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ABSTRACT. In conformal geometry, the Compactness Conjecture asserts that the set of Ya-
mabe metrics on a smooth, compact, aspherical Riemannian manifold (M, g) is compact.
Established in the locally conformally flat case by Schoen [43,44] and for n < 24 by Khuri-
Marques—Schoen [26], it has revealed to be generally false for n > 25 as shown by Brendle [§]
and Brendle-Marques [9]. A stronger version of it, the compactness under perturbations of the
Yamabe equation, is addressed here with respect to the linear geometric potential 4(7;7121) Scalg,

Scal, being the Scalar curvature of (M, g). We show that a-priori L>-bounds fail for linear
perturbations on all manifolds with n > 4 as well as a-priori gradient L?-bounds fail for non-
locally conformally flat manifolds with n > 6 and for locally conformally flat manifolds with
n > 7. In several situations, the results are optimal. Our proof combines a finite dimensional
reduction and the construction of a suitable ansatz for the solutions generated by a family of
varying metrics in the conformal class of g.

1. INTRODUCTION

Letting (M, g) be a smooth, compact Riemannian n—manifold, n > 3, we are concerned
with the so-called Yamabe equation

Agu+ o, Scal,u =cu®* ™', u>0 in M, (1.1)

where A, := —div,V is the Laplace-Beltrami operator, a, := ﬁ, Scal, is the Scalar
curvature of the manifold, 2* = % is the critical Sobolev exponent, and ¢ € R. The geometric
problem of finding a metric g in the conformal class [g] = {¢g : ¢ € C°(M), ¢ > 0} of g
with constant Scalar curvature is equivalent to solving (1.1) through the setting § = u*/("=2)g.
The constant ¢ can be restricted to the values —1/1 or 0 depending on whether the Yamabe

moariant

gelg]
of (M, g) has negative/positive sign or vanishes, respectively, where Vol; (M) is the volume of
the manifold (M, ).

The Yamabe problem, raised by H. Yamabe [49] in ’60, was firstly solved by Trudinger [48]
when p,(M) < 0. In this case, the solution is unique (up to a normalization when p,(M) = 0).
Aubin [3] then solved the Yamabe problem in the non-locally conformally flat (non-l.c.f. for
short) case with n > 6, and Schoen [42] solved it in the remaining cases of low dimensions
3 < n <5 and locally conformally flat (1.c.f. for short) manifolds. In this paper, we restrict
our attention to the case where (M, g) has positive Yamabe invariant jiy,(M) > 0, and we set
c=1in (1.1).

j1y(M) = inf (Volg (M) / Scalgdvg)
M

Date: October 30, 2012.

Published in Mathematische Annalen 358 (2014), no. 1-2, 511-560.

The first author was partially supported by the Prin project “Critical Point Theory and Perturbative
Methods for Nonlinear Differential Equations” and the Firb-Ideas project “Analysis and Beyond”. The third
author was partially supported by the ANR grant ANR-08-BLLAN-0335-01.

1



THE EFFECT OF LINEAR PERTURBATIONS ON THE YAMABE PROBLEM 2

After the complete resolution of the Yamabe problem, one can attempt to describe the
solution set of (1.1). A well-known conjecture claims the compactness of Yamabe metrics
for manifolds (M, g) which are not conformally equivalent to (S",go) ((M,g) # (S", go) for
short), namely the convergence, up to a subsequence, in C? (M) of any sequence of solutions of
equation (1.1). Referred to in literature as the Compactness Conjecture, by elliptic regularity
theory, it amounts to prove a-priori L>®—bounds on the set of solutions to (1.1). In the basic
example of the round sphere (S", o), by the works of Lelong—Ferrand [28] and Obata [36],
the set of solutions of (1.1) is explicit and non-compact. The Compactness Conjecture arose
after the work of Schoen [43,44] who first proved it in the l.c.f. case, and also proposed a stra-
tegy, based on the Pohozaev identity, for proving it in the non-l.c.f. case. The Compactness
Conjecture has been then proved in the low-dimensional case by Li-Zhu [32] for n = 3, by
Druet [14] for n < 5, by Marques [33] for n < 7, by Li-Zhang [30,31] for n < 11, and finally,
by Khuri-Marques—Schoen [26] for n < 24. Unexpectedly, the dimension n = 24, which arises
in [26] as the maximal dimension for a suitable quadratic form to be positive definite, has re-
vealed to be optimal by the counter-examples constructed in dimensions n > 25 by Brendle [§]
and Brendle-Marques [9]. We also refer to the constructions by Ambrosetti-Malchiodi [1] and
Berti-Malchiodi [7] in case of background metrics which have a finite regularity. All these
constructions are made on (S", g) with a metric g close to the round one go.

Replacing the geometric potential «;, Scal, in (1.1) with a general potential x € C* (M)
such that x (§) # a, Scal, (§) for all £ € M, the Compactness Conjecture is esentially still
true for solutions with bounded energy of

Aju+ru=u>"" u>0 in M, (1.2)
provided that n > 4, as shown by Druet [13, Section 4].

Towards a deeper understanding of the Yamabe equation, one can address a stronger version
of the Compactness Conjecture. One can ask whether or not the compactness property is
preserved under perturbations of the equation under exam, which is equivalent to have or not
uniform a-priori L*°~bounds for solutions of the perturbed problem. This question has been
introduced and investigated in Druet [13,14], Druet-Hebey [15,16], Druet-Hebey-Robert [18],
and, under the name of stability, in Druet-Hebey [17] and Druet-Hebey—Vetois [19]. The
aim of our paper is to establish non-compactness properties for linear perturbations of the
geometric potential a, Scal, in (1.1). In case 3 < n < 5, Druet [14] obtained uniform L*°-
bounds for solutions of (1.2) along potentials k. < a,, Scal,, k. — k in C* (M) as e — 0,
with (M, g) # (S™, go) in case k = o, Scal,. The same result is strongly expected to be true
in the l.c.f. case and generally for n < 24, and it is still true, as shown by Druet [14], when
n > 6 and K < a, Scal,. In dimension n = 3, Li-Zhu [32, Theorem 0.3] have obtained uniform
L*>~bounds in case k. < o, Scal, +1no, for some 1y > 0 when (M, g) # (S™, go).

Let us briefly review the previous results of non-compactness for equations of type (1.2).
Apart from the trivial case of the Yamabe equation on (S", gg), the first non-compactness result
is due to Hebey—Vaugon [24] who proved that in the l.c.f. case with n > 4, there always exists
g € [g] such that the equation Azu+ oy, maxys(Scalz)u = u? ~! in M is not compact. Families
of non-compact solutions have then been explicitly constructed on (S", go) by Druet [13] and
Druet-Hebey [15] for linear perturbations of the potential x = o, Scal, when n > 6 and in
case k > a, Scal, when n = 6 (see also the survey paper by Druet-Hebey [16] for the case
of quotients of (S”,go)). When (k — a,, Scal,) is a positive constant, on (M,g) = (S, go),
Chen—Wei—Yan [12] have constructed infinitely many solutions with unbounded energy when
n > 5, and Hebey—Wei [25] have constructed non-compact solutions with bounded energy for
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an infinite number of constant x in case n = 3. Concerning the potential x = v, Scal,, so far,
the only available examples of non-compact solutions for (1.1) and its linear perturbations are
in the case of (S", g), with g close to gy and x = ay, Scal, by Ambrosetti-Malchiodi [1], Berti-
Malchiodi [7], Brendle [8], and Brendle-Marques [9], or with g = gy and  close to «, Scaly,
by Druet [13] and Druet-Hebey [15] (see also Druet—Hebey [16] for the case of quotients of

(Sn790))‘

In this paper, for n > 4, we exhibit the general failure of compactness properties for
Agu+ (e Scaly +eh)u =u* ', w>0 in M, (1.3)

where h is a C' or C%“function in M, a € (0,1), with max;; h > 0 and € > 0 is a small
parameter. As a by-product, we obtain that the Compactness Conjecture completely fails
down under the effect of linear perturbations (with the correct sign) of the Yamabe equation
(1.1) on every manifold (M, g) with n > 4 (but it is still true for n = 3 by Li-Zhu [32]).
Our results, together with those by Druet [13,14] give a sharp picture of the situation. Even
more than the failure of a-priori L>-bounds, we show that a-priori gradient L?>-bounds fail for
non-locally conformally flat manifolds with n > 6 and for locally conformally flat manifolds
with n > 7.

To be more precise, we say that a family (u.). of solutions to equation (1.3) blows up at
some point & € M if there holds supy u. — +00 as € — 0, for all neighborhoods U of & in
M. Let E : M — [—00, +00| be defined as

E(e) h(§) Ag% if n=4,50r (M,g) Lcf. (1.4)
h(€)|Weyl, (§)] " if n> 6 and (M, g) non-le.f. '

with the convention that 1/0 = +oo. Here, A¢ is defined in (1.5) and Weyl, is the Weyl
curvature tensor of the manifold. In dimensions n = 3,4, 5 or if the manifold is l.c.f., up to a
conformal change of metric g = Ag—z* g (depending smoothly on § € M), the Green’s function
Gy (+, &) has an asymptotic expansion of the form

Gle (expey, &) = B, [yl + Ag + O (Jy)) (1.5)

as y — 0, where 8, := (n—2)w,_1, wy_1 is the volume of the unit (n — 1)-sphere, and
A¢ € R, see Lee-Parker [27]. With the renormalization A¢ (§) = 1, the geometric quantity A
depends only on the manifold (M, g) and the point &, is smooth with respect to £, and can
be identified with the mass of a stereographic projection of the manifold with respect to &.
We refer to Lee—Parker [27] for the definition of the mass and a discussion about its role in
general relativity. In particular, for manifolds (M, g) # (S", go), in case n = 4,5 and in the
l.c.f. case with n > 6, we have that A¢ > 0 by the result of Schoen-Yau [45,46], and thus
E(§) < +oo for all £ € M. In the non-l.c.f. case with n > 6, we have that Weyl, # 0, and
thus F(§) # +oo. Our first result concerns the existence of solutions blowing-up at one point
and reads as:

Theorem 1.1. (existence of solutions with a single blow-up point in case n > 4) Let
(M, g) # (S™, go) be a smooth compact Riemannian manifold with n > 4 and p,(M) > 0, and
h e C% (M), a €(0,1), be so that maxy h > 0. In the non-lc.f. case with n > 6, assume
in addition that min{| Weyl, (§)|, : h(§) > 0} > 0. Then for ¢ > 0 small, equation (1.3) has
a solution u. € C** (M) such that the family (u.). blows up, up to a sub-sequence, as e — 0
at some point & so that E(&) = maxy, E.



