
N and I

N
2
N−2 =

{
−2 lnµ+ O(1) if N = 6
4(N−1)(N−2)
(N−4)(N−6) I

N
2
N if N ≥ 7

as µ→ 0, by (3.13) we compute∫
M

Sg U
2
µ,ξdvg = [N(N − 2)]

N−2
2

∫ r0
2

0

µN−2

(µ2 + r2)N−2

∫
∂Bξ(r)

Sg dσgdr + O
(
µN−2

)
= [N(N − 2)]

N−2
2 ωN−1µ

2

∫ r0
2µ

0

rN−1

(1 + r2)N−2

(
Sg (ξ)− 1

2N
Λg (ξ)µ2r2 + O

(
µ4r4

))
dr

+ O
(
µN−2

)
=

[N(N − 2)]
N−2

2

2
ωN−1µ

2

(
I
N−2

2
N−2 Sg (ξ)− 1

2N
I
N
2
N−2Λg (ξ)µ2 + O

(
µ4I

N+2
2

N−2 + µN−2
))

=


5K−66

12
µ2 Sg (ξ) + 48ω5Λg (ξ)µ4 lnµ+ O

(
µ4
)

if N = 6

4(N − 1)K−NN
N(N − 2)(N − 4)

µ2

(
Sg (ξ)− 1

2 (N − 6)
Λg (ξ)µ2

)
+ O

(
µ5
)

if N ≥ 7

(3.20)
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in view of (3.9). Similarly, by (3.12), we have that

ε

∫
M

hU2
µ,ξdvg =

4(N − 1)K−NN
N(N − 2)(N − 4)

h (ξ) εµ2 + o
(
εµ2
)

(3.21)

By (3.8) and (3.14), we compute∫
M

U2∗

µ,ξdvg = [N(N − 2)]
N
2

∫ r0
2

0

µN

(µ2 + r2)N

∫
∂Bξ(r)

dσgdr + O
(
µN
)

= [N(N − 2)]
N
2 ωN−1

∫ r0
2µ

0

rN−1

(1 + r2)N

(
1− 1

6N
Sg (ξ)µ2r2 + Ag (ξ)µ4r4

)
dr + O

(
µ5
)

=
[N(N − 2)]

N
2

2
ωN−1

(
I
N−2

2
N − 1

6N
I
N
2
N Sg (ξ)µ2 + I

N+2
2

N Ag (ξ)µ4

)
+ O

(
µ5
)

= K−NN

(
1− 1

6 (N − 2)
Sg (ξ)µ2 +

N (N + 2)

(N − 2) (N − 4)
Ag (ξ)µ4

)
+ O

(
µ5
)

(3.22)

in view of (3.9). Finally, the claimed expansions follow by (3.19), (3.20), (3.21) and (3.22) in
view of (3.15)–(3.18). �

4. The Lyapunov-Schmidt reduction argument

Since equation (1.4) can be re-written as (2.4), the function u = Wµ,ξ + φ does solve (1.4)
as soon as

L̂µ,ξ(φ) = −Rµ,ξ −Nµ,ξ(φ), (4.1)

where Rµ,ξ is given in (2.6),

Nµ,ξ(φ) = −i∗
[
(Wµ,ξ + φ)p+ − (Wµ,ξ)

p
+ − p (Wµ,ξ)

p−1
+ φ

]
is the nonlinear term (quadratic in φ) and

L̂µ,ξ : H1
g (M) → H1

g (M)

φ 7→ φ− i∗
[
p (Wµ,ξ)

p−1
+ φ− εhφ

]
is the linearized operator of (2.4) at Wµ,ξ.

