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Abstract. In conformal geometry, the Compactness Conjecture asserts that the set of Ya-
mabe metrics on a smooth, compact, aspherical Riemannian manifold (M, g) is compact.
Established in the locally conformally flat case by Schoen [43, 44] and for n ≤ 24 by Khuri–
Marques–Schoen [26], it has revealed to be generally false for n ≥ 25 as shown by Brendle [8]
and Brendle–Marques [9]. A stronger version of it, the compactness under perturbations of the
Yamabe equation, is addressed here with respect to the linear geometric potential n−2

4(n−1) Scalg,

Scalg being the Scalar curvature of (M, g). We show that a-priori L∞–bounds fail for linear
perturbations on all manifolds with n ≥ 4 as well as a-priori gradient L2–bounds fail for non-
locally conformally flat manifolds with n ≥ 6 and for locally conformally flat manifolds with
n ≥ 7. In several situations, the results are optimal. Our proof combines a finite dimensional
reduction and the construction of a suitable ansatz for the solutions generated by a family of
varying metrics in the conformal class of g.

1. Introduction

Letting (M, g) be a smooth, compact Riemannian n–manifold, n ≥ 3, we are concerned
with the so-called Yamabe equation

∆gu+ αn Scalg u = cu2∗−1, u > 0 in M , (1.1)

where ∆g := − divg∇ is the Laplace–Beltrami operator, αn := n−2
4(n−1)

, Scalg is the Scalar

curvature of the manifold, 2∗ = 2n
n−2

is the critical Sobolev exponent, and c ∈ R. The geometric
problem of finding a metric g̃ in the conformal class [g] = {φg : φ ∈ C∞(M), φ > 0} of g
with constant Scalar curvature is equivalent to solving (1.1) through the setting g̃ = u4/(n−2)g.
The constant c can be restricted to the values −1/1 or 0 depending on whether the Yamabe
invariant

µg(M) = inf
g̃∈[g]

(
Volg̃ (M)

2−n
n

∫
M

Scalg̃ dvg̃

)
of (M, g) has negative/positive sign or vanishes, respectively, where Volg̃ (M) is the volume of
the manifold (M, g̃).

The Yamabe problem, raised by H. Yamabe [49] in ’60, was firstly solved by Trudinger [48]
when µg(M) ≤ 0. In this case, the solution is unique (up to a normalization when µg(M) = 0).
Aubin [3] then solved the Yamabe problem in the non-locally conformally flat (non-l.c.f. for
short) case with n ≥ 6, and Schoen [42] solved it in the remaining cases of low dimensions
3 ≤ n ≤ 5 and locally conformally flat (l.c.f. for short) manifolds. In this paper, we restrict
our attention to the case where (M, g) has positive Yamabe invariant µg(M) > 0, and we set
c = 1 in (1.1).
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After the complete resolution of the Yamabe problem, one can attempt to describe the
solution set of (1.1). A well-known conjecture claims the compactness of Yamabe metrics
for manifolds (M, g) which are not conformally equivalent to (Sn, g0) ((M, g) 6= (Sn, g0) for
short), namely the convergence, up to a subsequence, in C2 (M) of any sequence of solutions of
equation (1.1). Referred to in literature as the Compactness Conjecture, by elliptic regularity
theory, it amounts to prove a-priori L∞–bounds on the set of solutions to (1.1). In the basic
example of the round sphere (Sn, g0), by the works of Lelong–Ferrand [28] and Obata [36],
the set of solutions of (1.1) is explicit and non-compact. The Compactness Conjecture arose
after the work of Schoen [43,44] who first proved it in the l.c.f. case, and also proposed a stra-
tegy, based on the Pohozaev identity, for proving it in the non-l.c.f. case. The Compactness
Conjecture has been then proved in the low-dimensional case by Li–Zhu [32] for n = 3, by
Druet [14] for n ≤ 5, by Marques [33] for n ≤ 7, by Li–Zhang [30, 31] for n ≤ 11, and finally,
by Khuri–Marques–Schoen [26] for n ≤ 24. Unexpectedly, the dimension n = 24, which arises
in [26] as the maximal dimension for a suitable quadratic form to be positive definite, has re-
vealed to be optimal by the counter-examples constructed in dimensions n ≥ 25 by Brendle [8]
and Brendle–Marques [9]. We also refer to the constructions by Ambrosetti–Malchiodi [1] and
Berti–Malchiodi [7] in case of background metrics which have a finite regularity. All these
constructions are made on (Sn, g) with a metric g close to the round one g0.

Replacing the geometric potential αn Scalg in (1.1) with a general potential κ ∈ C1 (M)
such that κ (ξ) 6= αn Scalg (ξ) for all ξ ∈ M , the Compactness Conjecture is esentially still
true for solutions with bounded energy of

∆gu+ κu = u2∗−1, u > 0 in M , (1.2)

provided that n ≥ 4, as shown by Druet [13, Section 4].

Towards a deeper understanding of the Yamabe equation, one can address a stronger version
of the Compactness Conjecture. One can ask whether or not the compactness property is
preserved under perturbations of the equation under exam, which is equivalent to have or not
uniform a-priori L∞–bounds for solutions of the perturbed problem. This question has been
introduced and investigated in Druet [13,14], Druet–Hebey [15,16], Druet–Hebey–Robert [18],
and, under the name of stability, in Druet–Hebey [17] and Druet–Hebey–Vetois [19]. The
aim of our paper is to establish non-compactness properties for linear perturbations of the
geometric potential αn Scalg in (1.1). In case 3 ≤ n ≤ 5, Druet [14] obtained uniform L∞–
bounds for solutions of (1.2) along potentials κε ≤ αn Scalg, κε → κ in C2 (M) as ε → 0,
with (M, g) 6= (Sn, g0) in case κ = αn Scalg. The same result is strongly expected to be true
in the l.c.f. case and generally for n ≤ 24, and it is still true, as shown by Druet [14], when
n ≥ 6 and κ < αn Scalg. In dimension n = 3, Li–Zhu [32, Theorem 0.3] have obtained uniform
L∞–bounds in case κε ≤ αn Scalg +η0, for some η0 > 0 when (M, g) 6= (Sn, g0).

Let us briefly review the previous results of non-compactness for equations of type (1.2).
Apart from the trivial case of the Yamabe equation on (Sn, g0), the first non-compactness result
is due to Hebey–Vaugon [24] who proved that in the l.c.f. case with n ≥ 4, there always exists
g̃ ∈ [g] such that the equation ∆g̃u+αn maxM(Scalg̃)u = u2∗−1 in M is not compact. Families
of non-compact solutions have then been explicitly constructed on (Sn, g0) by Druet [13] and
Druet–Hebey [15] for linear perturbations of the potential κ = αn Scalg when n ≥ 6 and in
case κ > αn Scalg when n = 6 (see also the survey paper by Druet–Hebey [16] for the case
of quotients of (Sn, g0)). When (κ − αn Scalg) is a positive constant, on (M, g) = (Sn, g0),
Chen–Wei–Yan [12] have constructed infinitely many solutions with unbounded energy when
n ≥ 5, and Hebey–Wei [25] have constructed non-compact solutions with bounded energy for
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an infinite number of constant κ in case n = 3. Concerning the potential κ = αn Scalg, so far,
the only available examples of non-compact solutions for (1.1) and its linear perturbations are
in the case of (Sn, g), with g close to g0 and κ = αn Scalg by Ambrosetti–Malchiodi [1], Berti–
Malchiodi [7], Brendle [8], and Brendle–Marques [9], or with g = g0 and κ close to αn Scalg0
by Druet [13] and Druet–Hebey [15] (see also Druet–Hebey [16] for the case of quotients of
(Sn, g0)).

In this paper, for n ≥ 4, we exhibit the general failure of compactness properties for

∆gu+ (αn Scalg +εh)u = u2∗−1, u > 0 in M , (1.3)

where h is a C1 or C0,α–function in M , α ∈ (0, 1), with maxM h > 0 and ε > 0 is a small
parameter. As a by-product, we obtain that the Compactness Conjecture completely fails
down under the effect of linear perturbations (with the correct sign) of the Yamabe equation
(1.1) on every manifold (M, g) with n ≥ 4 (but it is still true for n = 3 by Li–Zhu [32]).
Our results, together with those by Druet [13, 14] give a sharp picture of the situation. Even
more than the failure of a-priori L∞–bounds, we show that a-priori gradient L2–bounds fail for
non-locally conformally flat manifolds with n ≥ 6 and for locally conformally flat manifolds
with n ≥ 7.

To be more precise, we say that a family (uε)ε of solutions to equation (1.3) blows up at
some point ξ0 ∈ M if there holds supU uε → +∞ as ε → 0, for all neighborhoods U of ξ0 in
M . Let E : M → [−∞,+∞] be defined as

E(ξ) =

{
h (ξ)A

− 2
n−2

ξ if n = 4, 5 or (M, g) l.c.f.

h (ξ)
∣∣Weylg (ξ)

∣∣−1

g
if n ≥ 6 and (M, g) non-l.c.f.

(1.4)

with the convention that 1/0 = +∞. Here, Aξ is defined in (1.5) and Weylg is the Weyl
curvature tensor of the manifold. In dimensions n = 3, 4, 5 or if the manifold is l.c.f., up to a
conformal change of metric gξ = Λ2−2∗

ξ g (depending smoothly on ξ ∈M), the Green’s function
Ggξ(·, ξ) has an asymptotic expansion of the form

Ggξ

(
expξ y, ξ

)
= β−1

n |y|
2−n + Aξ + O (|y|) (1.5)

as y → 0, where βn := (n− 2)ωn−1, ωn−1 is the volume of the unit (n− 1)–sphere, and
Aξ ∈ R, see Lee–Parker [27]. With the renormalization Λξ (ξ) = 1, the geometric quantity Aξ
depends only on the manifold (M, g) and the point ξ, is smooth with respect to ξ, and can
be identified with the mass of a stereographic projection of the manifold with respect to ξ.
We refer to Lee–Parker [27] for the definition of the mass and a discussion about its role in
general relativity. In particular, for manifolds (M, g) 6= (Sn, g0), in case n = 4, 5 and in the
l.c.f. case with n ≥ 6, we have that Aξ > 0 by the result of Schoen–Yau [45, 46], and thus
E(ξ) < +∞ for all ξ ∈ M . In the non-l.c.f. case with n ≥ 6, we have that Weylg 6≡ 0, and
thus E(ξ) 6≡ +∞. Our first result concerns the existence of solutions blowing-up at one point
and reads as:

Theorem 1.1. (existence of solutions with a single blow-up point in case n ≥ 4) Let
(M, g) 6= (Sn, g0) be a smooth compact Riemannian manifold with n ≥ 4 and µg(M) > 0, and
h ∈ C0,α (M), α ∈ (0, 1), be so that maxM h > 0. In the non-l.c.f. case with n ≥ 6, assume
in addition that min{|Weylg(ξ)|g : h(ξ) > 0} > 0. Then for ε > 0 small, equation (1.3) has
a solution uε ∈ C2,α (M) such that the family (uε)ε blows up, up to a sub-sequence, as ε → 0
at some point ξ0 so that E(ξ0) = maxM E.
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Let us mention that the Compactness Conjecture does hold for (1.1) when n ≥ 6 as soon as
|Weylg(ξ)| > 0 for all ξ ∈ M , as it follows by Li-Zhang [30] and Marques [33]. The following
result concerns multiplicity of solutions with a single blow-up point. Isolated critical points of
E with non-trivial local degree include non-degenerate critical points of E. The result reads
as:

Theorem 1.2. (multiplicity of solutions with a single blow-up point in case n ≥ 4)
Let (M, g) 6= (Sn, g0) be a smooth compact Riemannian manifold with n ≥ 4 and µg(M) > 0,
and h ∈ C1 (M). For any isolated critical point ξ0 of E with non-trivial local degree and
h(ξ0) > 0, for ε > 0 small, equation (1.3) has a solution uε ∈ C2,α (M), α ∈ (0, 1), such that
the family (uε)ε blows up, up to a sub-sequence, at ξ0 as ε→ 0.

As already said, by the result of Li–Zhu [32], such blowing-up solutions as in Theorems 1.1
and 1.2 do not exist in dimension n = 3. The last results, Theorems 1.3, 1.4, and 1.5 below,
claim the existence of solutions which blow up at more than one point. The first result concerns
the non-l.c.f. case with n ≥ 6 and reads as:

Theorem 1.3. (existence of solutions with more than one blow-up point in the
non-l.c.f. case with n ≥ 6) Let (M, g) be a smooth compact non-l.c.f. Riemannian manifold
with n ≥ 6 and µg(M) > 0. Let k ≥ 2 be an integer and hk ∈ C0,α (M), α ∈ (0, 1), be so that
the set {ξ ∈ M : hk (ξ) > 0} has k connected components C1, . . . , Ck and min{|Weylg(ξ)|g :
h(ξ) ≥ 0} > 0. Then, for ε > 0 small, equation (1.3) has a solution uk,ε ∈ C2,α (M) such that
the family (uk,ε)ε blows up, up to a sub-sequence, as ε→ 0 at k distinct points (ξ0)1 , . . . , (ξ0)k
so that

hk ((ξ0)j)∣∣Weylg ((ξ0)j)
∣∣
g

= max
ξ∈Cj

hk (ξ)∣∣Weylg (ξ)
∣∣
g

for all j = 1, . . . , k. Moreover, there holds limk→+∞ lim supε→0 ‖∇uk,ε‖L2(M) = +∞.

Each blow-up point (ξ0)j, j = 1, . . . , k, in Theorem 1.3 maximizes the same function E as
in Theorem 1.1 for single blow-up points. On the contrary, in the remaining cases, there is a
strong interaction between the blow-up points, and these are not anymore related to maximum
points of the function E defined in (1.4). Concerning the l.c.f. case with n ≥ 7, we prove the
following result:

Theorem 1.4. (existence of solutions with more than one blow-up point in the
l.c.f. case with n ≥ 7) Let (M, g) 6= (Sn, g0) be a smooth compact l.c.f. Riemannian manifold
with n ≥ 7 and µg(M) > 0, and h ∈ C0,α (M), α ∈ (0, 1), be so that maxM h > 0. Then for
any integer k ≥ 2, for ε > 0 small, equation (1.3) has a solution uk,ε ∈ C2,α (M) such that
the family (uk,ε)ε blows up, up to a sub-sequence, at k distinct points (ξ0)1 , . . . , (ξ0)k in M as
ε→ 0. Moreover, there holds limk→+∞ lim supε→0 ‖∇uk,ε‖L2(M) = +∞.

The location of ξ0 = ((ξ0)1 , . . . , (ξ0)k) in Theorem 1.4 is related to maximum points of a
“reduced energy” given in (5.1), and the assumption n ≥ 7 guarantees that such “reduced
energy” achieves its maximum value.

Our last result, Theorem 1.5 below, concerns the l.c.f. case for n = 6. This case reveals
to be even more intricate than the case of higher dimensions. For any integer k ≥ 2, define
∆k :=

{
(ξ1, . . . , ξk) ∈Mk : ξi = ξj for i 6= j

}
. For any ξ := (ξ1, . . . , ξk) ∈ Mk\∆k, let A

k,ξ
be the symmetric k × k matrix with entries(

A
k,ξ
)
ij

:=

{
Aξi if i = j

Gg (ξi, ξj) if i 6= j,
(1.6)
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where Aξi is as in (1.5). When A
k,ξ is invertible, let Ek : Mk\∆k → R be defined as

Ek (ξ) :=
〈
H
(
ξ
)
, A−1

k,ξ
.H
(
ξ
)〉
, (1.7)

where H (ξ) := (h (ξ1) , . . . , h (ξk)) and 〈·, ·〉 is the Euclidean scalar product. Here, contrary to
the situation with k = 1, the definition of Ek (ξ) allows to consider the case (M, g) = (Sn, g0).
In this case, A

k,ξ has all entries equal to zero on the diagonal. In particular, when k = 2 or

3, observe that A
k,ξ is invertible, and thus Ek (ξ) is well-defined, for all ξ ∈ (Sn)k \∆k. Our

result in the l.c.f. case with n = 6 reads as:

Theorem 1.5. (existence of solutions with more than one blow-up point in the
l.c.f. case with n = 6) Let (M, g) be a smooth compact l.c.f. Riemannian manifold with
n = 6 and µg(M) > 0, and h ∈ C1 (M). Let k ≥ 2 be an integer, and assume that Ek has
an isolated critical point ξ0 := ((ξ0)1 , . . . , (ξ0)k) with non-trivial local degree and A−1

k,ξ0

.H
(
ξ0

)
has positive coordinates. Then for ε > 0 small, equation (1.3) has a solution uk,ε ∈ C2,α (M),
α ∈ (0, 1), such that the family (uk,ε)ε blows up, up to a sub-sequence, at (ξ0)1 , . . . , (ξ0)k as
ε→ 0.

Contrary to the assumptions in the previous theorems, here it seems unclear in general
when the function Ek admits an isolated critical point with non-trivial local degree. An
easy situation where we can construct h and ξ0 satisfying the assumptions in Theorem 1.5
is the case k = 2 on the round sphere (Sn, g0). Indeed, in this case, we find that E2 (ξ) =
2h (ξ1)h (ξ2)Gg0 (ξ1, ξ2)−1 for all ξ = (ξ1, ξ2), ξ1 6= ξ2, which has always a maximum point
in (Sn ∩ {h ≥ 0})2 \ ∆2 provided that maxM h > 0. It is clear that the maximum point is
non-degenerate for several h′s (in a generic sense).

