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Abstract. We investigate the asymptotic behavior of solutions to
a class of weighted quasilinear elliptic equations which arise from
the Euler–Lagrange equation associated with the Caffarelli–Kohn–
Nirenberg inequality. We obtain sharp pointwise estimates which
extend and improve previous results obtained in the unweighted
case. In particular, we show that we can refine the asymptotic
expansion at infinity by using a Kelvin-type transformation, which
reduces the problem to another elliptic-type problem near the ori-
gin. The application of this transformation is straightforward in
the linear case but more delicate in the quasilinear case. In par-
ticular, it is necessary in this case to establish some preliminary
estimates before being able to apply the transformation.

1. Introduction and main results

In this paper, we are interested in the elliptic problem{
− div

(
|x|−ap |∇u|p−2∇u

)
= f (x, u) in Rn

u ∈ D1,p
(
Rn, |x|−ap

)
,

(1.1)

where f : Rn × R→ R is a Caratheodory function satisfying

|f (x, s)| ≤ Λ |x|−bq |s|q−1 for all s ∈ R and a.e. x ∈ Rn (1.2)

for some constant Λ > 0, the numbers p, a, b and q are such that

p > 1, a <
n− p
p

, a ≤ b < a+ 1, q =
np

n− p (1 + a− b)
(1.3)

and D1,p(Rn, |x|−ap) is the completion of C∞c (Rn) with respect to the
norm

‖u‖D1,p(Rn,|x|−ap) :=

(∫
Rn
|x|−ap |∇u|p dx

) 1
p

.

When f (x, u) = Λ |x|−bq |u|q−2 u, (1.1) is the Euler–Lagrange equation
associated with the Caffarelli–Kohn–Nirenberg inequality [3], which
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states, under conditions (1.3), that there exists a positive constant
C = C (n, a, b, p) > 0 such that(∫

Rn
|x|−bq |u|q dx

) 1
q

≤ C

(∫
Rn
|x|−ap |∇u|p dx

) 1
p

(1.4)

for all u ∈ C∞c (Rn).

Our main result is the following:

Theorem 1.1. Let n, p, a, b and q be such that (1.3) holds true,
f : Rn × R → R be a Caratheodory function satisfying (1.2) and u be
a solution of (1.1). Then there exists a constant C0 > 0 such that

|x|µ |u (x)|+ |x|µ+1 |∇u (x)| ≤ C0 ∀x ∈ Rn\B (0, 1) , (1.5)

where µ := (n− p (1 + a)) / (p− 1). If moreover u > 0 and f (x, u) ≥ 0
in Rn, then there exist constants α, δ, C1 > 0 such that

||x|µ u (x)− α| ≤ C1 |x|−δ ∀x ∈ Rn\B (0, 1) (1.6)

and
|x|µ+1∇u (x) + αµ |x|−1 x→ 0 as |x| → ∞. (1.7)

This theorem extends previous results obtained by Sciunzi [26] and
Vétois [36] in the case where a = b = 0. In fact, for positive solutions,
(1.6) and (1.7) improve the estimates obtained in [26,36], where it was
proven that 1/C ≤ |x|µ u (x) , |x|µ+1 |∇u (x)| ≤ C for some constant
C > 0 independent of x ∈ Rn\B (0, 1).

The proof of (1.6) relies in particular on the use of a Kelvin-type
transformation of the form u∗ (y) := |x|µ u (x), where x := |y|−2 y.
This transformation is well-known in the case p = 2 but, as far as
the authors know, it has never been used in the case where p 6= 2.
In contrast with the case where p = 2, the equation is not invariant
under this transformation when p 6= 2. In this paper, we show that we
can still apply this transformation in the case where p 6= 2, however it
is necessary in this case to establish some preliminary estimates (see
(1.8) below) and then the transformation can be used to improve these
estimates and obtain for instance the Hölder-type estimate in (1.6).
We believe that even sharper results could be achieved by this method
if new regularity results were obtained for the weighted elliptic-type
problem that results from this transformation.

We point out that in contrast with the case where a = b = 0, the
solutions of (1.1) are not always radial in the presence of weights. In-
deed, Horiuchi [20] obtained the existence of extremals when a < 0
and a < b < a + 1 (see also Catrina and Wang [5]). However, these
extremals turn out to be non-radial when a < b < h (a) for some func-
tion h such that a < h (a) < a + 1 (see Catrina and Wang [5] and
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Felli and Schneider [17] for p = 2 and Byeon and Wang [1], Caldiroli
and Musina [4] and Smets and Willem [29] for p 6= 2). Caldiroli and
Musina also observed in [4, Section 4] that the Kelvin-type transforma-
tion u∗ (y) := u (x), where x := |y|−2 y, transforms the problem into a
similar weighted elliptic-type problem, where the only difference with
the original problem lies in the exponents of the weights. We note that
this transformation is however different from the one we use in this
paper since we multiply here by the weight |x|µ in order to remove the
singularity at 0 in the transformed function.

When p = 2 and 0 ≤ a ≤ b < a + 1, Chou and Chu [6] obtained
that the positive solutions of (1.1) are always radial, thus extending the
well-known result obtained by Caffarelli, Gidas and Spruck [2] for the
classical Laplace operator i.e. when a = b = 0. The optimal symmetry
result in the case where a < 0 and p = 2 has recently been established
by Dolbeault, Esteban and Loss [13]. We also refer on this topic to the
recent survey article [14] by the same authors.

In the case where a = b = 0 and p 6= 2, the pointwise estimates
obtained by Sciunzi [26] and Vétois [36] have found application for
establishing symmetry results for the solutions of (1.1); see Damascelli
and Ramaswamy [10] and Vétois [36] for p < 2 and Sciunzi [26] for
p > 2. These results have recently been extended by Oliva, Sciunzi
and Vaira [23] to a class of p-Laplace equations with Hardy potential,
using pointwise estimates established by Xiang [37, 38] in this case.
These results have also been extended, under a different method, still
relying on pointwise estimates, by Ciraolo, Figalli and Roncoroni [7] to
a class of p-Laplace-type equations in an anisotropic setting. We also
refer to the work by Esposito [15] which treats the limit case where
p = n and the nonlinearity is exponential, and where, again, pointwise
estimates play a crucial role.

The interest of this paper is therefore twofold. On the one hand,
we believe that like in the aforementioned papers, our results will be
useful to establish new symmetry results. On the other hand, since, as
mentioned above, there exist situations where non-radial solutions ex-
ist, we are interested in developing a method to obtain sharp pointwise
estimates for the solutions in this case.