SinceWµ,ξ is a small perturbation of Uµ,ξ, as ε, µ→ 0 the operator L̂µ,ξ in balls with radii of
order µ looks pretty much as a scaling of the limiting operator L∞ : Φ→ Φ+(∆)−1 [pUp−1Φ],
where U is given in (2.1). It is well known (see Bianchi–Egnell [4]) that

ker L∞ = Span
{

Φ0,Φ1, . . . ,ΦN
}
,

where

Φ0(y) =
1− |y|2

(1 + |y|2)N2
, Φi(y) =

yi

(1 + |y|2)N2
∀ i = 1, . . . , N. (4.2)

Since there is no hope for the full invertibility of L̂µ,ξ in H1
g (M), let us introduce the “asymp-

totic kernel” Kµ,ξ and its “orthogonal space” K⊥µ,ξ as

Kµ,ξ = Span
{
Z0
µ,ξ, . . . , Z

N
µ,ξ

}
and

K⊥µ,ξ =

{
φ ∈ H1

g (M) :

∫
M

Up−1µ,ξ Z
i
µ,ξφdµg = 0 ∀ i = 0, . . . , N

}
,
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where

Zi
µ,ξ(z) = χ (dg(z, ξ))µ

2−N
2 Φi

(
exp−1ξ (z)

µ

)
for i = 0, . . . , N , with Φi given by (4.2). Letting Πµ,ξ and Π⊥µ,ξ be the projectors of H1

g (M)
onto the respective subspaces, equation (4.1) is equivalent to solving

Lµ,ξ(φ) = −Π⊥µξ (Rµ,ξ +Nµ,ξ(φ)) , (4.3)

Πµξ

(
L̂µ,ξ(φ)

)
= −Πµξ (Rµ,ξ +Nµ,ξ(φ)) (4.4)

for some φ ∈ K⊥µ,ξ, where Lµ,ξ = Π⊥µ,ξ ◦ L̂µ,ξ : K⊥µ,ξ → K⊥µ,ξ. First we can solve equation (4.3),
a rather standard result in this context (see for example Musso–Pistoia [30]):

Lemma 4.1. There exists a positive constant C0 such that, for any ε, µ small and any ξ ∈M ,
there holds

‖Lµ,ξ (φ)‖ ≥ C0 ‖φ‖
for all φ ∈ K⊥µ,ξ. As a consequence, (4.3) admits a unique solution φµ,ξ ∈ K⊥µ,ξ, which is
continuously differentiable in µ and ξ, so that

‖φµ,ξ‖ =

{
o
(
µ2
√
| lnµ|+

√
εµ
)

if N = 6
o (µ2 +

√
εµ) if N ≥ 7.

(4.5)

Let us just stress out that the estimate (4.5) heavily depends on (2.7). The need of improving
the ansatz in Section 2 comes out from getting the correct smallness rate of φ as expressed by
(4.5). Finally, we have all the ingredients to prove our main result.

Proof of Theorem 1.2. A first well known fact (see for example Musso–Pistoia [30]) is the
equivalence between equation (4.4) and the search of critical points for

J̃ε(µ, ξ) = Jε (Wµ,ξ + φµ,ξ) ,

where φµ,ξ is given by Lemma 4.1. We just need to prove that

Jε (Wµ,ξ + φµ,ξ)− Jε (Wµ,ξ) =

{
o
(
µ4| lnµ|+ εµ2

)
if N = 6

o
(
µ4 + εµ2

)
if N ≥ 7

(4.6)

as ε, µ→ 0. Indeed, we have that

Jε (Wµ,ξ + φµ,ξ)− Jε (Wµ,ξ) =

∫
M

(
〈∇Rµ,ξ,∇φµ,ξ〉g + αN SgRµ,ξφµ,ξ − (Wµ,ξ)

p
+ φµ,ξ

)
dvg

+
1

2

∫
M

|∇φµ,ξ|2gdvg +
1

2

∫
M

(αN Sg +εh)φ2
µ,ξdvg

− 1

p+ 1

∫
M

[
(Wµ,ξ + φµ,ξ)

p+1
+ − (Wµ,ξ)

p+1
+ − (p+ 1) (Wµ,ξ)

