
UNIQUENESS OF CONFORMAL METRICS WITH CONSTANT

Q-CURVATURE ON CLOSED EINSTEIN MANIFOLDS

JÉRÔME VÉTOIS

Abstract. On a smooth, closed Einstein manifold (M, g) of dimension n ≥ 3

with positive scalar curvature and not conformally diffeomorphic to the stan-
dard sphere, we prove that the only conformal metrics to g with constant

Q-curvature of order 4 are the metrics λg with λ > 0 constant.

1. Introduction and main result

On a smooth, closed (i.e. compact and without boundary) Riemannian manifold
of dimension n ≥ 3, Branson’s Q-curvature [3] is defined as

Qg :=
1

2 (n− 1)
∆g Sg +

n3 − 4n2 + 16n− 16

8 (n− 1)
2

(n− 2)
2 S2

g −
2

(n− 2)
2 |Ricg|2g , (1.1)

where ∆g := −divg∇ = − trg∇2 is the Laplace–Beltrami operator, Sg is the scalar
curvature and Ricg is the Ricci curvature of the manifold.

In the case of the standard sphere, the conformal metrics with constant Q-
curvature have been classified by Lin [27] by using the moving-plane method. In
this case, there exists an explicit, multi-dimensional family of conformal metrics
with constant Q-curvature. In this article, we examine the case of smooth, closed
Einstein manifolds with positive scalar curvature and not conformally diffeomorphic
to the standard sphere. In this case, we obtain the following:

Theorem 1.1. Let (M, g) be a smooth, closed Einstein manifold of dimension n ≥
3 with positive scalar curvature and not conformally diffeomorphic to the standard
sphere. Then the only conformal metrics to g with constant Q-curvature are the
metrics λg with λ > 0 constant.

This result extends to the Q-curvature equation a result obtained by Obata [29]
for the scalar curvature equation (see also the subsequent articles by Bidaut-Véron
and Véron [2] and Gidas and Spruck [14] for extensions of Obata’s result to more
general second-order equations). The distinct σk-curvature case, on locally confor-
mally flat metrics, has been addressed by Viaclovsky [33].
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The transformation law for the Q-curvature under a conformal change of metric
is given by the equations

Pg u+ Qg = Qe2ug e
4u in M if n = 4

Pg u =
n− 4

2
Q

u
4

n−4 g
u

n+4
n−4 , u > 0 in M if n 6= 4,

(1.2)

where Pg is the Paneitz–Branson operator [3, 30] defined as

Pg := ∆2
g − divg

((
n2 − 4n+ 8

2 (n− 1) (n− 2)
Sg g −

4

n− 2
Ricg

)
∇u
)

+
n− 4

2
Qg .

In particular, in the case where (M, g) is Einstein, we obtain

Qg =
(n+ 2) (n− 2)

8n (n− 1)
2 S2

g and Pg = ∆2
g +

n2 − 2n− 4

2n (n− 1)
Sg ∆g +

n− 4

2
Qg .

We mention in passing that the concept of Q-curvature and the corresponding
operator Pg have been shown to have natural extensions to higher orders. Some
references in this case are by Branson [4], Fefferman and Graham [12,13], Gover [15],
Graham, Jenne, Mason and Sparling [16] and Juhl [23]. In particular, in the case
of Einstein manifolds, explicit formulas can be found for all orders (see [13, Propo-
sition 7.9] and also [15]).

The Q-curvature very rapidly became a subject in its own and has been inten-
sively studied in the literature since the seminal and beautiful work we mentioned
above. Surprisingly, despite all the studies which have been published on this topic
in recent years and despite the fact it naturally extends from the scalar-curvature
equation, Obata’s result for the Q-curvature equation Theorem 1.1 has not been
proven before. As regards the method, we use a similar approach as in Obata’s
proof [29] for the scalar curvature equation. Given a conformal metric gv := v−1g,
where v ∈ C∞ (M), v > 0 in M , this approach consists in finding a suitable func-

tion Θ
(k)
g (v) ∈ C∞ (M), with k = 1 for the scalar curvature equation and k = 2 for

the Q-curvature equation, such that if Sgv is constant for k = 1 and Qgv is constant
for k = 2, then

Θ(k)
g (v) ≥ 0 in M, [Θ(k)

g (v) ≡ 0 in M ⇐⇒ ∇v ≡ 0 in M ] and

∫
M

Θ(k)
g (v) dvg = 0.

The last equality is obtained by applying multiple integrations by parts. It easily

follows from these properties that if such a function Θ
(k)
g (v) exists, then v must be

constant. For k = 1, this is achieved by considering the function

Θ(1)
g (v) := v

3−n
2 |Egv |

2
g ,

where Egv is the trace-free Ricci tensor of the metric gv, i.e.