THE EFFECT OF LINEAR PERTURBATIONS ON THE YAMABE PROBLEM 4

Let us mention that the Compactness Conjecture does hold for (1.1) when n > 6 as soon as
| Weyl, (€)] > 0 for all £ € M, as it follows by Li-Zhang [30] and Marques [33]. The following
result concerns multiplicity of solutions with a single blow-up point. Isolated critical points of
E with non-trivial local degree include non-degenerate critical points of E. The result reads
as:

Theorem 1.2. (multiplicity of solutions with a single blow-up point in case n > 4)
Let (M, g) # (S™, go) be a smooth compact Riemannian manifold with n > 4 and p,(M) > 0,
and h € CY'(M).  For any isolated critical point & of E with non-trivial local degree and
h(&) > 0, for e > 0 small, equation (1.3) has a solution u. € C*>* (M), a € (0,1), such that
the family (u.),. blows up, up to a sub-sequence, at & as € — 0.

As already said, by the result of Li-Zhu [32], such blowing-up solutions as in Theorems 1.1
and 1.2 do not exist in dimension n = 3. The last results, Theorems 1.3, 1.4, and 1.5 below,
claim the existence of solutions which blow up at more than one point. The first result concerns
the non-l.c.f. case with n > 6 and reads as:

Theorem 1.3. (existence of solutions with more than one blow-up point in the
non-l.c.f. case with n > 6) Let (M, g) be a smooth compact non-l.c.f. Riemannian manifold
with n > 6 and p,(M) > 0. Let k > 2 be an integer and hy, € C** (M), a € (0,1), be so that
the set {£ € M : hy (§) > 0} has k connected components Cy,...,Cy and min{| Weyl,(§)|, :
h(¢) > 0} > 0. Then, for e > 0 small, equation (1.3) has a solution uy. € C*>* (M) such that

the family (uc). blows up, up to a sub-sequence, as e — 0 at k distinct points (&) - -, (§0)
so that h h
e(&)) o M (§)
[Weyl, ((6),)], 26 [Weyl, ()],
forall j=1,... k. Moreover, there holds limy, o imsup._q || Vgl 12(pp = +00.
Each blow-up point (&) j+J=1,...,k, in Theorem 1.3 maximizes the same function £ as

in Theorem 1.1 for single blow-up points. On the contrary, in the remaining cases, there is a
strong interaction between the blow-up points, and these are not anymore related to maximum
points of the function E defined in (1.4). Concerning the l.c.f. case with n > 7, we prove the
following result:

Theorem 1.4. (existence of solutions with more than one blow-up point in the
l.c.f. case with n > 7) Let (M, g) # (S", go) be a smooth compact l.c.f. Riemannian manifold
with n > T and py(M) > 0, and h € C%* (M), a € (0,1), be so that maxy h > 0. Then for
any integer k > 2, for € > 0 small, equation (1.3) has a solution uy. € C** (M) such that
the family (ure)_ blows up, up to a sub-sequence, at k distinct points (&), - -, (&), in M as
€ = 0. Moreover, there holds limy,_, 4o imsup_o | Vuge|l 25y = +00.

The location of § = ((§0);,---,(&),) in Theorem 1.4 is related to maximum points of a
“reduced energy” given in (5.1), and the assumption n > 7 guarantees that such “reduced
energy”’ achieves its maximum value.

Our last result, Theorem 1.5 below, concerns the l.c.f. case for n = 6. This case reveals
to be even more intricate than the case of higher dimensions. For any integer k > 2, define
A= {(&, .. &) e MF 2 & =¢ fori#j}. Forany € = (&,...,&) € MM\Ay, let Ag
be the symmetric k£ x k matrix with entries

Ag, ifi=7

@%9w:{aﬂg@>ﬁi¢m -
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where A, is as in (1.5). When A, g is invertible, let Ej, : M*\A; — R be defined as

Ey (&) = <H(§),A;1£.H(E)>, (1.7)

where H (§) := (h(&1),...,h(&)) and (-, -) is the Euclidean scalar product. Here, contrary to
the situation with k = 1, the definition of Ej (&) allows to consider the case (M, g) = (S™, go)-
In this case, Ak7£ has all entries equal to zero on the diagonal. In particular, when k£ = 2 or
3, observe that A, ¢ is invertible, and thus Ej, (£) is well-defined, for all £ € (S")*\Ay. Our

result in the l.c.f. éase with n = 6 reads as:

Theorem 1.5. (existence of solutions with more than one blow-up point in the
l.c.f. case with n = 6) Let (M,g) be a smooth compact l.c.f. Riemannian manifold with
n =6 and p,(M) > 0, and h € C*(M). Let k > 2 be an integer, and assume that Ej, has

an isolated critical point &, := ((&o)y, - - -, (§0),) with non-trivial local degree and A;lé. H (&)
S0

has positive coordinates. Then for e > 0 small, equation (1.3) has a solution uy. € C** (M),
a € (0,1), such that the family (upc)_ blows up, up to a sub-sequence, at (&) - -, (&), as
e —0.

Contrary to the assumptions in the previous theorems, here it seems unclear in general
when the function Ej admits an isolated critical point with non-trivial local degree. An
easy situation where we can construct h and &, satisfying the assumptions in Theorem 1.5
is the case k = 2 on the round sphere (S", gp). Indeed, in this case, we find that F (&) =
2h (&) h (&) Gy, (&1,&)7" for all € = (£1,&), & # &, which has always a maximum point
in (S"N{h > 0})?\ Ay provided that max,;h > 0. It is clear that the maximum point is
non-degenerate for several h's (in a generic sense).

Let us finally compare problem (1.3) with its Euclidean counter-part on a smooth bounded
domain €2 C R, n > 4, with homogeneous Dirichlet boundary condition

Apgatt +du=v>"1inQ, ©w>0inQ, wu=0ondN. (1.8)

For A > 0, a direct minimization method (for the corresponding Rayleigh quotient) never
gives rise to any solution of (1.8), and moreover, no solution exists at all if € is star-shaped
as shown by Pohozaev [38]. Moreover, following the arguments developed by Ben Ayed-
El Mehdi-Grossi—Rey [5], problem (1.8) has no solutions with a single blow-up point as A — 0%.
The effect of the geometry, which is crucial to provide a solution for the Yamabe problem
(corresponding to A = 0 in (1.8)) by minimization, is also relevant to producing solutions of
(1.3) (corresponding to A — 07 in (1.8)) with a single blow-up point as stated in Theorems 1.1
and 1.2. On the contrary, Theorem 1.4 has a partial counter-part on domains with nontrivial
topology, see Musso—Pistoia [34] and Pistoia—Rey [37]. When A < 0, solutions of (1.8) can be
found by direct minimization as shown by Brezis—Nirenberg [10], and exhibit a single blow-up
point as A — 0~ as shown by Han [23], in contrast with the compactness property proved
by Druet [13]. Solutions of (1.8) with a single blow-up point, see Rey [39, 40|, and with
multiple blow-up points, see Bahri-Li-Rey [4] and Musso—Pistoia [35], as A — 0~ have been
constructed in a very general way. Since the manifold with boundary (€2, dz) is l.c.f., notice
that the Green’s function G(+,§) still has an asymptotic expansion of the form (1.5), but the
constant A is always negative in this case. The different sign of A, is the analytical reason
of the completely different picture we have for equations (1.3) and (1.8).

The paper is organized in the following way. In Section 2 we describe the perturbative
method we use to attack existence issues of blowing-up solutions. We describe the main steps
of such an approach, leading to the general result Theorem 2.4, and we deduce from it our
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main results concerning solutions with a single blow-up point. A crucial point is to produce a
suitable ansatz for the solutions. Inspired by the approach of Lee—Parker [27], which unifies the
previous constructions of Aubin [3] and Schoen [42] in the resolution of the Yamabe problem,
we build up general approximating solutions W, ;. for (1.3) which approximation rates are
evaluated in Section 3. An important point here is that we allow the metric g to vary in
the conformal class so to gain flatness at each point & € M. An alternative, less geometric
approach can be devised in the non-l.c.f. case, see Esposito—Pistoia—Vétois [20], by keeping
g fixed and slightly correcting the basic ansatz via linearization so to account for the local
geometry. Thanks to the solvability theory of the linearized operator for (1.3) at W, ¢, we are
led to study critical points of a finite-dimensional functional J. (¢,£). A key step is to obtain
an asymptotic expansion of J- (¢, ) and to identify a “reduced energy” as the main order term.
This step is performed in Section 4 in C°-sense and completes the proof of Theorem 1.1. In
Section 5, we investigate the existence of solutions with & blow-up points, yielding to the
proofs of Theorems 1.3, 1.4, and 1.5. The C'-expansion of 7. (¢, &) is addressed in Section 6,
completing the proof of Theorem 1.2. The appendix is devoted to some technical issues.

Acknowledgments: this work has been initiated and partially carried out during the visits
of the third author to the University of “Roma La Sapienza” in November 2009 and to the
University of “Roma Tre” in November 2010. The third author gratefully acknowledges the
hospitality and the financial support of these two institutions.

2. SCHEME OF THE PROOF

In this section, we aim to give the scheme of proof for Theorem 2.4 below. First, let us set
some notations. We denote the conformal Laplacian of the manifold by

L, := A, + o, Scal,, (2.1)

where a, := ("*21). The conformal covariance of L, expresses as

An—1)
Ly(¢) =u ®VLy(up) V¢ e C*(M), (2.2)

for all ¢ = u? ~2g in the conformal class [g] of g. We assume that the manifold has positive
Yamabe invariant, which is equivalent to assuming the coercivity of L,. We let Hf (M) be
the Sobolev space of all functions in L? (M) with gradient in L? (M) equipped with the scalar
product

(u,0), ::/M<Vu, Vo), dvg—i—an/MScalg uvdv, (2.3)

where du, is the volume element of the manifold. We let [|-||, ~be the norm induced by (-, ) .
For any u € L7(M), we denote the L%norm of u by [ull, := (S ]u|qdvg)1/q. We define

Jully 5 = (||Vu\|§ + ||u||§)l/2 By coercivity of Ly, we get that the norms [-||, and [[-[|; , are
equivalent.