Let us finally compare problem (1.3) with its Euclidean counter-part on a smooth bounded
domain Ω ⊂ Rn, n ≥ 4, with homogeneous Dirichlet boundary condition

∆Euclu+ λu = u2∗−1 in Ω, u > 0 in Ω, u = 0 on ∂Ω. (1.8)

For λ ≥ 0, a direct minimization method (for the corresponding Rayleigh quotient) never
gives rise to any solution of (1.8), and moreover, no solution exists at all if Ω is star-shaped
as shown by Pohožaev [38]. Moreover, following the arguments developed by Ben Ayed–
El Mehdi–Grossi–Rey [5], problem (1.8) has no solutions with a single blow-up point as λ→ 0+.
The effect of the geometry, which is crucial to provide a solution for the Yamabe problem
(corresponding to λ = 0 in (1.8)) by minimization, is also relevant to producing solutions of
(1.3) (corresponding to λ→ 0+ in (1.8)) with a single blow-up point as stated in Theorems 1.1
and 1.2. On the contrary, Theorem 1.4 has a partial counter-part on domains with nontrivial
topology, see Musso–Pistoia [34] and Pistoia–Rey [37]. When λ < 0, solutions of (1.8) can be
found by direct minimization as shown by Brezis–Nirenberg [10], and exhibit a single blow-up
point as λ → 0− as shown by Han [23], in contrast with the compactness property proved
by Druet [13]. Solutions of (1.8) with a single blow-up point, see Rey [39, 40], and with
multiple blow-up points, see Bahri–Li–Rey [4] and Musso–Pistoia [35], as λ → 0− have been
constructed in a very general way. Since the manifold with boundary (Ω, dx) is l.c.f., notice
that the Green’s function G(·, ξ) still has an asymptotic expansion of the form (1.5), but the
constant Aξ is always negative in this case. The different sign of Aξ is the analytical reason
of the completely different picture we have for equations (1.3) and (1.8).

The paper is organized in the following way. In Section 2 we describe the perturbative
method we use to attack existence issues of blowing-up solutions. We describe the main steps
of such an approach, leading to the general result Theorem 2.4, and we deduce from it our
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main results concerning solutions with a single blow-up point. A crucial point is to produce a
suitable ansatz for the solutions. Inspired by the approach of Lee–Parker [27], which unifies the
previous constructions of Aubin [3] and Schoen [42] in the resolution of the Yamabe problem,
we build up general approximating solutions Wε,t,ξ for (1.3) which approximation rates are
evaluated in Section 3. An important point here is that we allow the metric g to vary in
the conformal class so to gain flatness at each point ξ ∈ M . An alternative, less geometric
approach can be devised in the non-l.c.f. case, see Esposito–Pistoia–Vétois [20], by keeping
g fixed and slightly correcting the basic ansatz via linearization so to account for the local
geometry. Thanks to the solvability theory of the linearized operator for (1.3) at Wε,t,ξ, we are
led to study critical points of a finite-dimensional functional Jε (t, ξ). A key step is to obtain
an asymptotic expansion of Jε (t, ξ) and to identify a “reduced energy” as the main order term.
This step is performed in Section 4 in C0–sense and completes the proof of Theorem 1.1. In
Section 5, we investigate the existence of solutions with k blow-up points, yielding to the
proofs of Theorems 1.3, 1.4, and 1.5. The C1–expansion of Jε (t, ξ) is addressed in Section 6,
completing the proof of Theorem 1.2. The appendix is devoted to some technical issues.

Acknowledgments: this work has been initiated and partially carried out during the visits
of the third author to the University of “Roma La Sapienza” in November 2009 and to the
University of “Roma Tre” in November 2010. The third author gratefully acknowledges the
hospitality and the financial support of these two institutions.

2. Scheme of the proof

In this section, we aim to give the scheme of proof for Theorem 2.4 below. First, let us set
some notations. We denote the conformal Laplacian of the manifold by

Lg := ∆g + αn Scalg , (2.1)

where αn := n−2
4(n−1)

. The conformal covariance of Lg expresses as

Lĝ(φ) = u−(2∗−1)Lg(uφ) ∀φ ∈ C2(M), (2.2)

for all ĝ = u2∗−2g in the conformal class [g] of g. We assume that the manifold has positive
Yamabe invariant, which is equivalent to assuming the coercivity of Lg. We let H2

1 (M) be
the Sobolev space of all functions in L2 (M) with gradient in L2 (M) equipped with the scalar
product

〈u, v〉Lg :=

∫
M

〈∇u,∇v〉g dvg + αn

∫
M

Scalg uvdvg , (2.3)

where dvg is the volume element of the manifold. We let ‖·‖Lg be the norm induced by 〈·, ·〉Lg .
For any u ∈ Lq (M), we denote the Lq–norm of u by ‖u‖q :=

(∫
M
|u|qdvg

)1/q
. We define

‖u‖1,2 :=
(
‖∇u‖2

2 + ‖u‖2
2

)1/2
. By coercivity of Lg, we get that the norms ‖·‖Lg and ‖·‖1,2 are

equivalent.

We let ig be the injectivity radius of the manifold (M, g). By compactness of M , we get that
there exists a positive real number r0 such that r0 < ig. In case (M, g) is locally conformally
flat, there exists a family (gξ)ξ∈M of smooth conformal metrics to g such that gξ is flat in the

geodesic ball Bξ (r0). In case (M, g) is not locally conformally flat, we fix N > n, and we
provide ourselves with a family (gξ)ξ∈M of smooth conformal metrics to g such that∣∣exp∗ξ gξ

∣∣ (y) = 1 + O
(
|y|N

)
(2.4)
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uniformly with respect to ξ ∈M and y ∈ TξM , |y| � 1, where
∣∣exp∗ξ gξ

∣∣ is the determinant of
gξ in the geodesic normal coordinates of gξ at ξ. Such coordinates are said to be conformal
normal coordinates of order N on the manifold. Here and in the sequel, the exponential map
expξ is always intended with respect to the metric gξ. We refer to Lee–Parker [27] for a proof
of the existence of conformal normal coordinates of any finite order, see also the later proofs by
Cao [11] and Günther [22] of the existence of conformal normal coordinates which are volume
preserving near a given point (with no remainder term in (2.4)). For any ξ ∈M , we let Λξ be
the smooth positive function in M such that gξ = Λ2∗−2

ξ g. In both cases (locally conformally
flat or not), the metric gξ can be chosen smooth with respect to ξ and such that Λξ (ξ) = 1
and ∇Λξ (ξ) = 0. We let Gg and Ggξ be the respective Green’s functions of Lg and Lgξ . Using
the fact that Λξ (ξ) = 1, by (2.2), we find that

Gg (·, ξ) = Λξ(·) Ggξ (·, ξ) . (2.5)

By compactness of M and since gξ is smooth with respect to ξ, decreasing if necessary the
real number r0, we may assume that r0 < igξ for all ξ ∈M , where igξ is the injectivity radius
of the manifold (M, gξ). For ε > 0 small and for any t > 0, we define

δε (t) :=


e−

t
ε if n = 4

tε
1

n−4 if n = 5 or (n ≥ 6 and (M, g) l.c.f.)

t`−1 (ε) if n = 6 and (M, g) non-l.c.f.

t
√
ε if n ≥ 7 and (M, g) non-l.c.f.,

(2.6)

where ` :
(
0, e−1/2

)
→ (0, e−1/2) is given by ` (δ) := −δ2 ln δ. For ε > 0 small and for any

t > 0, ξ ∈M , inspired by the approach of Lee–Parker [27], we define Wε,t,ξ in M by

Wε,t,ξ (x) = Gg (x, ξ) Ŵε,t,ξ (x) , (2.7)

with

Ŵε,t,ξ (x) :=

 βnδε (t)
2−n
2 dgξ (x, ξ)n−2 U

(
δε (t)−1 dgξ(x, ξ)

)
if dgξ (x, ξ) ≤ r0

βnδε (t)
2−n
2 rn−2

0 U
(
δε (t)−1 r0

)
if dgξ (x, ξ) > r0,

(2.8)

where βn = (n − 2)ωn−1, ωn−1 is the volume of the unit (n− 1)–sphere, δε (t) is as in (2.6),
and

U (r) :=

(√
n (n− 2)

1 + r2

)n−2
2

. (2.9)

The function U generates a family Uδ(r) = δ
2−n
2 U(δ−1r), δ > 0, of radial solutions of the

equation ∆EuclU = U2∗−1 in Rn, where ∆Eucl := − divEucl∇ is the Laplace operator with
respect to the Euclidean metric. With these definitions, by (2.5), we observe that Wε,t,ξ

rewrites as

Wε,t,ξ = Λξ[βnGgξ(x, ξ)dgξ(x, ξ)
n−2]Uδε(t)(dgξ(x, ξ))

for all x ∈M such that dgξ(x, ξ) ≤ r0.

Let us spend few words to comment on the choice of Wε,t,ξ. Since, by Lemma A.1, the
function βnGgξ(x, ξ)dgξ(x, ξ)

n−2 is very close to 1 as x → ξ, we have that Wε,t,ξ is a small
correction of ΛξUδε(t)(dgξ(x, ξ)) near ξ. Since, by (2.2), we have that

Lg(ΛξUδε(t)(dgξ(x, ξ))) = Λ2∗−1
ξ Lgξ(Uδε(t)(dgξ(x, ξ)))
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in view of the flatness of gξ at ξ (see (2.4)) and ∆EuclUδ = U2∗−1
δ in Rn it is natural to expect

that Wε,t,ξ is a very good approximating solution to (1.3) near ξ. Away from ξ, the function

Wε,t,ξ behaves like βn[n(n−2)]
n−2
4 δε(t)

n−2
2 Gg(x, ξ), which is still a good approximating solution

to (1.3) in that region.

We define V0, . . . , Vn : Rn → R by

V0 (y) :=
|y|2 − 1(

1 + |y|2
)n

2

and Vi (y) :=
yi(

1 + |y|2
)n

2

(2.10)

for all y ∈ Rn and i = 1, . . . , n. By Bianchi–Egnell [6], any solution v ∈ D1,2 (Rn) to the
equation ∆Euclv = (2∗ − 1)U2∗−2v is a linear combination of the functions V0, . . . , Vn. We let
χ be a smooth cutoff function in R+ such that 0 ≤ χ ≤ 1 in R+, χ = 1 in [0, r0/2], and
χ = 0 in [r0,∞). For ε > 0 small and for any t > 0, ξ ∈ M , and ω ∈ TξM , we define
Zε,t,ξ, Zε,t,ξ,ω : M → R by

Zε,t,ξ (x) := Gg (x, ξ) Ẑε,t,ξ (x) and Zε,t,ξ,ω (x) := Gg (x, ξ) Ẑε,t,ξ,ω (x) , (2.11)

where

Ẑε,t,ξ (x) := βnχ
(
dgξ (x, ξ)

)
δε (t)

2−n
2 dgξ (x, ξ)n−2 V0

(
δε (t)−1 exp−1

ξ x
)
, (2.12)

Ẑε,t,ξ,ω (x) := βnχ
(
dgξ (x, ξ)

)
δε (t)

2−n
2 dgξ (x, ξ)n−2 〈V (δε (t)−1 exp−1

ξ x
)
, ω
〉
g

(2.13)

with V (y) = (V1 (y) , . . . , Vn (y)) for all y ∈ TξM ∼= Rn. We define

Kε,t,ξ := {λZε,t,ξ + Zε,t,ξ,ω : λ ∈ R and ω ∈ TξM} , (2.14)

K⊥ε,t,ξ :=
{
φ ∈ H2

1 (M) : 〈φ, Zε,t,ξ〉Lg = 0 and 〈φ, Zε,t,ξ,ω〉Lg = 0 for all ω ∈ TξM
}
, (2.15)

where the scalar product 〈·, ·〉Lg is as in (2.3). We let Πε,t,ξ and Π⊥ε,t,ξ be the respective

projections of H2
1 (M) onto Kε,t,ξ and K⊥ε,t,ξ.

We intend to construct solutions to equation (1.3) of the form

uε := Wε,t,ξ + φε ,

where t > 0, ξ ∈ M , φε ∈ K⊥ε,t,ξ, and Wε,t,ξ is as in (2.7). We re-write equation (1.3) as the
couple of equations

Πε,t,ξ

(
Wε,t,ξ + φ− L−1

g (fε (Wε,t,ξ + φ))
)

= 0 , (2.16)

Π⊥ε,t,ξ
(
Wε,t,ξ + φ− L−1

g (fε (Wε,t,ξ + φ))
)

= 0 , (2.17)

where Lg is as in (2.1) and

fε (u) := u2∗−1
+ − εhu , (2.18)

with u+ = max (u, 0). We begin with solving equation (2.17) in Proposition 2.1, a rather
standard result in this context (see for instance Musso–Pistoia [35]) which proof is skipped for
shortness.

Proposition 2.1. Given two positive real numbers a < b, there exists a positive constant
C = C (a, b, n,M, g, h) such that for ε > 0 small, for any t ∈ [a, b] and ξ ∈ M , there exists a
unique function φε,t,ξ ∈ K⊥ε,t,ξ which solves equation (2.17) and satisfies

‖φε,t,ξ‖1,2 ≤ C ‖Rε,t,ξ‖1,2 , (2.19)

where Rε,t,ξ := Wε,t,ξ − L−1
g (fε (Wε,t,ξ)). Moreover, φε,t,ξ is continuously differentiable with

respect to t and ξ.
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In Proposition 2.2 below, we give a crucial estimate for ‖Rε,t,ξ‖1,2. The proof of Proposi-
tion 2.2 is presented in Section 3.

Proposition 2.2. Given two positive real numbers a < b, there exists a positive constant
C = C (a, b, n,M, g, h) such that for ε > 0 small, for any t ∈ [a, b] and ξ ∈M , there holds

‖Rε,t,ξ‖1,2 ≤ C



εe−
t
ε if n = 4

ε
5
2 if n = 5

ε2 |ln ε|
2
3 if n = 6 and (M, g) l.c.f.

ε
n+2

2(n−4) if n ≥ 7 and (M, g) l.c.f.

ε2 |ln ε|−
1
3 if n = 6 and (M, g) non-l.c.f.

ε2 if n ≥ 7 and (M, g) non-l.c.f.

(2.20)

where Rε,t,ξ is as in Proposition 2.1.

For ε > 0 small, we define Jε : H2
1 (M)→ R by

Jε (u) :=
1

2

∫
M

|∇u|2g dvg +
1

2

∫
M

(αn Scalg +εh)u2dvg −
1

2∗

∫
M

|u|2
∗
dvg. (2.21)

For any t > 0 and ξ ∈M we define

Jε (t, ξ) := Jε (Wε,t,ξ + φε,t,ξ) , (2.22)

where φε,t,ξ is given by Proposition 2.1. We can solve equation (2.16) by searching critical
points of Jε, as it follows from (6.39)–(6.40) and (6.52)–(6.53). To this aim, it becomes
crucial to have the asymptotic expansion of Jε given by Proposition 2.3 below. The proof of
Proposition 2.3 strongly relies on Propositions 2.1 and 2.2, and is presented in section 4.

We define the “reduced energy” Ẽ : (0,∞)×M → R as follows:

Ẽ(t, ξ) =


e−

2t
ε (c2th(ξ)− c3Aξ) if n = 4

c2t
2h(ξ)− c3t

n−2Aξ if n = 5 or (n ≥ 6 and (M, g) l.c.f.)

c2t
2h(ξ)− c3t

4
∣∣Weylg (ξ)

∣∣2
g

if n ≥ 6 and (M, g) non-l.c.f.,
(2.23)

where c2, c3 > 0, Weylg is the Weyl curvature tensor of the manifold and Aξ is as in (1.5).

Proposition 2.3. Let p ∈ {0, 1} and assume that h ∈ C0,α (M), α ∈ (0, 1), in case p = 0 and
h ∈ C1 (M) in case p = 1. Then there holds

Jε (t, ξ) = c1 +


Ẽ(t, ξ) + o

(
e−

2ε
t

)
if n = 4

ε
n−2
n−4 Ẽ(t, ξ) + o

(
ε
n−2
n−4

)
if n = 5 or (n ≥ 6 and (M, g) l.c.f.)

ε2
(

ln 1
ε

)−1
Ẽ(t, ξ) + o

(
ε2
(
ln 1

ε

)−1 )
if n = 6 and (M, g) non-l.c.f.

ε2Ẽ(t, ξ) + o (ε2) if n ≥ 7 and (M, g) non-l.c.f.

as ε→ 0, Cp–uniformly with respect to ξ ∈M and t in compact subsets of (0,∞), where Ẽ is
given by (2.23) and c1, c2, c3 > 0 depend only on n.

We are now ready to state the following general result.

Theorem 2.4. Let (M, g) 6= (Sn, g0) be a smooth compact Riemannian manifold with n ≥ 4
and µg(M) > 0. Let p ∈ {0, 1} and assume that h ∈ C0,α (M), α ∈ (0, 1), in case p = 0 and

h ∈ C1 (M) in case p = 1. Assume that there exists a Cp–stable critical set D̃ ⊂ (0,∞)×M ,
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p = 0, 1, of the function Ẽ. Then for ε > 0 small, equation (1.3) has a solution uε ∈ C2,α (M),
∀ α ∈ (0, 1) if p = 1, such that the family (uε)ε blows up, up to a sub-sequence, at some

ξ0 ∈ π(D̃) as ε→ +∞. Here, π : (0,∞)×M →M is the projection operator onto the second
component. Moreover, when p = 1, ξ0 is a critical point of E with h(ξ0) > 0, where E is
defined in (1.4).