Egv := Ricgv −
1

n
Sgv gv = Ricg −

1

n
Sg g+(n− 2)

√
v
−1
(
∇2
√
v+

1

n
∆g

√
v g
)
. (1.3)

For k = 2, we use the function

Θ(2)
g (v) := v

1−n
2

(∣∣∣∣∇Sgv +
3n− 4

2 (n− 2)
Egv ∇v

∣∣∣∣2
g

− (3n− 4)
2

4 (n− 2)
2

∣∣Egv ∇v
∣∣2
g

+
|Egv |

2
g

(n− 2)
2

(
2
(
n2 − 2

)
Sgv v + 4 (n− 1) Sg v

2 + n (n− 1)
2 |∇v|2g

))
. (1.4)
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Under the conditions of Theorem 1.1, we can see that the function Θ
(2)
g (v) is non-

negative in M by observing that

(3n− 4)
2 ∣∣Egv ∇v

∣∣2
g
≤ (3n− 4)

2 |Egv |
2
g |∇v|

2
g ≤ 4n (n− 1)

2 |Egv |
2
g |∇v|

2
g (1.5)

and using the positivity of the functions v, Sg and Sgv , the latter following from
a result obtained by Gursky and Malchiodi [18] (see Theorem 2.3 below). Finally,

it is not difficult to see that Θ
(2)
g (v) ≡ 0 in M if and only if ∇Sgv ≡ 0 in M

and either Egv ≡ 0 or ∇v ≡ 0 in M , which, by using Obata’s result [29], implies
that v is constant provided (M, g) is Einstein and not conformally equivalent to
the standard sphere. In the case where (M, g) is conformally equivalent to the
standard sphere, this approach also gives an alternative proof of the classification
of conformal metrics with constant Q-curvature.

The strategy which lead us to discover formula (1.4) was to reduce the problem
by first considering the case of the Euclidean space Rn with u ∈ D1,2 (Rn) (which
corresponds to the case of the sphere by stereographic projection) and in this case,
consider all possible linear combinations of divergence terms of fifth-order vector
fields and look for these which can be written as a sum of nonnegative terms, i.e.
squares or scalar curvature terms (the help of a computation software was used at
this stage). Once the formula is found in this simpler case, it can easily be extended
to the more general case of a smooth, closed Einsten manifold with positive scalar
curvature as well as to the case of subcritical equations (see Theorems 2.1 and 2.2).

In the case of more general manifolds, the equation (1.2) has been studied by
several authors. Existence results have been obtained by Brendle [5], Chang and
Yang [7], Djadli and Malchiodi [9] and Li, Li and Liu [25] in dimension n = 4, Djadli,
Hebey and Ledoux [8], Esposito and Robert [11], Gursky, Hang and Lin [17], Gursky
and Malchiodi [18], Hang and Yang [19,21] and Qing and Raske [32] in dimensions
n ≥ 5, and Hang and Yang [20] in dimension n = 3. Non-uniqueness results
have been obtained by Bettiol, Piccione and Sire [1] in dimensions n ≥ 5. The
question of compactness of the set of solutions has also been studied by Druet and
Robert [10], Malchiodi [28] and Weinstein and Zhang [35] in dimension n = 4, Hebey
and Robert [22], Li [24], Li and Xiong [26] and Qing and Raske [31] in dimensions
n ≥ 5, and Hang and Yang [20] in dimension n = 3. Finally non-compactness
results have been obtained in dimensions n ≥ 25 by Wei and Zhao [34].

After this paper was posted on arXiv, Jeffrey Case [6] announced a generalization
of the ideas we present here where the case of constant Q-curvature is replaced by
the fact that Q +aσ2 has to be constant for a ∈ R suitably close to zero, where σ2

is the second symmetric function of the Shouten tensor. In the case where a = 0,
we are back to the present paper.

2. Extended versions and proof of Theorem 1.1

In this section, we prove the following results, which are slightly more general
than Theorem 1.1:

Theorem 2.1. Let p ≤ 4 and (M, g) be a smooth, closed Einstein manifold of
dimension n = 4 with positive scalar curvature. In the case where p = 4, assume
that (M, g) is not conformally diffeomorphic to the standard sphere. Then there
does not exist any non-constant solutions to the equation

Pg u+ Qg = epu in M. (2.1)
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Theorem 2.2. Let n ≥ 3, n 6= 4, λ = 1 if n ≥ 4, λ = −1 if n = 3, λp ≤ λ 2n
n−4 and

(M, g) be a smooth, closed Einstein manifold of dimension n with positive scalar
curvature. In the case where p = 2n

n−4 , assume that (M, g) is not conformally
diffeomorphic to the standard sphere. Then there does not exist any non-constant
solutions to the equation

Pg u = λup−1, u > 0 in M. (2.2)

We obtain Theorem 1.1 from Theorems 2.1 and 2.2 as follows:

Proof of Theorem 1.1. Let g̃ be a conformal metric to g with constant Q-curvature.

Let u ∈ C∞ (M) be such that g̃ = e2ug in M if n = 4 and g̃ = u
4

n−4 g with u > 0
in M if n 6= 4. Since Qg and Qg̃ are constant, integrating (1.2) in M gives

Qg Volg (M) =


Qg̃

∫
M

e4udvg if n = 4

Qg̃

∫
M

u
n+4
n−4 dvg if n 6= 4,

(2.3)

where Volg (M) is the volume of (M, g) and dvg is the volume element of (M, g).
Since Qg > 0 in M , it follows from (2.3) that Qg̃ > 0 in M . We then define

ũ :=


u+

1

4
ln Qg̃ if n = 4(

|n− 4|
2

Qg̃

)n−4
8

u if n 6= 4.

We can then rewrite (1.2) as{
Pg ũ+ Qg = e4ũ in M if n = 4

Pg ũ = λũ
n+4
n−4 , ũ > 0 in M if n 6= 4.

