A PRIORI ESTIMATES FOR SOLUTIONS OF
ANISOTROPIC ELLIPTIC EQUATIONS

JEROME VETOIS

ABSTRACT. We prove universal, pointwise, a priori estimates for nonnegative solutions of
anisotropic nonlinear elliptic equations.

1. INTRODUCTION

In dimension n > 2, given J = (p1y...,pn) with p; > 1 for ¢ = 1,...,n, the anisotropic
Laplace operator A is defined by

A?u:§:;1Vﬁu, (1.1)
i=1 v

where VPiu = |0u/0z;|" "2 9u/dz;. 1In this paper, we consider nonnegative solutions of
anisotropic equations of the type

—Agu = [(u) (1.2)
in open subsets of R, where f is continuous on R, . Anisotropic equations of type (1.2) have
received much attention in recent years. They have been investigated by Alves—El Hamidi [1],
Antontsev—Shmarev [3-7], Bendahmane-Karlsen [10-12], Bendahmane-Langlais—Saad [13],
Cianchi [19], D’Ambrosio [21], Fragala—Gazzola-Kawohl [25], Fragala-Gazzola-Lieberman [26],
El Hamidi-Rakotoson [22,23], El Hamidi-Vétois [24], Li [33], Lieberman [34, 35], Mihailescu—
Pucci-Radulescu [38, 39], Mihailescu-Radulescu-Tersian [40], and Vétois [51]. They have
strong physical background. Time evolution versions of these equations emerge, for instance,
from the mathematical description of the dynamics of fluids in anisotropic media when the
conductivities of the media are different in different directions. We refer to the extensive
books by Antontsev—Diaz—Shmarev [2] and Bear [9] for discussions in this direction. They
also appear in biology as a model for the propagation of epidemic diseases in heterogeneous
domains (see, for instance, Bendahmane—Karlsen [10] and Bendahmane-Langlais—Saad [13]).

In connection with the anisotropic Laplace operator (1.1), for any open subset {2 in R™, we
define the Sobolev space

W (@) = {ue (@i gt € (@) Wil

where for any real number p > 1, L} (2) stands for the space of all measurable functions on
(2 which belong to LP ({2') for all compact subsets (2’ of (2. Possible references on anisotropic
Sobolev spaces are Besov [14], Haskovec—Schmeiser [30], Kruzhkov—Kolodii [31], Kruzhkov—
Korolev [32], Lu [37], Nikol'skil [45], Rékosnik [47,48], and Troisi [50]. We consider in this
paper weak solutions in VV&;? (£2) N L2, (£2) of equations of type (1.2). In case p; > 2 for all
i=1,...,n, we know by Lieberman [34,35] that if f is continuous, then any weak solution in

WhP ()N L

s > (£2) of equation (1.2) belongs to W,>>° (£2), and in particular, is continuous.
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In this paper, we aim to find universal, pointwise, a priori estimates for solutions of equations
like (1.2). By universal, we mean that the estimate does not depend on the solution. In the
classical case of the isotropic Laplace operator, it is well known since the work of Gidas—
Spruck [28] that such estimates can be derived via rescaling arguments from a Liouville result.
We state in Theorem 1.1 our a priori estimates in the anisotropic case. A large part of the
paper relies on establishing Liouville results associated with the nonlinear anisotropic equation
(1.2). Theorem 1.2, see Section 4, is actually a Liouville result of the type of Mitidieri—
Pohozaev [41-44], where we prove nonexistence for inequalities. Theorem 1.3, see Section 5,
is a Liouville result of the type of Gidas-Spruck [27] and Serrin—Zou [49], where we prove
nonexistence for equations.

We define the critical exponent p., (?) to be the supremum of the real numbers () such

that for any ¢ in (p4, @), where p, = max (pi,...,p,), there does not exist any nontrivial,
nonnegative solution in I/Vl(l)’c7 (R™) N Ly, (R™) of the equation
—Apu =i, (1.3)

where A\ is any positive real number, with the convention that p., (?) = p, in case such a
real number () does not exist. As a remark, by an easy change of variable, we can take A = 1
in equation (1.3). In case p; =2 for ¢ = 1,...,n, namely in the case of the isotropic Laplace
operator, by Gidas-Spruck [27], we get pe, = 400 in case n = 2 and pe, = 2n/ (n — 2) in case
n > 3. In the anisotropic regime, our a prior: estimate states as follows.

Theorem 1.1. Letn > 2, P = (p1y---,Pn), and q be such that 2 < p; < ¢ < Per (?) for
1=1,...,n. Let X be a positive real number and f be a continuous function on Ry satisfying
fw) =u"t (A +o(1)) (1.4)

as u — +oo. Then there ezist two positive constants Ay = Ay (n, 7, f) and Ay = Ay (n, 7, f)
such that for any open subset 2 of R" satisfying {2 # R", any nonnegative solution u in

VV&? (2) N L2 (£2) of equation (1.2) satisfies

loc
n i -1
< 1 . — . q—lpi
u(x) < Ay + Ay (yle%fﬂzl |z — yil ) (1.5)

for all points x in 2. Moreover, we can take Ay = 0 in case f (u) = Au?™!.

When p, (?) > py, Theorem 1.1 provides, in particular, universal, a priori bounds on com-
pact subsets of {2 for nonnegative weak solutions of equation (1.2). Such nontrivial solutions
are proved to exist by Fragala-Gazzola—Kawohl [25] when f (u) = Aud~1.

We are now led to the difficult question of estimating the critical exponent p, (?) As
already mentioned, this question was solved by Gidas—Spruck [27] in the case of the classical
Laplace operator. We also refer to Serrin—Zou [49] for an extension of this result in the
context of the p-Laplace operator. In Theorems 1.2 and 1.3, we state our results concerning
the anisotropic case. In case Y | p%- > 1, we let p, be the exponent defined by

n—1
P == 1 1
Zi:lpii_l

and p* be the anisotropic Sobolev critical exponent (see, for instance, Troisi [50]), namely
n

V== (1.7)
Zi:l p%- —1

(1.6)

We then get the following result.
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Theorem 1.2. Letn > 2 and ? = (p1,...,pn) be such thatp; > 1 fori=1,... ,n, and let p,
and p* be as in (1.6) and (1.7). There hold pe (T') = 400 in case Y1, pl@- <1, pe < per (7)

n L n

in case p, > py and Y., - > 1, and finally, pe (?) < p*in case p* > py and Y, pii > 1.

We can state another result as follows where we prove that pe, (?) is a small perturbation
of the isotropic critical exponent np/ (n — p) as 7 = (p,...,p)with2<p<(n+1)/2. A
more general nonexistence result is given and commented in Section 4.

Theorem 1.3. Let n > 3. For any real number p in [2,(n + 1) /2], there holds
np

-D

asp; — p with p; > 2 fori=1,...,n, where ¥ = (P1y- -y Dn)-

Per (?) —
n

2. SOME COMMENTS

Under the notations in Theorem 1.1, increasing if necessary the constant As, in the isotropic
case p; = p for i = 1,...,n, we can rewrite estimate (1.5) as

u () < Ay + Agd (z,002) 7 | (2.1)

where d (z,0§2) is the distance from the point = to the boundary of the domain 2. In case
p = 2, namely in the case of the classical Laplace operator, some important references related
to the a priori estimate (2.1) are Bidaut-Véron—Véron [17], Dancer [20], Gidas—Spruck [27],
Polacik—Quittner—Souplet [46], and Serrin-Zou [49] (the last two references are concerned
with the p-Laplace operator, but in case p = 2, they both extend the results in [17, 20, 27]
to more general nonlinearities). Our proof of Theorem 1.1 is inspired by the recent work of
Polécik—Quittner—Souplet [46] on the derivation of a priori estimates from Liouville results.
This technique is based on rescaling arguments together with a so-called doubling property.

We observe that in the anisotropic case, the possible behaviors, allowed by our estimate
(1.5), of the nonnegative weak solutions of equation (1.2) near a boundary depend on the
geometry of this boundary, on its orientation, and not only on the distance to it as in (2.1).

As an interesting particular case, Theorem 1.1 provides a priori estimates near an isolated
singularity. We point out that when no anisotropy is involved, namely when p; = p for
i=1,...,n,if n > pand p, < ¢ < p*, where p, = p(n—1)/(n—p) and p* = np/ (n — p),
then an explicit nonnegative weak solution of equation (1.3) in R"\{0} with A = 1 is given by

u(r) =Cpp (Z |x¢|“> ,
=1
where - )
oo _p (q(n—p)—pn—1))>
n,p — _p .
(q —p) q—p

As is easily seen, in this case, the growth near the boundary in our estimate (1.5) is sharp.
Whereas, these estimates are no more sharp in the case of the equation —Au = u?~! when
2 < g < 2,. In this case, the local behavior near an isolated singularity was established by
Lions [36] for ¢ in (2,2,) (see Bidaut-Véron [15] for an extension to the p-Laplace operator)
and by Aviles [8] for ¢ = 2,.