We let i, be the injectivity radius of the manifold (M, g). By compactness of M, we get that
there exists a positive real number 74 such that 7y < i,. In case (M, g) is locally conformally
flat, there exists a family (ge) ceM of smooth conformal metrics to g such that ge is flat in the
geodesic ball Be (19). In case (M, g) is not locally conformally flat, we fix N > n, and we
provide ourselves with a family (ge) ceM of smooth conformal metrics to g such that

lexpg ge| (y) = 1+ 0 (Jy™) (2.4)
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uniformly with respect to £ € M and y € TeM, |y| < 1, where }expz g§| is the determinant of
ge in the geodesic normal coordinates of ge at {. Such coordinates are said to be conformal
normal coordinates of order N on the manifold. Here and in the sequel, the exponential map
exp, is always intended with respect to the metric ge. We refer to Lee-Parker [27] for a proof
of the existence of conformal normal coordinates of any finite order, see also the later proofs by
Cao [11] and Giinther [22] of the existence of conformal normal coordinates which are volume
preserving near a given point (with no remainder term in (2.4)). For any € € M, we let A¢ be
the smooth positive function in M such that g = /12*_251. In both cases (locally conformally
flat or not), the metric g¢ can be chosen smooth with respect to ¢ and such that A (§) =1
and VA (§) = 0. We let G, and G, be the respective Green’s functions of L, and L. Using
the fact that A¢ (§) = 1, by (2.2), we find that

Gy () = Ae() Gye (,€) - (2.5)

By compactness of M and since g¢ is smooth with respect to &, decreasing if necessary the
real number ry, we may assume that ry < i, for all § € M, where i, is the injectivity radius
of the manifold (M, g¢). For € > 0 small and for any ¢ > 0, we define

e : ifn=4

5. (1) = e ifn=>5o0r (n>6and (M,g) lLct.) (2.6)
tl(¢) if n=06and (M,g) non-lc.f.
tv/e if n > 7and (M,g) non-lc.f.,

where £ : (0,e7"/2) — (0,e7!/2) is given by ¢ () := —6?Ind. For ¢ > 0 small and for any
t >0, { € M, inspired by the approach of Lee-Parker [27], we define W_ ;¢ in M by
WE,t,E (l’) = Gg (.73, g) We,t,ﬁ (‘T) ) (27)
with
2—n
_ 0. ()2 d, (2, 6" 2U (6. ()1 d,, (=, if d,, (x,&) <r
oy { O T G0 e 0) W9

Bude (8) % 75720 (3. (8) " 7o) i dy, (2,) > o,
where 8, = (n — 2)w,_1, Wp_1 is the volume of the unit (n — 1)-sphere, d. (¢) is as in (2.6),
and

n—2

U(r) = (M) . (2.9)

14 r2

The function U generates a family Us(r) = 6 2 U(0~'r), 6 > 0, of radial solutions of the
equation Ag,qU = U? 7! in R?, where Apya := — divgwa V is the Laplace operator with
respect to the Euclidean metric. With these definitions, by (2.5), we observe that W, .
rewrites as

Were = Ae[BaGo (2, €)dy, (,€)"*|Us. (1) (dg (. €))
for all z € M such that dg, (x,§) < ro.

Let us spend few words to comment on the choice of W.,,. Since, by Lemma A.1, the
function 3,Gy, (z,&)dg, (2,€)" 2 is very close to 1 as  — &, we have that W, ¢ is a small
correction of A¢Us, (1) (dg, (2,€)) near §. Since, by (2.2), we have that

Lg(AcUs, 1) (dge (2, €))) = A7 ™" Ly, (Us, 1y (dge (2, €)))
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in view of the flatness of g¢ at £ (see (2.4)) and AgyaUs = Ug*’l in R™ it is natural to expect
that W, . is a very good approximating solution to (1.3) near £. Away from &, the function
W+ ¢ behaves like 3, [n(n—?)]%ég(t)%Gg(x, €), which is still a good approximating solution
to (1.3) in that region.

We define Vg, ..., V,, : R" — R by

2
-1 :
Vo (y) = ’y|—23 and V;(y) := y—ﬁ (2.10)
(1+1yl) (1+1y%)
for all y € R® and @ = 1,...,n. By Bianchi-Egnell [6], any solution v € D"? (R") to the
equation Agyqv = (2 — 1)U 2"~2y is a linear combination of the functions V, ..., V,. We let

X be a smooth cutoff function in R, such that 0 < y < 1in Ry, x = 1 in [0,ry/2], and
X = 01in [rg,00). For ¢ > 0 small and for any ¢t > 0, £ € M, and w € T:M, we define
Z&t’g, Za,t,.ﬁ,w M — R by

Zene (@) 1= Gy (0,6) Zepe () and Zeyew (@) = Gy (2,6) Zepew (@), (2.11)
where
Zyt,g () == Bux (dg5 (z, 5)) e (t)%Tn dge (7, 5)"72 Vo ((5E (t)*1 expg1 :1:) , (2.12)
Zepeo (2) 1= Bax (dy (,)) 6= (8) 7 dy (2,2 (V (0. () "expg ') w) - (213)
with V (y) = (Vi (y),..., V. (y)) for all y € TeM = R™. We define
Kere ={ ete+Zetew: AR and weTM}, (2.14)
Khe={o e HEM): (6, 2:00),, =0 and (9, Zeyen)y, =0 forallw € TeM}, (2.15)
where the scalar product (-,-); is as in (2.3). We let H&t,g and II}, . be the respective
projections of H} (M) onto K. ;¢ and K.
We intend to construct solutions to equation (1.3) of the form
Ue = Weie + e,
where t > 0, £ € M, ¢. € K, and W_ ¢ is as in (2.7). We re-write equation (1.3) as the
couple of equations
Hepe Were+0— Ly (fe Were +9)) =0, (2.16)
Iy e Wege + ¢ — Ly (f: (Wene +0))) =0, (2.17)
where L, is as in (2.1) and
fo(u) =u2 ! —chu, (2.18)

with uy = max (u,0). We begin with solving equation (2.17) in Proposition 2.1, a rather
standard result in this context (see for instance Musso—Pistoia [35]) which proof is skipped for
shortness.

Proposition 2.1. Given two positive real numbers a < b, there exists a positive constant
C =C(a,b,n, M, g,h) such that for e > 0 small, for any t € [a,b] and & € M, there exists a
unique function ¢. ¢ € K- 21 Which solves equation (2.17) and satisfies

IPerellio < CllRerellys (2.19)

where Re1e = Weype — (fe( Weie)). Moreover, ¢o1¢ is continuously differentiable with
respect to t and &.
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In Proposition 2.2 below, we give a crucial estimate for ||R.;¢||,,- The proof of Proposi-
tion 2.2 is presented in Section 3.

Proposition 2.2. Given two positive real numbers a < b, there exists a positive constant
C =C(a,bn,M,g,h) such that for e > 0 small, for any t € [a,b] and § € M, there holds

(cem¢ ifn=4
e ifn=>5
2 .
e“|lnel3  ifn==6 and (M,g) Lc.f.
[Bepellio <O (2.20)
£2n=0 ifn>7and (M,g) lLc
£ |lne€]_% if n==6 and (M,g) non-l.c.f.
& ifn>7and (M,g) non-lc.f.
where R ¢ s as in Proposition 2.1.
For & > 0 small, we define J. : H? (M) — R by
1 ]. *
=3 /M ]Vulz dvg + 3 /M (v, Scal, +¢h) u*dv, " dv,. (2.21)

For any ¢t > 0 and £ € M we define
T (6,6) = J: Were + Pee) s (2.22)

where ¢.+¢ is given by Proposition 2.1. We can solve equation (2.16) by searching critical
points of J., as it follows from (6.39)-(6.40) and (6.52)—(6.53). To this aim, it becomes
crucial to have the asymptotic expansion of 7. given by Proposition 2.3 below. The proof of
Proposition 2.3 strongly relies on Propositions 2.1 and 2.2, and is presented in section 4.

We define the “reduced energy” E: (0,00) x M — R as follows:

N e % (coth(€) — esA¢) ifn=4
E(t,&) =< ct’h(§) — cst"? Ag , ifn=5or (n>6and (M,g) lcf) (2.23)
cat?h(€) — et |Weyl, (5)|g if n>6and (M,g) non-lc.f.,

where ¢y, c3 > 0, Weyl, is the Weyl curvature tensor of the manifold and A¢ is as in (1.5).

Proposition 2.3. Let p € {0,1} and assume that h € C%* (M), a € (0,1), in case p =0 and
h € CY (M) in case p = 1. Then there holds

E(t,&) +o(e77) ifn=4
B E%E(t f)—l—o(e%) ifn=5o0r(n>6and (M,g) lc.f)
T8 =+t 2(}11 E(t,&) +o (e (ln%)_l) if n =6 and (M, g) non-l.c.f.
e2E(t,€) 4+ o(e?) if n>7T and (M, g) non-l.c.f.

as ¢ — 0, CP—uniformly with respect to & € M and t in compact subsets of (0,00), where E is
given by (2.23) and ¢y, ca,c3 > 0 depend only on n.

We are now ready to state the following general result.

Theorem 2.4. Let (M,g) # (S™, go) be a smooth compact Riemannian manifold with n > 4
and pg(M) > 0. Let p € {0,1} and assume that h € C** (M), a € (0,1), in case p =0 and
h € C' (M) in case p = 1. Assume that there exists a CP-stable critical set D C (0,00) X M,
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p = 0,1, of the function E. Then for e > 0 small, equation (1.3) has a solution u. € C** (M),
Vae (0,1) if p =1, such that the family (u.). blows up, up to a sub-sequence, at some

& € (D) as € — +oo. Here, w: (0,00) x M — M is the projection operator onto the second

component. Moreover, when p = 1, & is a critical point of E with h(&§) > 0, where E is
defined in (1.4).