Applying Theorems 2.1 and 2.2, we then obtain that ũ is constant, which implies
that u is constant. This ends the proof of Theorem 1.1. �

The proofs of Theorems 2.1 and 2.2 use the following result, which is a straight-
forward variation of a result obtained by Gursky and Malchiodi [18]:

Theorem 2.3. Let (M, g) be a smooth, closed Riemannian manifold of dimension
n ≥ 3 with positive scalar curvature and non-negative Q-curvature. Let g̃ be a
conformal metric to g with non-negative Q-curvature. Then the scalar curvature of
g̃ is positive.

Proof of Theorem 2.3. We closely follow the proof of Theorem 2.2 in [18]. Let

u ∈ C∞ (M) be such that g̃ = e2ug in M if n = 4 and g̃ = u
4

n−4 g with u > 0 in M
if n 6= 4. Since Sg > 0 in M , we can define

t0 := sup {t ∈ [0, 1] : Sgs > 0 for all s ∈ [0, t]} ,

where gs := e2sug if n = 4 and gs = (1− s+ su)
4

n−4 g in M if n 6= 4. Notice that
by continuity, we obtain Sgt0

≥ 0 in M . On the other hand, since Qg ≥ 0 and

Qg̃ ≥ 0 in M , using (1.2), we obtain

Qgt0
=

e
−4t0u

(
(1− t0) Qg +t0 Qg̃ e

4u
)

if n = 4

(1− t0 + t0u)
− n+4

n−4

(
(1− t0) Qg +t0 Qg̃ u

n+4
n−4

)
if n 6= 4

 ≥ 0 in M.

(2.4)
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It follows from (1.1) and (2.4) that

∆gt0
Sgt0
≥ −n

3 − 4n2 + 16n− 16

4 (n− 1) (n− 2)
2 S2

gt0
in M. (2.5)

Since Sgt0
≥ 0 in M , by the strong maximum principle, it follows from (2.5) that

either Sgt0
≡ 0 or Sgt0

> 0 in M . Since Sg > 0 in M and a conformal class cannot
contain both a metric with positive scalar curvature and a metric with zero scalar
curvature, we then obtain that Sgt0

> 0 in M , which implies that t0 = 1 and Sg̃ > 0
in M . This ends the proof of Theorem 2.3. �

Let us now set some notations and recall some preliminary formulas. We let
(·, ·)g be the multiple inner product induced by the metric g for the tensors of same

rank, i.e. such that (S, T )g = Si1...ilTj1...jl for all tensors S and T of rank l ∈ N
(with the standard convention on raising and lowering indices). We let |·|g be the

norm induced by (·, ·)g. We denote by ∆g the connection Laplacian and ∆g the
Hodge Laplacian on 1-forms. Given a smooth function u in M , the Weitzenbock
identity gives

∆gdu = ∆gdu+ Ricg∇u. (2.6)

We also recall the Bochner–Lichnerowicz–Weitzenbock formula

1

2
∆g |∇u|2g = (∇∆gu,∇u)g −

∣∣∇2u
∣∣2
g
− Ricg (∇u,∇u) . (2.7)

We begin with proving Theorem 2.1.

Proof of Theorem 2.1. Let u be a solution of (2.1). Using (2.6) together with the
fact that (M, g) is Einstein and ∆gd = ∇∆g, we then obtain

A0 :=

∫
M

e−u
((

∆gd∆gu,∇u
)
g

+
5

12
Sg (∇∆gu,∇u)g − 4 |∇u|2g ∆2

gu

− 2

3
Sg |∇u|2g ∆gu−

1

6
S2
g |∇u|

2
g

)
dvg

=

∫
M

e−u
((
∇∆2

gu,∇u
)
g

+
1

6
Sg (∇∆gu,∇u)g − 4 |∇u|2g ∆2

gu

− 2

3
Sg |∇u|2g ∆gu−

1

6
S2
g |∇u|

2
g

)
dvg

=

∫
M

e−u
(

(∇Pgu,∇u)g − 4 |∇u|2g (Pgu+Qg)
)
dvg

= (p− 4)

∫
M

e(p−1)u |∇u|2g dvg. (2.8)

Integrating by parts and using (2.6) and (2.7), we also obtain

A1 :=

∫
M

e−u
((

∆gd∆gu,∇u
)
g
−
(
∇2∆gu,∇2u−∇u⊗∇u

)
g

)
dvg

= −
∫
M

divg

(
e−u∇2 (∆gu) (∇u)

)
dvg

= 0, (2.9)
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A2 :=

∫
M

e−u
(

2
(
∇2∆gu,∇2u

)
g
−
(
∇∆gu,∇ |∇u|2g

)
g
− 2 |∇∆gu|2g

+
1

2
Sg (∇∆gu,∇u)g

)
dvg

=

∫
M

e−u
(
2
(
∇2∆gu,∇2u

)
g
−
(
∇∆gu,∇ |∇u|2g

)
g
− 2
(
∆gdu,∇∆gu

)
g

)
dvg

= 2

∫
M

divg

(
e−u∇2u (∇∆gu)

)
dvg

= 0, (2.10)

A3 :=

∫
M

e−u
(
2
(
∇2∆gu,∇u⊗∇u

)
g

+
(
∇∆gu,∇ |∇u|2g

)
g
− 2 (∇∆gu,∇u)g ∆gu

− 2 |∇u|2g (∇∆gu,∇u)g
)
dvg

= 2

∫
M

divg

(
e−u (∇∆gu,∇u)g∇u

)
dvg

= 0, (2.11)