The notion of stability we are using is essentially taken from Li [29]. We say that a compact

set D̃ ⊂ (0,∞) ×M is a Cp–stable critical set, p ∈ N, if for any compact neighborhood Ũ of

D̃ in (0,∞) ×M , there exists δ > 0 such that, if J̃ ∈ C1(Ũ) and ‖J̃ − Ẽ‖Cp(Ũ) ≤ δ, then J̃
has at least one critical point in Ũ . Since Ẽ depends on ε when n = 4, the above assumption

‖J̃ − Ẽ‖Cp(Ũ) ≤ δ needs to be interpreted in this case as: |J̃ (t, ξ) − Ẽ(t, ξ)| ≤ δe−
2t
ε for all

(t, ξ) ∈ Ũ , when p = 0; |J̃ (t, ξ)− Ẽ(t, ξ)|+ ε|∂t(J̃ (t, ξ)− Ẽ(t, ξ))|+ |∇ξ(J̃ (t, ξ)− Ẽ(t, ξ))|g ≤
δe−

2t
ε for all (t, ξ) ∈ Ũ , when p = 1. Observe also that we do not require the set D̃ to be

composed of critical points of Ẽ, as it would be intuitively reasonable. Indeed, we want to

include the case where D̃ is given by almost critical points of Ẽ, as it arises for n = 4 in the

proof of Theorem 1.1. However, since Ũ can shrink onto D̃, by compactness of D̃, we have

that D̃ contains at least one critical point of Ẽ.

Proof of Theorem 2.4. Let Ũ be a compact neighborhood of the Cp–stable critical set D̃ in

(0,∞) ×M , p = 0, 1. Given any δ > 0, by Proposition 2.3, we have that J̃ε := µ−1
ε (Jε − c1)

satisfies ‖J̃ε − Ẽ‖Cp(Ũ) ≤ δ for ε sufficiently small, where µε = 1 if n = 4, µε := ε
n−2
n−4 if n = 5

or n ≥ 6 and (M, g) l.c.f., µε := ε2(ln 1
ε
)−1 if n = 6 and (M, g) non-l.c.f., µε := ε2 if n ≥ 7

and (M, g) non-l.c.f. By definition of a Cp–stable critical set, p = 0, 1, it follows that Jε has a

critical point (tε, ξε) ∈ Ũ for ε small. Up to a subsequence and taking Ũ smaller and smaller,

we can assume that (tε, ξε) → (t0, ξ0) as ε → 0 with ξ0 ∈ π(D̃). As already observed, we get
that uε = Wε,tε,ξε + φε,tε,ξε is a critical point of Jε, and thus, by elliptic regularity, a classical
solution of (1.3). Since ‖φε,tε,ξε‖1,2 → 0, by definition of Wε,tε,ξε , it is easily seen that uε > 0

and u2∗
ε ⇀ K−nn δξ0 in the measures sense as ε→ 0 (see for instance Rey [40]), where Kn is given

by (4.1) and δξ0 denotes the Dirac mass measure at ξ0. From very basic facts concerning the
asymptotic analysis of solutions of Yamabe-type equations (see for instance Druet–Hebey [16]
and Druet–Hebey–Robert [18]) we get that the family (uε)ε of solutions to (1.3) blows up
at the point ξ0 as ε → 0. Finally, when p = 1, we can pass to the limit into the equations
∂tJε (tε, ξε) = 0 and ∇ξJε (tε, ξε) = 0 as ε→ 0 to get that h(ξ0) > 0 and ∇ξE(ξ0) = 0 in view
of t0 > 0, where E is given by (1.4). This ends the proof of Theorem 2.4. �

We now apply Theorem 2.4 to deduce Theorems 1.1 and 1.2. To this aim, given ξ ∈ M
with h(ξ) > 0, define t(ξ) as

t(ξ) :=



c3Aξ
c2h(ξ)

+ ε
2

if n = 4(
2c2h(ξ)

(n−2)c3Aξ

) 1
n−4

if n = 5 or (n ≥ 6 and (M, g) l.c.f.)(
c2h(ξ)

2c3|Weylg(ξ)|2
g

) 1
2

if n ≥ 6 and (M, g) non-l.c.f.

(2.24)

with the convention that 1/0 = +∞. One easily checks that every t (ξ) < +∞ is a global

maximum point of Ẽ in t. In the proofs of Theorems 1.1 and 1.2 below, we show that the

Cp–stable critical set D̃ in Theorem 2.4 can be constructed as D̃ := {(t(ξ), ξ) : ξ ∈ D}, where
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D is a Cp–stable critical set of ξ 7→ Ẽ(t(ξ), ξ) with h > 0 in D. Since we have that

Ẽ(t(ξ), ξ) =



ε
2
c2e
−1h(ξ)e

− 2c3
εc2
·
Aξ
h(ξ) if n = 4

2
2

n−4 (n−4)c
n−2
n−4
2

(n−2)
n−2
n−4 c

2
n−4
3

· h(ξ)
n−2
n−4

A
2

n−4
ξ

if n = 5 or (n ≥ 6 and (M, g) l.c.f.)

c22
4c3
· h(ξ)2

|Weylg(ξ)|2
g

if n ≥ 6 and (M, g) non-l.c.f.,

(2.25)

the role played by the map E defined in (1.4) becomes clear. We prove Theorem 1.1 as follows.

Proof of Theorem 1.1. Notice that supM E > 0 in view of maxM h > 0. Letting (ξk)k∈N be a
maximizing sequence for E, by compactness of M , we can assume that ξk → ξ as k → +∞
with h(ξk) > 0 for all k. Since min{|Weylg(ξ)|g : h(ξ) > 0} > 0 in the non-l.c.f. case with
n ≥ 6, we have that (E(ξk))k is bounded. Since then supM E < +∞, it follows that supM E
is achieved, and it makes sense to define D := {ξ ∈M : E(ξ) = supM E} (possibly coinciding
with the whole M if E is a constant function) as the maximal set of E in M . Correspondingly,

define D̃ := {(t(ξ), ξ) : ξ ∈ D}, where t(ξ) is given by (2.24) and is well defined for all ξ ∈ D
in view of h > 0 in D. Moreover, t(ξ) is clearly bounded away from zero on D, and thus the

set D̃ is a compact set in (0,∞) ×M . To show that D̃ is a C0–stable critical set, let Ũ be

a compact neighborhood of D̃ in (0,∞) ×M . Taking Ũ smaller if necessary, we can assume

that Ũ = {(t, ξ) : t ∈ [t(ξ) − η, t(ξ) + η], ξ ∈ U}, where η > 0 is small and U is a closed
neighborhood of D in M so that h > 0 in U . There hold

• for n ≥ 5, by the definition of t(ξ) and the simple relation between Ẽ(t(ξ), ξ) and E(ξ)

(see (1.4) and (2.25)), we have that Ẽ(t(ξ)± η, ξ) < Ẽ(t(ξ), ξ) ≤ supD̃ Ẽ if ξ ∈ U , and

Ẽ(t, ξ) ≤ Ẽ(t(ξ), ξ) < supD̃ Ẽ if t ∈ [t(ξ)− η, t(ξ) + η] and ξ ∈ ∂U ;

• for n = 4, by the definition of Ẽ and t(ξ), we have that for any ξ ∈ U , there holds

Ẽ(t(ξ)± η, ξ) = Ẽ(t(ξ), ξ)e∓
2η
ε (1± 2η

ε
) < sup

D̃
Ẽ

when ε is small, in view of e−
2η
ε (1 + 2η

ε
)→ 0 and e

2η
ε (1− 2η

ε
)→ −∞ as ε→ 0, and for

any t ∈ [t(ξ)− η, t(ξ) + η] and ξ ∈ ∂U , there holds

Ẽ(t, ξ) ≤ Ẽ(t(ξ), ξ) < sup
D̃
Ẽ

when ε is small, in view of sup
∂U

e
− 2c3
εc2

Aξ
h(ξ) = o

(
e
− 2c3
εc2 maxM E

)
as ε→ 0.

In conclusion, by compactness of

∂Ũ = {(t, ξ) : t ∈ {t(ξ)− η, t(ξ) + η}, ξ ∈ U} ∪ {(t, ξ) : t ∈ [t(ξ)− η, t(ξ) + η], ξ ∈ ∂U},

we get that sup∂Ũ Ẽ < supD̃ Ẽ. It follows that if ‖J̃ − Ẽ‖C0(Ũ) ≤ δ, with δ < 1
2
[supD̃ Ẽ −

sup∂Ũ Ẽ], then we get that

sup
∂Ũ

J̃ < sup
D̃
J̃ .

Then J̃ achieves its maximum value in Ũ at some interior point of Ũ , which is a critical point

of J̃ . It follows that D̃ is a C0–stable critical set of Ẽ as desired. By Theorem 2.4, we then
get that for ε > 0 small, equation (1.3) has a solution uε ∈ C2,α (M) such that the family

(uε)ε blows up, up to a sub-sequence, at some ξ0 ∈ π(D̃) as ε→ +∞. Moreover, by definition

of D̃ , we get that Ẽ (ξ0) = maxM Ẽ. This ends the proof of Theorem 1.1. �
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Since t(ξ) is a maximum point of Ẽ in t, minimum points or saddle points of E provide

critical points of Ẽ which in general are not C0–stable critical points of Ẽ. To cover these
cases, we need to use Theorem 2.4 with p = 1. We assume that h ∈ C1 (M). We can still
define C1–stable critical sets of E as in the case of (0,∞)×M , but in general they don’t give

rise to C1–stable critical sets of Ẽ. In M , we restrict the notion of C1–stability to isolated
critical points of E with non-trivial local degree, which is still sufficiently general to include
non-degenerate critical points of E. We prove Theorem 1.2 as follows.

Proof of Theorem 1.2. We only need to show that the set D̃ := {(t(ξ0), ξ0)} is a C1–stable

critical set of Ẽ, where t(ξ0) > 0 is well defined in view of h(ξ0) > 0 and Weylg (ξ0) 6= 0 when

n ≥ 6 and (M, g) non-l.c.f. To this aim, let Ũ be any compact neighborhood of D̃ in (0,∞)×M
and δ > 0 be any given small number. Taking Ũ smaller if necessary, we can assume that

Ũ = I × Bξ0 (r0), where I is a closed interval in (0,∞) containing t(ξ0) in its interior and
Bξ0 (r0) is the geodesic ball of center ξ0 and radius r0 with respect to gξ0 , with r0 < igξ0 , the

injectivity radius of the manifold (M, gξ0). For n ≥ 5, the assumption ‖J̃ − Ẽ‖C1(Ũ) ≤ δ gives
that ∣∣∇J̃ (t, expξ0 η

)
−∇Ẽ

(
t, expξ0 η

) ∣∣ ≤ δ (2.26)

as ε → 0, uniformly with respect to η ∈ B0 (r0) and t ∈ I, where ∇ := (d/dt,∇η). Since
ξ0 is a C1–stable critical point of E with h (ξ0) > 0, where E is given by (1.4), we find that

∇Ẽ
(
t, expξ0 η

)
has an isolated zero at (t(ξ0), 0). Since t(ξ0) is a non-degenerate critical point

of t 7→ Ẽ
(
t, expξ0 η

)
, taking Ũ smaller if necessary, we also have that deg

(
∇Ẽ, Ũ , 0

)
6= 0 (see

for instance [21]). It follows from (2.26) that if δ is small enough, then J̃ has at least one

critical point (t, ξ) ∈ Ũ . When n = 4, the assumption ‖J̃ − Ẽ‖C1(Ũ) ≤ δ gives (by definition)
that

εe
2t
ε

∣∣∂tJ̃ (t, expξ0 η
)
−∂tẼ

(
t, expξ0 η

) ∣∣+e 2t
ε

∣∣∇ηJ̃
(
t, expξ0 η

)
−∇ηẼ

(
t, expξ0 η

) ∣∣ ≤ C0δ (2.27)

as ε→ 0, uniformly with respect to η ∈ B0 (r0) and t ∈ I, for some C0 > 0. Letting

Ψ(t, η) =
(
−2c2th(expξ0 η) + 2c3Aexpξ0 η

, c2t∇ηh(expξ0 η)− c3∇ηAexpξ0 η

)
and Ψ̃(t, ξ) = Ψ(t, exp−1

ξ0
ξ), by (2.27) we deduce that∣∣∣ (εe 2t

ε ∂tJ̃
(
t, expξ0 η

)
, e

2t
ε ∇ηJ̃

(
t, expξ0 η

))
−Ψ(t, η)

∣∣∣ ≤ C0δ + O(ε) (2.28)

as ε→ 0, uniformly with respect to η ∈ B0 (r0) and t ∈ I. Arguing as above, the map Ψ has

an isolated zero at
( c3Aξ0
c2h(ξ0)

, 0
)

with deg
(
Ψ̃, Ũ , 0

)
6= 0, and then by (2.28), it follows that if δ is

small enough, then J̃ has at least one critical point (t, ξ) ∈ Ũ . �

3. The error estimate

This section is devoted to the estimate of Rε,t,ξ.

Proof of Proposition 2.2. All our estimates in this proof are uniform with respect to t ∈ [a, b],
ξ ∈M and ε ∈ (0, ε0), for some fixed ε0 > 0. We let r0 be as in Section 2. For any φ ∈ H2

1 (M),
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an integration by parts gives that〈
L−1
g (fε (Wε,t,ξ))−Wε,t,ξ, φ

〉
Lg

=

∫
M

(fε (Wε,t,ξ)− LgWε,t,ξ)φdvg

−
∫
∂Bξ(r0)

(∂νinWε,t,ξ + ∂νoutWε,t,ξ)φdσg , (3.1)

where ∂Bξ (r0) is the boundary of the geodesic ball with respect to gξ of center ξ and radius
r0, ∂νin and ∂νout are the derivatives with respect to the respective inward and outward, unit,
normal vectors to ∂Bξ (r0), and dσg is the volume element on ∂Bξ (r0). By Sobolev’s and
trace’s embeddings, it follows from (3.1) that∥∥L−1

g (fε (Wε,t,ξ))−Wε,t,ξ

∥∥
1,2

= O
(
‖fε (Wε,t,ξ)− LgWε,t,ξ‖

L
2n
n+2 (M)

+ ‖∂νinWε,t,ξ + ∂νoutWε,t,ξ‖
L

2(n−1)
n (∂Bξ(r0))

)
. (3.2)

Regarding the second term in the right hand side of (3.2), on ∂Bξ (r0), we find that

∂νinWε,t,ξ + ∂νoutWε,t,ξ = βnδε (t)
2−n
2 Gg (·, ξ) d

dr

(
rn−2U(δε(t)

−1r)
) ∣∣∣

r=r0

= n
n−2
4 (n− 2)

n+2
4 βnGg (·, ξ) δε (t)

n+2
2 rn−3

0(
δε (t)2 + r2

0

)n
2

= O
(
δε(t)

n+2
2

)
. (3.3)

Regarding the first term in the right hand side of (3.2), we observe that in M \Bξ (r0), there
holds

fε (Wε,t,ξ)− LgWε,t,ξ = fε (Wε,t,ξ) = O
(
δε(t)

n+2
2 + εδε(t)

n−2
2

)
(3.4)

in view of

Ŵε,t,ξ = βnδε(t)
2−n
2 rn−2

0 U
(
δε(t)

−1r0

)
= O(δε(t)

n−2
2 )

and LgGg(·, ξ) = 0. By conformal covariance (2.2) of Lg and by (2.5), in Bξ (r0), we can write
that

fε (Wε,t,ξ)− LgWε,t,ξ = Λ2∗−1
ξ

[(
Ggξ (·, ξ) Ŵε,t,ξ

)2∗−1 − Lgξ
(
Ggξ (·, ξ) Ŵε,t,ξ

)]
− εhWε,t,ξ. (3.5)

Since Ŵε,t,ξ (ξ) = 0 and LgξGgξ (·, ξ) = δξ, we get that

Lgξ
(
Ggξ (·, ξ) Ŵε,t,ξ

)
= Ggξ (·, ξ) ∆gξŴε,t,ξ − 2

〈
∇Ggξ (·, ξ) ,∇Ŵε,t,ξ

〉
gξ
. (3.6)

Since Ŵε,t,ξ ◦ expξ is radially symmetrical in B0 (r0), writing ∆gξŴε,t,ξ

(
expξ y

)
in polar coor-

dinates, by (2.4), we find that

∆gξŴε,t,ξ

(
expξ y

)
= ∆Eucl

(
Ŵε,t,ξ ◦ expξ

)
(y) + O

(
|y|N−1

∣∣∇(Ŵε,t,ξ ◦ expξ
)

(y)
∣∣)

= βnδε (t)−
n+2
2 |y|n−2 U

(
y

δε(t)

)2∗−1

− 2n
n−2
4 (n− 2)

n+6
4 βn

δε (t)
n+2
2 |y|n−4(

δε (t)2 + |y|2
)n

2

+ O

(
δε(t)

n+2
2 |y|N+n−4(

δε(t)2 + |y|2
)n

2

)
(3.7)
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uniformly with respect to y ∈ B0 (r0), in view of ∆EuclU = U2∗−1 in Rn. Moreover, since

Ŵε,t,ξ ◦ expξ is radially symmetrical, we get that

〈
∇Ggξ

(
expξ y, ξ

)
,∇Ŵε,t,ξ

(
expξ y

) 〉
gξ

= ∂r
[
Ggξ

(
expξ y, ξ

)]
∂r
[
Ŵε,t,ξ ◦ expξ(y)

]
= ∂r

[
Ggξ

(
expξ y, ξ

)]
n
n−2
4 (n− 2)

n+2
4 βn

δε (t)
n+2
2 |y|n−3(

δε (t)2 + |y|2
)n

2

(3.8)

for all y ∈ B0 (r0). Inserting (3.7) and (3.8) into (3.6), we get that

Lgξ
(
Ggξ (·, ξ) Ŵε,t,ξ

)
(expξ y) = βnGgξ

(
expξ y, ξ

)
|y|n−2 δε (t)−

n+2
2 U

(
δε(t)

−1y
)2∗−1

− 2n
n−2
4 (n− 2)

n+2
4 βn

(
(n− 2)Ggξ

(
expξ y, ξ

)
+ |y|∂r

[
Ggξ

(
expξ y, ξ

)]) δε (t)
n+2
2 |y|n−4(

δε (t)2 + |y|2
)n

2

+ O

(
δε(t)

n+2
2 Ggξ

(
expξ y, ξ

)
|y|N+n−4(

δε(t)2 + |y|2
)n

2

)
(3.9)

in B0 (r0). Using Lemma A.1, by (3.9) we find that

(
Ggξ

(
expξ y, ξ

)
Ŵε,t,ξ

(
expξ y

) )2∗−1 − Lgξ
(
Ggξ (·, ξ) Ŵε,t,ξ

) (
expξ y

)
=

δε(t)
n+2
2(

δε(t)2 + |y|2
)n

2

×


O
(
|y|n−4

)
if n = 4, 5 or (M, g) l.c.f.