Our last remark on Theorem 1.1 is that the nonexistence of nontrivial, nonnegative weak
solution of equation (1.3) on the whole Euclidean space is a necessary condition. Indeed, if
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such a solution exists, then by rescaling, we can construct a family of solutions with arbitrarily
large maximum values on a compact subset of a domain (2, and this contradicts (1.5).

3. PROOF OF THEOREM 1.1

In this section, we let 7 = (p1,-..,pn) and ¢ satisfy 1 < p; < ¢ < per (?) fori=1,...,n,
and f be a continuous function on R, satisfying (1.4) for some positive real number A. Our
proof of Theorem 1.1 is inspired by the recent work of Pola¢ik—Quittner—Souplet [46].

Proof of Theorem 1.1. We proceed by contradiction and assume that for any natural number
a and any A\, > 0, there exist an open subset {2, of R" such that 2, # R", a point x,, in {2,,
and a nonnegative solution u, in W," 7 (£2,) N L2, (£2,) of equation (1.2) such that

loc

Ug (2 )>>\( (yé%aZ' |m)_1>. (3.1)

We define a distance function d , on R" by

n pi(a—py)

dpq (T, y) = Z i — yi| P+ lomri)

=1

For any point y in R™ and for any positive real number r, we let By? 4(r) be the ball of center

y and radius r with respect to the metric d3 ,. For any «, letting A\, = (2a)P+/\47P) in (3.1),
it easily follows that

7 Py —4q
B <2aua (To) Pt ) C £2,.

Moreover, since f is continuous, by Lieberman [34,35], we get that the function u, belongs

to Wb (£2,), and in particular, is continuous. The doubling property (see Polacik—Quittner—

loc

Souplet [46, Lemma 5.1]) then yields the existence of a point y, in {2, such that there hold

py—q
Bfa’q <2aua (Ya) ™ ) C 2, g (za) < Ua (Ya) ,
. NP @2
and  u, (y) <29 uy (yo) Yy € B (aua (Ya) P+ >
For any «, we set
- (33)
e e (a) |

By (3.1) and (3.2), since A, — 400, we get that there holds p, — 0 as o — +o0o0. We then
define the anisotropic affine transformation 7, : R — R" by

P1—4q Pn—=q

T @)= (1 =gy ot (=10, ).

We let 1, be the function defined on f?a = T4 (£2,) by

~ —1
Uy = [aUq O T, .

Since u, is a weak solution of (1.2) on (2,, we get that @, is a weak solution of the equation
At = i () (3.4)
in (2,. Moreover, by (3.2), we get
- Py
BP1(20) C 20, Ua(0)=1, and @a(y) <277 Yy BI(a). (3.5)
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By (1.4) and since the function f is continuous, we get that there exist two positive constants
C1 and Cs such that for any nonnegative real number u, there holds

|f (w)] < Cy + Cout™". (3.6)

It follows from (3.5) and (3.6) that the right-hand side in (3.4) is uniformly bounded on
BO?’q (). By Lieberman [34,35], we then get

||aa||wl,oo(3(?a4(a/2)) S C (37)

for all a, where C' is a positive constant independent of . Passing if necessary to a subse-
quence, we may assume that for any bounded subset 2" of R", the sequence (u,), converges
to a function u strongly in C° (£2') and weakly in Wh* (£2') for all real numbers s > 1. Since
the functions u, are nonnegative, so is u. We claim that (u,), converges in fact strongly to
the function w in W% (') for all real numbers s > 1. In order to prove this claim, we let
¢ be a nonnegative smooth function with compact support in R", and for « large enough so
that the support of ¢ is included in the set {2,, we multiply equation (3.4) by the function
(uq — ) p, and we integrate by parts. It follows that

Ot [P 8ua Fia O e
Z/ Ox; (Gﬂci a 83:1) pdr = /~ (e ia) (o = W) il
o, [P 2 aua . 0y
—Z / i (1, — ) 5 dr. (38)

By (3.6), we can write
[ P f (1 a) (o — ) pda
0

= O (87 + 1Tl otsuppon ) 1 llcon e = Bl 1 suppin ) — 0 (3:9)

as a — +o0o. By Holder’s inequality, we get

O |2 Ot~ . D
a_ a d
Ol |7 7" ‘ Oy
<7z, i — @ll 2y suppoyy — 0 (3:10)
H 8381 LPi (Supp(p)) 6@ L2Pi (R L?Pi(Supp(y))

as a — +o00. By (3.8)—(3.10), we get

Z / Ot [P Oty (OUle O
as a — —+00. Independently, since the sequence (u,), converges weakly to the function @ in
WL7 (Supp (¢)), there holds

P2 9u O, /
pdr —

/ o
5. | 0; Ox; Ox;

as o« — +oo fori=1,...,n. By (3.11) and (3.12), we get

Z/ Otig["* O, | OU [ 0\ (0 0w\ ., o

) wdr — 0 (3.11)

p’L
edx (3.12)

ox;

ox; ox; B ox;
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as o — 4o00. Since this estimate holds true for all nonnegative smooth functions ¢ with
compact support in R", it easily follows that

/ ( |72 o, ‘aa pi=2 aa) (aﬂa aa)
— de — 0
Q/

ox; ox; ox; ox; ox; B ox;

as o« — +oo for i = 1,...,n and for all bounded subsets 2 of R™. In particular, up to a

subsequence, we get
o PR ou\ (0, Ou
— 0 ae. inR"
( al’l) (8:151 8371) — a-c

89@-
as a — +00. As an easy consequence, for i = 1,...,n, the functions du, /Jz; converge almost
everywhere to Ju/0x; in R" as o — +o00. By (3.7), it follows that for any bounded subset
2" of R™, the functions %, converge strongly to @ in W1 (£2') for all real numbers s > 1 as
a — +00, and our claim is proved. For any smooth function ¢ with compact support in R",
we then get

Pi—2 g~
L0 Oy,

81‘1-

du
3@-

O, |2 o ou | o
= % pd d 1
as o« — +oo fori = 1,...,n. By (1.4), (3.6), and since the sequence (U, ), converges to @ in
C° (Supp (¢)), we then get
ﬁ p (o e (2)) pdz — /\/ a’ pda . (3.14)

It follows from (3.4), (3.13), and (3.14) that the function u is a nonnegative solution in
—
Wh? (R") N L2, (R") of equation (1.3). By assumption, we then get that @ is identically zero

loc loc
which is in contradiction with @ (0) = 1. This ends the proof of Theorem 1.1 in the general case
where the function f satisfies (1.4). In case f (u) = Au?"!, in the same way, by contradiction
and by the doubling property, we construct, for any «, a nonnegative weak solution u, of
equation (1.2) in an open set {2, of R" and a point y, in {2, such that (3.2) holds true. The
difference here is that up to a subsequence, it occurs that u, > C > 0 for all «, where p, is

as in (3.3). However, since we now get

ﬁ pef (po e (7)) pdz — A/ ul pdr,
Qa

n

the above proof carries over the same. O

4. PROOF OF THEOREM 1.2

In this section, we let n > 2, 7 = (p1,...,pn) satisfy p; > 1 for i = 1,...,n. More than
Theorem 1.2, we show the nonexistence of solutions of inequalities of the type
—Apu > " in R, (4.1)
where A is a positive real number. More precisely, we prove that inequality (4.1) does not
admit any nontrivial nonnegative solution in W,:” (R™) when there holds p; < ¢ < 400 in case
S p%- <1l,and p; < ¢ <p.incasep, >pyand Y ., p%- > 1, where the exponent p, is as in
(1.6). In the context of the p-Laplace operator, this result is due to Mitidieri-Pohozaev [41,
42]. Extensions to more general classes of operators can also be found in Bidaut-Véron—
Pohozaev [16], Birindelli-Demengel [18], D’Ambrosio [21], and Mitidieri-Pohozaev [41-44].
In particular, in D’Ambrosio [21], the case of the anisotropic Laplace operator is explicitly
treated as a particular case among very general classes of operators.
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Proof of Theorem 1.2. In case p* > p.and Y -, pil_ > 1, we know by El Hamidi-Rakotoson [23]
that equation (1.3) admits at least one nontrivial nonnegative weak solution in R™. It follows
that in this case, there holds p., (?) < p*. We now have to prove that any nonnegative

solution in ;" 7 (R™) of equation (1.3) (or, more generally, of inequality (4.1)) is identically

loc

Z€ro When there holds p; < ¢ < 400 incase Y . 15 S 1, and py < q < p, in case p, > p, and

S 5, > 1, where the exponent p, is as in (1. 6) We proceed by contradiction and assume
that such a solutlon u is not identically zero. In case u is not positive, we take us = u + ¢
instead of w in the following arguments, and we pass to the limit as § — 0. We let ¢ be a
nonnegative smooth function with compact support in R™ to be chosen later on so that the
integrals below are finite. By multiplying inequality (4.1) by u ¢y, where ¢ is a positive real

number to be fixed small later on, and by integrating by parts, we get

- b - ou P72 du Oy
—e—1 —e—1 _
/nuq8 gpdx+5iz_1:/nu6 i gpsz;/nus&Ei axzaxld
" ou Pt %)
< € dr. (4.2
Fori=1,...,nand C' > 0, Young’s inequality gives
ou || 9y C dp "
e dr < & pi—e=1 | 9P 1-pig
/nu 0x; 0x; Di /nu ox; 14 v
+ 2 - sz-ll/ ue! a; pdr  (4.3)
and
. oo |7 pi—e—1
pi—e—1 | ¥ 1=pi g < —C’ g1 1
/nu ox; v o g—e—1 Y par
P pi(g—e—1) ( :
q—Dp; e+1—p; 90 q—p; 1_Pilg—=e—1) 1
- (e a—ri (] 4.4
# e [ o - )

for e < p; — 1. By (4.2)-(4.4), we get that there exists a positive constant C' independent of
u and ¢ such that there holds