A4 :=

∫
M

e−u
(
|∇u|2g ∆2

gu−
(
∇∆gu,∇ |∇u|2g

)
g

+ |∇u|2g (∇∆gu,∇u)g
)
dvg

= −
∫
M

divg

(
e−u |∇u|2g∇∆gu

)
dvg

= 0, (2.12)

A5 :=

∫
M

e−u
((
∇∆gu,∇ |∇u|2g

)
g
− 2 (∇∆gu,∇u)g ∆gu+ 2

∣∣∇2u
∣∣2
g

∆gu

−
(
∇ |∇u|2g ,∇u

)
g
∆gu+

1

2
Sg |∇u|2g ∆gu

)
dvg

=

∫
M

e−u
((
∇∆gu,∇ |∇u|2g

)
g
−∆g |∇u|2g ∆gu−

(
∇ |∇u|2g ,∇u

)
g
∆gu

)
dvg

=

∫
M

divg

(
e−u (∆gu)∇ |∇u|2g

)
dvg

= 0, (2.13)

A6 :=

∫
M

e−u
(
2
(
∇∆gu,∇u

)
g
∆gu− (∆gu)

3 − |∇u|2g (∆gu)
2 )
dvg

=

∫
M

divg

(
e−u (∆gu)

2∇u
)
dvg

= 0, (2.14)

A7 :=

∫
M

e−u
(

2 |∇u|2g (∇∆gu,∇u)g − 2 |∇u|2g
∣∣∇2u

∣∣2
g

−
∣∣∇ |∇u|2g ∣∣2g + |∇u|2g

(
∇ |∇u|2g ,∇u

)
g
− 1

2
Sg |∇u|4g

)
dvg

=

∫
M

e−u
(
|∇u|2g ∆g |∇u|2g −

∣∣∇ |∇u|2g ∣∣2g + |∇u|2g
(
∇ |∇u|2g ,∇u

)
g

)
dvg

= −
∫
M

divg

(
e−u |∇u|2g∇ |∇u|

2
g

)
dvg

= 0, (2.15)
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A8 :=

∫
M

e−u
(
|∇u|2g (∇∆gu,∇u)g +

(
∇ |∇u|2g ,∇u

)
g
∆gu− |∇u|2g (∆gu)

2

− |∇u|4g ∆gu
)
dvg

=

∫
M

divg

(
e−u |∇u|2g (∆gu)∇u

)
dvg

= 0, (2.16)

A9 :=

∫
M

e−u
(
2 |∇u|2g

(
∇ |∇u|2g ,∇u

)
g
− |∇u|4g ∆gu− |∇u|6g

)
dvg

=

∫
M

divg

(
e−u |∇u|4g∇u

)
dvg

= 0, (2.17)

A10 :=

∫
M

e−u
(

2 (∇∆gu,∇u)g − 2
∣∣∇2u

∣∣2
g

+
(
∇ |∇u|2g ,∇u

)
g
− 1

2
Sg |∇u|2g

)
dvg

=

∫
M

e−u
(
∆g |∇u|2g +

(
∇ |∇u|2g ,∇u

)
g

)
dvg

= −
∫
M

divg

(
e−u∇ |∇u|2g

)
dvg

= 0, (2.18)

A11 :=

∫
M

e−u
(

(∇∆gu,∇u)g − (∆gu)
2 − |∇u|2g ∆gu

)
dvg

=

∫
M

divg

(
e−u (∆gu)∇u

)
dvg

= 0, (2.19)

A12 :=

∫
M

e−u
((
∇ |∇u|2g ,∇u

)
g
− |∇u|2g ∆gu− |∇u|4g

)
dvg

=

∫
M

divg

(
e−u |∇u|2g∇u

)
dvg

= 0. (2.20)

Combining (2.8)–(2.20), we then obtain

36 (p− 4)

∫
M

e(p−1)u |∇u|2g dvg

= 36A0 − 36A1 − 18A2 + 18A3 + 144A4 + 84A5 + 42A6 + 12A7 − 60A8 + 18A9

− 20 Sg A10 + 10 Sg A11 − 12 Sg A12

=

∫
M

e−u
(
36 |∇∆gu|2g − 24

(
∇∆gu,∇ |∇u|2g

)
g
− 120

(
∇∆gu,∇u

)
g
∆gu

+ 72 |∇u|2g (∇∆gu,∇u)g − 12
∣∣∇ |∇u|2g ∣∣2g − 144

(
∇ |∇u|2g ,∇u

)
g
∆gu

+ 48 |∇u|2g
(
∇ |∇u|2g ,∇u

)
g
− 24 |∇u|2g

∣∣∇2u
∣∣2
g

+ 168
∣∣∇2u

∣∣2
g

∆gu− 42 (∆gu)
3

+ 18 |∇u|2g (∆gu)
2

+ 42 |∇u|4g ∆gu− 18 |∇u|6g − 24 Sg (∇∆gu,∇u)g

− 32 Sg

(
∇ |∇u|2g ,∇u

)
g

+ 40 Sg

∣∣∇2u
∣∣2
g
− 10 Sg (∆gu)

2
+ 20 Sg |∇u|2g ∆gu

+ 6 Sg |∇u|4g + 4 S2
g |∇u|

2
g

)
dvg. (2.21)
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On the other hand, the transformation law for the scalar curvature under a confor-
mal change of metric gives