O
(
|y|2 ln |y|

)
if n = 6 and (M, g) non-l.c.f.

O
(
|y|2
)

if n ≥ 7 and (M, g) non-l.c.f.

(3.10)

in B0 (r0). It follows from (3.10) that

∫
Bξ(r0)

Λ
2n
n−2

ξ

∣∣∣(Ggξ (·, ξ) Ŵε,t,ξ

)2∗−1 − Lgξ
(
Ggξ (·, ξ) Ŵε,t,ξ

)∣∣∣ 2n
n+2

dvg

=

∫ r0

0

δε(t)
ndr

(δε(t)2 + r2)
n2

n+2

×


O
(
r

2n2

n+2
−1+

n(n−6)
n+2

)
if n = 4, 5 or (M, g) l.c.f.

O
(
r8 |ln r|

)
if n = 6 and (M, g) non-l.c.f.

O
(
r

2n2

n+2
−1−n(n−6)

n+2

)
if n ≥ 7 and (M, g) non-l.c.f.

=



O
(
δε(t)

2n(n−2)
n+2

)
if n = 4, 5

O
(
δε(t)

6 |ln δε(t)|
)

if n = 6 and (M, g) l.c.f.

O (δε(t)
n) if n ≥ 7 and (M, g) l.c.f.

O
(
δε(t)

6 |ln δε(t)|2
)

if n = 6 and (M, g) non-l.c.f.

O
(
δε(t)

8n
n+2

)
if n ≥ 7 and (M, g) non-l.c.f.

(3.11)
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Moreover, by Lemma A.1, we find that

∫
Bξ(r0)

|hWε,t,ξ|
2n
n+2 dvg = O

(∫ r0

0

δε(t)
n(n−2)
n+2 rn−1dr

(δε(t)2 + r2)
n(n−2)
n+2

)
=


O
(
δε(t)

n(n−2)
n+2

)
if n = 4, 5

O
(
δε(t)

3 |ln δε(t)|
)

if n = 6

O
(
δε(t)

4n
n+2

)
if n ≥ 7.

(3.12)
By (3.4), (3.5), (3.11), and (3.12), we get that

‖fε (Wε,t,ξ)− LgWε,t,ξ‖ 2n
n+2

=



O
(
δε(t)

n−2 + εδε(t)
n−2
2

)
if n = 4, 5

O
(
δε(t)

4 |ln δε(t)|
2
3 + εδε(t)

2 |ln δε(t)|
2
3

)
if n = 6 and (M, g) l.c.f.

O
(
δε(t)

n+2
2 + εδε(t)

2
)

if n ≥ 7 and (M, g) l.c.f.

O
(
δε(t)

4 |ln δε(t)|
4
3 + εδε(t)

2 |ln δε(t)|
2
3

)
if n = 6 and (M, g) non-l.c.f.

O
(
δε(t)

4 + εδε(t)
2
)

if n ≥ 7 and (M, g) non-l.c.f.

(3.13)

Finally, (2.20) follows from (2.6), (3.3), and (3.13) in view of (3.2). This ends the proof of
Proposition 2.2. �

4. The reduced energy

In Lemma 4.1 below, we give an asymptotic expansion of Jε (Wε,t,ξ) as ε → 0, where Jε is
given by (2.21). We let Kn be the sharp constant for the embedding of D1,2 (Rn) into L2∗ (Rn).
It has been proved independently by Rodemich [41], Aubin [2], and Talenti [47] that

Kn =

√
4

n (n− 2)ω
2/n
n

, (4.1)

where ωn is the volume of the unit n–sphere.

Lemma 4.1. We let Kn be as in (4.1), Weylg be the Weyl curvature tensor of the manifold,
and for any ξ ∈M , we let Aξ be as in (1.5). As ε→ 0, the following expansions do hold:

(i) when n = 4,

Jε (Wε,t,ξ) =
1

4
K−4

4 + 4ω3h(ξ)εδε(t)
2 ln

1

δε(t)
− 4β2

4Aξδε(t)
2 + h.o.t., (4.2)

(ii) when n = 5 or (n ≥ 6 and (M, g) is l.c.f.),

Jε (Wε,t,ξ) =
1

n
K−nn + [n(n− 2)]

n−2
2

(
(n− 1)ωn

2n−1(n− 4)
h(ξ)εδε(t)

2 − β2
n

2
Aξδε(t)

n−2

)
+ h.o.t., (4.3)

(iii) when n = 6 and (M, g) is non-l.c.f.,

Jε (Wε,t,ξ) =
1

6
K−6

6 + 45ω6h (ξ) εδε(t)
2 − 3

4
ω6

∣∣Weylg (ξ)
∣∣2
g
δε(t)

4 ln
1

δε(t)
+ h.o.t., (4.4)
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(iv) when n ≥ 7 and (M, g) is non-l.c.f.,

Jε (Wε,t,ξ) =
1

n
K−nn +

[n(n− 2)]
n−2
2

2n−1(n− 4)
ωn

(
(n− 1)h(ξ)εδε(t)

2 − n− 2

48(n− 6)

∣∣Weylg (ξ)
∣∣2
g
δε(t)

4

)
+ h.o.t. (4.5)

uniformly with respect to ξ ∈ M and t in compact subsets of (0,∞), where h.o.t. stands for
a term which is asymptotically smaller than one of the previous terms in the expansion as
ε→ 0.

Proof. All our estimates in this proof are uniform with respect to ξ ∈M , t in compact subsets

of (0,∞), and ε ∈ (0, ε0) for some fixed ε0 > 0. Since Ŵε,t,ξ is a constant and LgξGgξ(·, ξ) = 0
in M \Bξ(r0), by (2.2) and (2.5), we get that∫

M

∣∣∇Wε,t,ξ

∣∣2
g
dvg + αn

∫
M

ScalgW
2
ε,t,ξdvg

=

∫
M

(LgWε,t,ξ)Wε,t,ξdvg +

∫
∂Bξ(r0)

(∂νinWε,t,ξ + ∂νoutWε,t,ξ)Wε,t,ξdσg

=

∫
M

Lgξ
(
Ggξ(·, ξ)Ŵε,t,ξ

)
Ggξ(·, ξ)Ŵε,t,ξdvgξ + O (δε(t)

n)

=

∫
Bξ(r0)

Lgξ
(
Ggξ(·, ξ)Ŵε,t,ξ

)
Ggξ(·, ξ)Ŵε,t,ξdvgξ + O (δε(t)

n)

in view of (3.3) and Wε,t,ξ = O
(
δε(t)

n−2
2

)
on ∂Bξ (r0). In the estimates below, we make use of

(3.9) along with (2.4), Lemma A.1, and

Ggξ(x, ξ)Ŵε,t,ξ(x) = βnGgξ(x, ξ)dgξ(x, ξ)
n−2[n(n− 2)]

n−2
4

δε(t)
n−2
2

(δε(t)2 + dgξ(x, ξ)
2)

n−2
2

for all x ∈ Bξ (r0). When n = 4, 5 or (M, g) is l.c.f., we can deduce that∫
M

∣∣∇Wε,t,ξ

∣∣2
g
dvg + αn

∫
M

ScalgW
2
ε,t,ξdvg =

1

2
[n(n− 2)]

n
2ωn−1I

n−2
2

n

+n
n−2
2 (n− 2)

n
2 βnωn−1I

n−2
n Aξδε (t)n−2 + O

(
δε(t)

n−1
)
, (4.6)

where we denote Iqp :=
∫ +∞

0
(1 + r)−p rqdr for all p, q such that p − q > 1, and we use that

Iqp = q
p−q−1

Iq−1
p = p

p−q−1
Iqp+1. Concerning the remaining cases, we find that∫

M

∣∣∇Wε,t,ξ

∣∣2
g
dvg + αn

∫
M

ScalgW
2
ε,t,ξdvg = 6912ω5I

2
6 (4.7)

− 8

5
ω5I

4
6

∣∣Weylg (ξ)
∣∣2
g
δε (t)4 ln δε (t) + O

(
δε(t)

4
)

when n = 6 and (M, g) is non-l.c.f., and∫
M

∣∣∇Wε,t,ξ

∣∣2
g
dvg + αn

∫
M

ScalgW
2
ε,t,ξdvg =

1

2
[n(n− 2)]

n
2ωn−1I

n−2
2

n (4.8)

+
n
n−2
2 (n− 2)

n+4
2

48(n+ 2)(n− 1)
ωn−1I

n+2
2

n δε(t)
4

(∣∣Weylg(ξ)
∣∣2
g

12(n− 6)
+

1

n
∆Eucl(Scalgξ ◦ expξ)(0)

)
+ O(δε(t)

5)
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when n ≥ 7 and (M, g) is non-l.c.f., in view of symmetry properties. Now, we estimate the
term∫

M

W 2∗

ε,t,ξdvg =

∫
M

(
Ggξ(·, ξ)Ŵε,t,ξ

)2∗

dvgξ

= [n(n− 2)]
n
2

∫
B0(r0)

[
βnGgξ(expξ y, ξ)|y|n−2

]2∗ δε(t)
n

(δε(t)2 + |y|2)n
dy + O (δε(t)

n)

in view of (2.4). By Lemma A.1, we get that∫
M

W 2∗

ε,t,ξdvg =
1

2
[n(n− 2)]

n
2ωn−1I

n−2
2

n (4.9)

+



n
n+2
2 (n− 2)

n−2
2 βnωn−1I

n−2
n Aξδε (t)n−2 + O

(
δε(t)

n−1
)

if n = 4, 5 or (M, g) l.c.f.

− 72

5
ω5I

4
6

∣∣Weylg (ξ)
∣∣2
g
δε (t)4 ln δε (t) + O

(
δε(t)

4
)

if n = 6 and (M, g) non-l.c.f.

n
n+2
2 (n− 2)

n
2

48(n− 4)(n− 1)
ωn−1I

n+2
2

n δε (t)4

(∣∣Weylg (ξ)
∣∣2
g

12 (n− 6)

+
1

n
∆Eucl(Scalgξ ◦ expξ)(0)

)
+ O

(
δε(t)

5
)
, if n ≥ 7 and (M, g) non-l.c.f.

by using symmetry properties when n ≥ 7 and (M, g) is non-l.c.f. Moreover, we find that∫
M

hW 2
ε,t,ξdvg =

 − 8ω3h (ξ) δε (t)2 ln δε (t) + O
(
δε(t)

2
)

if n = 4

1

2
[n(n− 2)]

n−2
2 ωn−1I

n−2
2

n−2h (ξ) δε (t)2 + O
(
δε(t)

5
2

)
if n ≥ 5

(4.10)

as ε → 0, in view of Λξ(ξ) = 1, (2.4), and Lemma A.1. Successive integrations by parts give
that

I
n−2
2

n =
ωn

2n−1ωn−1

, In−2
n =

1

n− 1
, (4.11)

and (if n ≥ 5)

I
n−2
2

n−2 =
(n− 1)ωn

2n−3 (n− 4)ωn−1

, I
n+2
2

n =
n (n+ 2)ωn

2n−1 (n− 2) (n− 4)ωn−1

. (4.12)

Moreover, for any ξ ∈ M , since gξ defines conformal normal coordinates of order N ≥ 5, see
Lee–Parker [27, Theorem 5.1], and since Λξ (ξ) = 1, we get that

∆Eucl(Scalgξ ◦ expξ)(0) =
1

6

∣∣Weylgξ (ξ)
∣∣2
gξ

=
1

6

∣∣Weylg (ξ)
∣∣2
g
. (4.13)

Finally, (4.2)–(4.5) follow from (4.6)–(4.13) in view of (4.1). �

We end this section by proving the validity of the expansion for Jε in Proposition 2.3
uniformly with respect to ξ ∈M , t in compact subsets of (0,∞) and ε ∈ (0, ε0). To this aim,
it suffices to prove the (uniform) expansion

Jε (t, ξ) = Jε (Wε,t,ξ) +

{
o
(
δε(t)

2
)

if n = 4

o
(
εδε(t)

2
)

if n ≥ 5
(4.14)
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as ε → 0. Indeed, the expansion of Jε in Proposition 2.3 follows from combining Lemma 4.1
with (4.14) and letting δε(t) be as in (2.6). Since

Jε (t, ξ)− Jε (Wε,t,ξ) =
〈
Wε,t,ξ − L−1

g (fε (Wε,t,ξ)) , φε,t,ξ
〉
Lg

+
1

2

(
‖φε,t,ξ‖2

Lg
+ ε

∫
M

hφ2
ε,t,ξdvg

)
− 1

2∗

∫
M

(
(Wε,t,ξ + φε,t,ξ)

2∗

+ −W
2∗

ε,t,ξ − 2∗W 2∗−1
ε,t,ξ φε,t,ξ

)
dvg , (4.15)

by Cauchy–Schwarz inequality, we get that∣∣∣〈Wε,t,ξ − L−1
g (fε (Wε,t,ξ)) , φε,t,ξ

〉
Lg

∣∣∣ ≤ ∥∥Wε,t,ξ − L−1
g (fε (Wε,t,ξ))

∥∥
Lg
‖φε,t,ξ‖Lg , (4.16)

and by the Mean Value Theorem and the Hölder’s inequality, we get that∫
M

(
(Wε,t,ξ + φε,t,ξ)

2∗

+ −W
2∗

ε,t,ξ − 2∗W 2∗−1
ε,t,ξ φε,t,ξ

)
dvg

= O
(
‖φε,t,ξ‖2

2∗ ‖Wε,t,ξ‖2∗−2
2∗ + ‖φε,t,ξ‖2∗

2∗

)
= O

(
‖φε,t,ξ‖2

2∗ + ‖φε,t,ξ‖2∗

2∗

)
. (4.17)

By Proposition 2.1 and (4.15)–(4.17), it follows that

Jε (t, ξ)− Jε (Wε,t,ξ) = O
(
‖Rε,t,ξ‖2

1,2

)
in view of Sobolev’s embedding L2∗(M) ↪→ H2

1 (M) and the equivalence between the two norms
‖ ·‖Lg and ‖ ·‖1,2. Proposition 2.2 now yields that the estimate (4.14) does hold C0–uniformly.

5. Existence of k–bubbles

The previous analysis can be extended to solutions which have k distinct blow-up points,

k ≥ 2. In the non-l.c.f. case with n ≥ 6, the “reduced energy” Ẽk : (0,∞)k × (Mk \∆k)→ R,
∆k :=

{
(ξ1, . . . , ξk) ∈Mk : ξi = ξj for i 6= j

}
, which governs the location of these blow-up

points, is just a super-position of the one for each single point:

Ẽk(t, ξ) :=
k∑
i=1

Ẽ(ti, ξi), t := (t1, . . . , tk) ∈ (0,∞)k, ξ := (ξ1, . . . , ξk) ∈Mk \∆k .

Theorem 2.4 works as well in this context in the following way: as soon as we find k distinct Cp–

stable, p = 0, 1, critical sets D̃1, . . . , D̃k of Ẽ(t, ξ), we can construct a family (uk,ε)ε of solutions

to (1.3) which blows up, up to a sub-sequence, at points (ξ0)1 , . . . , (ξ0)k with ξ0 ∈ D̃1×· · ·×D̃k
as ε→ 0. From this result, we deduce Theorem 1.3 exactly as in the case k = 1.

Theorem 1.2 has its counter-part too: in the non-l.c.f. case with n ≥ 6, solutions with k
blow-up points do exist provided that k is at most the number of isolated critical points of

E(ξ) = h (ξ)
∣∣Weylg (ξ)

∣∣−1

g
with non-trivial local degree and h > 0.

When n = 4, the energy for the approximating function (5.2) is not suitable due to the
dependence in t of the smallness rate of δε (t) in (2.6).

When n = 5 or (M, g) is l.c.f., the picture is completely different. There is an effective
interaction between different blow-up points as expressed by the following “reduced energy”

Ẽk : (0,∞)k × (Mk \∆k)→ R:

Ẽk(t, ξ) = c2

k∑
i=1

t2ih(ξi)− c3

k∑
i=1

tn−2
i Aξi − c3

k∑
i,j=1
i6=j

t
n−2
2

i t
n−2
2

j Gg(ξi, ξj), (5.1)



THE EFFECT OF LINEAR PERTURBATIONS ON THE YAMABE PROBLEM 19

where c2, c3 > 0 and Aξ is as in (1.5). Theorem 2.4 is still valid in this context by simply

replacing Ẽ(t, ξ) with Ẽk(t, ξ). It is no longer possible in general to relate critical sets of

Ẽk(t, ξ) with that of an explicit Ek(ξ) as when k = 1, with the exception of the case n = 6
for which we prove Theorem 1.5 with Ek defined as in (1.7). In case n ≥ 7 (in such a way

that n−2
2
> 2), we can produce a C0–stable critical set of Ẽk through its maximal set, yielding

to Theorem 1.4. In this section, we first sketch the proof of Theorem 2.4 in case k ≥ 2, with

Ẽ(t, ξ) replaced by Ẽk(t, ξ), and we then derive from it Theorems 1.4 and 1.5.