/ qulgpdx—i-aZ/ T gg gpd:c<C’Z/
" =1 /R" g "

Independently, multiplying inequality (4.1) by ¢ and integrating by parts yield

pi(g—e—1)
q—p; 1_pilg=e=l)

@ eri dr. (4.5)

ox;

pi—1

_ - ou [P ou Op - ou Op
hut™ pdr < dx dz . 4.6
/nu gpx_;/n ox; ox,; 0x; ;/n o0x; ox; o (4.6)
For ¢« =1,...,n, Holder’s inequality gives
ou [P g ou 7" o
dr < —et d
% </n uPi—(E+1) gz gpl_pidx> ! (4.7)
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and
(p;i—1)(e+1)
. a pi ‘ q—1
/ uPimDE+1) Nad @1*Pzdx < uqflgpdzl:
R™ al’z Supp%
) g—1—(p;—1)(e+1)
prila— q—1
O | =1=(p;=D(+1) _ pi(a—1)
/ 8¢ @ T DED g (4.8)
for e < %. By (4.5)—(4.8), we get
i—1
n n pjlg—e—1) Lpi
1 aw a—p; 1_pj(q—€—1)
uwtodr < C E g Er @ P dx (4.9)
" i1 \ =1 R 1O
a1-(pDietl) (pi=1)(c+1)

pi(g—1) p;(g—1) o
a—1-(p;=D(e+) pi(ga—1) 1 pila=1)
X %) a=1=(p; =D (+D) (. ud™ gpdx
R™ Suppg—“2

for some positive constant C' independent of v and ¢. We then let n be a smooth cutoff
function satisfying n = 1 in [0,1], 0 < < 11in [1,2], and n = 0 in [1,+00), and for any
positive real number R, we let @i be the function defined on R™ by

K

er(z)=n i(Rm@'qxi)? :

=1

dp
8w,~

where & is a positive real number large enough so that the integrals above are finite. By (4.9),
we get that there exists a positive constant C' independent of u and R such that there holds
(pi—=1)(e+1)

/ u? tppdr
p;(g—1)

n n (pi=1)(e+1)—p;(a—1)
< CZR("‘l_(Zizl 1)) B (/ ; uqlgoRd:c) . (4.10)
i=1 Supp SR

Oz

It follows that
/ ul tppdr < C’R<E?:1 5 et (4.11)
R’IL

for some positive constant C' independent of v and R. Since, by assumption,

~ 1
d ——1)g<n-—1, (4.12)
i=1 Pi

passing to the limit as R — 400 into (4.11) then gives

/ ultdr =0 (4.13)

in case inequality (4.12) is strict, and

/ wi e < 400
R’VL
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in case equality holds in (4.12). In this last case, passing to the limit into (4.10) as R — 400
also yields (4.13). It follows from (4.13) that the function u is identically zero. This ends the
proof of Theorem 1.2. O

5. A NONEXISTENCE RESULT FOR EQUATION (1.3)

This section is devoted to the following result.

Theorem 5.1. Letn > 2, 7 = (p1y.-,pn) and q be such that 2 < p; < q fori=1,...,n.
Assume that there exist some real numbers a, by, cij, Nij, ij, and v; satisfying

(pj = Dby =(pi — Db, Aij = —Nji, Zﬂfk + Z/ﬁk — 2p5p5 =1, (5.1)
ki k#j
and
1 2
vi=5(pi+p;—1=2p; > mi)a+ (= 1) by = 2pici iz — pipi (5.2)
k£
for all distinct indices 1,7 = 1,...,n, and such that
1
a>max(2—2p_,3—2q,2—n+(Z——Q)q), (5.3)
i=1 1
A; <0, B;j;<0, and V,->pi(q—1)2/ﬁk, (5.4)
ki

where p_ = min (p1,...,pn),

A= bl (a—l)(

Vi
B3 a2 ) + 2 59

2pi — 1 Pi = ki

and

1

Bij = . (a=1)((pi (pi = 1) +pj (pj — 1)) a+2(pi +pj) (p; — 1) bij)
il
+ (pi — ;) (@ = 1) Aij + bizbji + 2c5¢5ip505:  (5-6)

for all distinct indices i,j = 1,...,n. Then equation (1.3) does not admit any nontrivial,
nonnegative solution in I/Vli’? (R™) N Lyg. (R™).

Assuming Theorem 5.1, we can prove Theorem 1.3. The proof of Theorem 5.1 is left to
Sections 5 and 6.

Proof of Theorem 1.3. We let n > 3 and p be a real number in [2, (n + 1) /2]. By El Hamidi-
Rakotoson [23], there exists at least one nontrivial, nonnegative weak solution of equation
(1.3) when Y7 , 1/p; > 1, ¢ = p*, and p; < p*, where p* is as in (1.7). It follows

lim sup per (F) < —0
n—p

as p; — p for i = 1,...,n. It remains to prove that for any real number ¢ in (p,p*), where
p* =np/ (n—p),if 7 is close enough to (p,...,p) and satisfies p; > 2 for i = 1,...,n, then
there exist some real numbers a, b;;, ¢;j, Aij, ftij, and v; satisfying (5.1)—(5.4). In the isotropic
case P = (p,...,p), we claim that, by setting ¢4 = ¢ + d for d > 0 small enough, (5.1)—(5.4)
hold true when

1/v2n ifi<yg, -1 -1
Aij =0, Mz'j:{/ J p(n—1)(g—1)

Vv, = > 5.7
—1/V2n ifi>j, 2n (57
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(2n—(n~|—1)p)(qd—1)+2\/n(p—1)(q—1)(np—(n—p)qd)

N 5.8
“ (n+1)p—mn ’ (58)
and b;; = ¢;; = b, where
~1) 1 — (1 —
y_ =@ —-1)=vnp-1(g=1)(wp—(n-pa) (5.9)
(n+ 1)p

In this case, the equalities in (5.1) and (5.2) follow from straightforward computations. More-
over, for d > 0 small enough, we compute

vi>p(q_12)n(n_1> =plg—1)> u
ki

and
1, (=1 p-1)(0n-p(w-—p)d

Ai=>B;; = . >0,
2((n+1)p—n)

2

Hence, (5.4) holds true. As a remark, when d = 0, we get the equalities in (5.4) instead of the
inequalities. Still in the isotropic case, we now prove that the inequality in (5.3) holds true
when d = 0, and thus when d is small. Taking into account that

2n—(n+1)p)(g—1)
n+1)p—
and that p < ¢ < p*, one can easily see that it suffices to prove the extremal inequalities

a >

(2n —(Elnjll))pp)_(p* ) > max (2 —2p,2 —n+ n=2p)p" _jp) p*) (5.10)
and
(2n —(7(17:_—1—1)1;172(29 D3 o (5.11)
Since 2 < p < (n+ 1) /2, we compute
(2n _(Ezn jll))pp)—(i* D o= % >0, (5.12)
We also compute
(2n _(Ezn Ll))pp)—(i* —1 (2 . W‘pﬂ) - >0 (5.13)
and
Cn-(ntDp)p=Y) o o (rFIE-D-D)Frtle-D+1 o 0

(n+1)p—mn (n+1)p—mn
Then (5.10) and (5.11) follow from (5.12)—(5.14). This ends the proof of our claim, namely
that in the isotropic case ' = (p,...,p), (5.1)-(5.4) hold true with the above definition of a,

bij, Cij, Aij, Hij, and v;. In the anisotropic case, we can choose the real numbers y;; and a as
n (5.7) and (5.8), and take

bj —Pi pz
bi': ba i‘:ba )\1_ a,
J Cij J 2D

1 /2n—-1 i
Vi:—(n pi—l)a—|—<£+p—1)b,
2 n n

and
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where a and b are as in (5.8) and (5.9). One then easily checks that (5.1) and (5.2) hold true,
and if 7 is close enough to (p,...,p), then we also get (5.3) and (5.4). This ends the proof of
Theorem 1.3. U

In the context of the p-Laplace operator, the case where the exponent p is large (p > n/2 if
n>3and p> (14+V17) /4 if n = 2) is treated in Serrin-Zou [49] by using a Harnack-type
inequality, and the case 1 < p < 2 is treated by using [49, Proposition 8.1]. We lack both of
these two properties in the anisotropic case.