The notion of stability we are using is essentially taken from Li [29]. We say that a compact
set D C (0,00) x M is a CP—stable critical set, p €N, if for any compact neighborhood U of
D in (0,00) x M, there exists § > 0 such that, if J € C*(U) and ||J — E||Cp @) < 0, then J

has at least one critical point in U. Since F depends on € when n = 4, the above assumption
17 — E||C,,(U) < & needs to be interpreted in this case as: |7 (¢, &) — (t,§)| < e~ % for all

(t,€) € U, when p = 0; [T (t,£) — E(t, )| +¢€[0(T (,6) = B(t, )| +|Ve(T (£, €) — E(t,6))], <
de—= for all (¢,&) € U, when p = 1. Observe also that we do not require the set D to be
composed of critical points of E as it would be intuitively reasonable. Indeed, we want to
include the case where D is given by almost critical points of E as it arises for n = 4 in the
proof of Theorem 1.1. However, since U can _shrink onto D by compactness of D we have
that D contains at least one critical point of E.

Proof of Theorem 2.4. Let U be a compact neighborhood of the CP-stable critical set D in
(0,00) x M, p=0,1. Given any ¢ > 0, by Proposition 2.3, we have that J. = ,us (.7 — )
satisfies || J. — E'Hcp < § for e sufficiently small, where . = 1 if n = 4, p. := en- "iifn=5
or n > 6 and (M,g) lcf pre == *(In 1)~ if n = 6 and (M, g) non-lcf, p. :=e*if n > 7
and (M, g) non-l.c.f. By deﬁnition of a CP—stable critical set, p= 0,1, it follows that J. has a
critical point (t.,&.) € U for & small. Up to a subsequence and taking U smaller and smaller,
we can assume that (t., &) — (to,&) as e — 0 with & € m(D). As already observed, we get
that ue = Wey e + ¢t ¢ is a critical point of J;, and thus, by elliptic regularity, a classical
solution of (1.3). Since [¢er. e, , — 0, by definition of W, ¢, it is easily seen that u. > 0
and u?” — K, "d¢, in the measures sense as ¢ — 0 (see for instance Rey [40]), where K, is given
by (4.1) and d¢, denotes the Dirac mass measure at &. From very basic facts concerning the
asymptotic analysis of solutions of Yamabe-type equations (see for instance Druet—Hebey [16]
and Druet-Hebey—Robert [18]) we get that the family (u.). of solutions to (1.3) blows up
at the point & as ¢ — 0. Finally, when p = 1, we can pass to the limit into the equations
0 J: (t.,&) =0 and Ve J: (t., &) = 0 as ¢ — 0 to get that h(&y) > 0 and V E(&) = 0 in view
of ty > 0, where E is given by (1.4). This ends the proof of Theorem 2.4. O

We now apply Theorem 2.4 to deduce Theorems 1.1 and 1.2. To this aim, given & € M
with A(§) > 0, define ¢(&) as

( CSA§

<:2h—(§)+% 1 ifn=4
2cah (€ n—4 . .
HE) = (%) ifn=5o0r (n>6and (M,g) Lcf) (2.24)

< cah(€) 2) if n > 6 and (M, g) non-lc.f.

203|Wey1g(£)|g

with the convention that 1/0 = +o00. One easily checks that every t () < +oo is a global
maximum point of E i ‘in ¢. In the proofs of Theorems 1.1 and 1.2 below, we show that the
CP—stable critical set D in Theorem 2.4 can be constructed as D := {(£(£),€) : £ € D}, where
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D is a CP—stable critical set of & — E(t(f), ¢) with h > 0 in D. Since we have that

( _2c3 Ae
Sepeth(§)e = T ifn =4
2 n—2 n—2

~ 27— (n—4)e™*  pe)n—4 .
E(t(£),€) = 2("%3) % ' if% ifn=5or (n>6and (M,g) lcf.) (2.25)

5 aee O

= W if n > 6 and (M, g) non-l.c.f.,

9>y

\

the role played by the map F defined in (1.4) becomes clear. We prove Theorem 1.1 as follows.

Proof of Theorem 1.1. Notice that sup,, £ > 0 in view of maxy; h > 0. Letting (§i),cy be a
maximizing sequence for E, by compactness of M, we can assume that { — £ as k — 400
with h(&) > 0 for all k. Since min{| Weyl, ()], : h(§) > 0} > 0 in the non-l.c.f. case with
n > 6, we have that (£(&)), is bounded. Since then sup,; ' < 400, it follows that sup,, £
is achieved, and it makes sense to define D := {£ € M : E(§) = sup,, E'} (possibly coinciding
with the whole M if E is a constant function) as the maximal set of F in M. Correspondingly,
define D := {(£(€),€) : € € D}, where £(€) is given by (2.24) and is well defined for all £ € D
in view of h > 0 in D. Moreover, t(§) is clearly bounded away from zero on D, and thus the
set D is a compact set in (0, oo) x M. To show that D is a C%stable critical set, let U be
a compact nelghborhood of D in (0,00) x M. Taking U smaller if necessary, we can assume
that U = {(t,€) : t € [t(&) — n,t(&) + 7], € € U}, where > 0 is small and U is a closed
neighborhood of D in M so that h > 0 in U. There hold

e for n > 5, by the definition of ¢(¢) and the simple relation between E(t (€),€) and E(¢)
(see (1.4) and (2.25)), we have that E(t(€) +1,£) < E(t(€),€) < supDE if £ € U, and

E(t,€) < E(t(),€) < supp E if t € [t(€) — n,t(€) + 7] and & € OU;
e for n =4, by the definition of E and ¢(§), we have that for any £ € U, there holds

~ ~ 2 2 ~
() £n.) = B((),9e™# (1 ) <supE
D
when ¢ is small, in view of 6’2?7](1 + 2?") — 0 and e?(l — 2?") — —o0 as € — 0, and for
any t € [t(§) —n,t(€) +n] and £ € U, there holds

E(t,§) < E(t(£),§) <sup E
D
2¢ 75 __ 23
when ¢ is small, in view of sup e =27 =o (e sc2 maXME> as € — 0.
oU

)

In conclusion, by compactness of

OU = {(t,€) : t € {t(&) = n, (&) +n}, £ € UYUL(1,€) : t € [t(&) —n, t(&) + ), £ € OUY,
we get that supaﬁﬁ < supz E. It follows that if || — EHCD((;) < 6, with 0 < %[supﬁg’ —
SUp7 E], then we get that

sup j < sup j
oU D

Then J achieves its maximum value in U at some interior point of U which is a critical point
of J. It follows that D is a C%stable critical set of E as desired. By Theorem 2.4, we then
get that for & > 0 small, equation (1.3) has a solution u. € C*® (M) such that the family
(u.). blows up, up to a sub-sequence, at some &, € 71'(5) as € = +00. Moreover, by definition
of D, we get that E (&) = maxyy E. This ends the proof of Theorem 1.1. O
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Since t(§) is a maximum point of F in ¢, minimum points or saddle points of E provide
critical points of E which in general are not C'-stable critical points of E. To cover these
cases, we need to use Theorem 2.4 with p = 1. We assume that h € C* (M). We can still
define C'—stable critical sets of E as in the case of (0,00) x M, but in general they don’t give

rise to C''~stable critical sets of E. In M, we restrict the notion of C'-stability to isolated
critical points of E with non-trivial local degree, which is still sufficiently general to include
non-degenerate critical points of E. We prove Theorem 1.2 as follows.

Proof of Theorem 1.2. We only need to show that the set D = {(t(&), &)} is a Cl-stable
critical set of E, where (&) > 0 is well defined in view of h(&) > 0 and Weyl, (§0) # 0 when
n > 6 and (M, g) non-l.c.f. To this aim, let U be any compact neighborhood of D in (0, 00) x M
and 0 > 0 be any given small number. Taking U smaller if necessary, we can assume that
U=1x Bg, (ro), where I is a closed interval in (0,00) containing t({y) in its interior and
Be, (19) is the geodesic ball of center & and radius ry with respect to ge,, with 9 < lge, - the
injectivity radius of the manifold (M, gg,). For n > 5, the assumption Hj —E |l on @) < 0 gives
that

‘Vj (t,expgO n) — VE (t,expg0 n) | < (2.26)
as ¢ — 0, uniformly with respect to n € By (r¢) and t € I, where V := (d/dt,V,). Since
&o is a C'=stable critical point of E with h (&) > 0, where FE is given by (1.4), we find that
VE (t, eXpg, 1) has an isolated zero at (¢(&),0). Since (&) is a non-degenerate critical point
oft— FE (t expy, 77) taking U smaller if necessary, we also have that deg (VE U 0) # 0 (see
for instance [21]). It follows from (2.26) that if § is small enough, then J has at least one

critical point (¢, &) € U. When n = 4, the assumption ||J — E| o1y < 0 gives (by definition)
that

0,7 (t, eXPg, 7]) —O,E (t, eXPg, 7]) |+e% an (t,exp&) n)—VnE (t,exp&) 77) ’ < Cpd (2.27)

2t
ge's

as € — 0, uniformly with respect to n € By (rg) and ¢ € I, for some Cy > 0. Letting
\Ij(ta 77) = (—ZCch(engo 77) + 2c3f4exp£0 79 C2tvnh<exp§0 77) - CSVWAexpgo n)

and U(t,€) = ‘~Il(t,expg)1 €), by (2.27) we deduce that

‘ (ee%@j (zf,exp50 77) ,e%an (t, expe, 77)) — U(t, 77)’ < Cpd + O(e) (2.28)

as € — 0, uniformly with respect to n € By (19) and ¢t € I. Arguing as above, the map ¥ has

an isolated zero at ( 3,:(120) , O) with deg (\Tf U, 0) # 0, and then by (2.28), it follows that if ¢ is

small enough, then J has at least one critical point (t,¢) € U. g

3. THE ERROR ESTIMATE

This section is devoted to the estimate of R, ;.