For t := (t1, . . . , tk) ∈ (0,∞)k and ξ := (ξ1, . . . , ξk) ∈Mk \∆k, define δε(ti), i = 1, . . . , k, as
in (2.6). The k–bubbles approximating function is given by

W
ε,t,ξ :=

k∑
i=1

Wε,ti,ξi , (5.2)

where Wε,ti,ξi is defined in (2.7)–(2.8). Since Λξ are positive functions depending smoothly in
ξ ∈M , there exists C0 > 0 so that C−1

0 ≤ Λξ(x) ≤ C0 for all x, ξ ∈M , and then

C
− 2
n−2

0 dg(x, y) ≤ dgξ(x, y) ≤ C
2

n−2

0 dg(x, y) (5.3)

for all x, y, ξ ∈M . The number r0 in (2.8) is also assumed to satisfy r0 < C
− 2
n−2

0
dg(ξi,ξj)

2
for all

i 6= j in such a way that {dgξi (x, ξi) ≤ r0} ∩ {dgξj (x, ξj) ≤ r0} = ∅ in view of (5.3). We look

for a solution of (1.3) in the form

uk,ε := W
ε,t,ξ + φε ,

where t ∈ (0,∞)k, ξ ∈Mk \∆k, and φε ∈ K⊥
ε,t,ξ with

K
ε,t,ξ :=

k⋃
i=1

Kε,ti,ξi and K⊥
ε,t,ξ :=

k⋂
i=1

K⊥ε,ti,ξi ,

where Kε,ti,ξi and K⊥ε,ti,ξi are as in (2.14)–(2.15). Letting Π
ε,t,ξ and Π⊥

ε,t,ξ be the respective

projections of H2
1 (M) onto K

ε,t,ξ and K⊥
ε,t,ξ, we rewrite equation (1.3) as the system (2.16)–

(2.17), with Wε,t,ξ, Πε,t,ξ, Π
⊥
ε,t,ξ replaced by W

ε,t,ξ, Π
ε,t,ξ, Π⊥

ε,t,ξ, respectively. We begin with

solving equation (2.17) in Proposition 5.1 below, which is, as already observed, a well known
result in this context (see for instance Musso–Pistoia [35]).

Proposition 5.1. Given positive real numbers a < b and η, there exists a positive constant
C = C (a, b, η, k, n,M, g, h) such that for ε > 0 small, for any t ∈ [a, b]k and ξ ∈ Mk with
dg(ξi, ξj) ≥ η for all i 6= j, there exists a unique function φ

ε,t,ξ ∈ K
⊥
ε,t,ξ which solves equation

(2.17) and satisfies ∥∥φ
ε,t,ξ

∥∥
1,2
≤ C

∥∥R
ε,t,ξ

∥∥
1,2
,

where R
ε,t,ξ := W

ε,t,ξ − L
−1
g

(
fε
(
W
ε,t,ξ

))
. Moreover, φ

ε,t,ξ is continuously differentiable with

respect to t and ξ.

We now give an estimate for
∥∥R

ε,t,ξ
∥∥

1,2
.
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Proposition 5.2. Given positive real numbers a < b and η, there exists a positive constant
C = C (a, b, η, k, n,M, g, h) such that for ε > 0 small, for any t ∈ [a, b]k and ξ ∈ Mk with
dg(ξi, ξj) ≥ η for all i 6= j, there holds

∥∥R
ε,t,ξ

∥∥
1,2
≤ C


ε

5
2 if n = 5

ε2 |ln ε|
2
3 if n = 6 and (M, g) l.c.f.

ε
n+2

2(n−4) if n ≥ 7 and (M, g) l.c.f.

where R
ε,t,ξ is as in Proposition 5.1.

Proof. We argue exactly as in the proof of Proposition 2.2. We point out that in this case

〈
L−1
g

(
fε
(
W
ε,t,ξ

))
−W

ε,t,ξ, φ
〉
Lg

=
k∑
i=1

〈
L−1
g

(
fε
(
Wε,ti,ξi

))
−Wε,ti,ξi , φ

〉
Lg

+

∫
M

[( k∑
i=1

Wε,ti,ξi

)2∗−1

−
k∑
i=1

W 2∗−1
ε,ti,ξi

]
φdvg ,

and then

∥∥L−1
g

(
fε
(
W
ε,t,ξ

))
−W

ε,t,ξ
∥∥

1,2
= O

( k∑
i=1

∥∥L−1
g (fε (Wε,ti,ξi))−Wε,ti,ξi

∥∥
1,2

)

+ O

(∥∥∥∥( k∑
i=1

Wε,ti,ξi

)2∗−1

−
k∑
i=1

W 2∗−1
ε,ti,ξi

∥∥∥∥
2n
n+2

)
.

The first k terms are estimated in Proposition 2.2, and the last term can be estimated following
the arguments used for (5.9). �

For any t ∈ (0,∞)k and ξ ∈Mk \∆k we define

Jε (t, ξ) := Jε
(
W
ε,t,ξ + φ

ε,t,ξ
)
,

where Jε is defined in (2.21) and φ
ε,t,ξ is given by Proposition 5.1. As already observed for

k = 1, we can solve equation (2.16) by searching critical points of Jε, and the asymptotic
expansion given in Proposition 5.3 below is crucial.

Proposition 5.3. There holds

Jε (t, ξ) = c1 + ε
n−2
n−4 Ẽk(t, ξ) + o

(
ε
n−2
n−4

)
as ε→ 0, uniformly with respect to ξ in compact subsets of Mk \∆k and t in compact subsets

of (0,∞)k, where Ẽk is given by (5.1) and c1 > 0 depends only in n.

Proof. We argue exactly as in the proof of Proposition 2.3, taking into account Lemma 5.4
below and exploiting (2.6). �
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Lemma 5.4. Assume that either n = 5 or [n ≥ 6 and (M, g) l.c.f.]. We let Kn be as in (4.1),
δε (t) be as in (2.6), and Aξi be as in (1.5). As ε→ 0, the following expansion does hold

Jε
(
W
ε,t,ξ

)
=
k

n
K−nn + [n(n− 2)]

n−2
2

[
(n− 1)ωn

2n−1(n− 4)
ε

k∑
i=1

h(ξi)δε(ti)
2 − β2

n

2

k∑
i=1

Aξiδε(ti)
n−2

− β2
n

2

k∑
i,j=1
i 6=j

(δε(ti)δε(tj))
n−2
2 Gg(ξi, ξj)

]
+ o

(
ε
n−2
n−4

)
, (5.4)

uniformly with respect to ξ in compact subsets of Mk \∆k and t in compact subsets of (0,∞)k.

Proof. We proceed exactly as in the proof of Lemma 4.1. We only point out that

Jε
(
W
ε,t,ξ

)
=

k∑
i=1

Jε (Wε,ti,ξi) +
1

2

k∑
i,j=1
i 6=j

〈
Wε,ti,ξi ,Wε,tj ,ξj

〉
Lg

+
ε

2

k∑
i,j=1
i 6=j

∫
M

hWε,ti,ξi Wε,tj ,ξjdvg −
1

2∗

∫
M

[( k∑
i=1

Wε,ti,ξi

)2∗

−
k∑
i=1

W 2∗

ε,ti,ξi

]
dvg . (5.5)

We claim that if i 6= j, then〈
Wε,ti,ξi ,Wε,tj ,ξj

〉
Lg

= [n(n− 2)]
n−2
2 β2

n (δε (ti) δε (tj))
n−2
2 Gg(ξi, ξj) + o

(
ε
n−2
n−4

)
. (5.6)

Indeed, by (2.4), (2.6), (3.3), (3.9), and Lemma A.1, we get that〈
Wε,ti,ξi ,Wε,tj ,ξj

〉
Lg

=

∫
M

(LgWε,ti,ξi)Wε,tj ,ξjdvg

+

∫
∂Bξi (r0)

(∂νinWε,ti,ξi + ∂νoutWε,ti,ξi)Wε,tj ,ξjdσg

= βnδε(tj)
2−n
2 rn−2

0 U
(
δε(tj)

−1r0

)
×
∫
Bξi (r0)

Lgξi
(
Ggξi

(·, ξi)Ŵε,ti,ξi

)
Λξi(x)−1Gg(x, ξj)dvgξi + o

(
ε
n−2
n−4

)
= [n(n− 2)]

n−2
4 βnδε(tj)

n−2
2 Gg(ξi, ξj)

×
∫
B0(r0)

Lgξi
(
Ggξi

(·, ξi)Ŵε,ti,ξi

)
(expξi y)[1 + o(1) + O(|y|)]dy + o

(
ε
n−2
n−4

)
=

1

2
[n(n− 2)]

n
2 βnωn−1 (δε (ti) δε (tj))

n−2
2 Gg(ξi, ξj)I

n−2
2

n+2
2

+ o
(
ε
n−2
n−4

)
in view of Λξi (ξi) = 1, LgGg(x, ξi) = 0, and

Wε,ti,ξi = βnGg(x, ξi)δε(ti)
2−n
2 rn−2

0 U
(
δε(ti)

−1r0

)
(5.7)

for all x ∈M \Bξi(r0). Since

I
n−2
2

n+2
2

=

∫ +∞

0

r
n−2
2

(1 + r)
n+2
2

dr =

∫ +∞

0

(1− 1

r + 1
)
n−2
2

dr

(1 + r)2
=

∫ 1

0

(1− s)
n−2
2 ds =

2

n
, (5.8)
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we deduce the validity of (5.6). We claim that

1

2∗

∫
M

[( k∑
i=1

Wε,ti,ξi

)2∗

−
k∑
i=1

W 2∗

ε,ti,ξi

]
dvg

= [n(n− 2)]
n−2
2 β2

n

k∑
i,j=1
i 6=j

(δε (ti) δε (tj))
n−2
2 Gg(ξi, ξj) + o

(
ε
n−2
n−4

)
. (5.9)

Indeed, by (2.4), (2.6), (5.7), and Lemma A.1 , we deduce that∫
M

[( k∑
i=1

Wε,ti,ξi

)2∗

−
k∑
i=1

W 2∗

ε,ti,ξi

]
dvg

=
k∑
j=1

∫
Bξj (r0)

[( k∑
i=1

Wε,ti,ξi

)2∗

−W 2∗

ε,tj ,ξj

]
dvg + o

(
ε
n−2
n−4

)
= 2∗[n(n− 2)]

n−2
4 βn

k∑
i,j=1
i6=j

δε(ti)
n−2
2 (1 + o(1))

∫
Bξj (r0)

Gg(x, ξi)W
2∗−1
ε,tj ,ξj

dvg + o
(
ε
n−2
n−4

)

=
2∗

2
[n(n− 2)]

n
2 βnωn−1I

n−2
2

n+2
2

k∑
i,j=1
i6=j

(δε (ti) δε (tj))
n−2
2 Gg(ξj, ξi) + o

(
ε
n−2
n−4

)
in view of the estimate (a+ b)2∗ − a2∗ − 2∗a2∗−1b = O(a2∗−2b2 + b2∗) for all a, b ≥ 0. Therefore,
thanks to (5.8), we deduce the validity of (5.9). Moreover, by (2.6) and (5.7), we get that∫

M

hWε,ti,ξi Wε,tj ,ξjdvg = O

(
δε(tj)

n−2
2

∫
Bξi (r0)

Wε,ti,ξidvg + δε(ti)
n−2
2

∫
Bξj (r0)

Wε,tj ,ξjdvg

)
+ O

(
δε(ti)

n−2
2 δε(tj)

n−2
2

)
= O

(
ε
n−2
n−4

)
. (5.10)

Inserting (5.6), (5.9), and (5.10) into (5.5) and combining with Lemma 4.1 we finally deduce
the validity of (5.4). �

Proof of Theorem 1.4. The key point is to show that Ẽk attains its maximum value

mk := sup
(0,∞)k×(Mk\∆k)

Ẽk

at interior points, i.e.

D̃k = {(t, ξ) ∈ (0,∞)k × (Mk \∆k) : Ẽk(t, ξ) = mk}
is a non-empty compact set. We claim that there exists L > 0 so that

sup
(0,L]l×(M l\∆l)

Ẽl = ml and sup
((0,∞)l\(0,L]l)×(M l\∆l)

Ẽl < ml (5.11)

for all l = 1, . . . , k, and there holds

0 < m1 < m2 < · · · < mk < +∞ . (5.12)

Indeed, since min {Aξ : ξ ∈M} > 0 and

Ẽl(t, ξ) ≤
l∑

i=1

(
c2t

2
ih(ξi)− c3t

n−2
i Aξi

)
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for all (t, ξ) ∈ (0,∞)k × (Mk \ ∆k), we have that Ẽl(t, ξ) → −∞ uniformly as soon as
ti → +∞ for some i = 1, . . . , l. Therefore, we can find some L > 0 large so that (5.11) does
hold, and ml < +∞. Since maxM h > 0, we can find ξ1 ∈ M with h(ξ1) > 0, and then
c2t

2
1h(ξ1)− c3t

n−2
1 Aξ1 > 0 for t1 > 0 sufficiently small. It follows that m1 > 0. To conclude the

proof of (5.12), observe that for l ≥ 2, we have that

Ẽl(t, ξ) = Ẽl−1(t1, . . . , tl−1, ξ1, . . . , ξl−1)

+ c2t
2
l h(ξl)− c3t

n−2
l Aξl − 2c3t

n−2
2

l

l−1∑
i=1

t
n−2
2

i Gg(ξi, ξl). (5.13)

Let (tj1, . . . , t
j
l−1, ξ

j
1, . . . , ξ

j
l−1)j∈N be a maximizing sequence for ml−1. Up to a subsequence,

we can assume that ξji → ξi ∈ M as j → +∞ for all i = 1, . . . , l − 1. Now, we fix some
ξl ∈ {h > 0} \ {ξ1, . . . , ξl−1} and we choose tl > 0 small so that

c2t
2
l h(ξl)− c3t

n−2
l Aξl − 2c3t

n−2
2

l

l−1∑
i=1

t
n−2
2

i Gg(ξi, ξl)

≥ c2t
2
l h(ξl)− c3t

n−2
l Aξl − 2c3L

n−2
2 t

n−2
2

l

l−1∑
i=1

Gg(ξi, ξl) > 0

in view of n−2
2
> 2. Therefore, we get that

ml ≥ lim
j→+∞

Ẽl(t
j
1, . . . , t

j
l−1, t

j
l , ξ

j
1, . . . , ξ

j
l−1, ξ

j
l )

= ml−1 + c2t
2
l h(ξl)− c3t

n−2
l Aξl − 2c3t

n−2
2

l

l−1∑
i=1

t
n−2
2

i Gg(ξi, ξl) > ml−1 ,

and (5.12) is established.

Now, we prove that D̃k 6= ∅ and that D̃k is a compact set. By (5.11), we can find a

maximizing sequence (tj, ξj)j∈N, (tj, ξj) := (tj1, . . . , t
j
k, ξ

j
1, . . . , ξ

j
k), for Ẽk so that tji ≤ L for

all i = 1, . . . , k and j ∈ N. By (5.13) with l = k, we get that if tjk → 0 as j → +∞, then

mk ≤ mk−1 in contradiction with (5.12). Since the same argument applies for all the tji ’s, we

get that there exists η > 0 so that tji ≥ η for all i = 1, . . . , k and j ∈ N. By compactness
of [η, L]k ×Mk, up to a subsequence, we can assume that (tj, ξj) → (t0, ξ0) ∈ [η, L]k ×Mk

as j → +∞. Since Gg(x, y) → +∞ as dg(x, y) → 0, we get that ξ0 ∈ Mk \ ∆k, and

thus that (t0, ξ0) ∈ D̃k. Hence, we get that D̃k 6= ∅. As for the compactness of D̃k, we

let (tj, ξj)j∈N be a sequence in D̃k, and by the same arguments as above, we deduce that

(tj, ξj) → (t0, ξ0) ∈ [η, L]k × (Mk \∆k) as j → +∞, and by continuity of Ẽk, (t0, ξ0) ∈ D̃k,
which proves that D̃k is a compact set.

To conclude the proof, let Ũ be a compact neighborhood of D̃k in (0,∞)k × (Mk \ ∆k).

Since by (5.11) Ẽk is not a constant function, we have that

sup
∂Ũ

Ẽk < sup
D̃k

Ẽk . (5.14)

By Proposition 5.3, we get that

J̃ε(t, ξ) := ε−
n−2
n−4 [Jε (t, ξ)− c1] −→ Ẽk(t, ξ) (5.15)
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as ε→ 0, uniformly with respect to ξ in compact subsets of Mk \∆k and t in compact subsets
of (0,∞)k. It follows from (5.14) and (5.15) that for ε > 0 small, we get that

sup
∂Ũ

J̃ε < sup
D̃k
J̃ε .