Se2ug = e−3u (6∆ge
u + Sg e

u) = e−2u
(
6∆gu− 6 |∇u|2g + Sg

)
. (2.22)

Differentiating (2.22), we obtain

∇Se2ug = e−2u
(
6∇∆gu− 12∆gu∇u− 6∇ |∇u|2g + 12 |∇u|2g∇u− 2 Sg∇u

)
. (2.23)

Moreover, using (1.3), we obtain

Ee2ug = −2∇2u+ 2∇u⊗∇u− 1

2

(
∆gu+ |∇u|2g

)
g, (2.24)∣∣Ee2ug

∣∣2
g

= 4
∣∣∇2u

∣∣2
g
− 4
(
∇ |∇u|2g ,∇u

)
g
− (∆gu)

2 − 2 |∇u|2g ∆gu+ 3 |∇u|4g (2.25)

and∣∣Ee2ug∇
(
e−2u

) ∣∣2
g

= e−4u
(
4
∣∣∇ |∇u|2g ∣∣2g + 4

(
∇ |∇u|2g ,∇u

)
g
∆gu

− 12 |∇u|2g
(
∇ |∇u|2g ,∇u

)
g

+ |∇u|2g (∆gu)
2 − 6 |∇u|4g ∆gu+ 9 |∇u|6g

)
. (2.26)

It follows from (2.22)–(2.26) that∣∣∇ Se2ug +2 Ee2ug∇
(
e−2u

) ∣∣2
g
− 4
∣∣Ee2ug∇

(
e−2u

) ∣∣2
g

= 4e−4u
(
9 |∇∆gu|2g − 6

(
∇∆gu,∇ |∇u|2g

)
g
− 30

(
∇∆gu,∇u

)
g
∆gu

+ 18 |∇u|2g (∇∆gu,∇u)g − 3
∣∣∇ |∇u|2g ∣∣2g + 6

(
∇ |∇u|2g ,∇u

)
g
∆gu

+ 6 |∇u|2g
(
∇ |∇u|2g ,∇u

)
g

+ 24 |∇u|2g (∆gu)
2 − 24 |∇u|4g ∆gu

− 6 Sg (∇∆gu,∇u)g + 2 Sg

(
∇ |∇u|2g ,∇u

)
g

+ 10 Sg |∇u|2g ∆gu

− 6 Sg |∇u|4g + S2
g |∇u|

2
g

)
(2.27)

and ∣∣Ee2ug

∣∣2
g

(
7 Se2ug e

−2u + 3 Sg e
−4u + 9

∣∣∇e−2u
∣∣2
g

)
= e−4u

(
− 168

(
∇ |∇u|2g ,∇u

)
g
∆gu+ 24 |∇u|2g

(
∇ |∇u|2g ,∇u

)
g

− 24 |∇u|2g
∣∣∇2u

∣∣2
g

+ 168
∣∣∇2u

∣∣2
g

∆gu− 42 (∆gu)
3 − 78 |∇u|2g (∆gu)

2

+ 138 |∇u|4g ∆gu− 18 |∇u|6g − 40 Sg

(
∇ |∇u|2g ,∇u

)
g

+ 40 Sg

∣∣∇2u
∣∣2
g

− 10 Sg (∆gu)
2 − 20 Sg |∇u|2g ∆gu+ 30 Sg |∇u|4g

)
. (2.28)

Putting together (2.21), (2.27) and (2.28), we then obtain

36 (p− 4)

∫
M

e(p−1)u |∇u|2g dvg =

∫
M

Θ(2)
g

(
e−2u

)
dvg. (2.29)

Notice that (1.2) and (2.1) give Qe2ug > 0 in M . Moreover, since Sg > 0 in M
and (M, g) is Einstein, we obtain that Qg > 0 in M . Applying Theorem 2.3, it
then follows that Se2ug > 0 in M . Using (1.5) together with the positivity of the

functions v, Sg and Se2ug, we then obtain that Θ
(2)
g

(
e−2u

)
≥ 0 in M . It then follows

from (2.29) that if p < 4, then ∇u ≡ 0 in M and if p = 4, then Θ
(2)
g

(
e−2u

)
≡ 0 in

M . Since in the latter case we assumed that (M, g) is not conformally diffeomorphic
to the standard sphere, as we explained in the introduction, we then obtain that u
is constant. This ends the proof of Theorem 2.1. �
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We now prove Theorem 2.2.

Proof of Theorem 2.2. Let u be a solution of (2.1). Integrating by parts, we then
obtain

A0 :=

∫
M

u−
2

n−4

(
∆gu−

n+ 2

n− 4
u−1 |∇u|2g

)
Pg u dvg

= λ

∫
M

((
p− 2n

n− 4

)
up−

2(n−3)
n−4 |∇u|2g − divg

(
up−

n−2
n−4∇u

))
dvg

= λ

(
p− 2n

n− 4

)∫
M

up−
2(n−3)
n−4 |∇u|2g dvg. (2.30)

Integrating by parts and using (2.7) together with the fact that (M, g) is Einstein,
we also obtain

A1 :=

∫
M

u−
2

n−4

(
∆2

gu∆gu− |∇∆gu|2g +
2

n− 4
u−1 (∇∆gu,∇u)g ∆gu

)
dvg

= −
∫
M

divg

(
u−

2
n−4 (∆gu)∇∆gu

)
dvg

= 0, (2.31)