We prove Theorem 1.1 through several steps. In Section 2, we obtain
global boundedness results in L∞ (Rn) and weak Lebesgue spaces. In
Section 3, we establish (1.5) by using suitable changes of scales and
Harnack-type inequalities. In Section 4, we prove that

||x|µ u (x)− α|+
∣∣|x|µ+1∇u (x) + αµ |x|−1 x

∣∣→ 0 as |x| → ∞ (1.8)

by using an approach based on comparison arguments. In Section 5,
we then reduce the problem at infinity to another elliptic-type problem
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near the origin by using a Kelvin-type transformation. More precisely,
we prove the following:

Proposition 1.1. Let n, p, a, b, q, µ and f be as in Theorem 1.1,
R0 > 0 and u be a weak solution of the equation

− div
(
|x|−ap |∇u|p−2∇u

)
= f (x, u) in Rn\B (0, R0) . (1.9)

Assume that there exists a constant α > 0 such that (1.8) holds true.
Let r0 := 1/R0 and u∗ : B (0, r0) \ {0} → R be the function defined by

u∗ (y) := |y|−µ u
(
|y|−2 y

)
∀y ∈ B (0, r0) . (1.10)

Then there exists r ∈ (0, r0) such that u∗ is a weak solution (see Defi-
nition 1.1 below) to an equation of the form

− div (A (y, u∗,∇u∗)) = B (y, u∗,∇u∗) in B (0, r) (1.11)

for some Caratheodory functions A : B (0, r) × R × Rn → Rn and
B : B (0, r)× R× Rn → R satisfying

|A (y, z, ξ)| ≤ C |y|γ |ξ|
A (y, z, ξ) · ξ ≥ C−1 |y|γ |ξ|2

|B (y, z, ξ)| ≤ C
(
|y|γ |ξ|2 + |y|γ

′ )
,

(1.12)

where

γ := µ+ 2− n, γ′ :=
µq

p
− n (1.13)

and C is a positive constant independent of (y, z, ξ) ∈ B (0, r)×R×Rn.

The definition of weak solution of (1.11) is as follows:

Definition 1.1. For every r > 0 and γ, γ′ > −n, we define the space
H1,2 (B (0, r) , |y|γ) as the completion of C∞ (B (0, r)) with respect to
the norm

‖u‖H1,2(B(0,r),|y|γ) =

(∫
B(0,r)

|y|γ |u|2 dy +

∫
B(0,r)

|y|γ |∇u|2 dy
) 1

2

.

Given two Caratheodory functions A : B (0, r) × R × Rn → Rn and
B : B (0, r) × R × Rn → R satisfying (1.12), we say that u is a weak
solution of the equation

− div (A (y, u,∇u)) = B (y, u,∇u) in B (0, r)

if u ∈ H1,2 (B (0, r) , |y|γ) and∫
B(0,r)

(A (y, u,∇u) · ∇ϕ−B (y, u,∇u)ϕ) dy = 0 ∀ϕ ∈ C∞0 (B (0, r)) .
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It is well known that in the case where f (x, u) = Λ |x|−bq |u|q−2 u
and p = 2, the problem (1.1) is invariant under the transformation
u 7→ u∗. With Proposition 1.1, we show that a similar transformation
can still be applied in the general case provided we first establish (1.8).
It is interesting to remark than even in the unweighted case where
a = b = 0, the problem that we obtain after transformation is actually
of weighted-type when p 6= 2. At the end of Section 5, we then combine
Proposition 1.1 with an Hölder continuity result of Stredulinski [30] to
obtain that (1.6) holds true, thus completing the proof of Theorem 1.1.
For other references on the Hölder continuity of solutions to weighted
elliptic equations, let us mention for instance the works of Colorado
and Peral [8], Di Fazio and Zamboni [12], Felli and Schneider [18] and
Monticelli, Rodney and Wheeden [24].

Remark 1.1. It is possible to prove a more general version of Propo-
sition 1.1 in the case where u∗ is defined as

u∗ (y) := |y|−µ u
(
|y|−σ y

)
∀y ∈ B (0, r0)

for some constant σ > 1. In this case, we obtain that u∗ solves
an equation of the form (1.11) for some Caratheodory functions A :
B (0, r) × R × Rn → Rn and B : B (0, r) × R × Rn → R satisfying
(1.12) with

γ := (σ − 1)µ+ 2− n and γ′ := (σ − 1)µ
q

p
− n.

In particular, when n ≥ 3, we can choose

σ := 1 +
n− 2

µ
,

which gives γ = 0. Furthermore, in this case, a straightforward com-
putation gives

γ′ = (n− 2)
q

p
− n,

which is greater than −2 since q > p. In particular, this allows to apply
the Hölder continuity result of Trudinger [32, Theorem 5.2] to obtain
that (1.6) holds true.

2. Regularity and boundedness results

We start by introducing some suitable function spaces.

Definition 2.1. For every s > 0, γ ∈ R and measurable set Ω ⊆ Rn,
we define Ls (Ω, |x|γ) as the set of all measurable functions u : Ω→ R
such that

‖u‖Ls(Ω,|x|γ) :=

(∫
Ω

|x|γ |u|s dx
) 1

s

<∞.

Furthermore, we denote Ls (Ω) := Ls (Ω, 1).
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Definition 2.2. For every s > 0, γ ∈ R and measurable set Ω ⊆ Rn,
we define Ls,∞ (Ω, |x|γ) as the set of all measurable functions u : Ω→ R
such that

‖u‖Ls,∞(Ω,|x|γ) := sup
h>0

(
h

(∫
Wh

|x|γ dx
) 1

s

)
<∞,

where
Wh := {x ∈ Rn : |u (x)| > h} . (2.1)

Furthermore, we denote Ls,∞ (Ω) := Ls,∞ (Ω, 1).

As a first step in the proof of Theorem 1.1, we prove the following:

Step 2.1. Let n, p, a, b, q and f be as in Theorem 1.1. Then every
solution of (1.1) belongs to L∞ (Rn).

Proof. Here we adapt some ideas which originates from Trudinger [33].

Let u be a solution of (1.1). We begin with proving that |u|β/p ∈
Lq
(
Rn, |x|−bq

)
for all β > p. For every h > 0, we define

ϕh (u) := min
(
|u| , h

)β−p
p .