Then J̃ε achieves its maximum value in Ũ at some interior point (tε, ξε) of Ũ , which is a critical

point of Jε in Ũ . As already observed, we then get that uk,ε = W
ε,tε,ξε

+ φ
ε,tε,ξε

is a critical

point of Jε, and thus, by elliptic regularity, a classical solution of (1.3). Up to a subsequence

and taking Ũ smaller and smaller, we can assume that (tε, ξε) → (t0, ξ0) ∈ D̃k as ε → 0.
Arguing as in the proof of Theorem 2.4, since

∥∥φ
ε,tε,ξε

∥∥
1,2
→ 0, by the definition of W

ε,tε,ξε
,

we get that u2∗

k,ε ⇀ K−nn
∑k

i=1 δ(ξ0)i
in the measures sense as ε → 0. Then the family (uk,ε)ε

blows up at the points (ξ0)1 , . . . , (ξ0)k as ε → 0, where (t0, ξ0) is so that Ẽk(t0, ξ0) = mk.
We also get that limk→+∞ lim supε→0 ‖∇uk,ε‖L2(M) = +∞ by the definition of W

ε,tε,ξε
. This

ends the proof of Theorem 1.4. �

Proof of Theorem 1.5. We assume that n = 6 and h ∈ C1 (M). It is not difficult to show
that the expansion (5.4) is C1–uniform with respect to t and ξ. A straightforward adaptation
of the C1–estimates in Section 6 below then yields to the C1–uniformity of the expansion for
Jε in Proposition 5.3 for all integers k ≥ 1. For any ξ := (ξ1, . . . , ξk) ∈ Mk\∆k, let A

k,ξ and

Ek (ξ) be as in (1.6)–(1.7), and ξ0 := ((ξ0)1 , . . . , (ξ0)k) be an isolated critical point of Ek with
non-trivial local degree so that A−1

k,ξ0

.H has positive coordinates. Observe that with these

notations, we can write that

Ẽk (t, ξ) = c2

〈
T , H

(
ξ
)〉
− c3

〈
T , A

k,ξ.T
〉
,

where T := (t21, . . . , t
2
k), H (ξ) := (h (ξ1) , . . . , h (ξk)) and 〈·, ·〉 is the Euclidean scalar prod-

uct. Arguing as in the proof of Theorem 1.2, it suffices to find t0 (ξ0) ∈ (0,∞)k such that

(t0 (ξ0) , ξ0) is a C1–stable critical point of Ẽk. One then easily checks that such a property
is achieved when taking

T 0 (ξ0) :=
c2

2c3

A−1

k,ξ0

.H
(
ξ0

)
with T 0 (ξ0) =

(
(t0 (ξ0))2

1 , . . . , (t0 (ξ0))2
k

)
,

which is well defined since A−1

k,ξ0

.H
(
ξ0

)
has positive coordinates. This ends the proof of

Theorem 1.5. �

6. First derivatives estimates

This section is devoted to the end of the proof of Proposition 2.3. We assume that h ∈
C1 (M) and we prove the C1–uniformity of the expansion for Jε in Proposition 2.3. Arguing
as in the proof of Lemma 4.1, it is not difficult to show that (4.2)–(4.5) are C1–uniform with
respect to ξ ∈ M and t in compact subsets of (0,∞) as ε → 0. We only need to prove the
C1–uniformity of (4.14). We begin with proving the preliminary Lemmas 6.1–6.5. Throughout
this section, we identify the tangent spaces TξM with Rn thanks to local, smooth, orthonormal
frames, so that expξ denotes the composition of the standard exponential map (with respect
to gξ) with a linear isometry Υξ : Rn → TξM which is smooth with respect to ξ. We denote
by Ω the domain in M where the frame is defined. We use the notations

Z0,ε,t,ξ := Zε,t,ξ and Zi,ε,t,ξ := Zε,t,ξ,ei (6.1)

for all i = 1, . . . , n, where ei is the i–th vector in the canonical basis of Rn, Zε,t,ξ and Zε,t,ξ,ei
are as in (2.12)–(2.13). We let Wε,t,ξ be as in (2.7), Jε be as in (2.21), and Jε be as in (2.22).
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All our estimates in this section are uniform with respect to t ∈ [a, b], ξ ∈ Ω, and ε ∈ (0, ε0)
for some fixed ε0 > 0. In Lemma 6.1 below, we approximate the first derivatives of Wε,t,ξ (x)
with respect to t, ξ, and x.

Lemma 6.1. There hold∥∥∥∥ ddtWε,t,ξ −
n
n−2
4 (n− 2)

n+2
4 δ′ε (t)

2δε (t)
Z0,ε,t,ξ

∥∥∥∥
2∗

= o (1) , (6.2)∥∥∥∥ d

dηi
Wε,t,expξ η

∣∣∣
η=0
− n

n−2
4 (n− 2)

n+2
4

δε (t)
Zi,ε,t,ξ

∥∥∥∥
2∗

= o (1) (6.3)

as ε→ 0 for all i = 1, . . . , n, where δε (t) is as in (2.6).

Proof. We begin with proving (6.2). For any x ∈M , we find that

d

dt
Wε,t,ξ (x) = Gg (x, ξ)

d

dt
Ŵε,t,ξ (x) , (6.4)

where

d

dt
Ŵε,t,ξ (x) =

n
n−2
4 (n− 2)

n+2
4 δ′ε (t)

2δε (t)
n
2

βn ×

{
dgξ (x, ξ)n−2 V0

(
δε (t)−1 exp−1

ξ x
)

if dgξ (x, ξ) ≤ r0

rn−2
0 V0

(
δε (t)−1 r0

)
if dgξ (x, ξ) > r0

=
n
n−2
4 (n− 2)

n+2
4 δ′ε (t)

2δε (t)
Ẑ0,ε,t,ξ (x) + O

(
δε (t)

n−4
2 δ′ε (t)1M\Bξ(r0/2) (x)

)
. (6.5)

(6.2) follows from (2.6), (6.4), and (6.5). Now, we prove (6.3). For any x ∈ Bξ (r0), we get
that
d

dηi
Wε,t,expξ η (x)

∣∣∣
η=0

= Gg (x, ξ)
d

dηi
Ŵε,t,expξ η (x)

∣∣∣
η=0

+
d

dηi
Gg

(
x, expξ η

) ∣∣∣
η=0

Ŵε,t,ξ (x) . (6.6)

Moreover, letting y = exp−1
ξ x and using Lemma A.2 in appendix, we find that

d

dηi
Ŵε,t,expξ η

(
expξ y

) ∣∣∣
η=0

= −n
n−2
4 (n− 2)

n+2
4 βn

δε (t)
n+2
2 |y|n−4 yi(

δε (t)2 + |y|2
)n

2

+ O

(
δε (t)

n+2
2 |y|n−1(

δε (t)2 + |y|2
)n

2

)
(6.7)

and, using (2.5), we get that

d

dηi
Gg

(
x, expξ η

) ∣∣∣
η=0

= Λξ (x)
d

dηi
Ggexpξ η

(
x, expξ η

) ∣∣∣
η=0

+
d

dηi
Λexpξ η (x)

∣∣∣
η=0

Ggξ (x, ξ) .

(6.8)

Since we have chosen Λξ so that Λξ (ξ) = 1 and ∇Λξ (ξ) = 0, we get that

Λξ
(
expξ y

)
= 1 + O

(
|y|2
)

and
d

dηi
Λexpξ η

(
expξ y

) ∣∣∣
η=0

= O (|y|) . (6.9)

By (6.8), (6.9), Lemmas A.1 and A.2, we get that

Gg

(
expξ y, ξ

)
= β−1

n |y|
2−n + O

(
|y|4−n

)
, (6.10)

d

dηi
Gg

(
expξ y, expξ η

) ∣∣∣
η=0

= (n− 2) β−1
n |y|

−n yi + O
(
|y|3−n

)
. (6.11)

Moreover, using Lemma A.1, we find that

Zi,ε,t,ξ
(
expξ y

)
=

δε (t)
n
2 χ(|y|)yi(

δε (t)2 + |y|2
)n

2

+ O

(
δε (t)

n
2 |y|3(

δε (t)2 + |y|2
)n

2

)
. (6.12)
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By (6.6)–(6.12), we get that

d

dηi
Wε,t,expξ η

(
expξ y

) ∣∣∣
η=0

=
n
n−2
4 (n− 2)

n+2
4

δε (t)
Zi,ε,t,ξ

(
expξ y

)
+O

 δε (t)
n−2
2 |y|(

δε (t)2 + |y|2
)n−2

2

 (6.13)

uniformly with respect to y ∈ B0 (r0). It follows from (6.13) that∫
Bξ(r0)

∣∣∣∣ ddηiWε,t,expξ η (x)
∣∣∣
η=0
− n

n−2
4 (n− 2)

n+2
4

δε (t)
Zi,ε,t,ξ (x)

∣∣∣∣2∗dvg
= O

(
δε (t)n

∫ r0

0

r2∗+n−1dr(
δε (t)2 + r2

)n
)

= o (1) (6.14)

as ε→ 0. In M\Bξ (r0), we find that

d

dηi
Wε,t,expξ η (x)

∣∣∣
η=0

= βnδε (t)
2−n
2 rn−2

0 U
(
δε (t)−1 r0

) d

dηi
Gg

(
x, expξ η

) ∣∣∣
η=0

= O
(
δε (t)

n−2
2

)
(6.15)

uniformly with respect to x ∈ M\Bξ (r0). Finally, (6.3) follows from (6.14) and (6.15). This
ends the proof of Lemma 6.1. �

In Lemma 6.2 below, we approximate the first derivatives of the energy of our test functions.

Lemma 6.2. There hold

d

dt
Jε (Wε,t,ξ) =

n
n−2
4 (n− 2)

n+2
4 δ′ε (t)

2δε (t)
DJε (Wε,t,ξ) .Z0,ε,t,ξ +

{
o
(
δε (t)2 ln δε (t)

)
if n = 4

o
(
εδε (t)2) if n ≥ 5

(6.16)

d

dηi
Jε
(
Wε,t,expξ η

)∣∣∣
η=0

=
n
n−2
4 (n− 2)

n+2
4

δε (t)
DJε (Wε,t,ξ) .Zi,ε,t,ξ +

{
o
(
δε (t)2) if n = 4

o
(
εδε (t)2) if n ≥ 5

(6.17)

as ε→ 0 for all i = 1, . . . , n, where δε (t) is as in (2.6).

Proof. We begin with proving (6.16). Integration by parts gives that

d

dt
Jε (Wε,t,ξ)−

n
n−2
4 (n− 2)

n+2
4 δ′ε (t)

2δε (t)
DJε (Wε,t,ξ) .Z0,ε,t,ξ

=

∫
M

(LgWε,t,ξ − fε (Wε,t,ξ))

(
d

dt
Wε,t,ξ −

n
n−2
4 (n− 2)

n+2
4 δ′ε (t)

2δε (t)
Z0,ε,t,ξ

)
dvg

+

∫
∂Bξ(r0)

(∂νinWε,t,ξ + ∂νoutWε,t,ξ)
d

dt
Wε,t,ξ dσg . (6.18)

By (3.4), (3.5), (3.10), and (6.5), we get that

(LgWε,t,ξ (x)− fε (Wε,t,ξ (x)))

(
d

dt
Wε,t,ξ (x)− n

n−2
4 (n− 2)

n+2
4 δ′ε (t)

2δε (t)
Z0,ε,t,ξ (x)

)
= O

((
δε (t)n−1 δ′ε (t) + εδε (t)n−3 δ′ε (t)

)
1M\Bξ(r0/2) (x)

)
. (6.19)
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(6.16) follows from (6.18) and (6.19) in view of (3.3) and (6.5). Now, we prove (6.17). Inte-
gration by parts gives that

d

dηi
Jε
(
Wε,t,expξ η

)∣∣∣
η=0
− n

n−2
4 (n− 2)

n+2
4

δε (t)
DJε (Wε,t,ξ) .Zi,ε,t,ξ

=

∫
M

(LgWε,t,ξ − fε (Wε,t,ξ))

(
d

dηi
Wε,t,expξ η

∣∣∣
η=0
− n

n−2
4 (n− 2)

n+2
4

δε (t)
Zi,ε,t,ξ

)
dvg

+

∫
∂Bξ(r0)

[
∂νinWε,t,ξ

(
d

dηi
Wε,t,expξ η

∣∣∣
η=0

)
in

+ ∂νoutWε,t,ξ

(
d

dηi
Wε,t,expξ η

∣∣∣
η=0

)
out

]
dσg , (6.20)

where(
d

dηi
Wε,t,expξ η

∣∣∣
η=0

)
in

(x) = Gg (x, ξ)
d

dηi
Ŵε,t,expξ η (x)

∣∣∣
η=0

+
d

dηi
Gg

(
x, expξ η

) ∣∣∣
η=0

Ŵε,t,ξ (x) ,(
d

dηi
Wε,t,expξ η

∣∣∣
η=0

)
out

(x) =
d

dηi
Gg

(
x, expξ η

) ∣∣∣
η=0

Ŵε,t,ξ (x)

for all x ∈ ∂Bξ (r0), in view of (6.6) and (6.15). Regarding the second term in the right hand
side of (6.20), on ∂Bξ (r0), we find that

∂νinWε,t,ξ

(
d

dηi
Wε,t,expξ η

∣∣∣
η=0

)
in

+ ∂νoutWε,t,ξ

(
d

dηi
Wε,t,expξ η

∣∣∣
η=0

)
out

= βnGg (·, ξ) δε (t)
2−n
2

d

dr

(
rn−2U

(
δε(t)

−1r
)) ∣∣∣

r=r0

(
d

dηi
Wε,t,expξ η

∣∣∣
η=0

)
in

+ βn∂νinGg (·, ξ) δε (t)
2−n
2 rn−2

0 U
(
δε(t)

−1r0

)
Gg (x, ξ)

d

dηi
Ŵε,t,expξ η (x)

∣∣∣
η=0

(6.21)

for all x ∈ ∂Bξ (r0). By (6.13), we get that(
d

dηi
Wε,t,expξ η

∣∣∣
η=0

)
in

= O
(
δε (t)

n−2
2

)
. (6.22)

If follows from (6.21)–(6.22) that

∂νinWε,t,ξ

(
d

dηi
Wε,t,expξ η

∣∣∣
η=0

)
in

+ ∂νoutWε,t,ξ

(
d

dηi
Wε,t,expξ η

∣∣∣
η=0

)
out

= O (δε (t)n) (6.23)

in view of (3.3) and (6.7). Now, we estimate the first term in the right hand side of (6.20).
In Bξ (r0), using (3.5), (3.10), and (6.13), we find that∫
Bξ(r0)

(
LgWε,t,ξ (x)−Wε,t,ξ (x)2∗−1

)( d

dηi
Wε,t,expξ η (x)

∣∣∣
η=0
− n

n−2
4 (n− 2)

n+2
4

δε (t)
Zi,ε,t,ξ (x)

)
dvg

= δε (t)n
∫ r0

0

rn−2dr(
δε (t)2 + r2

)n−1 ×


O
(
rn−2

)
if n = 4, 5 or (M, g) l.c.f.

O
(
r4 ln r

)
if n = 6 and (M, g) non-l.c.f.

O
(
r4
)

if n ≥ 7 and (M, g) non-l.c.f.

=


O
(
δε (t)n−1) if n = 4, 5 or (M, g) l.c.f.

O
(
δε (t)5 ln δε (t)

)
if n = 6 and (M, g) non-l.c.f.

O
(
δε (t)5) if n ≥ 7 and (M, g) non-l.c.f.

(6.24)
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and, using (6.13), we find that∫
Bξ(r0)

hWε,t,ξ (x)

(
d

dηi
Wε,t,expξ η (x)

∣∣∣
η=0
− n

n−2
4 (n− 2)

n+2
4

δε (t)
Zi,ε,t,ξ (x)

)
dvg

= O

(
δε (t)n−2

∫ r0

0

rndr(
δε (t)2 + r2

)n−2

)
=


O
(
δε (t)2) if n = 4

O
(
δε (t)3 |ln δε (t)|

)
if n = 5

O
(
δε (t)3) if n ≥ 6.

(6.25)

In M\Bξ (r0), using (3.4) and (6.15), we find that

(LgWε,t,ξ − fε (Wε,t,ξ))

(
d

dηi
Wε,t,expξ η

∣∣∣
η=0
− n

n−2
4 (n− 2)

n+2
4

δε (t)
Zi,ε,t,ξ

)
= O

(
δε (t)n + εδε (t)n−2)

(6.26)

uniformly with respect to x ∈M\Bξ (r0). Finally, (6.17) follows from (6.20)–(6.26). This ends
the proof of Lemma 6.2. �

Now, we prove the following error estimates.

Lemma 6.3. There exists a positive constant C = C (a, b, n,M, g, h) such that∥∥L−1
g (f ′ε(Wε,t,ξ)Z0,ε,t,ξ)− Z0,ε,t,ξ

∥∥
1,2

≤ C

{
δε(t)

n−2
2 if 4 ≤ n ≤ 9 or (M, g) l.c.f.

δε(t)
4 if n ≥ 10 and (M, g) non-l.c.f.

(6.27)∥∥L−1
g (f ′ε(Wε,t,ξ)Zi,ε,t,ξ)− Zi,ε,t,ξ

∥∥
1,2

≤ C


δε(t)

2 |ln δε(t)|
3
4 if n = 4

δε(t)
n
2 if n = 5 or (n ≥ 6 and (M, g) l.c.f.)

δε(t)
3 |ln δε(t)|

2
3 if n = 6 and (M, g) non-l.c.f.

δε(t)
3 if n ≥ 7 and (M, g) non-l.c.f.

(6.28)

for all i = 1, . . . , n, where δε (t) is as in (2.6).