A2 :=

∫
M

u−
n−2
n−4

(
|∇u|2g ∆2

gu−
(
∇∆gu,∇ |∇u|2g

)
g

+
n− 2

n− 4
u−1 |∇u|2g (∇∆gu,∇u)g

)
dvg

= −
∫
M

divg

(
u−

n−2
n−4 |∇u|2g∇∆gu

)
dvg

= 0, (2.32)

A3 :=

∫
M

u−
n−2
n−4

((
∇∆gu,∇ |∇u|2g

)
g
− 2 (∇∆gu,∇u)g ∆gu+ 2

∣∣∇2u
∣∣2
g

∆gu

− n− 2

n− 4
u−1

(
∇ |∇u|2g ,∇u

)
g
∆gu+

2

n
Sg |∇u|2g ∆gu

)
dvg

=

∫
M

u−
n−2
n−4

((
∇∆gu,∇ |∇u|2g

)
g
−∆g |∇u|2g ∆gu

− n− 2

n− 4
u−1

(
∇ |∇u|2g ,∇u

)
g
∆gu

)
dvg

=

∫
M

divg

(
u−

n−2
n−4 (∆gu)∇ |∇u|2g

)
dvg

= 0, (2.33)

A4 :=

∫
M

u−
n−2
n−4

(
2 (∇∆gu,∇u)g ∆gu− (∆gu)

3 − n− 2

n− 4
u−1 |∇u|2g (∆gu)

2

)
dvg

=

∫
M

divg

(
u−

n−2
n−4 (∆gu)

2∇u
)
dvg

= 0, (2.34)

A5 :=

∫
M

u−
2(n−3)
n−4

(
2 |∇u|2g (∇∆gu,∇u)g − 2 |∇u|2g

∣∣∇2u
∣∣2
g
−
∣∣∇ |∇u|2g ∣∣2g

+
2 (n− 3)

n− 4
u−1 |∇u|2g

(
∇ |∇u|2g ,∇u

)
g
− 2

n
Sg |∇u|4g

)
dvg
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=

∫
M

u−
2(n−3)
n−4

(
|∇u|2g ∆g |∇u|2g −

∣∣∇ |∇u|2g ∣∣2g
+

2 (n− 3)

n− 4
u−1 |∇u|2g

(
∇ |∇u|2g ,∇u

)
g

)
dvg

= −
∫
M

divg

(
u−

2(n−3)
n−4 |∇u|2g∇ |∇u|

2
g

)
dvg

= 0, (2.35)

A6 :=

∫
M

u−
2(n−3)
n−4

(
|∇u|2g (∇∆gu,∇u)g +

(
∇ |∇u|2g ,∇u

)
g
∆gu− |∇u|2g (∆gu)

2

− 2 (n− 3)

n− 4
u−1 |∇u|4g ∆gu

)
dvg

=

∫
M

divg

(
u−

2(n−3)
n−4 |∇u|2g (∆gu)∇u

)
dvg

= 0, (2.36)

A7 :=

∫
M

u−
3n−10
n−4

(
2 |∇u|2g

(
∇ |∇u|2g ,∇u

)
g
− |∇u|4g ∆gu

− 3n− 10

n− 4
u−1 |∇u|6g

)
dvg

=

∫
M

divg

(
u−

3n−10
n−4 |∇u|4g∇u

)
dvg

= 0, (2.37)

A8 :=

∫
M

u−
2

n−4

(
(∇∆gu,∇u)g − (∆gu)

2 − 2

n− 4
u−1 |∇u|2g ∆gu

)
dvg

=

∫
M

divg

(
u−

2
n−4 (∆gu)∇u

)
dvg

= 0, (2.38)

A9 :=

∫
M

u−
2

n−4

(
2 (∇∆gu,∇u)g − 2

∣∣∇2u
∣∣2
g

+
2

n− 4
u−1

(
∇ |∇u|2g ,∇u

)
g

− 2

n
Sg |∇u|2g

)
dvg

=

∫
M

u−
2

n−4

(
∆g |∇u|2g +

2

n− 4
u−1

(
∇ |∇u|2g ,∇u

)
g

)
dvg

= −
∫
M

divg

(
u−

2
n−4∇ |∇u|2g

)
dvg

= 0, (2.39)

A10 :=

∫
M

u−
n−2
n−4

((
∇ |∇u|2g ,∇u

)
g
− |∇u|2g ∆gu−

n− 2

n− 4
u−1 |∇u|4g

)
dvg

=

∫
M

divg

(
u−

n−2
n−4 |∇u|2g∇u

)
dvg

= 0, (2.40)
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A11 :=

∫
M

u
n−6
n−4

(
∆gu−

n− 6

n− 4
u−1 |∇u|2g

)
dvg

= −
∫
M

divg

(
u

n−6
n−4∇u

)
dvg

= 0. (2.41)

Combining (2.30)–(2.41), we then obtain

16 (n− 1)
2

(n− 4)
2

(
p− 2n

n− 4

)∫
M

up−
2(n−3)
n−4 |∇u|2g dvg

=
16 (n− 1)

2

(n− 4)
2 A0 −

16 (n− 1)
2

(n− 4)
2 A1 +

16 (n− 1)
2

(n+ 2)

(n− 4)
3 A2

+
16 (n− 1)