By using ϕh (u)p u as a test function, we obtain∫
Rn
|x|−ap |∇u|p

(
hβ−pχWh

+ (β − p+ 1) |u|β−p χRn\Wh

)
dx

=

∫
Rn
f (x, u)ϕh (u)p u dx, (2.2)

where Wh is as in (2.1) and χWh
and χRn\Wh

are the characteristic
functions of the sets Wh and Rn\Wh, respectively. Since β > p, it
follows from (1.2) and (2.2) that∫

Rn
|x|−ap |∇u|p ϕh (u)p dx ≤ Λ

∫
Rn
|x|−bq |u|q ϕh (u)p dx. (2.3)

On the other hand, for every k ∈ (0, h), we have∫
Rn
|x|−bq |u|q ϕh (u)p dx

≤ kβ−p
∫
Rn
|x|−bq |u|q dx+

∫
Wk

|x|−bq |u|q ϕh (u)p dx. (2.4)

Since q > p, by using Hölder’s inequality, we obtain∫
Wk

|x|−bq |u|q ϕh (u)p dx

≤
(∫

Wk

|x|−bq |u|q dx
) q−p

q
(∫

Wk

|x|−bq |u|q ϕh (u)q dx

) p
q

. (2.5)
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By applying the Caffarelli–Kohn–Nirenberg inequality to the function
ϕh (u)u, we obtain(∫

Rn
|x|−bq |u|q ϕh (u)q dx

) p
q

≤ K

∫
Rn
|x|−ap |∇u|p

(
hβ−pχWh

+ (β/p)p |u|β−p χRn\Wh

)
dx

≤ K (β/p)p
∫
Rn
|x|−ap |∇u|p ϕh (u)p dx (2.6)

for some constant K = K (n, a, b, p) > 0. It follows from (2.3)–(2.6)
that∫

Rn
|x|−ap |∇u|p ϕh (u)p dx ≤ Λ

(
kβ−p

∫
Rn
|x|−bq |u|q dx

+K (β/p)p
(∫

Wk

|x|−bq |u|q dx
) q−p

q
∫
Rn
|x|−ap |∇u|p ϕh (u)p dx

)
. (2.7)

Since u ∈ Lq
(
Rn, |x|−bq

)
and q > p, we have

lim
k→+∞

(∫
Wk

|x|−bq |u|q dx
) q−p

q

= 0.

Therefore, by choosing k sufficiently large (depending on u), it follows
from (2.7) that∫

Rn
|x|−ap |∇u|p ϕh (u)p dx ≤ 2Λkβ−p

∫
Rn
|x|−bq |u|q dx,

which together with (2.6) gives(∫
Rn
|x|−bq |u|q ϕh (u)q dx

) p
q

≤ 2Λkβ−pK (β/p)p
∫
Rn
|x|−bq |u|q dx.

(2.8)

Since u ∈ Lq
(
Rn, |x|−bq

)
, by passing to the limit as h → +∞ into

(2.8), we then obtain that |u|β/p ∈ Lq
(
Rn, |x|−bq

)
. Now we prove that

u ∈ L∞ (Rn). For every h > 0, we define

ψh (u) := sgn (u) max
(
|u| − h, 0

)
,

where sgn (u) denotes the sign of u. By using ψh (u) as a test function,
we obtain ∫

Wh

|x|−ap |∇u|p dx =

∫
Wh

f (x, u)ψh (u) dx, (2.9)
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where Wh is as in (2.1). For every β > p, it follows from (1.2), (2.9)
and Hölder’s inequality that∫

Wh

|x|−ap |∇u|p dx ≤ Λ

(∫
Wh

|x|−bq dx
)1− 1

q
− p(q−1)

βq

×
(∫

Wh

|x|−bq |u|
βq
p dx

) p(q−1)
βq

(∫
Wh

|x|−bq |ψh (u)|q dx
) 1

q

. (2.10)

By applying the Caffarelli–Kohn–Nirenberg inequality, we obtain(∫
Wh

|x|−bq |ψh (u)|q dx
) p

q

≤ K

∫
Wh

|x|−ap |∇u|p dx. (2.11)

Since |u|β/p ∈ Lq
(
Rn, |x|−bq

)
, it follows from (2.10) and (2.11) that∫

Wh

|x|−bq |ψh (u)|q dx ≤ C

(∫
Wh

|x|−bq dx
) q

p−1(1− 1
q
− p(q−1)

βq )
(2.12)

for some constant C > 0 independent of h. It follows from Hölder’s
inequality and (2.12) that∫

Wh

|x|−bq |ψh (u)| dx

≤
(∫

Wh

|x|−bq dx
) q−1

q
(∫

Wh

|x|−bq |ψh (u)|q dx
) 1

q

≤ C
1
q

(∫
Wh

|x|−bq dx
) q−1

q
+ 1
p−1(1− 1

q
− p(q−1)

βq )
. (2.13)

On the other hand, by applying Tonelli’s theorem, we obtain∫
Wh

|x|−bq |ψh (u)| dx =

∫ ∞
h

∫
Ws

|x|−bq dx ds. (2.14)

Furthermore, by choosing β large enough so that β > p (q − 1) / (q − p),
we obtain

q − 1

q
+

1

p− 1

(
1− 1

q
− p (q − 1)

βq

)
> 1. (2.15)

Therefore, since u ∈ Lq
(
Rn, |x|−bq

)
, it follows from (2.13)–(2.15) that∫

Wh

|x|−bq dx = 0 for large h > 0

and so u ∈ L∞ (Rn). This ends the proof of Step 2.1. �

We then obtain the following:

Step 2.2. Let n, p, a, b, q and f be as in Theorem 1.1. Then every
solution of (1.1) belongs to C1 (Rn\ {0}).
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Proof. This step follows directly from Step 2.1 together with the regu-
larity results of DiBenedetto [11] and Tolksdorf [31] (see also Evans [16],
Lewis [21], Uhlenbeck [34] and Ural′ceva [35] for previous results on this
question). �

The next result is concerned with the boundedness of solutions of
(1.1) in weak Lebesgue spaces.

Step 2.3. Let n, p, a, b, q and f be as in Theorem 1.1. Then every
solution of (1.1) belongs to Lq−q/p,∞

(
Rn, |x|−bq

)
.