Proof. For any i = 0, . . . , n and φ ∈ H2
1 (M), an integration by parts gives〈

L−1
g (f ′ε(Wε,t,ξ)Zi,ε,t,ξ)− Zi,ε,t,ξ, φ

〉
Lg

=

∫
M

(f ′ε (Wε,t,ξ)Zi,ε,t,ξ − LgZi,ε,t,ξ)φdvg . (6.29)

By Sobolev’s embedding H2
1 (M) ↪→ L2∗(M), it follows from (6.29) that∥∥L−1

g (f ′ε(Wε,t,ξ)Zi,ε,t,ξ)− Zi,ε,t,ξ
∥∥

1,2
= O

(
‖f ′ε (Wε,t,ξ)Zi,ε,t,ξ − LgZi,ε,t,ξ‖ 2n

n+2

)
. (6.30)

By conformal covariance (2.2) of Lg and by (2.5), in Bξ (r0), we can write that

f ′ε (Wε,t,ξ)Zi,ε,t,ξ − LgZi,ε,t,ξ
= Λ2∗−1

ξ

[
(2∗ − 1)Ggξ (·, ξ)2∗−1 Ŵ 2∗−2

ε,t,ξ Ẑi,ε,t,ξ − Lgξ
(
Ggξ (·, ξ) Ẑi,ε,t,ξ

)]
− εhZi,ε,t,ξ . (6.31)

Since Ẑi,ε,t,ξ (ξ) = 0 and LgξGgξ (·, ξ) = δξ, we get that

Lgξ
(
Ggξ (·, ξ) Ẑi,ε,t,ξ

)
= Ggξ (·, ξ) ∆gξẐi,ε,t,ξ − 2

〈
∇Ggξ (·, ξ) ,∇Ẑi,ε,t,ξ

〉
gξ
. (6.32)
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We begin with considering the case i = 0. Since Ẑ0,ε,t,ξ ◦ expξ is radially symmetrical and V0

is a solution to the equation ∆EuclV0 = (2∗ − 1)U2∗−2V0 in Rn, writing ∆gξẐ0,ε,t,ξ

(
expξ y

)
in

polar coordinates and using (2.4), we find that

Ggξ(expξ y, ξ)∆gξẐ0,ε,t,ξ(expξ y)

= Ggξ(expξ y, ξ)∆Eucl(Ẑ0,ε,t,ξ ◦ expξ)(y) + O
(
|y|N−n+1|∇(Ẑ0,ε,t,ξ ◦ expξ)(y)|

)
= (2∗ − 1)βnδε(t)

−n+2
2 χ|y|n−2Ggξ(expξ y, ξ)U(

|y|
δε(t)

)2∗−2V0(
y

δε(t)
)

−2(n− 2)βnδε(t)
n+2
2 χ|y|n−4Ggξ(expξ y, ξ)

(n+ 2)|y|2 − (n− 2)δε(t)
2

(δε(t)2 + |y|2)
n+2
2

+ O

(
δε(t)

n+2
2 |y|N−2

(δε(t)2 + |y|2)
n
2

+ δε (t)
n−2
2

)
(6.33)

uniformly with respect to y ∈ B0 (r0). Moreover, since Ẑ0,ε,t,ξ ◦ expξ is radially symmetrical,
we get that〈

∇Ggξ

(
expξ y, ξ

)
,∇Ẑ0,ε,t,ξ

(
expξ y

) 〉
gξ

= ∂r
[
Ggξ

(
expξ y, ξ

)]
∂r
[
Ẑ0,ε,t,ξ ◦ expξ

]
(6.34)

= βnδε(t)
n+2
2 χ|y|n−3∂r

[
Ggξ(expξ y, ξ)

] (n+ 2)|y|2 − (n− 2)δε(t)
2

(δε(t)2 + |y|2)
n+2
2

+ O
(
δε(t)

n−2
2

)
.

By (6.32)–(6.34) and Lemma A.1, we get that

(2∗ − 1)Ggξ

(
expξ y, ξ

)2∗−1
Ŵε,t,ξ

(
expξ y

)2∗−2
Ẑ0,ε,t,ξ

(
expξ y

)
−Lgξ

(
Ggξ (·, ξ) Ẑ0,ε,t,ξ

) (
expξ y

)
= O

(
δε(t)

n−2
2

)
+

δε(t)
n+2
2(

δε(t)2 + |y|2
)n

2

×


O
(
|y|n−4

)
if n = 4, 5 or (M, g) l.c.f.

O
(
|y|2 ln |y|

)
if n = 6 and (M, g) non-l.c.f.

O
(
|y|2
)

if n ≥ 7 and (M, g) non-l.c.f.,

which, inserted into (6.30)–(6.31), yields to the validity of (6.27) in view of (2.6). Now, we
consider the case i = 1, . . . , n. Using (2.4), we find that

∆gξẐi,ε,t,ξ
(
expξ y

)
= ∆Eucl

(
Ẑi,ε,t,ξ ◦ expξ

)
(y)− βnχ (|y|) ∂jgijξ

(
expξ y

) δε (t)
n
2 |y|n−2(

δε (t)2 + |y|2
)n

2

+ O

(
δε (t)

n
2 |y|N+n−3(

δε (t)2 + |y|2
)n

2

+ |y|N
∣∣∣∣∣∇
(
χ (|y|) δε (t)

n
2 |y|n−2(

δε (t)2 + |y|2
)n

2

)∣∣∣∣∣
)

(6.35)

uniformly with respect to y ∈ B0 (r0), where ∂jg
ij
ξ are the derivatives of the components of

g−1
ξ in geodesic normal coordinates. Since gξ defines conformal normal coordinates of order
N ≥ 3, see Lee–Parker [27, Theorem 5.1 and Lemma 5.5], we get that the Ricci curvature
Ricgξ of gξ vanishes at ξ, and thus

∂jg
ij
ξ

(
expξ y

)
=


0 if (M, g) l.c.f.

− 1

3

(
Ricgξ

)
ip

(ξ) yp + O
(
|y|2
)

= O
(
|y|2
)

if (M, g) non-l.c.f.
(6.36)
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Since Vi is a solution of ∆EuclVi = (2∗ − 1)U2∗−2Vi in Rn, by (6.35)–(6.36), we find that

Ggξ(expξ y, ξ)∆gξẐi,ε,t,ξ
(
expξ y

)
= (2∗ − 1)βnδε(t)

−n+2
2 χ|y|n−2Ggξ(expξ y, ξ)U(

|y|
δε(t)

)2∗−2Vi(
y

δε(t)
)

+2(n− 2)βnδε(t)
n
2χ|y|n−4yiGgξ(expξ y, ξ)

|y|2 − (n− 1)δε(t)
2

(δε(t)2 + |y|2)
n+2
2

+ O

(
δε(t)

n
2 +

δε (t)
n
2 |y|α(

δε (t)2 + |y|2
)n

2

)
(6.37)

where α = N − 2 if (M, g) is l.c.f. and α = 2 is (M, g) is not l.c.f. Moreover, we get that〈
∇Ggξ(expξ y, ξ),∇Ẑi,ε,t,ξ(expξ y)

〉
gξ

= yi∂r
[
Ggξ(expξ y, ξ)

]
∂r

[
βnχδε(t)

n
2 |y|n−2

(δε(t)2 + |y|2)
n
2

]
+ ∂yi

[
Ggξ

(
expξ y, ξ

)] βnχδε (t)
n
2 |y|n−2(

δε (t)2 + |y|2
)n

2

= −βnδε(t)
n
2χ(|y|)∂r

[
Ggξ(expξ y, ξ)

]
|y|n−3yi

2|y|2 − (n− 2)δε(t)
2

(δε(t)2 + |y|2)
n+2
2

+βnδε(t)
n
2χ(|y|)∂yi

[
Ggξ(expξ y, ξ)

] δε(t)
n
2 |y|n−2

(δε(t)2 + |y|2)
n
2

+ O
(
δε(t)

n
2

)
. (6.38)

By (6.32), (6.37)–(6.38) and Lemma A.1, we get that

(2∗ − 1)Ggξ

(
expξ y, ξ

)2∗−1
Ŵε,t,ξ

(
expξ y

)2∗−2
Ẑi,ε,t,ξ

(
expξ y

)
− Lgξ

(
Ggξ (·, ξ) Ẑi,ε,t,ξ

) (
expξ y

)
= O

(
δε(t)

n
2

)
+

δε(t)
n
2(

δε(t)2 + |y|2
)n

2

×

{
O
(
|y|n−3

)
if n = 4, 5 or (M, g) l.c.f.

O
(
|y|2
)

if n ≥ 6 and (M, g) non-l.c.f.

which, inserted into (6.30)–(6.31), yields to the validity of (6.28) in view of (2.6). This ends
the proof of Lemma 6.3. �

By Proposition 2.1, for ε small, for any t ∈ [a, b] and ξ ∈ M , there exist λε,t,ξ ∈ R and
ωε,t,ξ ∈ TξM such that

DJε (Wε,t,ξ + φε,t,ξ) =
〈
λε,t,ξZε,t,ξ + Zε,t,ξ,ωε,t,ξ , ·

〉
Lg
, (6.39)

where Zε,t,ξ and Zε,t,ξ,ωε,t,ξ are as in (2.11). We let Z0,ε,t,ξ, . . . , Zn,ε,t,ξ ∈ R be as in (6.1). We
let λ0,ε,t,ξ, . . . , λn,ε,t,ξ ∈ R be such that

λ0,ε,t,ξ := λε,t,ξ and
n∑
i=1

λi,ε,t,ξei := ωε,t,ξ , (6.40)

where λε,t,ξ and ωε,t,ξ are as in (6.39). We estimate the λi,ε,t,ξ’s in Lemma 6.4 below.

Lemma 6.4. For any i = 0, . . . , n, in case n ≥ 5, there holds

λi,ε,t,ξ =
DJε (Wε,t,ξ) .Zi,ε,t,ξ

‖∇Vi‖2
2

+

{
o
(
εδε(t)

2
)

if i = 0

o
(
εδε(t)

3
)

if i = 1, . . . , n
(6.41)
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and in case n = 4, there holds

λi,ε,t,ξ =
DJε (Wε,t,ξ) .Z0,ε,t,ξ

‖∇V0‖2
2

+

{
o
(
δε(t)

2
)

if i = 0

O
(
ε2δε(t)

2
)

if i = 1, . . . , n
(6.42)

as ε→ 0, where δε (t) is as in (2.6). In particular, there holds

λi,ε,t,ξ =


O
(
δε(t)

2 ln |δε(t)|
)

if i = 0 and n = 4

O
(
δε(t)

2
)

if i = 1, . . . , n and n = 4

O
(
εδε(t)

2
)

if n ≥ 5.

(6.43)

Proof. For any i = 0, . . . , n, by (6.39)–(6.40), we get that

DJε (Wε,t,ξ + φε,t,ξ) .Zi,ε,t,ξ =
n∑
j=0

λj,ε,t,ξ 〈Zi,ε,t,ξ, Zj,ε,t,ξ〉Lg . (6.44)

For any i, j = 0, . . . , n, we find that

〈Zi,ε,t,ξ, Zj,ε,t,ξ〉Lg = ‖∇Vi‖2
2 δij + o (δε (t)) (6.45)

as ε→ 0, where the δij’s are the Kronecker symbols. It follows from (6.44)–(6.45) that

DJε (Wε,t,ξ + φε,t,ξ) .Zi,ε,t,ξ = λi,ε,t,ξ ‖∇Vi‖2
2 + o

(
δε (t)

n∑
j=0

|λj,ε,t,ξ|
)

(6.46)

as ε→ 0. Independently, we get that

DJε (Wε,t,ξ + φε,t,ξ) .Zi,ε,t,ξ = DJε (Wε,t,ξ) .Zi,ε,t,ξ +
〈
Zi,ε,t,ξ − L−1

g (f ′ε (Wε,t,ξ)Zi,ε,t,ξ) , φε,t,ξ
〉
Lg

−
∫
M

(f0 (Wε,t,ξ + φε,t,ξ)− f0 (Wε,t,ξ)− f ′0 (Wε,t,ξ)φε,t,ξ)Zi,ε,t,ξdvg . (6.47)

By Cauchy–Schwarz inequality, we get that∣∣∣〈Zi,ε,t,ξ − L−1
g (f ′ε (Wε,t,ξ)Zi,ε,t,ξ) , φε,t,ξ

〉
Lg

∣∣∣ ≤ ∥∥Zi,ε,t,ξ − L−1
g (f ′ε (Wε,t,ξ)Zi,ε,t,ξ)

∥∥
Lg
‖φε,t,ξ‖Lg .

(6.48)
By the Mean Value Theorem and Hölder’s inequality, we get that∫

M

(f0 (Wε,t,ξ + φε,t,ξ)− f0 (Wε,t,ξ)− f ′0 (Wε,t,ξ)φε,t,ξ)Zi,ε,t,ξdvg

=

{
O
((
‖Wε,t,ξ‖2∗−3

2∗ + ‖φε,t,ξ‖2∗−3
2∗

)
‖φε,t,ξ‖2

2∗ ‖Zi,ε,t,ξ‖2∗

)
if n = 4, 5

O
( ∥∥W 2∗−3

ε,t,ξ Zi,ε,t,ξ
∥∥

2∗
‖φε,t,ξ‖2

2∗

)
if n ≥ 6.

= O
(
‖φε,t,ξ‖2

2∗

)
. (6.49)

By (2.6), (6.47)–(6.49), Propositions 2.1, 2.2, and Lemma 6.3, we get that in case n ≥ 5, there
holds

DJε (Wε,t,ξ + φε,t,ξ) .Z0,ε,t,ξ = DJε (Wε,t,ξ) .Zi,ε,t,ξ +

{
o
(
εδε(t)

2
)

if i = 0

o
(
εδε(t)

3
)

if i = 1, . . . , n
(6.50)

and in case n = 4, there holds

DJε (Wε,t,ξ + φε,t,ξ) .Z0,ε,t,ξ = DJε (Wε,t,ξ) .Zi,ε,t,ξ +

{
o
(
δε(t)

2
)

if i = 0

O
(
ε2δε(t)

2
)

if i = 1, . . . , n
(6.51)
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as ε→ 0. Finally, (6.41) and (6.42) follow from (6.46), (6.50), and (6.51). The estimate (6.43)
follows from (6.41)–(6.42) and the validity of (4.2)–(4.5) in a C1–uniform way with respect to
ξ ∈M and t in compact subsets of (0,∞) as ε→ 0. This ends the proof of Lemma 6.4. �

We then prove the following result.

Lemma 6.5. For any i = 1, . . . , n, there hold

d

dηi
Jε
(
t, expξ η

) ∣∣∣
η=0

=
n
n−2
4 (n− 2)

n+2
4

δε (t)
‖∇Vi‖2

2 λi,ε,t,ξ + o

( n∑
j=0

|λj,ε,t,ξ|
)

(6.52)

d

dt
Jε (t, ξ) =

n
n−2
4 (n− 2)

n+2
4 δ′ε (t)

2δε (t)
‖∇V0‖2

2 λ0,ε,t,ξ + o

( n∑
j=0

|λj,ε,t,ξ|
)

(6.53)

as ε→ 0, where δε (t) is as in (2.6).

Proof. For any i = 1, . . . , n, by (6.39)–(6.40), we get that

d

dηi
Jε
(
t, expξ η

) ∣∣∣
η=0

=
n∑
j=0

λj,ε,t,ξ

〈
Zj,ε,t,ξ,

d

dηi

(
Wε,t,expξ η + φε,t,expξ η

)∣∣∣
η=0

〉
Lg
. (6.54)

For any i = 1, . . . , n and j = 0, . . . , n, an integration by parts gives that〈
Zj,ε,t,ξ,

d

dηi
Wε,t,expξ η

∣∣∣
η=0

〉
Lg

=

∫
M

LgZj,ε,t,ξ

(
d

dηi
Wε,t,expξ η

∣∣∣
η=0
− n

n−2
4 (n− 2)

n+2
4

δε (t)
Zi,ε,t,ξ

)
dvg

+
n
n−2
4 (n− 2)

n+2
4

δε (t)
〈Zj,ε,t,ξ, Zi,ε,t,ξ〉Lg . (6.55)

By Hölder’s inequality and (6.3), we get that∫
M

LgZj,ε,t,ξ

(
d

dηi
Wε,t,expξ η

∣∣∣
η=0
− n

n−2
4 (n− 2)

n+2
4

δε (t)
Zi,ε,t,ξ

)
dvg ≤ ‖LgZj,ε,t,ξ‖ 2n

n+2

×
∥∥∥∥ d

dηi
Wε,t,expξ η

∣∣∣
η=0
− n

n−2
4 (n− 2)

n+2
4

δε (t)
Zi,ε,t,ξ

∥∥∥∥
2∗

= o
(
‖LgZj,ε,t,ξ‖ 2n

n+2

)
= o (1) (6.56)

as ε→ 0. It follows from (6.45) and (6.55)–(6.56) that〈
Zj,ε,t,ξ,

d

dηi
Wε,t,expξ η

∣∣∣
η=0

〉
Lg

=
n
n−2
4 (n− 2)

n+2
4

δε (t)
‖∇Vi‖2

2 δij + o (1) (6.57)

as ε→ 0, where the δij’s are the Kronecker symbols. Since φε,t,ξ belongs toK⊥ε,t,ξ, differentiating
the equation 〈Zj,ε,t,ξ, φε,t,ξ〉Lg = 0, we find that〈

Zj,ε,t,ξ,
d

dηi
φε,t,expξη

∣∣∣
η=0

〉
Lg

= −
〈 d

dηi
Zj,ε,t,expξη

∣∣∣
η=0

, φε,t,ξ

〉
Lg
. (6.58)

By (6.58), Cauchy–Schwarz inequality, Propositions 2.1 and 2.2, we get that∣∣∣〈Zj,ε,t,ξ, d
dηi

φε,t,expξη

∣∣∣
η=0

〉
Lg

∣∣∣ ≤ ∥∥∥ d

dηi
Zj,ε,t,expξ η

∣∣∣
η=0

∥∥∥
Lg
‖φε,t,ξ‖Lg

= O
(
δε (t)−1 ‖φε,t,ξ‖1,2

)
= o (1) (6.59)

as ε→ 0. (6.52) follows from (6.54), (6.57), and (6.59). (6.53) follows from similar arguments
by using (6.2). This ends the proof of Lemma 6.5. �
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Proof of the C1–uniformity of (4.14) with respect to t. The result follows directly from Lem-
mas 6.2, 6.4, and 6.5. �

Proof of the C1–uniformity of (4.14) with respect to ξ. In case n ≥ 5, the result follows di-
rectly from Lemmas 6.2, 6.4, and 6.5. The case n = 4 is trickier. In this case, the estimate
(6.42) is not sufficient to get such a direct proof as in higher dimensions. We prove the result
in case n = 4 in what follows. For any i = 1, . . . , n and x ∈M , we define

Yi,ε,t,ξ (x) := χ
(
dgξ (x, ξ)

)
Λξ (x) ∂yi

[
W̃ε,t,ξ ◦ expξ +φ̃ε,t,ξ ◦ expξ

] (
exp−1

ξ x
)
,

where W̃ε,t,ξ := Wε,t,ξ/Λξ and φ̃ε,t,ξ := φε,t,ξ/Λξ. We claim that

DJε (Wε,t,ξ + φε,t,ξ) .Yi,ε,t,ξ = −n
n−2
4 (n− 2)

n+2
4

δε (t)
‖∇Vi‖2

2 λi,ε,t,ξ + o

( n∑
j=0

|λj,ε,t,ξ|
)
. (6.60)

It follows from (6.39)–(6.40) and (6.45) that in order to prove (6.60), it suffices to prove that
for any i = 1, . . . , n and j = 0, . . . , n, there holds〈

Zj,ε,t,ξ, Yi,ε,t,ξ +
n
n−2
4 (n− 2)

n+2
4

δε (t)
Zi,ε,t,ξ

〉
Lg

= o (1) (6.61)

as ε→ 0. Integrating by parts and applying Hölder’s inequality, we get that〈
Zj,ε,t,ξ, Yi,ε,t,ξ+

n
n−2
4 (n− 2)

n+2
4

δε (t)
Zi,ε,t,ξ

〉
Lg

=

∫
M

LgZj,ε,t,ξ

(
Yi,ε,t,ξ+

n
n−2
4 (n− 2)

n+2
4

δε (t)
Zi,ε,t,ξ

)
dvg

≤ ‖LgZj,ε,t,ξ‖ 2n
n+2

∥∥∥χ (dgξ (·, ξ)
)
Λξ∂yi

[
W̃ε,t,ξ ◦ expξ

]
◦ exp−1

ξ +
n
n−2
4 (n− 2)

n+2
4

δε (t)
Zi,ε,t,ξ

∥∥∥
2∗

+ ‖LgZj,ε,t,ξ‖2

∥∥χ (dgξ (·, ξ)
)
Λξ∇φ̃ε,t,ξ

∥∥
2
. (6.62)

Using similar arguments as in the proof of Lemma 6.1, we find that∥∥∥χ (dgξ (·, ξ)
)
Λξ∂yi

[
W̃ε,t,ξ ◦ expξ

]
◦ exp−1

ξ +
n
n−2
4 (n− 2)

n+2
4

δε (t)
Zi,ε,t,ξ

∥∥∥
2∗

= o (1) (6.63)

as ε→ 0. Rough estimates give that

‖LgZj,ε,t,ξ‖ 2n
n+2

= O (1) and ‖LgZj,ε,t,ξ‖2 = O
(
δε (t)−1) . (6.64)

Moreover, by (2.6), and Propositions 2.1 and 2.2, we get that in dimension n = 4, there holds∥∥χ (dgξ (·, ξ)
)
Λξ∇φ̃ε,t,ξ

∥∥
2

= O
(∥∥φ̃ε,t,ξ∥∥1,2

)
= O(‖φε,t,ξ‖1,2) = O

(
‖φε,t,ξ‖Lg

)
= O (εδε (t)) .

(6.65)
(6.61) follows from (6.62)–(6.65), and thus we get (6.60). It follows from (6.2), (6.60), and
Lemmas 6.4 and 6.5 that in dimension n = 4, there holds

d

dηi
Jε
(
t, expξ η

) ∣∣∣
η=0

= −DJε (Wε,t,ξ + φε,t,ξ) .Yi,ε,t,ξ + o
(
δε (t)2 ln |δε(t)|

)
(6.66)

as ε→ 0. By the conformal change of metric gξ = Λ2∗−2
ξ g, we get that

DJε (Wε,t,ξ + φε,t,ξ) .Yi,ε,t,ξ =

∫
M

(〈
∇
(
W̃ε,t,ξ + φ̃ε,t,ξ

)
,∇Ỹi,ε,t,ξ

〉
gξ

+
(
αn Scalgξ +εΛ2−2∗

ξ h
) (
W̃ε,t,ξ + φ̃ε,t,ξ

)
Ỹi,ε,t,ξ −

(
W̃ε,t,ξ + φ̃ε,t,ξ

)2∗−1

+
Ỹi,ε,t,ξ

)
dvgξ , (6.67)
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where Ỹi,ε,t,ξ := Yi,ε,t,ξ/Λξ. Since Ỹi,ε,t,ξ ≡ 0 in M\Bξ (r0), letting y = exp−1
ξ x and integrating

by parts (6.67), we find that

DJε (Wε,t,ξ + φε,t,ξ) .Yi,ε,t,ξ = I1,i,ε,t,ξ + I2,i,ε,t,ξ + I3,i,ε,t,ξ + I4,i,ε,t,ξ , (6.68)

where

I1,i,ε,t,ξ := DJε (Wε,t,ξ) .
(
χ
(
dgξ (·, ξ)

)
Λξ∂yi

[
W̃ε,t,ξ ◦ expξ

]
◦ exp−1

ξ

)
,

I2,i,ε,t,ξ :=

∫
B0(r0)

{
gpqξ ∂ypχ∂yq

[
φ̃ε,t,ξ ◦ expξ

]
∂yi
[
W̃ε,t,ξ ◦ expξ

] ∣∣exp∗ξ gξ
∣∣

+ gpqξ ∂ypχ∂yq
[
W̃ε,t,ξ ◦ expξ

]
∂yi
[
φ̃ε,t,ξ ◦ expξ

] ∣∣exp∗ξ gξ
∣∣

− χ∂yi
[
gpqξ
]
∂yp
[
W̃ε,t,ξ ◦ expξ

]
∂yq
[
φ̃ε,t,ξ ◦ expξ

] ∣∣exp∗ξ gξ
∣∣

− χ
(
W̃ε,t,ξ ◦ expξ

)(
φ̃ε,t,ξ ◦ expξ

)
∂yi
[ (
αn Scalgξ +εΛ2−2∗

ξ h
)
◦ expξ

] ∣∣exp∗ξ gξ
∣∣

−
(〈
∇W̃ε,t,ξ,∇φ̃ε,t,ξ

〉
gξ

+
(
αn Scalgξ +εΛ2−2∗

ξ h
)
W̃ε,t,ξφ̃ε,t,ξ − W̃ 2∗−1

ε,t,ξ φ̃ε,t,ξ

)
◦ expξ

× ∂yi
[
χ
∣∣exp∗ξ gξ

∣∣ ]}dy ,
I3,i,ε,t,ξ :=

∫
B0(r0)

{
gpqξ ∂ypχ∂yq

[
φ̃ε,t,ξ ◦ expξ

]
∂yi
[
φ̃ε,t,ξ ◦ expξ

] ∣∣exp∗ξ gξ
∣∣

− 1

2
χ∂yi

[
gpqξ
]
∂yp
[
φ̃ε,t,ξ ◦ expξ

]
∂yq
[
φ̃ε,t,ξ ◦ expξ

] ∣∣exp∗ξ gξ
∣∣

− 1

2
χ
(
φ̃ε,t,ξ ◦ expξ

)2
∂yi
[ (
αn Scalgξ +εΛ2−2∗

ξ h
)
◦ expξ

] ∣∣exp∗ξ gξ
∣∣

− 1

2

(∣∣∇φ̃ε,t,ξ∣∣2gξ +
(
αn Scalgξ +εΛ2−2∗

ξ h
)
φ̃2
ε,t,ξ

)
◦ expξ ∂yi

[
χ
∣∣exp∗ξ gξ

∣∣ ]}dy ,
I4,i,ε,t,ξ :=

1

2∗

∫
B0(r0)

{((
W̃ε,t,ξ + φ̃ε,t,ξ

)2∗

+
− W̃ 2∗

ε,t,ξ − 2∗W̃ 2∗−1
ε,t,ξ φ̃ε,t,ξ

)
◦ expξ

× ∂yi
[
χ
∣∣exp∗ξ gξ

∣∣ ]}dy ,
where gpqξ are the components of g−1

ξ in geodesic normal coordinates. Using similar arguments
as in the proof of Lemma 6.2, we find that

I1,i,ε,t,ξ = − d

dηi
Jε (Wε,t,ξ)

∣∣∣
η=0

+ o
(
δε (t)2) (6.69)

as ε → 0. Now, we estimate I2,i,ε,t,ξ. Since gξ defines conformal normal coordinates of order
N ≥ 5, see Lee–Parker [27, Theorem 5.1], we get that

∂yi
[

Scalgξ ◦ expξ
]

(y) = O (|y|) , ∂yi
[ ∣∣exp∗ξ gξ

∣∣ ] (y) = O
(
|y|N−1 ). (6.70)

Since ∂yi
[
gpqξ
]

(y) = O (|y|), by using Hölder’s inequality and (6.70), we find that

I2,i,ε,t,ξ = O
(∥∥dgξ (·, ξ)∇W̃ε,t,ξ

∥∥
2

∥∥∇φ̃ε,t,ξ∥∥2
+
(∥∥dgξ (·, ξ) W̃ε,t,ξ

∥∥
2n
n+2

+ ε
∥∥W̃ε,t,ξ

∥∥
2n
n+2

+
∥∥dgξ (·, ξ)N−1 W̃ 2∗−1

ε,t,ξ

∥∥
2n
n+2

)∥∥φ̃ε,t,ξ∥∥2∗

)
. (6.71)
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In dimension n = 4, rough estimates give that∥∥dgξ (·, ξ)∇W̃ε,t,ξ

∥∥
2

= O
(
δε (t)

√
|ln δε (t)|

)
,
∥∥dgξ (·, ξ) W̃ε,t,ξ

∥∥
2n
n+2

= O
(
δε (t)

)
,∥∥W̃ε,t,ξ

∥∥
2n
n+2

= O
(
δε (t)

)
, and

∥∥dgξ (·, ξ)N−1 W̃ 2∗−1
ε,t,ξ

∥∥
2n
n+2

= O
(
δε (t)3 ). (6.72)

It follows from (6.71)–(6.72) and from Sobolev’s embedding H2
1 (M) ↪→ L2∗(M) that

I2,i,ε,t,ξ = O
(
δε (t)

√
|ln δε (t)|

∥∥φ̃ε,t,ξ∥∥1,2

)
. (6.73)

It remains to estimate I3,i,ε,t,ξ and I4,i,ε,t,ξ. Clearly, we get that

I3,i,ε,t,ξ = O
(∥∥φ̃ε,t,ξ∥∥2

1,2

)
. (6.74)

Similarly as in (4.17), we get that

I4,i,ε,t,ξ = O
(∥∥φ̃ε,t,ξ∥∥2

2∗
+
∥∥φ̃ε,t,ξ∥∥2∗

2∗

)
. (6.75)

Since ‖φε,t,ξ‖1,2 = O
(
‖φε,t,ξ‖Lg

)
= O (εδε (t)), by (6.73)–(6.75), and by Sobolev’s embedding

H2
1 (M) ↪→ L2∗(M), we get that

I2,i,ε,t,ξ + I3,i,ε,t,ξ + I4,i,ε,t,ξ = O
(√

εδε (t)2) = o
(
δε (t)2) (6.76)

as ε → 0. Finally, it follows from (6.66), (6.68), (6.69), and (6.76) that (4.14) is C1–uniform
with respect to ξ. �

Appendix

In this appendix, first, we state the following result which is due to Lee–Parker [27].

Lemma A.1. For any ξ ∈M , let gξ be as in Section 2 and Ggξ be the Green’s function of the
conformal Laplacian with respect to gξ. Then the following expansions do hold:

(i) when n = 4, 5 or (M, g) is l.c.f.,

Ggξ

(
expξ y, ξ

)
= β−1

n |y|
2−n + Aξ + O (|y|) ,

(ii) when n = 6,

Ggξ

(
expξ y, ξ

)
= β−1

6

(
|y|−4 − 1

1440

∣∣Weylg (ξ)
∣∣2
g

ln |y|
)

+ O (|y|) ,

(iii) when n ≥ 7,

Ggξ

(
expξ y, ξ

)
= β−1

n |y|
2−n
(

1 +
αn |y|2

12 (n− 4)

(
1

12 (n− 6)

∣∣Weylg (ξ)
∣∣2
g
|y|2

− ∂yiyj
[
Scalgξ ◦ expξ

]
(0) yiyj

))
+ O

(
|y|7−n

)
C1–uniformly with respect to y and ξ, where for any ξ ∈ M , Aξ depends only on the
manifold (M, g) and the point ξ, Aξ is smooth with respect to ξ, Weylg is the Weyl
curvature tensor with respect to g, and Scalgξ is the scalar curvature with respect to gξ.

Proof. We refer to Lee–Parker [27]. The only point which is not discussed in [27] is the C1–
uniformity of the expansions with respect to ξ. This point follows from standard arguments.

�

Finally, let us estimate the first derivatives of the geodesic distance in the following result.
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Lemma A.2. For any ξ ∈ M , let gξ be as in Section 2 and dgξ be the geodesic distance with
respect to gξ. Then there holds

∇
(
dgexpξ η

(
expξ y, expξ η

) )∣∣
η=0

= − y

|y|
+ O

(
|y|2
)

(A.1)

uniformly with respect to ξ ∈M and y ∈ TξM ∼= Rn, y 6= 0, |y| � 1.

Proof. By compactness of M and since gξ is smooth with respect to ξ, we get that there exists
a positive real number r0 such that r0 < igξ for all ξ ∈ M , where igξ is the injectivity radius
of the manifold (M, gξ). For any ξ ∈ M , we let B0 (r0) be the ball in TξM ∼= Rn of center 0
and radius r0. For any ξ ∈M and y ∈ B0 (r0) \ {0}, we write that

∇
(
dgexpξ η

(
expξ y, expξ η

) )∣∣
η=0

= ∇
(
dgexpξ η

(
expξ y, ξ

) )∣∣
η=0

+∇
(
dgξ
(
expξ y, expξ η

) )∣∣
η=0

.

(A.2)
We begin with estimating the first term in the right hand side of (A.2). Since we have chosen
Λξ so that Λξ (ξ) = 1 and ∇Λξ (ξ) = 0, we get that

Λexpξ η

(
expξ y

)
= Λξ

(
expξ y

) (
1 + O

(
|y|2 + |η|2

))
uniformly with respect to ξ ∈M and y, η ∈ B0 (r0). It follows that

dgexpξ η
(
expξ y, ξ

)
= dgξ

(
expξ y, ξ

) (
1 + O

(
|y|2 + |η|2

))
= |y|+ O

(
|y|3 + |y| |η|2

)
,

and thus we get that

∇
(
dgexpξ η

(
expξ y, ξ

) )∣∣
η=0

= O
(
|y|2
)

(A.3)

uniformly with respect to ξ ∈ M and y ∈ B0 (r0). Now, we estimate the second term in
the right hand side of (A.2). For any ξ ∈ M and η ∈ TξM , we let Tξ,expξ ηM and expξ,expξ η

be the respective tangent space and exponential map at expξ η with respect to gξ. For any
η ∈ B0 (r0), we identify Tξ,expξ ηM with Rn thanks to a local orthonormal frame, parallel at ξ.

For any i = 1, . . . , n, ξ ∈M , and y ∈ B0 (r0) \ {0}, we get that

d

dηi

(
dgξ
(
expξ y, expξ η

) )∣∣∣
η=0

=
n∑
j=1

yj
|y|

d

dηi

(
exp−1

ξ,expξ η
expξ y

)
j

∣∣∣
η=0

. (A.4)

We claim that for any i, j = 1, . . . , n, there holds

d

dηi

(
exp−1

ξ,expξ η
expξ y

)
j

∣∣∣
η=0

= −δij + O
(
|y|2
)

(A.5)

uniformly with respect to ξ ∈ M and y ∈ B0 (r0), where the δij’s are the Kronecker symbols.
We prove this claim. For any j = 1, . . . , n, ξ ∈M and η, y ∈ B0 (r0), we define

Ej,ξ (y, η) :=
(

exp−1
ξ,expξ η

expξ y
)
j
.

Clearly, Ej,ξ (y, η) is smooth with respect to ξ, y, and η. In order to prove the Taylor expansion
(A.5), we compute the first and second order derivatives of Ej,ξ (y, η) with respect to y and η.
Since the frame is parallel at ξ, we get that Ej,ξ (0, η) = −ηj for all η ∈ B0 (r0). Differentiating
this equation gives that

∂ηiEj,ξ (0, 0) = −δij and ∂ηiηkEj,ξ (0, 0) = 0 (A.6)

for all i, j, k = 1, . . . , n. We also remark that Ej,ξ (y, 0) = yj for all y ∈ B0 (r0), and thus we
get that

∂yiEj,ξ (0, 0) = δij and ∂yiykEj,ξ (0, 0) = 0 (A.7)
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for all i, j, k = 1, . . . , n. As a third equation, we find Ej,ξ (y, y) = 0 for all y ∈ B0 (r0).
Differentiating this equation and using (A.6) and (A.7), we find that

∂ηiykEj,ξ (0, 0) = −1

2
(∂ηiηkEj,ξ (0, 0) + ∂yiykEj,ξ (0, 0)) = 0 (A.8)

for all i, j, k = 1, . . . , n. (A.5) follows from (A.6) and (A.8). Finally, (A.1) follows from
(A.2)–(A.5). This ends the proof of Lemma A.2. �
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