(
n2 − 2

)
(n− 4)

3 A3 +
32 (n− 1)

(
n2 − 2

)
n (n− 4)

3 A4 +
32 (n− 1) (n− 2)

(n− 4)
4 A5

−
16 (n− 1) (n− 2)

(
n3 − n2 − 4n+ 8

)
n (n− 4)

4 A6 +
64 (n− 1)

2
(n− 2)

2

n (n− 4)
5 A7

+
8n (n− 2)

(n− 4)
2 Sg A8 −

4
(
n2 + 2n− 4

)
(n− 4)

2 Sg A9 −
8 (n− 1)

(
n2 − 12

)
(n− 4)

3 Sg A10

− (n− 2) (n+ 2)

n (n− 4)
S2
g A11

=
8

(n− 4)
2

∫
M

u−
2

n−4

(
2 (n− 1)

2 |∇∆gu|2g −
2n (n− 1)

n− 4
u−1

(
∇∆gu,∇ |∇u|2g

)
g

−
4 (n− 1)

(
n3 − n2 − 3n+ 4

)
n (n− 4)

u−1
(
∇∆gu,∇u

)
g
∆gu

+
4 (n− 1)

2
(n− 2) (n+ 4)

n (n− 4)
2 u−2 |∇u|2g (∇∆gu,∇u)g

− 4 (n− 1) (n− 2)

(n− 4)
2 u−2

∣∣∇ |∇u|2g ∣∣2g
−

2 (n− 1) (n− 2) (n+ 2)
(
2n2 − 5n+ 4

)
n (n− 4)

2 u−2
(
∇ |∇u|2g ,∇u

)
g
∆gu

+
8 (n− 1) (n− 2)

(
3n2 − 9n+ 4

)
n (n− 4)

3 u−3 |∇u|2g
(
∇ |∇u|2g ,∇u

)
g

− 8 (n− 1) (n− 2)

(n− 4)
2 u−2 |∇u|2g

∣∣∇2u
∣∣2
g

+
4 (n− 1)

(
n2 − 2

)
n− 4

u−1
∣∣∇2u

∣∣2
g

∆gu

−
4 (n− 1)

(
n2 − 2

)
n (n− 4)

u−1 (∆gu)
3

+
2 (n− 1) (n− 2)

2
(n− 3) (n+ 2)

n (n− 4)
2 u−2 |∇u|2g (∆gu)

2

+
4 (n− 1) (n− 2)

(
n4 − 4n3 − 3n2 + 26n− 28

)
n (n− 4)

3 u−3 |∇u|4g ∆gu

− 8 (n− 1)
2

(n− 2)
2

(3n− 10)

n (n− 4)
4 u−4 |∇u|6g − 4 (n− 1) Sg (∇∆gu,∇u)g
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− n3 − 10n+ 8

n− 4
Sg u

−1
(
∇ |∇u|2g ,∇u

)
g

+
(
n2 + 2n− 4

)
Sg

∣∣∇2u
∣∣2
g

− n2 + 2n− 4

n
Sg (∆gu)

2
+

2
(
n2 − 2n+ 2

)
n− 4

Sg u
−1 |∇u|2g ∆gu

+
(n− 1) (n− 2)

(
n3 − 12n− 8

)
n (n− 4)

2 Sg u
−2 |∇u|4g + 2 S2

g |∇u|
2
g

)
dvg. (2.42)

On the other hand, the transformation law for the scalar curvature under a confor-
mal change of metric gives

S
u

4
n−4 g

= u−
n+2
n−4

(
4 (n− 1)

n− 2
∆g

(
u

n−2
n−4

)
+ Sg u

n−2
n−4

)
= u−

n
n−4

(
4 (n− 1)

n− 4
∆gu−

8 (n− 1)

(n− 4)
2 u
−1 |∇u|2g + Sg u

)
. (2.43)

Differentiating (2.43), we obtain

∇ S
u

4
n−4 g

=
4

n− 4
u−

n
n−4

(
(n− 1)∇∆gu−

n (n− 1)

n− 4
u−1∆gu∇u

− 2 (n− 1)

n− 4
u−1∇ |∇u|2g +

4 (n− 1) (n− 2)

(n− 4)
2 u−2 |∇u|2g∇u− Sg∇u

)
. (2.44)

Moreover, using (1.3), we obtain

E
u

4
n−4 g

= −2 (n− 2)

n− 4
u−1

(
∇2u− n− 2

n− 4
u−1∇u⊗∇u

+
1

n

(
∆gu+

n− 2

n− 4
u−1 |∇u|2g

)
g

)
, (2.45)∣∣∣E

u
4

n−4 g

∣∣∣2
g

=
4 (n− 2)

2

(n− 4)
2 u−2

( ∣∣∇2u
∣∣2
g
− n− 2

n− 4
u−1

(
∇ |∇u|2g ,∇u

)
g
− 1

n
(∆gu)

2

− 2 (n− 2)

n (n− 4)
u−1 |∇u|2g ∆gu+

(n− 1) (n− 2)
2

n (n− 4)
2 u−2 |∇u|4g

)
(2.46)

and ∣∣∣E
u

4
n−4 g

∇
(
u−

4
n−4

)∣∣∣2
g

=
16 (n− 2)