Proof. Let u be a non-trivial solution of (1.1). For every h > 0, we
define

τh (u) := sgn (u) min (|u| , h) ,

where sgn (u) denotes the sign of u. By testing (1.1) with τh (u) and
using (1.2), we obtain∫

Rn\Wh

|x|−ap |∇u|p dx ≤ Λ

(∫
Rn\Wh

|x|−bq |u|q dx

+ h

∫
Wh

|x|−bq |u|q−1 dx

)
, (2.16)

where Wh is as in (2.1). On the other hand, straightforward computa-
tions give∫

Rn\Wh

|x|−bq |u|q dx =

∫
Rn
|x|−bq |τh (u)|q dx− hq

∫
Wh

|x|−bq dx (2.17)

and∫
Wh

|x|−bq |u|q−1 dx = (q − 1)

∫ ∞
h

(∫
Ws

|x|−bq dx
)
sq−2ds

+ hq−1

∫
Wh

|x|−bq dx. (2.18)

Plugging (2.17) and (2.18) into (2.16), we obtain∫
Rn\Wh

|x|−ap |∇u|p dx ≤ Λ

(∫
Rn
|x|−bq |τh (u)|q dx

+ (q − 1)h

∫ ∞
h

(∫
Ws

|x|−bq dx
)
sq−2ds

)
. (2.19)

The Caffarelli–Kohn–Nirenberg inequality yields∫
Rn
|x|−bq |τh (u)|q dx ≤ K

(∫
Rn\Wh

|x|−ap |∇u|p dx
) q

p

(2.20)
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for some constant K = K (n, a, b, p) > 0. Since u ∈ D1,p
(
Rn, |x|−ap

)
,

it follows from (2.17), (2.19) and (2.20) that there exists a constant
C => 0 such that

hq
∫
Wh

|x|−bq dx ≤
∫
Rn
|x|−bq |τh (u)|q dx

≤ C

(
h

∫ ∞
h

(∫
Ws

|x|−bq dx
)
sq−2ds

) q
p

for small h > 0. (2.21)

We now define

G (h) :=

(∫ ∞
h

g (s) ds

) p−q
p

, where g (s) := sq−2

∫
Ws

|x|−bq dx.

In particular, G is positive, non-decreasing and locally absolutely con-
tinuous in

(
0, ‖u‖L∞(Rn)

)
with derivative

G′(h) =
q − p
p

(∫ ∞
h

g (s) ds

)− q
p

g (h) for a.e. h ∈ (0, ‖u‖L∞(Rn)).

By using (2.21), we then obtain

G′ (h) ≤ q − p
p

Ch
q−2p
p for small h > 0. (2.22)

By integrating (2.22), we obtain

G (h)−G (0) ≤ Ch
q−p
p for small h > 0, (2.23)

where G (0) stands for the limit of G (h) as h→ 0. On the other hand,
by using (2.18) together with dominated convergence, we obtain

(q − 1)hG (h)
−p
q−p ≤ h

∫
Wh

|x|−bq |u|q−1 dx = o (1) as h→ 0.

This coupled with (2.23) yields that G (0) > 0. By using (2.21) and
since G is non-decreasing, we then obtain

h
q(p−1)
p

∫
Wh

|x|−bq dx ≤ CG (h)−
q
q−p ≤ CG (0)−

q
q−p for small h > 0,

which implies that u ∈ Lq−q/p,∞
(
Rn, |x|−bq

)
. This ends the proof of

Step 2.3. �

3. The upper bound estimates

This section is devoted to the proof of (1.5). We begin with estab-
lishing a decay estimate, which is weaker than (1.5), but which will
serve as a preliminary step in the proof of (1.5).
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Step 3.1. Let n, p, a, b, q and f be as in Theorem 1.1. Let u be a
solution of (1.1). Then there exists a constant K0 > 0 such that

|x|ν |u (x)|+ |x|ν+1 |∇u (x)| ≤ K0 ∀x ∈ Rn\B (0, 1/2) , (3.1)

where ν := (n− p (1 + a)) /p.

Proof. For every R > 0, we define

uR (x) := Rνu (Rx) ∀x ∈ Rn.

As is easily seen, in order to prove (3.1), it suffices to show that

|uR (x)|+ |∇uR (x)| ≤ K0 ∀R > 1/2, x ∈ Sn (3.2)

for some constant K0 > 0. By using (1.1), we obtain

−∆puR = Rν(p−1)+p
(
|Rx|ap f (Rx, u (Rx))

− ap |Rx|−2 |∇u (Rx)|p−2 〈∇u (Rx) , Rx〉
)

= Rν(p−1)+(a+1)p |x|ap f
(
Rx,R−νuR

)
− ap |x|−2 |∇uR|p−2 〈∇uR, x〉 =: gR (x, uR,∇uR) in Rn\ {0} . (3.3)

By using (1.2) together with straightforward computations, we obtain

|gR (x, uR,∇uR)| ≤ ΛRν(p−q)+(a+1)p−bq |x|ap−bq |uR|q−1

+ |a| p |x|−1 |∇uR|p−1 = Λ |x|ap−bq |uR|q−1 + |a| p |x|−1 |∇uR|p−1 (3.4)

for a.e. x ∈ Rn. Assuming by contradiction that (3.2) does not hold
true, we obtain that there exist sequences (Rk)k∈N in (1/2,∞) and
(yk)k∈N in Sn such that

|uRk (yk)|+ |∇uRk (yk)| ≥ k ∀k ∈ Rn. (3.5)

By using a doubling property (see Poláčik, Quittner and Souplet [25,
Lemma 5.1]), we then obtain that there exists a sequence (xk)k∈N in
B (0, 2) \B (0, 1/2) such that

λk :=
(
|uRk (xk)|

q
n + |∇uRk (xk)|

q
n+q

)−1

→ 0 as k →∞, (3.6)

B (xk, 2kλk) ⊂ B (0, 2) \B (0, 1/2) ∀k ∈ N (3.7)

and
|ũk (y)|

q
n + |∇ũk (y)|

q
n+q ≤ 2 ∀k ∈ N, y ∈ B (0, k) , (3.8)

where

ũk (y) := λ
n
q

k uRk (xk + λky) .