p
+ φµ,ξ

]
dvg

= O

(
‖Rµ,ξ‖ ‖φµ,ξ‖+ ‖φµ,ξ‖2 +

∫
M

(Wµ,ξ)
p−1
+ φ2

µ,ξdvg +

∫
M

φp+1
µ,ξ dvg

)
= O

(
‖Rµ,ξ‖ ‖φµ,ξ‖+ ‖φµ,ξ‖2

)
by the Sobolev embedding H1

g (M) ↪→ Lp+1(M) and the Hölder’s inequality. By (2.7) and
(4.5) we then deduce the validity of (4.6). Setting

µ(d) = d

{
l−1(ε) if N = 6√
ε if N ≥ 7,
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where l : (0, e−
1
2 ) → (0, e

−1

2
) is defined as l(µ) = −µ2 lnµ, by Proposition 3.1 and (4.6) we

deduce the following asymptotic estimates:

J (d, ξ) :=
J̃ε(µ(d), ξ)−K−NN

ε2
(
ln l−1(ε)

)γ
= c2d

2h(ξ)− c3d4
∣∣Weylg(ξ)

∣∣2
g

+ o(1)

as ε → 0, uniformly with respect to ξ ∈ M and to d in compact subsets of (0,∞), where
c2, c3 > 0 are suitable constants, γ = 1 when N = 6 and γ = 0 when N ≥ 7. Letting

D ⊂ (0,∞) ×M be a C0–stable critical set of Ẽ and U be a compact neighborhood of D
in (0,∞) ×M , by the definition of stability it follows that J has a critical point (dε, ξε) ∈
U ⊂ (0,∞) ×M , for ε small. Up to a subsequence and taking U smaller and smaller, we
can assume that (dε, ξε) → (t0, ξ0) as ε → 0 with ξ0 ∈ π(D). By elliptic regularity theory
uε = Wµ(dε),ξε + φµ(dε),ξε is a solution of (1.4). Since ξε → ξ0 and

∥∥φµ(dε),ξε∥∥ → 0 as ε → 0,

it is easily seen that uε > 0 and u2
∗
ε ⇀ K−NN δξ0 in the measures sense as ε → 0 (see for

example Rey [35]), where δξ denotes the Dirac mass measure at ξ. From very basic facts
concerning the asymptotic analysis of solutions of Yamabe-type equations (see for example
Druet–Hebey [12] and Druet–Hebey–Robert[15]), we get that the family (uε)ε blows up at the
point ξ0 as ε→ 0. �
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[7] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev

exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437–477.
[8] W.-Y. Chen, J.-C. Wei, and S.-S. Yan, Infinitely many solutions for the Schrödinger equations in Rn with

critical growth, J. Differential Equations.
[9] O. Druet, From one bubble to several bubbles: the low-dimensional case, J. Differential Geom. 63 (2003),

no. 3, 399–473.
[10] , Compactness for Yamabe metrics in low dimensions, Int. Math. Res. Not. 23 (2004), 1143–1191.
[11] O. Druet and E. Hebey, Blow-up examples for second order elliptic PDEs of critical Sobolev growth, Trans.

Amer. Math. Soc. 357 (2005), no. 5, 1915–1929 (electronic).
[12] , Elliptic equations of Yamabe type, Int. Math. Res. Surv. 1 (2005), 1–113.
[13] , Stability for strongly coupled critical elliptic systems in a fully inhomogeneous medium, Anal.

PDE 2 (2009), no. 3, 305–359.
[14] , Stability and instability for Einstein-scalar field Lichnerowicz equations on compact Riemannian

manifolds, Math. Z. 263 (2009), no. 1, 33–67.
[15] O. Druet, E. Hebey, and F. Robert, Blow-up theory for elliptic PDEs in Riemannian geometry, Mathe-

matical Notes, vol. 45, Princeton University Press, Princeton, NJ, 2004.
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