We are now led to consider the set
Q (7) = {q € (ps+,+00) ; Ja,bij, cij, Nij, pij, vi € Rs.t. (5.1)-(5.4)}.
We define the exponent

Pmax (7) =sup{g € Q(P) 5 (p1,9) C Q(V)}
in case the set Q ﬁ?) is not empty and ppax (?) = p, otherwise. By Theorem 5.1, we get
)

Prax (?) < pe () when p; > 2 for i = 1,...,n. Due to the large number of nonlinear
equations and inequalities, Ppax (?) is excessively hard to estimate. In the simpler case
Py = p3 = +++ = p,, We can give numerical estimates. In this case, we reduce the number of

unknowns by assuming that
bii="0by, cu=-cy, c1=cji, Ai=Aj, MHii=My, Hi1 = 1, (5.15)
pij = —Hji, A =10 (5.16)
for i,7 = 2,...,n satisfying 7 # j, and that
bij =br, cij=cu, || = 1wl (5.17)

for i,7,k,l = 2,...,n satisfying ¢ # j and k # [. Another reduction consists in replacing the
inequalities (5.4) by the equations

Aj=—-e, Bjj=—¢, and V,-:pz-(q—l)z,u?k—f—s (5.18)
ki
fori,7 =1,...,n satisfying ¢ # j, where ¢ is a positive parameter to be chosen small (we take

e = 1073 in our numerical estimates below). This way, we define the set
é (?) = {q € (p+, +OO) 3 Ela, bi]’, Cij, )\Z-j,,uij, V; € R s.t. (51)*(53), (515)*(518)}
and the exponent
Puax (P) =sup{g € Q(F) 5 (p+.q) C Q(P)}
which is a lower bound for pyay (?), and thus for p., (?), and which we can estimate numeri-
cally. In Figures 1 and 2 below, we plot our numerical estimates in case n = 4, po = p3 = py = 2
and in case n = 6, py = p3 = -+ = pg = 3, the exponent p; being on the abscissa and taking

values from p_ = 2 to p, = 4. For any ¢ in the filled region p, < ¢ < pmax, We get the nonex-
istence of nontrivial, nonnegative solution in Wb (R*) N L2, (R™) for equation (1.3). We

loc loc
also plot in Figures 1 and 2 the values of the Sobolev critical exponent ¢ = p* given by (1.7)
and for which such a nonexistence result is known to be false, see El Hamidi-Rakotoson [23].
In both Figures 1 and 2, one can observe in particular that pp.y (?) converges to p* as p;
converges to py = p3 = -+ = pp, namely as P converges to (Pny---,pn)- Indeed, as stated
in Theorem 1.3, this holds true when 2 < p,, < (n+1)/2, and in particular, in the cases

illustrated in Figures 1 and 2.
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q nk

524

4.8+

4.6 Prmaz

4.4

4.2

4570 TR TR 2 3 32 T3 3E 3s

FIGURE 1. pmax and p* in
casen =4, 2 < p; <4, and
P2 =p3 =ps = 2.

q P ES

Pmax

5.6

4.6

470N T2 TR 2 3 32 734 38 3m

FIGURE 2. ppax and p* in
casen =6, 2 < p; <4, and
p2=p3=--=ps=3.

6. THE KEY ESTIMATE

Proposition 6.1 below is a crucial step in the proof of Theorem 5.1. It generalizes an estimate
of Gidas—Spruck [27] (see Serrin—Zou [49] for an extension to the p-Laplace operator).

Proposition 6.1. Let J = (P1y .-y pn) with p; > 2 fori=1,...,n. Assume that there exist
some real numbers a, by, ci;, Nij, pij, and v; satisfying (5.1) and (5.2). Let f be a C*-function
on Ry and u be a nonnegative solution in I/VI})’C? (R™) N L2 (R™) of equation (1.2). Then, for

loc

any positive real number § and any smooth function @ with compact support in R™, there holds

- a1 (Vi , ou |
;/n Us 1(};““) - kz#iﬂfkuaf (U)> ‘ami pdx
- u | ou " | Ou 77
S5 A [ w2 pda - By [ ur 2
N : ' " ou g
- ou |7% du By
a—1
- ou ou |7 dp
+ DZ-~/ ul ™t =— — dx
;; J R™ J 8:16]- afﬁj 8:162
n i—1 i—2 i—2
L] Ou P ou P72 0u 0%
=1 j5=1
1 < u |72 92y
= g — 1
I ol o)
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where us = u + 0, where A; and B;; are as in (5.5) and (5.6), and where

a Pi — 1 V; 2
=~ il 2¢; . 6.2
2+2pi_1<pi+2(a+ Ck)p“zk) (6.2)
ki
and
1
Di; = 2 (i t+pj — 1) a+2(pj —1)biy) + piXij (6.3)
j
for all distinct indices 1,7 =1,...,n.

In the proof of Proposition 6.1, we approximate the solution u of equation (1.2) by a family
of solutions of regularized problems. In what follows, we fix a positive real number R, and
we consider ¢ as a small positive parameter. Since f is a C'-function on R, and u belongs

to WL T (R™) N Lge (R™), by Lieberman [34,35], we get that the functions u and f (u) belong

loc loc

to W (R™). Tt easily follows that there exist two families of smooth functions v, and f.

on By (R), uniformly bounded in C' (B, (R)) and converging respectively to u and f (u) in
WL (By (R)) as € — 0 for all r in [1,4+00). We also approximate Azu by div (L. (Vu)),
where L. (Vu.) = (L; (Ou./0x;)),_, _, is defined by

-----

p;—2

Li(X)=(+X%) * X

)

for i =1,...,n. In particular, we compute
pi—4
(L) (X) = (2 + X)) 7 (2+(p—1) X?) .

Aiming to prove Proposition 6.1, we shall state some preliminary steps. The first one is as
follows.

Step 6.2. There exists a unique smooth solution u. of the Dirichlet problem

{ —div (L. (Vue)) +ue. = f- +v. in By (R)

Ue = Ve on 8BO (R) . (64)

Proof. We use here similar arguments as those in Fragala—Gazzola—Lieberman [26] for an-
other family of anisotropic elliptic problems. We fix a real number 6 in (0,1). By Gilbarg—

Trudinger [29, Theorem 6.14], for any function v in C*?(B, (R)), there exists a unique solution

w =T (v) in C**(By (R)) of the problem

_(Lf)’(av> éﬂw:fa—l—vg—v in By (R) ,

W= v, on 0By (R) .

(6.5)

By the compactness of the embedding of C??(B, (R)) into CY?(By (R)), we get that the

operator T : C*(By (R)) — CYY(By (R)) is compact. We claim that there exists a uniform

bound in C*Y(By (R)) on the set of all functions w satisfying w = AT (w) for some real number
Ain [0,1]. In order to prove this claim, for such a function w, we set

W={xe€eBy(R); |w(x)| >M},
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where M is a real number satisfying |f.| + |v.|] < M on By (R). Multiplying (6.5) by the
function sign (w) max (|w| — M,0) and integrating by parts on W give

< LE
das Z/ (6@) (%cld

:)\/ (Jw| = M) (sign (w) (fe +v:) — |w|)dz < 0.
%

It follows that the set W is empty, and thus that there holds |w| < M in B, (R). By Gilbarg-
Trudinger [29, Theorems 13.2, 14.4, and 15.6], we then get the expected uniform bound in
CH(By (R)). Applying Fragala-Gazzola-Lieberman [26, Lemma 2| gives the existence of
a solution in CYY(By (R)) of problem (6.4). The smoothness of this solution follows from
Gilbarg—Trudinger [29, Theorem 6.19] by bootstrap method, and its uniqueness follows from
the strict convexity of the functional I defined by

aw

n

ow\ Ow
I(w)= / Lf( ) dm+/ w2d:c—/ fe 4 v) wdz .
) Zl Bo(R) Oz; ) Ox; Bo(R) Bo<R>( )

This ends the proof of Step 6.2. O

The second step states as follows.

Step 6.3. The functions u. are uniformly bounded in C° (B, (R)), ex (Bo (R)), and C* (02)
for all compact subsets {2 of By (R).

Proof. We begin with proving that the functions u. are uniformly bounded in C° (By (R)). As
in Step 6.2, for any ¢, we set

W.={z € By(R) ; |u:(z)| > M},

where M is a real number satisfying |f.| + |v:| < M on By (R) for all e. Multiplying equation
(6.4) by the function sign (u.) max (Juc| — M,0) and integrating by parts on W, give

ou. | - . [ Ouc\ Ou.
Z/ 'z S;/WELZ'(%)@%M

= [ (fuel = M) (g (0 (£ + 02) = ) e <0.

€

It follows that the set W is empty, and thus that there holds |u.| < M in By (R) for all e. By
Lieberman [34,35], we then get that the functions u. are uniformly bounded in C' (£2) for all
compact subsets {2 of By (R). We now prove that the functions u. are uniformly bounded in
WL (B (R)). For any e, multiplying equation (6.4) by the function u. — v, and integrating
by parts on By (R) yield

n

8u5 8u€ ava /
Lf - dr = e T Ve — Ug) (Ue — Ve dx . 6.6
; /Bo(R) (8%) (3&‘ axi> Bo(R) (f ) ( ) (6.6)

On the one hand, there holds

ou. |?