By using (3.3), we obtain

−∆pũk = λ
n
q

(p−1)+p

k gRk (xk + λky, uRk (xk + λky) ,∇uRk (xk + λky))

= λ
n
q

(p−1)+p

k gRk

(
xk + λky, λ

−n
q

k ũk, λ
−n+q

q

k ∇ũk
)
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in Rn\ {−xk/λk}. Furthermore, by using (3.4)–(3.8) and observing
that n

q
(p− q) + p = p (b− a) ≥ 0, we obtain∣∣∣λnq (p−1)+p

k gRk

(
xk + λky, λ

−n
q

k ũk, λ
−n+q

q

k ∇ũk
)∣∣∣

≤ Λλ
p(b−a)
k |xk + λky|ap−bq |ũk|q−1+λk |a| p |xk + λky|−1 |∇ũk|p−1 ≤ C

for a.e. y ∈ B (0, k), for some constant C > 0 independent of k. Since
|xk| /λk → ∞ as k → ∞, by applying the results of DiBenedetto [11]

and Tolksdorf [31], we then obtain that (ũk)k∈N is bounded in C1,θ
loc (Rn)

for some θ ∈ (0, 1) and so (ũk)k∈N converges up to a subsequence in
C1

loc (Rn) to some function ũ∞ ∈ C1 (Rn). Remark that by definition
of ũk, we have

|ũk (0)|
q
n + |∇ũk (0)|

q
n+q = 1. (3.9)

By passing to the limit as k →∞ into (3.9), we then obtain

|ũ∞ (0)|
q
n + |∇ũ∞ (0)|

q
n+q = 1. (3.10)

On the other hand, by using (3.7) together with straightforward com-
putations, we obtain∫

B(0,k)

|ũk|q dy =

∫
B(xk,kλk)

|uRk |
q dx ≤

∫
B(0,2)\B(0,1/2)

|uRk |
q dx

≤ 2|b|q
∫
B(0,2)\B(0,1/2)

|x|−bq |uRk |
q dx

≤ 2|b|q
∫
B(0,2Rk)\B(0,Rk/2)

|x|−bq |u|q dx. (3.11)

Since Rk > 1/2 and u ∈ C1 (Rn\ {0}), it follows from (3.6) and (3.7)

that Rk → ∞ as k → ∞. Since u ∈ Lq
(
Rn, |x|−bq

)
, it then follows

from (3.11) that ũk → 0 in Lqloc (Rn) and so ũ∞ ≡ 0 in Rn. This is in
contradiction with (3.10). This ends the proof of Step 3.1. �

The next step is as follows:

Step 3.2. Let n, p, a, b, q and f be as in Theorem 1.1. Let u be a
solution of (1.1). Let K0 be as in Step 3.1. Then v := |u| satisfies the
inequality

−∆pv ≤ g (x, v,∇v) in Rn\B (0, 1/2) , (3.12)

where

g (x, v,∇v) := ΛKq−p
0 |x|−p vp−1 + |a| p |x|−1 |∇v|p−1 . (3.13)

The inequality (3.12) is to be understood in the sense that∫
Rn
|∇v|p−2 〈∇v,∇ϕ〉 dx ≤

∫
Rn
g (x, v,∇v)ϕdx

for all ϕ ∈ C∞c (Rn\B (0, 1/2)) such that ϕ ≥ 0 in Rn\B (0, 1/2).
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Proof. As is easily seen, the equation satisfied by u can be rewritten as

−∆pu = |x|ap f (x, u)− ap |x|−2 |∇u|p−2 〈∇u, x〉 in Rn\ {0} . (3.14)

By using (1.2) and (3.1) together with straightforward computations,
we obtain∣∣|x|ap f (x, u)− ap |x|−2 |∇u|p−2 〈∇u, x〉

∣∣ ≤ g (x, v,∇v) (3.15)

for a.e. x ∈ B (0, 1/2), where g (x, v,∇v) is as in (3.13). The in-
equality (3.12) then follows from (3.14) and (3.15) by applying an ex-
tended version of Kato’s inequality [22] for the p–Laplace operator (see
Cuesta Leon [9, Proposition 3.2]). This ends the proof of Step 3.2. �

We can now prove (1.5) by using Steps 3.1 and 3.2.

Proof of (1.5). Let u be a solution of (1.1) and v := |u|. For every
R > 0, we define

uR (x) := Rµu (Rx) and vR (x) := Rµv (Rx) ∀x ∈ Rn, (3.16)

where µ is as in (1.6). As is easily seen, in order to prove (1.5), it
suffices to show that

vR (x) + |∇uR (x)| ≤ C0 ∀R > 1, x ∈ Sn (3.17)

for some constant C0 > 0. By using (3.12) and remarking that

Rn−pag
(
Rx, v (Rx) ,∇v (Rx)

)
= g (x, vR (x) ,∇vR (x)) ,

we obtain that vR satisfies the inequality

−∆pvR ≤ g (x, vR,∇vR) in Rn\B (0, 1/ (2R)) .

We can then apply a weak Harnack inequality (see Trudinger [32, The-
orem 1.3]), which gives that for every ε > 0, there exists a constant
cε > 0 such that

‖vR‖L∞(B(0,2)\B(0,1/2)) ≤ cε ‖vR‖Lp−1+ε(B(0,3)\B(0,1/3)) (3.18)

for all R > 1. Since q− q/p > p−1, we can choose ε so that p−1+ ε <
q − q/p. We then obtain

‖vR‖Lp−1+ε(B(0,3)\B(0,1/3)) ≤ c ‖vR‖Lq−q/p,∞(B(0,3)\B(0,1/3)) (3.19)

for some constant c = c (n, p, a, b) > 0. Furthermore, straightforward
computations give

‖vR‖q−q/pLq−q/p,∞(B(0,3)\B(0,1/3))
= R−bq ‖u‖q−q/p

Lq−q/p,∞(B(0,3R)\B(0,R/3))

≤ 3|b|q ‖u‖q−q/p
Lq−q/p,∞(Rn,|x|−bq)

. (3.20)

Since u ∈ Lq−q/p,∞
(
Rn, |x|−bq

)
, it follows from (3.18)–(3.20) that

‖vR‖L∞(B(0,2)\B(0,1/2)) ≤ C (3.21)
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for some constant C > 0 independent of R > 1. We then infer (3.17)
from (3.21) by applying the gradient estimates of DiBenedetto [11] and
Tolksdorf [31]. This ends the proof of (1.5). �

4. The first-order term

This section is devoted to the proof of (1.8). We begin with proving
the following:

Step 4.1. Let n, p, a, b, q, µ and f be as in Theorem 1.1. Let u be a
solution of (1.1) such that u > 0 and f (x, u) ≥ 0 in Rn. Then there
exists a constant c0 > 0 such that

u (x) ≥ c0 |x|−µ ∀x ∈ Rn\B (0, 1) . (4.1)