2

(n− 4)
4 u−

4(n−2)
n−4

(∣∣∇ |∇u|2g ∣∣2g
+

4

n

(
∇ |∇u|2g ,∇u

)
g
∆gu−

4 (n− 1) (n− 2)

n (n− 4)
u−1 |∇u|2g

(
∇ |∇u|2g ,∇u

)
g

+
4

n2
|∇u|2g (∆gu)

2 − 8 (n− 1) (n− 2)

n2 (n− 4)
u−1 |∇u|4g ∆gu

+
4 (n− 1)

2
(n− 2)

2

n2 (n− 4)
2 u−2 |∇u|6g

)
. (2.47)

It follows from (2.43)–(2.47) that∣∣∣∣∇ S
u

4
n−4 g

+
3n− 4

2 (n− 2)
E
u

4
n−4 g

∇
(
u−

4
n−4

)∣∣∣∣2
g

− (3n− 4)
2

4 (n− 2)
2

∣∣∣E
u

4
n−4 g

∇
(
u−

4
n−4

)∣∣∣2
g

=
16

(n− 4)
2u
− 2n

n−4

(
(n− 1)

2 |∇∆gu|2g −
n (n− 1)

n− 4
u−1

(
∇∆gu,∇ |∇u|2g

)
g
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−
2 (n− 1)

(
n3 − n2 − 3n+ 4

)
n (n− 4)

u−1
(
∇∆gu,∇u

)
g
∆gu

+
2 (n− 1)

2
(n− 2) (n+ 4)

n (n− 4)
2 u−2 |∇u|2g (∇∆gu,∇u)g

− 2 (n− 1) (n− 2)

(n− 4)
2 u−2

∣∣∇ |∇u|2g ∣∣2g
+

(n− 1) (n− 2)
2

(n+ 4)

n (n− 4)
2 u−2

(
∇ |∇u|2g ,∇u

)
g
∆gu

+
4 (n− 1) (n− 2)

(
2n2 − 7n+ 4

)
n (n− 4)

3 u−3 |∇u|2g
(
∇ |∇u|2g ,∇u

)
g

+
(n− 1) (n− 2)

(
n2 + n− 4

)
(n− 4)

2 u−2 |∇u|2g (∆gu)
2

−
2 (n− 1) (n− 2)

(
n3 + 3n2 − 16n+ 16

)
n (n− 4)

3 u−3 |∇u|4g ∆gu

− 8 (n− 1)
2

(n− 2)
2

n (n− 4)
3 u−4 |∇u|6g − 2 (n− 1) Sg (∇∆gu,∇u)g

+
n

n− 4
Sg u

−1
(
∇ |∇u|2g ,∇u

)
g

+
2
(
n3 − n2 − 3n+ 4

)
n (n− 4)

Sg u
−1 |∇u|2g ∆gu

− 2 (n− 1) (n− 2) (n+ 4)

n (n− 4)
2 Sg u

−2 |∇u|4g + S2
g |∇u|

2
g

)
(2.48)

and∣∣∣E
u

4
n−4 g

∣∣∣2
g

(
2
(
n2 − 2

)
Se2ug u

− 4
n−4 + 4 (n− 1) Sg u

− 8
n−4 + n (n− 1)

2 ∣∣∇(u− 4
n−4
)∣∣2

g

)
=

8 (n− 2)
2

(n− 4)
2 u−

2n
n−4

(
−

4 (n− 1) (n− 2)
(
n2 − 2

)
(n− 4)

2 u−2
(
∇ |∇u|2g ,∇u

)
g
∆gu

+
8 (n− 1) (n− 2)

2

(n− 4)
3 u−3 |∇u|2g

(
∇ |∇u|2g ,∇u

)
g

− 8 (n− 1) (n− 2)

(n− 4)
2 u−2 |∇u|2g

∣∣∇2u
∣∣2
g

+
4 (n− 1)

(
n2 − 2

)
n− 4

u−1
∣∣∇2u

∣∣2
g

∆gu−
4 (n− 1)

(
n2 − 2

)
n (n− 4)

u−1 (∆gu)
3

−
8 (n− 1) (n− 2)

(
n2 − 3

)
n (n− 4)

2 u−2 |∇u|2g (∆gu)
2

+
4 (n− 1) (n− 2)

2 (
n3 − n2 − 2n+ 6

)
n (n− 4)

3 u−3 |∇u|4g ∆gu

− 8 (n− 1)
2

(n− 2)
3

n (n− 4)
4 u−4 |∇u|6g

−
(n− 2)

(
n2 + 2n− 4

)
n− 4

Sg u
−1
(
∇ |∇u|2g ,∇u

)
g
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+
(
n2 + 2n− 4

)
Sg

∣∣∇2u
∣∣2
g
− n2 + 2n− 4

n
Sg (∆gu)

2

−
2 (n− 2)

(
n2 + 2n− 4

)
n (n− 4)

Sg u
−1 |∇u|2g ∆gu

+
(n− 1) (n− 2)

2 (
n2 + 2n− 4

)
n (n− 4)

2 Sg u
−2 |∇u|4g

)
. (2.49)

Putting together (2.42), (2.48) and (2.49), we then obtain

16 (n− 1)
2

(n− 4)
2 λ

(
p− 2n

n− 4

)∫
M

up−
2(n−3)
n−4 |∇u|2g dvg =

∫
M

Θ(2)
g

(
u−

4
n−4

)
dvg.

We then conclude as in the proof of Theorem 2.1. �
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