/ I (8u6) Gusdx Z/
Bo(R) axl (%ZZ Bo(R) 8.Tz

idac. (6.7)




A PRIORI ESTIMATES FOR SOLUTIONS OF ANISOTROPIC EQUATIONS 15

On the other hand, by Holder’s inequality and since the functions v. are uniformly bounded
in C' (By (R)), we get

pi—2
/ e (8u5> Ov, 4l <cC / 2y Ou, Ou. v, da
Bo(R) dr; ) Ox; Bo(R) Ori Oz, O
pi—1
< ' (5131'—2 % ‘ 8’&5 > (68)
Ox; LPi(Bo(R)) O LPi(Bo(R))

for some positive constants C' and C” independent of . Since the functions u., v., and f.
are uniformly bounded in C° (By (R)), it follows from (6.6)—(6.8) that the u.’s are uniformly
bounded in W7 (B, (R)). This ends the proof of Step 6.3. O

The third step in the proof of Proposition 6.1 is as follows.

Step 6.4. For i,j = 1,...,n, the functions (€ + (Qu./0z;)*)Pi=2/10%u, /Ox;0x; are uni-
formly bounded in L? (£2) for any compact subset 2 of By (R). In particular, the functions
Lz (Ou./0x;) are uniformly bounded in W12 (£2).

Proof. For any real numbers R < R” in (0, R), we let ng be a smooth cutoff function on R"
satisfying np = 1in By (R'), 0 < np < 1in By (R")\By (R'), and ngp = 0 out of By (R"). For
j =1,...,nand for any e, multiplying equation (6.4) by 9 ((u./0z;) n%) /Ox; and integrating
by parts, we get

= , [ Ou. 0%u, 2 , ((Ou\ Ou, O*u. Onp
L | d 2 L d
Z(/( ) (a> (axiaxj”f*) o /n( 2 (a> Ox, 0x,0z; 0z, "
:/ a(fs+ve_u€)825n%/dx. (6.9)

For i,7 =1,...,n and for any C' > 0, Young’s inequality gives
Ou. 0*u. Onp 0%u, > 1 (Ou. o\

| <C / — in By (R). 6.10
9z, 0zdz, oz, | = (axiaxj "R> 1e; (axj oz, ) in Bo (R) (6.10)

By (6.9) and (6.10), we get that there exists a positive constant C' independent of ¢ such that,
for y =1,...,n, there holds

pi—2

i/ 82—|—<8U€>2 2( 82U5 >2d$
i1 Bo(R') 8%2 813181']

p;—2

- ou\? E Ou. Ong 2
<C / 52—|—< E) ( J ,) d:c—l—/ dz |.
; ( R™ < 8% (91;]- 8@ Bo(R")

Taking into account that there holds p; > 2 for ¢ = 1,...,n and that the functions u., v.,
and f. are uniformly bounded in C* (B, (R")), it follows that for i, 5 = 1,...,n the functions
(2 + (Que/0x;)?)Pi=2/40%, [Ox;0x; are uniformly bounded in L? (B, (R')). This ends the
proof of Step 6.4. O

0 (fe + v — Ue) Ou,
ij aZ‘j

The fourth step in the proof of Proposition 6.1 states as follows.

Step 6.5. For any compact subset 2 of By (R), the functions u. converge to u in Wb (£2) as
e — 0 for allr in [1,4+00).
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Proof. By Step 6.3, for any sequence (g,), of positive real numbers converging to 0, up to
a subsequence, (u.,), converges weakly to a function w in e (By (R)). Moreover, by the
compactness of the embedding of W7 (B, (R)) into L' (B, (R)) and since (U, ), is bounded
in C° (B, (R)), we get that (u.,), converges to w in L™ (By (R)) as € — 0 for all r in [1, +00).
By Step 6.4 and by the compactness of the embedding of W12 (£2) into L' (£2) for all compact
subsets (2 of By (R), we get that for ¢ = 1,...,n, up to a subsequence, (L* (Qu.,/0z;)),
converges to a function ¥; in L' (§2), and thus almost everywhere in By (R). It easily follows
that there holds ¥; = |dw/dz;|" > dw/dz; and that the functions du., /dx; converge almost
everywhere to Ow/0x; in By (R) as a — +oo for i = 1,...,n. By the compactness of the
trace embedding of W17 (B, (R)) into L* (B, (R)), since u., = v., on 0B, (R) for all o, and
since (v, ), converges to u in C? (0B, (R)) as € — 0, we get w = u on 9By (R). Multiplying
equations (1.2) and (6.4) by the function w — u and integrating by parts on By (R) give

n pi—2
Z / Lzs'a <8u8a ) _ au ( aw _ 8u ) dg;
i—1 Y Bo(R) Ox; Ox; Ozr; Ox;

:/ (few — [ (W) + 0o, —ue,) (w—u)dr. (6.11)
Bo(R)

ou
a.ﬁlﬁ'i

By Step 6.3, we get that the sequence (L5 (Juc,/0z;)), is bounded in LPi/®=V (B (R))
for i = 1,...,n. On the other hand, (L$* (Ju.,/0z;)), converges almost everywhere in
By (R) to |0w/dx;|" > dw/dz; as a — 400. By standard integration theory, it follows that
(Ls* (Que, /Ox;)),, converges weakly to |Ow/dx;|" " Ow/dx; in LP/®—1) (B, (R)). Taking into
account that (u.,),, (ve,),, and (f-,), converge respectively to w, u, and f (u) in L? (By (R)),
passing to the limit as & — +o0 into (6.11) then yields

«

i/ ow|"* 0w [ ul" ou\ (Ow du
i—1 Bo(R) (92:2 8;1:1 a&:z 6;1:1 8:61 a&:z
:—/ (w—u)gdazgo. (6.12)
Bo(R)
For ¢ =1,...,n, one can easily check
ow P 7? dw ou [P du ow  Ju
— — > in B ) 1

It follows from (6.12) and (6.13) that there hold w = w and Jw/dx; = Ou/Ox; almost ev-
erywhere in By (R) for ¢ = 1,...,n. The above holds true for all sequences (g,), of positive
real numbers converging to 0. Hence, we get that the functions u. and Ou./0z; converge
almost everywhere respectively to u and du/0x; in By (R) as e — 0 for i = 1,...,n. Since,
by Step 6.3, the functions u. are uniformly bounded in C* (£2) for all compact subsets §2 of
By (R), it follows that they converge to u in W (§2) as e — 0 for all r in [1, 4+00). O

It follows from Step 6.5 that for any compact subset {2 of By (R), the functions u. converge
to u in C° (£2) as € — 0. In particular, since v is nonnegative, for any positive real number 6,
the function u. s = u. +0 is positive in {2 for ¢ small. In the following two steps, we enumerate
several integral estimates.
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Step 6.6. Let a be a real number, 6 be a positive real number, and ¢ be a smooth function
with compact support in By (R). Fori,j = 1,...,n and for e small, define & (u-s5,¢) and

Fii (ues, ) by
i (e, p) = a/Rn ug’glLf (ng) ng axﬂ ( (8%)) o
+/ uesLi (gZ) 9z;0z; ( (aug))
oot (55) o (5 ()
and

Ftuene) =mla-) [ e (5) G (G ) Groedo
o (s () (3
oo i's (5) 5 (5r) s oce
Fori=1,...,n and for e small, define also GS (ues, @), and Hs (ues, ) by
G (vesn) =a [ et (5 (%)) 2 e
ea [t () o (4 (5)) e
+/nu;5 (Lf (?;» gifpd

H5< )_(_1)( _1)/ a—2 Lt 8“5 2 aus 2 d
i \Ue,s,¥P) = \Di a nu‘E’(S ‘ 8% a‘xz o
Oug \ Ju. 0 ou
o a—lye € € °
+ (2p; 1)/n g Li (6%) Ox; Ox; (L (8%)) pe
B ou Ou. O
L a—1 € € €
+ (p’l 1) /n u576 <LZ (8371)) axz axld

Then there hold & (uc s, ) = &5 (ues, ), Fij (Ues, p) = Fj; (ues, ) + O (€), GF (ues, ) =0,

Je

and H (ue5,0) = O (%) ase =0, fori,j=1,...,n.

and

Proof. For 1,57 =1,...,n and for € small, an easy integration by parts gives

0 ou 0 ou
€ = — a Le < — (LS c . 14
gzy (u€,57 (70) /R" ua,é al,z ( i (axl ) ) aiL'j ( j (836] ) ) gOd.T (6 )

In particular, we get £ (uc s, 0) = &5; (ue s, ). Another integration by parts gives

ou 0 Ou.\ Ou
€ . a—1 € € € € £
]:ij msﬁ?gp) - /n tes L (axz> ozx; (LJ (a%‘) al'j) s (6.15)
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We then compute

ou ou 0%*u
° (e = —DiP; a-lre =) LE - —od
E] (u 75,90) DiDj /IR" Ug 5 Lo (31’@) J (31']') 8%81']'90 v
pj—4
i (p; — 2) e a-lre < 2 2 - :
+p (p] )8 /n Ues L <3$2> <€ T (((hjj) ) 8xj 8xi8:cj(’0
It follows that

ou ou 9%u
. D a71L§ € LE c c d
‘ u 5P +pp] /]R" Ue s i <a$¢> J <8ZL’j> 8I13xj(p v

O\ 2 B O\ 2 5=
<pilpi—2)e / e (€2+ (396) > <€2+ (890) )
n 7 J

Since u.5 > 6/2 on Supp (p) for € small, since p; > 2 for i = 1,...,n, by Steps 6.3 and 6.4,
we then get

ou ou 0*u
- = —pip; CL*lL; € Lg 5 € d 1
Fi e = oy [ 0507 (55) 15 (G0 ) g oo +0) (010
as e — 0 ford,j=1,...,n. In particular, we get F; (ucs5,¢) = F5; (ucs, ) + O (e) as € — 0.