Proof. For every R > 0, we let uR be the function defined as in (3.16).
As is easily seen, in order to prove (4.1), it suffices to show that

uR (x) ≥ c0 ∀R > 1, x ∈ Sn (4.2)

for some constant c0 > 0. By using (1.1), we obtain

− div
(
|x|−ap |∇uR|p−2∇uR

)
= Rnf

(
Rx,R−µuR

)
in Rn. (4.3)

Furthermore, by using (1.2) and (1.5), we obtain

|x|µ uR (x) + |x|µ+1 |∇uR (x)| ≤ C0 (4.4)

and∣∣Rnf
(
Rx,R−µuR

)∣∣ ≤ ΛCq−p
0 Rn−bq−µ(q−1) |x|−bq−µ(q−p) up−1

R (4.5)

for a.e. x ∈ Rn\B (0, 1/R). By remarking that

n− bq − µ (q − 1) = −µ (q − p)
p

< 0 (4.6)

and applying the Harnack inequality (see Serrin [27]), it then follows
from (4.3)–(4.6) that

sup
B(0,4)\B(0,1/4)

uR ≤ C inf
B(0,4)\B(0,1/4)

uR (4.7)

for some constant C > 0 independent of R > 1. Now we assume by
contradiction that (4.2) does not hold true. Since u is positive and
continuous in Rn\ {0}, it then follows from (4.7) that there exists a
sequence (Rk)k∈N such that

Rk →∞ and sup
B(0,4)\B(0,1/4)

uRk → 0 as k →∞. (4.8)

Since uRk satisfies (4.3)–(4.6), by applying the Hölder estimates of
DiBenedetto [11] and Tolksdorf [31], we obtain that (uRk)k∈N is bounded

in C1,θ (B (0, 3) \B (0, 1/3)) for some θ ∈ (0, 1). It then follows from
(4.8) that up to a subsequence uRk → 0 in C1 (B (0, 2) \B (0, 1/2)). Let
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η ∈ C1 (Rn) be a cutoff function such that η ≡ 1 in B (0, 1/2), η ≡ 0
in Rn\B (0, 2) and 0 ≤ η ≤ 1 in B (0, 2) \B (0, 1/2). By testing (1.1)
with ηk (x) := η (x/Rk) and using Hölder’s inequality, we obtain∫

Rn
f (x, u) ηk dx =

∫
Rn
|x|−ap |∇u|p−2 〈∇u,∇ηk〉 dx

=

∫
Rn
|x|−ap |∇uRk |

p−2 〈∇uRk ,∇η〉 dx

≤ 2|a|p ‖∇uRk‖
p−1
Lp(B(0,2)\B(0,1/2)) ‖∇η‖Lp(B(0,2)\B(0,1/2)) . (4.9)

Since up to a subsequence uRk → 0 in C1 (B (0, 2) \B (0, 1/2)), it fol-
lows from (4.9) that∫

Rn
f (x, u) dx = lim

k→∞

∫
Rn
f (x, u) ηk dx = 0. (4.10)

Since f (x, u) ≥ 0 in Rn, it follows from (4.10) that f (x, u) ≡ 0 in Rn.
Since u is bounded in Rn, by applying a weighted version of Liouville’s
theorem (see Heinonen, Kilpeläınen and Martio [19, Theorem 6.10]), we
then obtain that u is constant, which is in contradiction with (1.5) and
the fact that u is positive in Rn. This ends the proof of Step 4.1. �

The next step is as follows:

Step 4.2. Let n, p, a, b, q, µ and f be as in Theorem 1.1. Let u be a
solution of (1.1) such that u > 0 and f (x, u) ≥ 0 in Rn. Then there
exists a constant α > 0 such that

lim
R→∞

ΓR (u) = α, where ΓR (u) := min
x∈Sn

(Rµu (Rx)) . (4.11)

Proof. By applying Step 4.1, we obtain that

α := lim inf
R→∞

ΓR (u) > 0.

Assume by contradiction that (4.11) is not true, namely that

lim sup
R→∞

ΓR (u) > α.

We then obtain that there exist R1, R2 > 0 such that R1 < R2 and

β := min
R1<R<R2

(ΓR (u)) < min (ΓR1 (u) ,ΓR2 (u)) .

It follows that

min
x∈A

(u (x)− wβ (x)) = 0 < min
x∈∂A

(u (x)− wβ (x)) , (4.12)

where A := B (0, R2) \B (0, R1) and

wβ (x) := β |x|−µ ∀x ∈ Rn\ {0} .
By observing that

div
(
|x|−ap |∇u|p−2∇u

)
≤ 0 = div

(
|x|−ap |∇wβ|p−2∇wβ

)
in Rn\ {0} ,



16 SHAYA SHAKERIAN AND JÉRÔME VÉTOIS

we then obtain that (4.12) contradicts the strict comparison principle
of Serrin [28, Theorem 1]. This ends the proof of Step 4.2. �

We can now end the proof of (1.8) by using Steps 4.1 and 4.2.

Proof of (1.8). Let u be a solution of (1.1) such that u > 0 and
f (x, u) ≥ 0 in Rn. By applying Step 4.2, we obtain that (4.11) holds
true. We will prove that (1.8) holds true with α given by (4.11). As-
sume by contradiction that (1.8) is not true. Then there exists a se-
quence (Rk)k∈N such that Rk →∞ and

lim sup
k→∞

sup
x∈Sn

(|uRk (x)− α|+ |∇uRk (x) + αµx|) > 0, (4.13)

where uRk is as in (3.16). We recall that uRk satisfies (4.3)–(4.6). By
applying the Hölder estimates of DiBenedetto [11] and Tolksdorf [31],
we then obtain that for every compact set Ω ⊂ Rn\ {0}, there exists
θΩ ∈ (0, 1) such that (uRk)k∈N is bounded in C1,θΩ (Ω) and so there
exists a subsequence of (uRk)k∈N which converges in C1 (Ω) to some
function u∞ ∈ C1 (Rn\ {0}). By passing to the limit as k → ∞ into
(4.3) and using (4.4)–(4.6), we obtain that u∞ satisfies the equation

div
(
|x|−ap |∇u∞|p−2∇u∞

)
= 0 in Rn\ {0} .

By using (4.11) and observing that Γr (uRk) = ΓRkr (u), we obtain

Γr (u∞) = lim
k→∞

Γr (uRk) = α ∀r > 0.