Proof of Proposition 2.2. All our estimates in this proof are uniform with respect to t € [a, b,
£ € Mande € (0,e), for some fixed g > 0. We let 7 be as in Section 2. For any ¢ € Hf (M),
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an integration by parts gives that

< (ff—:( sti)) €t£7¢>L / fe( stf) LgWs,t,S) ¢dvg
[ O Wer+ B Wes) 0o, (3.1)
0B¢(ro)

where 0B (1) is the boundary of the geodesic ball with respect to g¢ of center £ and radius
ro, O, and 0, are the derivatives with respect to the respective inward and outward, unit,

normal vectors to B¢ (1g), and do, is the volume element on 0B¢ (19). By Sobolev’s and
trace’s embeddings, it follows from (3.1) that

125" (5 (Wer) = Werell = O (1 (Were) = Ly Vel

1100 Were + By Werel 2n ) 3.2
H in »tvé téH 2( 1)< B{("’O)) ( )

2n
L7+2 (M)

Regarding the second term in the right hand side of (3.2), on 0B (1), we find that

2-n d
ayinW57t7§ + aVoutW ansa (t) 2 Gg ('7 5) %

0" (- 2)" 5,6, (- €) (55(’5)27“3_”: (.08 (33

(r"2U(5:(t)"'r))

Regarding the first term in the right hand side of (3.2), we observe that in M \ Bg (r¢), there
holds

Jo (Wer) = LWepe = f- (Wepe) = O (6:(0) "5 + 20.(1)"") (3.4)

in view of

n—2

Were = Bado(t) 2 152U (8(6) 1) = O(3:(8) %)

and L,G,(-,§) = 0. By conformal covariance (2.2) of L, and by (2.5), in B¢ (r(), we can write
that

— * —~

Je (Wa,t,ﬁ) - LgWaﬂ%E = /1?*_1 [(Ggg (’, {) Wat{)z - ng (Ggg ('v 5) Wa,té)] - ghW&t,E- (3-5)

Since Wg,t,g (§) =0 and L, Gy, (+,§) = d¢, we get that

o~

LQ& (Ggg ('7 5) W&t,ﬁ) = Ggg ('7 5) Aggw&t,ﬁ - 2<VG95 ('7 5) ) vwf,t,€>g§ . (36)

Since Wa,t,& o exp; is radially symmetrical in By (1), writing Ag;ﬂ?&t@ (exp£ y) in polar coor-
dinates, by (2.4), we find that

ATV (e59c1) = Bena(Tec 0 0xm) (1) + O (I~ [9(Forc o exne) (1))

B _n2 2 P T N O
= 07 F WU () T ) X
o (&(t)”“l y[ 4) (3.7)
(3=()* + 1yI°)?
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uniformly with respect to y € By (rg), in view of Ag,qU = U?* ! in R®. Moreover, since
We ¢ o exp; is radially symmetrical, we get that

(VGy (expey,€) , VIV ie (expey) ), = Or [Gae (exe,€)] 0, [We s 0 expe(y)]

_2 w2 6. (0)F |y

=0, [Gy, (expey,&)|n'T (n—2)7 B, = (3.8)
|: 5( 13 )] (58(t)2+|y|2>2
for all y € By (r0). Inserting (3.7) and (3.8) into (3.6), we get that
Ly (Gye () Were) (expe y) = BuGoe (expey,€) u" 0 ()% U (8:(8) 'y)*

n—2 n+2 (55 nTH n—d

2 (0= 2)" B, ((n = 2)Gy, (expey.€) + 110, [Gie (expe 1, )]) “)2 bl

(0 (1) +[yl") ®
+0 (M) e (eXpéy f i N+n4> (3.9)

(0-()> + [yl") ®

in By (r9). Using Lemma A.1, by (3.9) we find that

(Gloe (030, €) Were (exbew) )™ = Lye (Gl (16) Were) (expe )
io O (|y"~ 4) ifn=4,50r (M,g) lcf.
= 0-(t) = = x < O(lyPInly|) ifn=6and (M,g) non-lef. (3.10)
(6:(1)? + Iyl )2 O (Jy*) if n >7and (M,g) non-lc.f.

in By (19). It follows from (3.10) that

n+2

/B ( )Ag_2 (Ggg ('v 5) We,t,S)Q*_l - Lg& (Ggé ('7 §> We’tﬁf) dvg
¢(ro

( n(nn+26)> ifn=4,50r (M,g) lcf.
o O (t) dr ,
= — x ¢ O(r®|Inr|) if n =6 and (M, g) non-l.c.f.
o (B0 )
O <rn+2_ " > if n > 7and (M,g) non-lc.f.
e (55(15) Qnﬁj)) ifn=4,5
O (6-(t)°|Iné-(¢)]) ifn=06and (M,g) Lcf
_J O@5.()") if n>7and (M,g) lcf (3.11)
O ((55(75)6 [In (55(t)]2> if n =6 and (M, g) non-l.c.f.
| O (55(75)71%) if n > 7 and (M,g) non-l.c.f.




THE EFFECT OF LINEAR PERTURBATIONS ON THE YAMABE PROBLEM 15

Moreover, by Lemma A.1, we find that

, ro 5 ( )7L(nn+22) /r'” ld/,"
/ |hVV6’t,§|n+:2 dvy, =0 (/ 2 e _2)> =14 O(6.(t)*Ino.(t)]) ifn=6
Be(ro) 0 (0-(t)2 4 r2) 2

By (3.4), (3.5), (3.11), and (3.12), we get that
£ ( st{) LW€t£H 2z
5.(t)"% + e6. ()T ) if n =45

n+

5.(1) "% + e6.(1) ) itn>7and (M,g) lLef. (3.13)

W

(0 (a0

O<(5E 4. (¢ |5 + &d.(t)* [In 5. (¢ )ﬁ) if n==6and (M, g) lLct
o (a0

o(aa 6. (4)]3 + £6.(t)? Ins.(t)|

) if n =6 and (M, g) non-l.c.f.

| O <(5€(t) + e0.(t) > if n > 7 and (M,g) non-lc.f.
Finally, (2.20) follows from (2.6), (3.3), and (3.13) in view of (3.2). This ends the proof of
Proposition 2.2. O

4. THE REDUCED ENERGY

In Lemma 4.1 below, we give an asymptotic expansion of J. (W..¢) as € — 0, where J, is
given by (2.21). We let K, be the sharp constant for the embedding of D2 (R") into L*" (R™).
It has been proved independently by Rodemich [41], Aubin [2], and Talenti [47] that

K, = \/m (4.1)

where w,, is the volume of the unit n—sphere.

Lemma 4.1. We let K,, be as in (4.1), Weyl, be the Weyl curvature tensor of the manifold,
and for any & € M, we let A¢ be as in (1.5). Ase — 0, the following expansions do hold:

(i) when n =4,
1
0c(t)

1
Je (Weie) = ZK4‘4 + 4wzh(€)ed.(t)* In —4B3Ac0.(1)* + h.o.t., (4.2)

(ii) whenn =5 or (n>6 and (M,g) is l.c.f.),

(n— 1w,

L (Wes) = 1+l - 2) 7 (e

h(€)e6.(1)? — 3314555(25)”—2) +hot., (4.3)

(iii) when n =6 and (M, g) is non-l.c.f.,

J. Were) = lKgG + 45weh (€) e6.(t)* — ZwG |Weyl, (5)\2 65.(t)*In + h.o.t., (4.4)

1
6 0c(t)
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(iv) when n > 7 and (M, g) is non-l.c.f.,

2

[n(n—2)]">
" 2n=1(n —4)

n

o (0= DB(Eeb. 07 - 37 =2 [West, €)1
+ h.o.t. (4.5)

uniformly with respect to & € M and t in compact subsets of (0,00), where h.o.t. stands for
a term which is asymptotically smaller than one of the previous terms in the erpansion as
e —0.

Proof. All our estimates in this proof are uniform with respect to & € M, t in compact subsets
of (0,00), and € € (0, &g) for some fixed g9 > 0. Since W, ;¢ is a constant and Ly, Gy, (+,§) = 0
in M \ Be(r9), by (2.2) and (2.5), we get that

/ |[VWere] dv, + o / Scal, W2, cdv,
M M

= / (LgWeie) We pedvg + / (O We e + OuouWene) Wepedoyg
M B¢ (ro)

= /M Lo (G (- ) We6) G (-, ) We g edvg, + O (6.(1)™)

—

= /B ( Lg& (Ggg('ﬂ g)WE,té)Ggg('? g)ﬁ/\f%ﬁdvgg +0 (5€(t)n)
¢(ro

n

in view of (3.3) and W, = O (65(15)?2) on 0B¢ (rp). In the estimates below, we make use of
(3.9) along with (2.4), Lemma A.1, and

n—2

17 -2 n=2 5€(t)T
Gy (2, E)Were(x) = BrGy (7, 8)dy (, )" " [n(n —2)| 3 =
(0,0 etel@) = ol o " = 2T o

for all x € Be (r9). When n =4,5 or (M, g) is Lc.f., we can deduce that

n—2

1 n n—2
/ ’VWatdevg + an/ Scal, Wftgdvg = —[nn—2)]2w,_11,?
M T M " 2

07 (0= 2)F w1 [P A (1) 4+ 0 (8.0 (4.6)
where we denote I} := 0+°O (14 r) P ridr for all p, ¢ such that p — ¢ > 1, and we use that
I = #Ig_l = p_z_llg +1- Concerning the remaining cases, we find that

/M |vws,t,§\§dug + /M Scaly W2, cdvy = 6912ws I (4.7)

_ §w5fg\ Weyl, (€) 26, (1) nd. (1) + O (6.(1)")

when n = 6 and (M, g) is non-l.c.f., and

n—2

1 n n—2
/ ‘VWgt5|2dvg + ozn/ Scaly W2, cdvy = =[n(n — 2)]2w,_11,? (4.8)
M B M v 2

+nnT_2<n—2>nT+4 [nT“a (t)4 %+1A (S l o )(O) +O(5 (t)5)
48(n—|— 2)(77, — 1)wn71 noove 12(n — 6) n Eucl(DCalg, 0 eXpg B
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when n > 7 and (M, g) is non-l.c.f., in view of symmetry properties. Now, we estimate the
term

* — 2%
/ W2 cdv, = / (Goel O Wepe) ™ du,
M M

~ (2% [ Gl o O:(1)"

(0=(£) + [y[*)

dy + O (6=(1)")

in view of (2.4). By Lemma A.1, we get that

/ Wf?gdvg [ (n =2V Ewprln” (4.9)
(05 (0= 2)" Bawn 1 [P Al ()2 + 0 (5.()") ifn=4,50r (M, g) Lek.
— %%I | Weyl, (€) ‘gég (t)*Ind. (t) + O (6.(6)") if n =6 and (M,g) non-l.c.f.
] w9t e[ Wel, O],
Wpo1In? 0. (t)" | ———+2
48(n —4)(n — 1) 12 (n — 6)
+ lAEuCl(Scal% oexpg)(0)> + 0 (6:(¢)%), if n > 7and (M,g) non-lc.f.
n
\

by using symmetry properties when n > 7 and (M, g) is non-l.c.f. Moreover, we find that