For i =1,...,n and for ¢ small, the identity G/ (ua,g, ) = 0 follows from a straightforward
integration by parts. Another integration by parts gives

Ou.\ Ou. O ou
c . a—1lte € € <
H; (uzs, ) = /n Ues L; (axz) Ox; Ox; (L <8x2>) o
ou 82u
J— R a—1 8 = E
pi—3
ou u 0%u
(. O\ 2 a—1 [ .2 £ . 3
—— -2 [ ( “(5) ) (5:) G eie

Since u. 5 > 6/2 on Supp (p) for € small, since p; > 2 for i = 1,...,n, by Steps 6.3 and 6.4,
we then get

—2
€ a— au@ \"
|Hz (u€,57 )| < ( 2) /n ue,él (82 + (axz) >

as € — 0. This ends the proof of Step 6.6. U

0%u.

6@0%

oldr.

0%u.
ox? 14

dz = O (2)

The next step in the proof of Proposition 6.1 is as follows.

Step 6.7. Let a, b;j, and c;; be some real numbers, 6 be a positive real number, and ¢ be a
smooth function with compact support in By (R). Fori,j = 1,...,n and for ¢ small, define

Pi; (ues,p) and Q5 (ues, ) by

e aATCijTCj4 a —Cij I3 aus a —Cji e aus
o 8 (75 G (5 () o
< o a+bij+bjii —bij re aué a —bjire aus
Oy (tesr9) = / . e dz; (ua’(S b (3952)) O; <u8’5 g (3%’)) Pl

and
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Fori,j=1,...,n, there hold
Ou. \ Ou Ou.\ Ou
€ 5 =C;iCi; a*QLﬁ € ELE- € e d
sz (u ,67(P> CijCj /IR U, 5 L (83]1) Ox; <8.Tj) axj%0 T

e / Oue Oue ) Oue dx
S - 55 8%, ox; Ox; &ngp
—(a—i—cw gélLE (

for e small and

Ou. \ Ou Ou, \ Ou
€ . n a—2g1e € Ere € €
Qij (u€,5790> —EZJ /R” U 5 Lz (a ) or; L] <al’]> 8$j gOd.CE
0 ou
» a—1_~ € €
+%L%w @(%DL
_ uls LE Oue (9u5 dx
8:1338:61 Li 8:@ 7
. [ Ou,. Ou, dp
+ fﬂ>(a%) s (1 (a%))a@d
aelre [ Oue Ou. \ Oue Op
() () e

8x] Ox;
ou
o Isl == L
+Anua,5 7 <ax2>

/_\
Q| Q
SHES
. m

ou,
> Dbz, dz+ O (e)

as € — 0, where

B, =pij<a— 1) ((pi — 1)@+ (5 — 1) by + (pi — 1) bgs) + bigbye,
F, =pij<< S (= Dby + (i — 1)) |
Gy = pl (iP5 — D)t (py — 1) by + (1 — 1) by)

Proof. For ©,7 =1,...,n and for € small, a straightforward computation yields

Ju. \ Ou Ou, \ Ou
€ —. . a—2ge < °LE : =
Pij (tes, p) _CZJCJZ/n ues Li (&Ez) ox; L; <6$]~) 0z, pde
o ou Ou. \ Ou
C]z/ S dz; (L (&BZ)) L <8$]> 0z, Pl
Oug \ Ou. 0 ou
e s (=) = (L5 ==
Cij /R” Ue,s L ( xz> x; 0x; (LJ (81:])) e
. 0

0 0
. [ Ou,
(1 (50)

* /Rn Yed g

Ju. 0 ou,
LE
) 9; 0z, ( ) (a>) il

> aué wdx

) o (15 (5%) ) e0r
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(6.17)

(6.18)

(6.19)
(6.20)

(6.21)

(6.22)
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Then (6.17) follows from (6.14) and (6.22). We now prove (6.18). For i,j = 1,
€ small, an easy integration by parts gives

13 _ a+b7,'j a *bij 5 aus aua a
Qi (et ) = / .o O s Li r; Oz
_ / wrvg O (b (O
n Hed 8ZL']8IZ Ue,s 81‘1

a bijfl 8 71)1J I3 8“’8
_(a+bw+bﬂ)/nu€; a—m]< - (aa:z

Another integration by parts gives

[ e (u;ﬁ”ﬂf (glﬁf)) b (2;;;) o
— (a+by) /]R uss LS <ZZ) L; (ZZJ) gzj g:id
- o (55 a (4 (5)) e

- [t (5 15 (5) e

) pdx

We compute

o (o (3) ()
L o () ()
o () ) ()

|

(532 (5)
(5 ()
L (o ()5 ()

ou.\ Ou du. '\ du
b“ b 1 a_QLF; £ 5L€ £ € d
+ bij (bi; + )/nua& 1(8@-) Ox; ](a%’) 8$J'Q0x

20

.,n and for

8u5 Ou,
oz L (8%) edr . (6.23)

(6.24)

(6.25)
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and
atby—1 O by e [ OUe Ou. . [ Oue
/n ua,é &xj <u8’6 Ll (8x,)> 8xz Lj 8%) ¢d$
0 Ou. \ Ou ou
_ a—1_~ € £ Y e €
B /IR“ <9 Ba (LZ (3%) 3%‘) ( )gpdw
ou ou 0%u
- a—lre € € €
/n ues Li (8x ) Ly (8@) 0,0z, pdu
Ou. \ Ou Ju. \ Ou
1 a—27e € €re € €
bij /Rn ugs” L (89@) . L; (8@) o, edz . (6.26)
Then (6.18) follows from (6.15), (6.16), and (6.23)—(6.26). O

The last step in the proof of Proposition 6.1 states as follows.

Step 6.8. Let a and b;; be some real numbers, § be a positive real number, and ¢ be a smooth
function with compact support in By (R). Assume that there holds (p; — 1) b;; = (p; — 1) by,
fori,j=1,...,n. Then, fori,7 =1,...,n, there holds

im i <. >0. .
hrsn_gglf Q5 (ucs, ) >0 (6.27)

Proof. For € small and for i,j = 1,...,n, we compute from the definition of Qf; (u. s, ) that

4 pj74

pZT 2 2
Qi (ues, p) = / a2y (e o Qe
A TEe o &0 Or; ox;

X (X5, (ues, Vue) + Y55 (ues, Vue) + Z;; (ue s, Vue)) dz, (6.28)

where

. ou, 2 ou, 2 9 0, ?
X5 (ues, Vue) = (bijbji (8_55) (axj) +(pi = 1) (pj = ug, (axiax)

Ou. Ou. O?u. ou\" [ Ous\”
_ 1) b, c— 1) b c ’

((pj = 1) i + (i = 1) bji) ue s Ox; Oz 8:620:1:]-) (8%) (&zcj)
ou ou. \ > Ou\? [ Ou\’

Y: € e) = UizUji 2 - - ; ;
ij (U’ 75,VU ) beJ € <€ + (31}61) * (8-1']) ) (axl) (81’])
ou\? Ou. \’ Ou. )"

2,2 2 1 < =1 - -

+etug s (5 + (i ) (axz) + (p; ) (8%) ) (axial'j) ’

A\
ij ('LLE,57 Vus) = _52u€,5 ( (le + bﬂ) g? + (b” T (pi B 1) bﬂ) (8%)

Ou\ 2\ Oue du.  O%u.
(2 = 1) by +b0) (835) )835- Oz ; Ox;0x;
J ? J 1 J

and
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Since there holds (p; — 1) b;; = (p; — 1) bj; for 4,5 =1,...,n, we get

pi — 1 bﬂ@ug@ue_ o 0%u, 2
pj — 7 O Oz b " 0z 0x;

(2% (2%Y 5 0 in Supp(e) . (6.29)
o oz, ) = in Supp () . (6.

We also get Y (usg,Vug) > 0 in Supp (p). Since u.s > 0/2 in Supp (¢) for € small, since
p; > 2 for i = 1 ,n, by Steps 6.3 and 6.4, we finally compute

XZE] (ug,(;, VUE> =

/ gt | & 0u)T) g2 + Ouc \* TZE (e 5, Ve ) pdz
n €,0 85171 81,] ij .8 8 SO
ou 2 pin ou 2 %
< a—1 2 5 9 .
—Cs/n“e,a (6 " (8 z) ) (6 i (&xj) )
aus aus (92u5
as € — 0. Then (6.27) follows from (6.28)—(6.30). -

We can now prove Proposition 6.1 by using the above preliminary steps.