By another application of the strict comparison principle [28, Theo-
rem 1], we then obtain

u∞ (x) = α |x|−µ ∀x ∈ Rn\ {0} ,

which contradicts (4.13). This ends the proof of (1.8). �

5. The Kelvin-type transformation

This section is devoted to the proof of Proposition 1.1 and its appli-
cation to the proof of (1.6).

Proof of Proposition 1.1. Let n, p, a, b, q, µ and f be as in Theorem 1.1
and u be a weak solution of (1.9). Assume that there exists a constant
α > 0 such that (1.8) holds true. It follows from (1.8) that if R is
chosen large enough, then u > 0 and |∇u| > 0 in Rn \ B (0, R). Let
r := 1/R and u∗ be the function defined as in (1.10). Since u ∈
C1 (Rn \B (0, R)), we have u∗ ∈ C1

(
B (0, r)\ {0}

)
. In what follows,

we will use the notations ∇x, divx and ∇y, divy for the gradient and



WEIGHTED CRITICAL p–LAPLACE EQUATIONS 17

divergence with respect to x and y, respectively. It follows from (1.8)
that u∗ can be extended to a continuous function in B (0, r) and

|∇yu∗| =
∣∣−µ |y|−µ−2 uy + |y|−µ−2∇xu− 2 |y|−µ−4 〈∇xu, y〉 y

∣∣
=
∣∣−µ |x|µ ux+ |x|µ+2∇xu− 2 |x|µ 〈∇xu, x〉x

∣∣
= o (|x|) = o

(
|y|−1) (5.1)

as |y| → 0, where x := |y|−2 y. By letting γ be as in (1.13) and remark-
ing that γ−2 > −n, it follows from (5.1) that u∗ ∈ H1,2 (B (0, r) , |y|γ).
Furthermore, for every ϕ ∈ C∞c (B (0, r) \ {0}) straightforward compu-
tations give∫

B(0,r)

|x|−ap |∇xu|p−2 〈∇xu,∇x

(
|x|−µ ϕ

)〉
dx =

n∑
i,j=1

∫
B(0,r)

|x|2n−2−ap

× |∇xu|p−2 ∂xiu
(
δij − 2 |x|−2 xixj

)
∂yj
(
|x|−µ ϕ

)
dy

=

∫
B(0,r)

|x|2n−2−ap−µ |∇xu|p−2 〈∇xu− 2 |x|−2 〈∇xu, x〉x,∇yϕ
〉
dy

− µ
∫
B(0,r)

|x|2n−2−ap−µ |∇xu|p−2 〈∇xu, x〉ϕdy. (5.2)

We now compute

∇xu = −µ |x|−µ−2 u∗x+ |x|−µ−2∇yu∗ − 2 |x|−µ−4 〈∇yu∗, x〉x
= −µ |y|µ u∗y + |y|µ+2∇yu∗ − 2 |y|µ 〈∇yu∗, y〉y (5.3)

and

〈∇xu, x〉 = −µ |y|µ u∗ − |y|µ 〈∇yu∗, y〉. (5.4)

It follows from (5.3) and (5.4) that

∇xu− 2 |x|−2 〈∇xu, x〉x = µ |y|µ u∗y + |y|µ+2∇yu∗ (5.5)

and

|∇xu|2 = µ2 |y|2µ+2 u2
∗+ 2µ |y|2µ+2 u∗〈∇yu∗, y〉+ |y|2µ+4 |∇yu∗|2 . (5.6)

By using (5.4)–(5.6) together with the fact that µ (p− 1) + (a+ 1) p =
n, we obtain

|x|2n−2−ap−µ |∇xu|p−2 (∇xu− 2 |x|−2 〈∇xu, x〉x
)

= |y|γ
(
µ2u2

∗ + 2µu∗〈∇yu∗, y〉+ |∇yu∗|2 |y|2
) p−2

2

×
(
µ |y|−2 u∗y +∇yu∗

)
(5.7)
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and

|x|2n−2−ap−µ |∇xu|p−2 〈∇xu, x〉

= − |y|γ−2 (µ2u2
∗ + 2µu∗〈∇yu∗, y〉+ |∇yu∗|2 |y|2

) p−2
2

× (µu∗ + 〈∇yu∗, y〉) . (5.8)

Let Ã : B (0, r)×(0,∞)×Rn → Rn and B̃ : B (0, r)×(0,∞)×Rn → R
be the Caratheodory functions defined by

Ã (y, z, ξ) := |y|γ E (y, z, ξ)
p−2

2
(
µ |y|−2 zy + ξ

)
− µp−1 |y|γ−2 zp−1y

and

B̃ (y, s, ξ) := −µ |y|γ−2E (y, z, ξ)
p−2

2 (µz + 〈ξ, y〉)
+ (p− 1)µp−1 |y|γ−2 zp−2〈ξ, y〉+ µp |y|γ−2 zp−1

+ |y|µ−2n f
(
|y|−2 y, |y|µ z

)
for all (y, z, ξ) ∈ B (0, r)× (0,∞)× Rn, where

E (y, z, ξ) := µ2z2 + 2µz〈ξ, y〉+ |ξ|2 |y|2 .
We claim that u∗ solves the equation

− divy Ã (y, u∗,∇yu∗) = B̃ (y, u∗,∇yu∗) in B (0, r) \ {0}.
Indeed, by using (5.2), (5.7) and (5.8) together with the fact that u
solves (1.1), we obtain

divy Ã (y, u∗,∇yu∗)+B̃ (y, u∗,∇yu∗) = H (y, u∗,∇yu∗) in B (0, r)\{0},
where

H (y, u∗,∇yu∗) = − divy
(
µp−1 |y|γ−2 up−1

∗ y
)

+ (p− 1)µp−1 |y|γ−2 up−2
∗ 〈∇yu∗, y〉+ µp |y|γ−2 up−1

∗ .

Straightforward computations then give H (y, u∗,∇yu∗) = 0, thus prov-
ing our claim. We now let A : B (0, r) × R × Rn → Rn and B :
B (0, r)× R× Rn → R be the Caratheodory functions defined by

A (y, z, ξ) := Ã (y, g0 (z) , g (y, ξ))

+ µp−2 |y|γ g0 (z)p−2 ((p− 2) |y|−2 〈ξ − g (y, ξ) , y〉 y + ξ − g (y, ξ)
)

and
B (y, z, ξ) := B̃ (y, g0 (z) , g (y, ξ))

for all (y, z, ξ) ∈ B (0, r)× R× Rn, where

g0 (z) :=


α/2 if z < α/2

z if α/2 ≤ z ≤ 3α/2

3α/2 if z > 3α/2
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and

g (y, ξ) := min

(
1,

δ

|y| |ξ|

)
ξ.