— 8wyh (€) 8. (t)*In 6. (t) + O (8.()?) if n =4
(4.10)

—_

/ hWEQt gdvg - 9 s
Mo §[n<n—2>] w7 h (€) 0. (1) +0(6.()%) ifn>5
as € — 0, in view of A¢(§) =1, (2.4), and Lemma A.1. Successive integrations by parts give

that

n—2 w 1
E oY g2 411
2n—1wn71 ’oon n—1 ) ( )
and (if n > 5)
n—2 (n—1)w, nt2 n(n+ 2)wy,
l.2, = I,> = . 4.12
T2 =3 (n — 4wy 21 (n—=2)(n—4)w,_1 (412)

Moreover, for any £ € M, since g¢ defines conformal normal coordinates of order N > 5, see
Lee-Parker [27, Theorem 5.1], and since A¢ () = 1, we get that

1 2 1 2
Apya(Scaly, o exp,)(0) = 6' Weyl,, (€) 1% = 6‘ Weyl, (€) |, - (4.13)
Finally, (4.2)-(4.5) follow from (4.6)—(4.13) in view of (4.1). O

We end this section by proving the validity of the expansion for J. in Proposition 2.3
uniformly with respect to & € M, t in compact subsets of (0,00) and ¢ € (0,&q). To this aim,
it suffices to prove the (uniform) expansion

0(6.(t)*) ifn=4

o(e0.(t)%) ifn>5 (4.14)

(t 5) 5( st§)+{
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as € — 0. Indeed, the expansion of J. in Proposition 2.3 follows from combining Lemma 4.1
with (4.14) and letting J.(¢) be as in (2.6). Since

T (0,8) ~ Je (Wes) = (Wea — 13" (- (Wer) 000, + 5 <H¢et5HL+5 [ net i)

1 .
o ? o ((We te ¢s t {) Wgt F 527t’§1¢57t,§> dvg ) (4'15)
by Cauchy—Schwarz inequality, we get that
‘<Wa,t,£ _Lgl (fa (We7t,§))a¢a,t7£>Lg‘ S HWa,t,f (fa( atf HL ||¢5t§||L ) (416)

and by the Mean Value Theorem and the Holder’s inequality, we get that
/M ((Watf + Cbat&) Wat§ 2*W52,;E1¢87t,£> dvg

= O (1l6-ell

2
o + Hgba,t,f

We e

o 2% + ||¢8,t,§ g:) == O <||¢£,t,§
By Proposition 2.1 and (4.15)—(4.17), it follows that
T (t,€) = Je Weng) = O (|| Reelli )

in view of Sobolev’s embedding L* (M) < HZ(M) and the equivalence between the two norms
||z, and || - ||1,2. Proposition 2.2 now yields that the estimate (4.14) does hold C°-uniformly.

3’;) . (4.17)

5. EXISTENCE OF k—BUBBLES

The previous analysis can be extended to solutions which have & distinct blow-up points,
k > 2. In the non-l.c.f. case with n > 6, the “reduced energy” Ej : (0,00)% x (M*\ A;) — R,
Ay = {(51, &) EME L & =¢ for i £ j}, which governs the location of these blow-up
points, is just a super-position of the one for each single point:

k
):ZE(@-,@-), ti=(ty,... ty) € (0,00)F, &:=(&,...,6) e M\ A,

Theorem 2.4 Works as well in this context in the following way: as soon as we find £ distinct C?P—
stable, p = 0, 1, critical sets Dy, ..., Dy of E(t §), we can construct a family (uy,)._ of solutions

to (1.3) which blows up, up to a sub—sequence, at points (&) , - .., (&), With §y € Dy x---xDy,
as ¢ — 0. From this result, we deduce Theorem 1.3 exactly as in the case k = 1.

Theorem 1.2 has its counter-part too: in the non-l.c.f. case with n > 6, solutions with k
blow-up points do exist provided that &k is at most the number of isolated critical points of

E(§) = h () [Weyl, (§)] " with non-trivial local degree and h > 0.

When n = 4, the energy for the approximating function (5.2) is not suitable due to the
dependence in ¢ of the smallness rate of é. (¢) in (2.6).

When n = 5 or (M, g) is Le.f., the picture is completely different. There is an effective
interaction between different blow-up points as expressed by the following “reduced energy”
Ey : (0,00)’“ X (Mk\Ak> — R:

k k
Bt &) =Y th(&) —es Y 11 Ag — o3 Z t* TGy, 6)), (5.1)
i=1 =1

i,j=1
i#]
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where ¢p,c3 > 0 and A¢ is as in (1.5). Theorem 2.4 is still valid in this context by simply
replacing E(t,€) with Ei(t,€). Tt is no longer possible in general to relate critical sets of

Ei(t, &) with that of an explicit Ey(§) as when k = 1, with the exception of the case n = 6
for which we prove Theorem 1.5 with E} defined as in (1.7). In case n > 7 (in such a way

that ”T’Z > 2), we can produce a C'—stable critical set of E, through its maximal set, yielding
to Theorem 1.4. In this section, we first sketch the proof of Theorem 2.4 in case k > 2, with
E(t, ) replaced by Ey(t, &), and we then derive from it Theorems 1.4 and 1.5.

For t := (t1,...,tx) € (0,00)% and & := (&1,...,&) € MF\ Ay, define 0.(¢;), i =1,...,k, as
in (2.6). The k—bubbles approximating function is given by

k
Wa,t,ﬁ = Z W£7ti7£i ) (5.2)
=1

where W, ;. ¢, is defined in (2.7)—(2.8). Since A, are positive functions depending smoothly in
¢ € M, there exists Cy > 0 so that Cy' < Ag(x) < Cp for all #,& € M, and then

2 2

Cy " dy(x,y) < dg(w,y) < C5 2 dy(z,y) (5.3)

_ 2
for all z,y,£ € M. The number r( in (2.8) is also assumed to satisfy ro < C, "* @ for all
i # j in such a way that {dy, (z,&) <o} N {dggj (2,&) < 1o} =0 in view of (5.3). We look
for a solution of (1.3) in the form

Upe =W g g+ 02,

where t € (0,00)%, € € M*\ Ay, and ¢. € Kjtﬁ with

k k
. 1 . 1
K t¢:= |JKere and Kiye = (K
i=1 =1

where K.y ¢, and K, . are as in (2.14)(2.15). Letting Il ¢ and Hjtﬁ be the respective
projections of Hf (M) onto K_4 ¢ and Kjt g Ve rewrite equation (1.3) as the system (2.16)—
(2.17), with We e, I, ¢, Hét,é replaced by Wz—:,t,E’ Hs,t,fv Hj,t,f’ respectively. We begin with
solving equation (2.17) in Proposition 5.1 below, which is, as already observed, a well known

result in this context (see for instance Musso—Pistoia [35]).

Proposition 5.1. Given positive real numbers a < b and n, there exists a positive constant
C = Cl(a,b,n,k,n,M,g,h) such that for £ > 0 small, for any t € [a,b]k and & € M* with
dg(&i,&5) > for all i # j, there exists a unique function ¢_ te € Kjt ¢ which solves equation

(2.17) and satisfies
Hgbe,tle,Z < CHRE,tle,Z’

where Ratf = We,t,£ — L;l (fE (Wet£>) Moreover, ¢g,t,£ 1s continuously differentiable with
respect to t and &.

We now give an estimate for HRe,t,EHLQ'
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Proposition 5.2. Given positive real numbers a < b and n, there exists a positive constant
C = C(a,byn,k,n, M, g,h) such that for e > 0 small, for any t € [a,b]k and & € M* with
dy(&,&5) > n for all i # j, there holds

e3 ifn=>5
HR€7t7£H172 <Cq e 1n8’% ifn==6 and (M,g) l.c.f.

n+2

e2=0  ifn>7Tand (M,g) lc.f

where Ra,t,E 1 as in Proposition 5.1.
Proof. We argue exactly as in the proof of Proposition 2.2. We point out that in this case

k

<L;1 (ff (Wa,t,é)) - Wa,t,ﬁ’ ¢>Lg = Z <Lg_1 (fa (Wﬁati,&)) - Wa,ti,éw ¢>Lg
=1
k

2*—1 k
(S W) - oo,
M LN =1 i=1

and then

1,2)

k 2*—1 k
rofl(smee) - xw
1=1

i=1

k
HL;1 (fE (Wstﬁ)) - Ws,t,€||1,2 =0 (Z ”L;1 (fs <W€7ti7§i)) - Ws,ti,fi
i=1

2n >
n+2

The first k£ terms are estimated in Proposition 2.2, and the last term can be estimated following
the arguments used for (5.9). O

For any t € (0,00)* and € € M*\ A} we define
T (t,§) == Je (Wa,t,€ + ¢57t7§);

where J; is defined in (2.21) and ¢_4 ¢ is given by Proposition 5.1. As already observed for

k = 1, we can solve equation (2.16) by searching critical points of J., and the asymptotic
expansion given in Proposition 5.3 below is crucial.

Proposition 5.3. There holds
T (£,€) = ¢ + 5= By (t,€) + 0 (577)

as € — 0, uniformly with respect to &€ in compact subsets of M*\ Ay, and t in compact subsets
of (0,00)k, where B} is given by (5.1) and ¢; > 0 depends only in n.

Proof. We argue exactly as in the proof of Proposition 2.3, taking into account Lemma 5.4
below and exploiting (2.6). O
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Lemma 5.4. Assume that either n =5 or [n > 6 and (M, g) l.c.f.]. We let K,, be as in (4.1),
d: (t) be as in (2.6), and Ag, be as in (1.5). Ase — 0, the following expansion does hold

SKH” +[n(n —2)]"F [%g > h(&)o-(t)* - 52 Z Ag,6.(t:)"

JE(Ws,t,g) =
2 k L o
- % Z (0=(ti)0c(t5)) = Gy(&, @)] +o(ent), (5.4)

uniformly with respect to & in compact subsets of M*\ Ay, and t in compact subsets of (0, 00)¥.