End of proof of Proposition 6.1. For € small, given some real numbers a, b;;, ¢ij, aij, Bij, Vi
(Si, Hij, and Oij satisfying

(pj = Dby = (pi = Dbji, iy =—az, andfy=—0F, (6.31)
we let

n

@8 (u5,57 90) = Z (Z <H’1]P€ (u€,57 @) + MZ]ILL]ZP'Z (u€,57 90) + O-in Qzej (ui,(% SD)

i=1 N ji
—‘—Oé”g (u857 )+5zyﬁ§(u€,57gp>>+’%g (u£67 )+5H (u557 ))a (632)

where & (uc s, ), Fi; (Ues, ), Gf (Ues, p), and H5 (u. s, p) are as in Step 6.6, where Py (uc s, )
and QF; (ucs, @) are as in Step 6.7, and where

pe — at2ci; 0 —Cijre auE 9 —Cijre aue
P (ugyg,go)—/n Yed gy o0 L 9z, ) ) Dz \ =0 L ow; Pl

We note that

Z > (“u (te,5,0) + piri Py (te 5, 90)) (6.33)

i=1 j#i

n i—1 2
Cii 0 —Cij aua cj 0 —cji aua
ZE :E u® ., Cid i [ g Ji_ Jt[E dr > 0.
/R” £,0 (Mwua,éawi (ua,é i (6@)) + :u]Z 8681‘j <u5,6 7 (al,J)) > yar = 0

i=1 j=1

It follows from (6.33) and from Steps 6.6 and 6.8 that
liminf O, (u.5,¢) > 0. (6.34)
e—0
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We can develop (6.32) by using (6.17) and (6.18). We then get
Ju. \ Ou
a—1 € € € €
(Ue s, Z/ w5t div (Rf (V) L (a )(91:2 da
B Z/ d (div (S (Vug)))L;: (8u5) iz

Z

3 [ e o () 20
3w e (Lf(ﬁii)) (5 e
SN [ (ZZ?) et (G) e
DT < (5e)) Geozas
#3234l < )15 () e
+§;§<ag+a;) 5L5<8“5 () 2,
us (Lf (gg)) gQﬁd +0(e) (6.35)
as ¢ — 0, where E;;, Fi;, and G;; are as in (6.19)-(6.21) and where

M; = (pi—1)(a—1)6 + Zczzk:u?k
ki

and
Nij = (pi — p;) (a — 1) Bij + 2cijciiptizgi + 07, By + 055
for all distinct ¢,j = 1,...,n. In (6.35), RS (Vu.) = (R;; (aua/axj))jzl . 1s given by

.....

RS (Que/0xi) = ((2pi — 1) 6 — Y (a+ 2cq) piy) L (81‘5) (6.36)
P ;i
and )
uE
R;; (Ou./0x;) = (acij + p;Bji — (a + 2¢ij) pajpegs + JJQ.Z-Fji) L5 (8xj) (6.37)
for all distinct i,j = 1,...,n, and S (Vu.) = (S5 (ﬁug/ﬁxj)) _, . is given by
. [ Oue
= (Oue/0x;) = Z 2, LS < %) (6.38)
k#1i
and

Ou,
S (Oue /Oz5) = (Oéij — MijHgi — 0321) L; (8x) (6.39)
j
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for all distinct 4,5 = 1,...,n. In a similar way, 77 (Vu.) = (TZ (aug/ﬁxj)) . 1s given by

j=1,...,
Tz (Ou. /0x;) = (2%’ - Z /ﬁk)lf Oue (6.40)
k42 . (2 (] a‘rl
ki
and
€ 2 5 aua
T;j (8u5/3xj) = (Ozij — Mg Hji + Jij) Lj a.l’j (641)
for all distinct 4,7 = 1,...,n. For any real numbers a, b;;, cij, aij, Bij, Vi, 0i, Mij, Oijs Tis Siy

and t;, we now consider the system consisting of equation (6.31) together with the equations
R; (Vu.) = ;L. (Vu.), S; (Vu:) = s;L. (Vue), and T (Vu.) = t;L. (Vu,) for i = 1,...,n.
Using (6.36)—(6.41), we can eliminate the unknowns 7;, s;, and ¢; for i = 1,...,n, and state
our system as follows

(((pj— Dby =(pi — Vb, «ij=—aj, Bij=—Pju,
aci; + pBii — (a+ 2i5) s + 05 Fji = (2p = 1) 6 = > (@ + 2ci) pify
ki
Qi — Pajbji — U?i == Z T
ki
Qij — Mijti + 0y = 2 — Z Hi
\ k#1
where the equations have to be satisfied for all distinct 7,7 = 1,...,n. Easy manipulations
lead to the following equivalent system
( (pj — 1) bij = (pi — 1) bii, Bij = —Bji,
2 4 2 iy = 02 02 = 2,
ik ILL]k; Hij i O-zj + sz Yi s
ki ki
Qij = Z ﬂ?k = Hijlgi — 01-2]- ) (6.42)
k#j
1
=91 (piBsi = 2eipuiipgi +2 ) canpiiy + (a + Fy) 05;).
\ ! k#i

In particular, the second line in (6.42) implies that there holds v; = 7, where v does not
depend on the index i. By the changes of unknowns

1
Aij = Bij + W ((pi+pj —Da+2(p;—1)by) (0, —07;) (6.43)
iPj
and
vi = pi (2pi — 1) 0; — p; Z (a+ 2cik) iy, (6.44)
ki
and by eliminating «;;, 8;;, 0;, and oy for i,j = 1,...,n, the system (6.42) can be written as
(pj =D bij = (pi =D bji,  Aij=—Xji, Zﬂfk + Z/ﬁk — 2pi5p5 = 27,
ki k]

vi=(Y(pi+pi— 1) —pi 3 pi)a+ 2y (p; — 1) bij — 2picijpijiii — piviNi; -
ki
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Multiplying O (u.s, ) by 1/v for € small, we can fix v = 1/2, and we then recover equations
(5.1) and (5.2). In particular, if the real numbers a, b;;, ¢;j, fij, Aij, and v; satisfy (5.1) and
(5.2), then for i = 1,...,n, we get

R; (Vuy,) :%L6 (Vue), S;(Vue) = Zﬂsz (Vu,),
i ki

17 (Vu.) = (1 — Z/%k:) (Vue) .

k#i
Taking into account that u. satisfies equation (6.4), that u.s > ¢6/2 on Supp (p) for € small,
and that p; > 2 for i = 1,...,n, by Step 6.5, by (6.34), and by (6.42)—(6.44) passing to the
limit into (6.35) as € — 0 gives (6.1). O

and

7. PROOF OF THEOREM 5.1

In this section, we let ? = (p1,...,pn) and ¢ be such that 2 < p, < gfori=1,...,n, and
we assume that there exist some real numbers a, b;;, ¢;j, Aij, 5, and v; satisfying (5.1)-(5.4).
We now prove Theorem 5.1 by using Proposition 6.1.

Proof of Theorem 5.1. We let u be a nonnegative solution in W, 7 (R™)N LS, (R™) of equation
(1.3). Changing, if necessary, the variable, we may assume that the positive constant A in (1.3)
is equal to 1. For any positive real number §, we set us = u 4+ J. We let ¢ be a nonnegative
smooth function with compact support in R™ to be chosen later on so that any of the integrals
below are finite. We begin with applying Young’s inequality in order to estimate some of the
terms in equation (6.1). For 7,5 = 1,...,n and for any C' > 0, we get

N I TR L oY C SN 23 LA
pi — 1 -1 a1 a—1 au pi
(O'ri-1 q —_— d 7.1
+ . /n% u oz, edr, (7.1)
Ou |71 Bu |77 | D C L ou P op [P
a—1 dr < - at+pi—2 | ¥ 1_pid
/ n s ox; 0xj ox; Di Jrn U Oz, ox; y .
pi—1 =t ol Ou P Ou |
(ri-1 a d 7.2
+ D; /nu(S 81’1 8.27]' yar, ( )
ou 2pi— 82 C . 8290 Di
a d < - a+2p;—2 1_pid
/Rn s ox; Oz v pi Jgn s 03 4 ‘
2p;
pZ =1 a—2 au
Cri-1 d 7.3
and
/ ou P ou || B2 i < c o] u [P 9% dp |1 7P i
arrs Oz, O0x;0x; ~ i Jrn O Ox; O0zr;0x;| |0x;
pi—1 -1 L ou P ou P oy
(Cri-1 a —_— —|dx. (74
* Di /n s Ox;| |Ox; Oz, z. (14)
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Still applying Young’s inequality, we estimate the first term on the right-hand side of (7.4)
For i,7 =1,...,n and for any C' > 0, there holds