Here δ is a positive constant that will be chosen later. It follows from
(1.8) and (5.1) that if R is chosen large enough i.e. r is chosen small
enough, then g0 (u∗) = u∗ and g (y,∇yu∗) = ∇yu∗ in B (0, r) \ {0} and
so u∗ solves the equation

− divy A (y, u∗,∇yu∗) = B (y, u∗,∇yu∗) in B (0, r) \ {0}. (5.9)

Furthermore, since α/2 ≤ g0 (z) ≤ 3α/2 and |g (y, ξ)| ≤ δ/ |y|, straight-
forward estimates give

E (y, g0 (z) , g (y, ξ))
p−2

2 = µp−2g0 (z)p−2

+ (p− 2)µp−3g0 (z)p−3 〈g (y, ξ) , y〉+ O
(
|y|2 |g (y, ξ)|2

)
,

which then yields

A (y, z, ξ) = µp−2 |y|γ g0 (z)p−2 ((p− 2) |y|−2 〈ξ, y〉y + ξ
)

+ O
(
|y|γ+1 |g (y, ξ)|2

)
(5.10)

and

B (y, z, ξ) = O
(
|y|γ |g (y, ξ)|2

)
+ |y|µ−2n f

(
|y|−2 y, |y|µ g0 (z)

)
(5.11)

uniformly in (y, z, ξ) ∈ B (0, r)×R×Rn. By using (5.11) together with
(1.2) and remarking that (b+ µ) q = µq/p + n and |g (y, ξ)| ≤ |ξ|, we
then obtain

B (y, z, ξ) = O
(
|y|γ |g (y, ξ)|2 + |y|γ

′ )
= O

(
|y|γ |ξ|2 + |y|γ

′ )
,

where γ and γ′ are as in (1.13). On the other hand, by using (5.10),
we obtain

|A (y, z, ξ)| = O
(
|y|γ |ξ|+ |y|γ+1 |g (y, ξ)|2

)
= O (|y|γ |ξ|)

and

A (y, z, ξ) · ξ = µp−2 |y|γ g0 (z)p−2 ((p− 2) |y|−2 〈ξ, y〉2 + |ξ|2
)

+ O
(
|y|γ+1 |g (y, ξ)|2 |ξ|

)
≥ µp−2 |y|γ g0 (z)p−2 (min (p− 1, 1) + O (δ)) |ξ|2

≥ C−1 |y|γ |ξ|2

for some constant C > 0 independent of (y, z, ξ) ∈ B (0, r) × R × Rn,
provided we choose δ small enough. This proves that (1.12) holds true.
It remains to show that u∗ is a weak solution of (1.11). Let η ∈ C1 (Rn)
be a cutoff function such that η ≡ 1 in B (0, 1/2), η ≡ 0 in Rn\B (0, 1)
and 0 ≤ η ≤ 1 in B (0, 1) \B (0, 1/2). For every ε > 0, let ηε ∈ C1 (Rn)
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be the function defined by ηε (y) = η (y/ε) for all y ∈ Rn. For every
ϕ ∈ C∞0 (B (0, r)), by using (1− ηε)ϕ as a test function, we obtain∫

B(0,r)

(1− ηε) (A (y, u∗,∇u∗) · ∇ϕ−B (y, u∗,∇u∗)ϕ) dy

=

∫
B(0,r)

(A (y, u∗,∇u∗) · ∇ηε)ϕdy. (5.12)

On the other hand, by using (1.12) and (5.1) together with our defini-
tion of ηε, we obtain∫

B(0,r)

ηεA (y, u∗,∇u∗) · ∇ϕdy = O

(∫
B(0,ε)

|y|γ−1 dy

)
= O

(
εγ+n−1

)
= o (1) , (5.13)∫

B(0,r)

ηεB (y, u∗,∇u∗)ϕdy = O

(∫
B(0,ε)

(
|y|γ−2 + |y|γ

′ )
dy

)
= O

(
εγ+n−2 + εγ

′+n
)

= o (1) (5.14)

and ∫
B(0,r)

(A (y, u∗,∇u∗) · ∇ηε)ϕdy = O

(
1

ε

∫
B(0,ε)

|y|γ−1 dy

)
= O

(
εγ+n−2

)
= o (1) (5.15)

as ε→ 0. It follows from (5.12)–(5.15) that∫
B(0,r)

(A (y, u∗,∇u∗) · ∇ϕ−B (y, u∗,∇u∗)ϕ) dy = 0.

This proves that u∗ is a weak solution of (1.11). This ends the proof
of Proposition 1.1. �

We can now end the proof of (1.6) and therefore of Theorem 1.1 by
putting together (1.8), Proposition 1.1 and a result of Stredulinski [30].

End of proof of (1.6) and of Theorem 1.1. Let u be a solution of (1.1)
such that u > 0 and f (x, u) ≥ 0 in Rn. Let u∗ be as in (1.10) and α be
given by (1.8). By applying Proposition 1.1 together with the Hölder
continuity result of Stredulinski [30, Theorem 3.1.15] (combined with
[30, Theorem 2.2.56 and Lemma 3.1.7]), we then obtain that u∗ is
Hölder continuous in B (0, r) provided there exist constants C, σ > 0
and s ∈ [1, 2) such that∫

B(y0,ρ)

|y|γ
′
|ϕ|s dy ≤ Cρs+σ−2

∫
B(y0,ρ)

|y|γ |∇ϕ|s dy (5.16)

for all ϕ ∈ C∞0 (B (y0, ρ)), y0 ∈ Rn and ρ > 0 such that B (y0, ρ) ⊂
B (0, r), where γ and γ′ are as in (5.1). By remarking that γ′ > γ−2 and
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applying a weighted version of the Hardy inequality, which corresponds
to the limit case of the Caffarelli–Kohn–Nirenberg inequality [3], we
obtain that (5.16) holds true with s = 2 − σ provided we choose σ
small enough. Therefore, we obtain that u∗ is Hölder continuous in
B (0, r). In particular, we obtain that there exist constants C, δ > 0
such that

|u∗ (y)− α| = |u∗ (y)− u∗ (0)| ≤ C |y|δ ∀y ∈ B (0, r) . (5.17)

By putting together (5.17) with the definition of u∗, we then obtain
that (1.6) holds true. This ends the proof of Theorem 1.1. �
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