Proof. We proceed exactly as in the proof of Lemma 4.1. We only point out that

k
Ja(Wa,t,E) = Z‘] Were) Z <Wat Lo at §J>L
=1 157&]1
2 k
+ - Z/ WWe 6o Wer, ,dv, — / KZWH 52) —ijzh&} dvg. (5.5)
i,j=1 =1
i#£]

We claim that if ¢ # 7, then

(Wetieis Weygy)p, = [n(n =217 B2 (6. (8) 6 (1)) T Gyl6i, &) +0 (e771). (5.6)
Indeed, by (2.4), (2.6), (3.3), (3.9), and Lemma A.1, we get that

<W57ti7€i’W57t]‘7§j>Lg :/J\/[(LHW57ti7fi>W57tj7fjdvg
+/ (aVian?’tiygi +aVoutWEativéi)ngtjvéjdo-g
8B§ (To)
= Bad(t;) 7 82U (6.(t;) o)
<[ (O (60T A ()G )y, 0 (57
£;\T0
= [n(n —2)]"T B.0-(t;)"T Gy(&, )
(G (8T c) e 1+ o) + Ol + 0 (5
Bo(ro

]_ n n—2 n—2 n—2

= 5ln(n = 2)]? Buon 1 (0 (8:) 6 (85)) = Gy(&, §) e + o0 (e777)
in view of AE-L (51) = 1, LgGg(.fE,gi) = O, and

€t1 i — Bn (%&)56(%)2_7”7‘3_2(] (58(ti)_1r0) (57)
for all z € M \ Be,(r9). Since

n—2

L*2 -‘rOO T2 +OO 1 n— d 1 n— 2
1.2, :/ Lmdrz/ (1- e :/ (1-s)Fds==, (5.8)
R o (I+4r)z 0 r+1 (1+7) 0

3
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we deduce the validity of (5.6). We claim that

5.6)
1 k 2% k
[ (e vz

k

= [n(n —2)]"7 52 Z (6. () 6. (;) T

i
Indeed, by (2.4), (2.6), (5.7), and Lemma A.1 , we deduce that

k 2 k
/ |:< Z nytiyfi) - Z WEQ,;7&:| dvg
M i=1 i=1

k k
= Z/ |:(Z Wa,ti,&') - WEQ:;,EJ] dUg +0 (827:‘21)
j=1 " Be;(ro i—1

n—2

Gy(&i, &) +o (5" 4) (5.9)

= 2*[n(n — 2)] an Je ( 1+o(1))/ Gg(m,fl)Wft_g dvg—f—o(sn i)
113#1 ng(ro)
* n—2 k n—
22 [n(n — 2)] Brwn— 1In+2 Z (0= (£:) 0= (£5)) 2 Gy(&5,&) +o (gn 4)

i,j=1
i

in view of the estimate (a+b0)?" —a? —2%a®> b = O(a* ~2b*+ ") for all a,b > 0. Therefore,
thanks to (5.8), we deduce the validity of (5.9). Moreover, by (2.6) and (5.7), we get that

n—2

/ hWVey g, Wey,e,dvg = O (66(tj)2 / We t,.¢,dvg + (55(15,;)%2 / vatjvéjdvg>
M Bg, (ro) B, (ro)

2 n—2

+0 (58(752-)”5 58(75].)7) — 0 ("), (5.10)

Inserting (5.6), (5.9), and (5.10) into (5.5) and combining with Lemma 4.1 we finally deduce
the validity of (5.4). O

Proof of Theorem 1.4. The key point is to show that Ek attains its maximum value
mp = sup Ek
(0,00)k x (M*\Ay)

at interior points, i.e.

is a non-empty compact set. We claim that there exists L > 0 so that

sup El =m; and sup El < my (5.11)
(0,L)Ex (MUN\A) ((0,00)'\(0,L]H) x (M'\A)
forall [ =1,...,k, and there holds
O<mi<mg<---<my<—+00. (5.12)

Indeed, since min {A; : £ € M} > 0 and
!

El t € Z Cgt h & — Cgtn 2A£l)

=1
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for all (t,€) € (0,00)F x (M*\ Ay), we have that Ej(t,€) — —oo uniformly as soon as
t; — +oo for some i = 1,...,l. Therefore, we can find some L > 0 large so that (5.11) does
hold, and m; < 4o00. Since maxy h > 0, we can find § € M with h(§) > 0, and then
cat?h(€)) — ezt 2 Ag, > 0 for t; > 0 sufficiently small. It follows that m; > 0. To conclude the
proof of (5.12), observe that for [ > 2, we have that

Ej(t,€) = E_1(ty, ... ti1,61, .. E21)

+ Cgt?h(&) - Cgt?72A§l 2C3tl Zt 2 fl, él (513)
Let (t,...,t_,,&,.. .755_1)_]-61\; be a maximizing sequence for m;_;. Up to a subsequence,
we can assume that & — & € M as j — +oo for all i = 1,...,1 — 1. Now, we fix some

e{h>0\{£,...,& ;) and we choose t; > 0 small so that

ot2h(&) — esth 2 Ag, — 2est, 7 Zt TG, E )

> eotPh(6) — cst) 2 Ag — 25 LTt 7 ZG (&, 6) >

in view of ”—_2 > 2. Therefore, we get that

my > lim B8, 6 6.6 .8 )

Jj—+oo

=m_1+ CgtlQh(gl) - Cgt?_QAgl QCgt Zt 2 g _Z, > my_1,

and (5.12) is established.

Now, we prove that 75k # () and that 25k is a compact set. By (5 11), we can find a
maximizing sequence (#,&);cy, (#7,&7) == (£2,...,t.,&),..., &), for E;, so that t] < L for
alli=1,....k and j € N. By (5.13) with [ = k, we get that if #, — 0 as j — 400, then
my < mg_; in contradiction with (5.12). Since the same argument applies for all the t{’s, we
get that there exists n > 0 so that tg >ntforalle=1,...,k and j € N. By compactness
of [, L]* x M*, up to a subsequence, we can assume that (#/,&7) — (to,&,) € [, L]¥ x M*
as j — +o0. Since Gy(z,y) = +00 as dy(z,y) — 0, we get that §, € M’“\Ak, and
thus that (to,&,) € Dy. Hence, we get that Dy # @. As for the compactness of Dy, we
let (t7,&7 )jen be a sequence in Dk, and by the same arguments as above, we deduce that
(t,€7) = (to, &) € [n, L]F x (M*\ Ay) as j — 400, and by continuity of By, (to,&y) € Dy,
which proves that Dy is a compact set.

To conclude the proof, let U be a compact neighborhood of Dy, in (0, 00)% x (MF\ Ay).
Since by (5.11) Ej is not a constant function, we have that

sup Ej, < sup Ej, . (5.14)
U Dy,
By Proposition 5.3, we get that

To(t,8) i= e 71 [T, (4,€) — 1] —> Ey(t,€) (5.15)
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as € — 0, uniformly with respect to & in compact subsets of M*\ A, and ¢ in compact subsets
of (0,00)*. Tt follows from (5.14) and (5.15) that for € > 0 small, we get that

sup J. < sup -

oU Dy,
Then .75 achieves its maximum value in U at some interior point (t., &) of U , which is a critical
point of 7, in U. As already observed, we then get that uy. = Wat&ss + ¢e,t5,£5 is a critical
point of J., and thus, by elliptic regularity, a classical solution of (1.3). Up to a subsequence
and taking U smaller and smaller, we can assume that (¢.,£.) — (to,&,) € Dy as ¢ — 0.

Arguing as in the proof of Theorem 2.4, since H¢5 t & H1 , — 0, by the definition of W_y £

we get that wuf, — K" Zle d(¢y), in the measures sense as € — 0. Then the family (us.).

blows up at the points (§),, ..., (&), as € = 0, where (ty,§,) is so that Ek(tg,so) = my.
We also get that limy_, o limsup, g [[Vukel| 125y = +00 by the definition of W_; ¢ - This
ends the proof of Theorem 1.4. : Il

Proof of Theorem 1.5. We assume that n = 6 and h € C* (M). Tt is not difficult to show
that the expansion (5.4) is C'-uniform with respect to ¢t and €. A straightforward adaptation
of the C''-estimates in Section 6 below then yields to the C'-uniformity of the expansion for
J. in Proposition 5.3 for all integers k > 1. For any & := (&1,...,&) € MM\ Ay, let Ak7€ and
E (§) be as in (1.6)—(1.7), and &; := (({0); ;- - -, (£0),) be an isolated critical point of Ej, with
non-trivial local degree so that A;lé .H has positive coordinates. Observe that with these
notations, we can write that 0

Ek (t7 E) = C2<T7 H(£)> - C3<T7 Ak’€T>7
where T := (t2,...,t3), H(&) := (h(&),...,h(&)) and (-,-) is the Euclidean scalar prod-
uct. Arguing as in the proof of Theorem 1.2, it suffices to find ¢, (§,) € (0, 00)* such that
(to (&) ,&,) is a C'-stable critical point of Ej. One then easily checks that such a property
is achieved when taking

Ty (&) := QC_;AI;EO-H(EO) with Ty (§,) = ((to (50))? A (50))i) )

which is well defined since A:E H (EO) has positive coordinates. This ends the proof of
™0

Theorem 1.5. 4

6. FIRST DERIVATIVES ESTIMATES

This section is devoted to the end of the proof of Proposition 2.3. We assume that h €
C' (M) and we prove the C'—uniformity of the expansion for J. in Proposition 2.3. Arguing
as in the proof of Lemma 4.1, it is not difficult to show that (4.2)—(4.5) are C'-uniform with
respect to £ € M and ¢ in compact subsets of (0,00) as ¢ — 0. We only need to prove the
Cl-uniformity of (4.14). We begin with proving the preliminary Lemmas 6.1-6.5. Throughout
this section, we identify the tangent spaces T: M with R" thanks to local, smooth, orthonormal
frames, so that exp, denotes the composition of the standard exponential map (with respect
to g¢) with a linear isometry 1 : R® — T¢ M which is smooth with respect to £. We denote
by {2 the domain in M where the frame is defined. We use the notations

ZO,a,t,£ = Za,t,& and Z@&t’g = Za,t,&,ei (61)

for all ¢ = 1,...,n, where ¢; is the i—th vector in the canonical basis of R", Z. ., and Z. ; ¢,
are as in (2.12)-(2.13). We let W, ¢ be as in (2.7), J. be as in (2.21), and J;. be as in (2.22).
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All our estimates in this section are uniform with respect to t € [a,b], £ € 2, and € € (0, )
for some fixed ¢y > 0. In Lemma 6.1 below, we approximate the first derivatives of W, ;¢ ()
with respect to ¢, &, and .