/ua+pi—1 ou P a2§0 Pi D 1—p¢dx
n J 8.77]' 81‘183:3 8a:j
iPj —Pi - 7 -1
<€ Y CTPiTPi2 o [P Op |7 (Pi= 890 e )Sp(pi—l)(pj—l)dx
~pj Jrn 0 0z;0x; ox; 81‘]
p -1 — a+p;—2 3u P 8@ bi 1—p;
g = Pims ]l — Pide . (7.5
+ Dj /n s 6:1:]- 6:1:1 v . ( )
Moreover, for i = 1,...,n, we get
i
a—1( Vi g1 -1 2 q—2 Ou d 7.6
Lo (Bt = a0 st ) 2] e (7.6)
k#i
Vi 2 1,,q-1 " 2 1,,q-2 "
(E—<q—1>;uik)énu§ w2 wdw—6<q—1>;uik/nu§ w |2 s

Multiplying (1.3) by uu? 'y and integrating by parts yield
5

n

/ G, 20- 2<pdx— Z (a/ ug Lya=t

Pi

wdx

i=1

8@
ou

ou |7 > Ou Oy
_ a—1,q—2 a, qg—1
+(g—1) /n u§ pdx + /Rn Ut 5 9 a%da:) (7.7)

8LUZ'
On the other hand, for i =1, n and for any C' > 0, Young’s inequality gives
1 o C . 1 Au |*
/n ul pdx < 5 /n u? ™ pdr + 3¢ /. axi pdx . (7.8)
By (5.4), (6.1), and (7.1)—(7.8), it follows that there exists a positive constant C' independent

Ouf
8@»

of u, §, and ¢ such that

/ P2 pdr < C’Z( / udu?*pdr

B 8(10 Dj 090 pi .
atpi—1_q—1|~Y¥ —pzd a+Pz 1=pig
+/nU5 “ ox; x—i—Z/ 0x] ox; v .
82 pipj a —Pi (p] - 8 —Dj (pz 71)
+ Z/ a“’ﬁpF? ® ® _90 PP D@ gy
Gxi&pj 8@ 827]‘
v 82¢ Pi
a+2p;—2 1—p;
+/nu5 P a—x? (2 pde’ . (79)
Fori=1,...,n, we let g; be the function defined on R, by
Sa—l—pi—l
—— ifa+p,—1#0,
gi (s) a+p;—1 b 7
Ins

ifa+p,—1=0.
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Multiplying (1.3) by g; (us) ©!7Pi and integrating by parts yield

/ gi (ug) ut™? (9g0 Q! pld:c—Z/ atpi—

axi
n

-3 [

J=
+pzZ/ gi U5

For i,7 =1,...,n and for any C' > 0, Young’s inequality gives

2 pPj p

dp
81’7;

pi a(p
afL'j(p

gOlipidSU

8%

Pim2 gy

dz;

o
81‘]‘

dp
8%

—Ppi dCL’

ou

"Ej

pj— au 82Q0
8mj 8x,8x]

dp
6%

pi—2 a(p
81’1‘

' Pidr . (7.10)

pjil

ou oo P

82%

Iy
0:1:]-

(pj—1)(a+pi—2)

o Pidx

[l |22
Pi bj

99|71 9 J(pl—pi—pjdx

89@- 8l'j

ou Dj agp p

8xj 8%

C o
< — |93 (us) [ ug
Pj Jrn

L Pz Lok / o2
Dj n

o' Pid (7.11)

and

pi—1
(pl_p’dl'

pj—1

ou

oAt
|9 (U5)| ‘8_953

axlﬁxj

dp
8272'

—(pj=1)(a+pi—2)

R

pj Ppi—Dpj

62

awiﬁxj
Ou ™| 0p |
aiﬂj aZEZ

dp
aZL'i

C
<= | g (us)” u;
bj Jrn

L P 10”11/ P
by n

We let 6 be a positive real number to be chosen small later on. We then get a positive constant
Cjp such that for any s > 0 and for i,j = 1,...,n, there holds

' Pidx (7.12)

s*TPi s (8)| + |gs (8)|P s~ wi—Dlatri=1) < o gatpi=lp, (s), (7.13)

where the function hy is defined by hy (s) = s + s7%. Increasing, if necessary, the constant C
n (7.9), by (7.10)-(7.13), we get

B agp Di

a 2q 2 d < C / a, 2q—4 d / h at+pi—1, ¢—1 | Y 17pid

/n pdx Z( ugu T pdr + ) o (us) ug u o © x
iDj —pi(p;j—1 —p;i(pi—1
+Z / oty =2 P [ dp | B | )gmpi—l)(pj—l)dx (7.14)
8l'iaﬂfj 0931 8:16]-
_ agp p 830 pj ‘ 82@ pj 8(70 Pi—Pj .
h a+pz+p] 2 _ 1-pi—pj 1=pi d
* Z / 0 (us) ox;| |0x; Ox;0xj| |Ox; ? )
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where hy is as in (7.13). For i =1,...,n and for C' > 0, Young’s inequality gives
_ D |7 _
h atpi—1, q—1 1=pi g
/n o (us)us " or| ¥
C 5| O | 1
< = h a+2pz i 1— 2pld _ a, 2q—2 dx . 715
—QRn9(>5 | ¢ drtgg | i ede (7.15)

We note that there holds hyy < Cph3 for some positive constant Cy. Increasing, if necessary,
the constant C' in (7.14), by (7.15), we then get

/ T2 pdr < CZ ( / ugu**pdx (7.16)

iDj —pi(pj—1 —pj(pi—1
+Z/ a+pz+pj_2 2o PP | 9y pi(p;—1) 6_80 P (p )@(Pi—l)(l’f—l)dx
8%8% 8a71 al’j
. a(p D 8@ Pj . ' 8290 pj (990 DPi—Pj .
h aﬂ?ﬁpa 2 1-pi—p; =pi | gz |
* Z/ 20 U6 (%Z 8[Ej + 81‘181‘] (‘)xz v o

We let k be a real number in (0, 1) to be chosen close to 1 later on. One easily constructs a
smooth cutoff function n satisfying n = 1 in [0,1], 0 < 7 < 1in [1,2], n = 0 in [2, +00),
and such that for 4,5 = 1,...,n, the functions |nf|P""P7 pl=r=pi=psi |p!|Pi |of|Pi7P ppl=rpi,
|77” Pi+p;—2pip; nlfneripjfpi*pj’ |77/ Pi nl—n—pi7 and |77, Pi+P;—piP; nl*fﬂ‘l*pipj*pi*pj extended by
0 outside of their domain of definition, are continuous on R*. For any positive real number
R, we let ¢ be the function defined on R™ by

piPj |77/

n

pr@) =n{ > (sz?’;q:vi)z

=1

By (7.16) we get that there exists a positive constant C' independent of u, §, and R such that

/ ulu??ppdr < C'<5/ ugu "t dr
Rn n

+ Z Z Ryt / hao (us) uz“”*p”soﬁdx) . (717)

=1 j5=1

Since g > 2, we get

2q—4
/ u5u2q 4 HdZB </ ug-i— q— ,‘idx,
n R”

a+2q—4 . )
(HUHC’O(Supp(@R)) + 5) / Prdr ifa>4-2q,

< (7.18)
5“+2q_4/ Prdx ifa<4—-2q.
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Increasing, if necessary, the constant C' in (7.17), it follows from (7.18) that

/ ugu* 2 ppdr < C’( (C’R + 5"’+2q_4) 5/ Yrdx
Rn n
£33 R [ han ) u?’”i““soﬁzdx) (7.19)

i=1 j=1

for some positive constant C'r independent of §. By (5.3), we can choose 6 small enough so
that a + 2p_ — 2 > 260 and ¢ > p; + 0. Passing to the limit into (7.19) as § — 0 then yields

/ T ppde < CZ Z Revr / hag (u) u™ PP Ghd (7.20)

=1 j=1

Still by (5.3), Young’s inequality gives that for any ¢ > 0, there exists C. > 0 such that for
1,7 =1,...,n, there holds

sz'+pj—2q/ ua-&—pi—l—pj —24260 de<€/ Ua+2q_2<de:E
n n

(a+2g9—2)k—(a+p;+p; —2+£26)

(pitrj=29)(at29=2) 2q—p;—p; 720
+ CER 2q9—p;—p;F26 / QOR v dx . (721)

In order to get the finiteness of the right-hand side of (7.21), one has to choose the real number
k close enough to 1 so that

S @ +2p, —2+20

- a+2q—2
Increasing, if necessary, the constant C' in (7.20), it follows from (7.21) that there holds

(a+2q—2)rk—(a+p;+p; —2+26)

o (p7,+pj—2q)(a+2q 2) 2q—p,—p.—20
[ o <03 RHEEET [ o )
n Rn

i=1 j=1
for R large. Moreover, for i,5 = 1,...,n, we easily compute
(a+2q72)n7(a+pi+pj72+29) L
2q—p;—p; —20 L
/ op T do < CRI>k=13 " (7.23)
n

for some positive constant C' independent of i, j, and R. It follows from (7.22) and (7.23) that
for R large, there holds

/ w2 pde < CRY n (S 52 amet it . (7.24)
By (5.3), we can choose the real number 6 small enough so that passing to the limit into (7.24)

as R — +oo0 yields
/ w292y = 0,

and thus the function w is identically zero. This ends the proof of Theorem 5.1. O
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