Lemma 6.1. There hold

n—2 n+2
d n 1 (n—2)% o.(t)
I - = Z € = 1 , 2
‘dtWE’t’E 26. (1) vers|, =W (62)
d -2
nt (n—2)¢
7 VVetex - Zia - 1 63
ase — 0 for alli=1,...,n, where d. (t) is as in (2.6).
Proof. We begin with proving (6.2). For any z € M, we find that
d
aws,t,i () = Gy (, f) stg( ), (6.4)
where
A w2 TR, [ @OV (00 e ) i (6 <y
i 5. 0f T e 0 i d, (2,€) > 1o
n' -2 ), e
= 5. ( ) ZOstf ( ) +0 ((55 (t) 20, (t) 1M\B§(ro/2) ($)> . (65)

(6.2) follows from (2.6), (6.4), and (6.5). Now, we prove (6.3). For any = € B¢ (o), we get
that

d d —
ay Wetowen (0) | =Gy o g) Wt (8) |+ G (wexpen) [ Wece (). (66)
Moreover, letting y = exp, Lz and using Lemma A.2 in appendix, we find that
d 6. ()" Jyl"* 0 "
o~ n_2 n+2 .
d_Wa,t,expgn (eng y) =-—-n 4 (TL - 2) I Bn Y + O ( Y n>
ni 7=0 (6. () + [y*) ? (6 ()" + [y[")?
(6.7)
and, using (2.5), we get that
iG (z,ex )) A()dG (2, expe 1) +i/1 (I)‘ Gy, (x,€)
dy; o\ P TN e Pell) oo ™ omen N g Toe S
(6.8)
Since we have chosen /¢ so that A¢ (§) = 1 and VA, (§) = 0, we get that
d
Ae(xpes) =1+ 0 (W) and ey (exver) | =0 (69)
By (6.8), (6.9), Lemmas A.1 and A.2, we get that
Gy (expey, €) = B, [yl + O (jy"™"), (6.10)
d S E— —n
GG (expey expen) | = (0 =2) 8" Iy +0 (™). (6.11)

Moreover, using Lemma A.1, we find that

8O Xy ( 5. ()2 Jy[* )
Ziere (€x = =+ O = | . (6.12)
s (expe) G+ wP)E \@ 0+ wP)
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By (6.6)—(6.12), we get that

d n1 (n—2)1
d_mWE,t,expg n (eng y) =

5. ()T
= 5[ Zicre (engy)—{—O <2> \2y|M (6.13)
7= : (0= (1) +|yl7) 2

uniformly with respect to y € By (19). It follows from (6.13) that

/BE (ro0)

2*
dv,

a4
dn;

_ +2
n't (n—2)"1
Ws,t,expgn (l‘) ‘ - Zi,a,t,{ (l’)

n=0 55 (t)
L [T PPl B
:O<6E(t)/0 W>_o(1) (6.14)

as € = 0. In M\ B¢ (19), we find that

d d n—2
d_mWE’t’eprn (x) o B0: (1 ) = pn2y (6. (1)~ lro) d_mGg (2, expe 1) o 0] ((55 (t) 2 )
(6.15)
uniformly with respect to x € M\ Bg¢ (rg). Finally, (6.3) follows from (6.14) and (6.15). This
ends the proof of Lemma 6.1. U

In Lemma 6.2 below, we approximate the first derivatives of the energy of our test functions.

Lemma 6.2. There hold

d n* (n — 2) 5/ ®) 0 (5€ (t)2ln 0c (t)) ifn=4
—J. (W) = DJ. (Weie) Zoere +
a7 ees) 2. (1 Weae) Zocte ¥ o) ifnzs
(6.16)
n—2 n+2 2 .
d n't (n—2)¢ 0(6. (1)) ifn=4
Je (W tex = DJ. (Weie) Zicre + 6.17
dn; (Wer, pw) =0 de (1) (Wete) Zicae { o (é. (t)z) ifn>5 (6.17)
ase — 0 foralli=1,...,n, where d. (t) is as in (2.6).

Proof. We begin with proving (6.16). Integration by parts gives that

n—2 n+2
d nt (n—2) % 8. (t)
%JE (W€7t7&-) - 266 ( ) DJ (W57t7€) 'ZO,E,t,E
n—2 7L+2
d nt (n—2)1 §.(t)
= /];4 (LgWE’tzg f€ ( 6té)) <£W€7ta£ - 255 ( ) ZO,E,t,g dvg

d
+ / (OuaWerte + OvuWere) = Weredog . (6.18)
9B¢(ro) dt

By (3.4), (3.5), (3.10), and (6.5), we get that

(Lo ()= . Wee (0) (e (o) - 207 )

=0 ((65 (t)n_l (52 (t) + €. (t)n_3 (52 (t)) ]'M\Bg(TO/Q) (9(:)) . (6.19)
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(6.16) follows from (6.18) and (6.19) in view of (3.3) and (6.5). Now, we prove (6.17). Inte-
gration by parts gives that

n—2 n+2
d n i1 (n—2)1
_Jz-: Wz—: ex: - D € Wz—: -Zis
d,rh ( it p§ T]) 77:0 55 (t) J ( 7t7£> 3 7t7£
d =2 ( )
n 4 n —
= /j\; (L9W57t:£ - fE (We,t,f)) <d_77iW€1tzeXp§n 7]:0 - 55 (t) Zi,E,t,E) dvg

d d
+ Oy Were [ W ‘ ) F O, WL (—Wa o ’ ) }da, 6.20

where

d
(d_m Wz—:,t,exp§ n =

d
_Ws ex
<d77i hexpen|,_

for all x € 0B (rg), in view of (6.6) and (6.15). Regarding the second term in the right hand
side of (6.20), on 0B (1), we find that

—~

d — d
0) . ((13) = Gg (Iu g) d_sz-:,t,expEn (.CC) ‘nzO + dm Gg (SL’, eng 77) ‘ OWE,t,£ (LU) )

/]7:
d -

0>0ut (x) = an Gy (x, expy 77) ’ OWE,LE (x)

d d
814,, Wa,t,.ﬁ (d_mws,t,expgn TIO)in + auoutWe,t,E <d_niWe,t,exp§n 770) -
= Gy (4 6) 5. (15 L (2 (5.() 1)) L.,
ey dr r=rg dnz A n=0/;,

2-n _ d —

+ 6nal/1nGg ('7 5) (56 (t) ? 7’3 2U (és(t) 1T0) Gg (.T, 6) d_nWE,t,expg n (Q?) ‘17=0 (621)
for all x € 0B¢ (r). By (6.13), we get that
d n-2
(d—mWE,t,expén nO)in =0 (55 (t) 2 ) . (622)

If follows from (6.21)—(6.22) that

d
0) - + al/out Wa,t,{ <d_nWa,t,exp§ n =

)

) —0G. (0" (623)

in view of (3.3) and (6.7). Now, we estimate the first term in the right hand side of (6.20).
In Bg (rg), using (3.5), (3.10), and (6.13), we find that

d
al/inWE,t,E (d_n'Wa,t,expgn -

1

n—2 n+2
. d nt (n—2)%
LW_ie(x)—Weoie(x -1 (—W‘S ox x — Zicre (X )dv
J o) (EaVerc @) = W @7 7) (oWt @] = e @) )
O(r"?) ifn=4,50r (M,g) lct.
n [T r"2dr A ,
= 0. (t) 5 —— x < O(r'lnr) ifn=06and (M,g) non-lc.f.
2
0 (0= (6 +%) O (r") if n>7and (M,g) non-le.f.
O (61" if n=4,50r (M,g) lect.
=< O(6. (t)°Ind. (t)) if n=06and (M,g) non-lc.f. (6.24)
O (6. ®)°) if n > 7and (M,g) non-lc.f.
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and, using (6.13), we find that

/ LW ()(dW ()‘ n%(n—Z)%HZ ())d
€ T)| 5 Wetex T - i x v
Bg (ro) e dn; xR n=0 de (t) e !
O (6. (t)2) ifn=4
T0 nd
_ (55 (t)"2/ ~ 2 H) = 0(6. (1) mo. (1)) ifn=5 (6.25)
0 (0. (¢t
(0" +72) 0 (5. (1)°) if n > 6
In M\ B (19), using (3.4) and (6.15), we find that
d n"t (n— 2)nT+2 n n—
(LgWa,t,£ - fe (Wa,t,f)) <d_niW6,t,exp§77 =0 - 65 (t) Zi,e,t,g) =0 (65 (t) + 55& (t) 2)
(6.26)
uniformly with respect to x € M\ B (r¢). Finally, (6.17) follows from (6.20)-(6.26). This ends
the proof of Lemma 6.2. U
Now, we prove the following error estimates.
Lemma 6.3. There exists a positive constant C' = C (a,b,n, M, g, h) such that
125" (FAWere) Zocre) = Zocnell,
()" ifa<n< M,q) Lef
<c de(t) 2 ifda<n<9or (M,g) lcf (6.27)
S5.(t)* if n > 10 and (M, g) non-lLc.f.
||Lg_1 (fiWere) Ziee) — Zi,e,t,ﬁHLQ
(5.2 |no.(t)|F ifn =4
6-(t)2 ifn=>5o0r (n>6and (M,g) l.c.f
I ECE SR (o) Lef) o
5:()* IIné.(#)[5 ifn =06 and (M,g) non-lc.f.
5:()? ifn>7and (M,g) non-lc.f.

\

foralli=1,... n, where i, (t) is as in (2.6).
Proof. For any i = 0,...,n and ¢ € H? (M), an integration by parts gives
<L;1 (fé(Wa,t,f)Zi,a,t,E) - Zi,a,t,{a ¢>L = / (fé (Wa,t,f) Zi,a,t,f - LgZi,E,t,£> ¢dvg . (629)
g M
By Sobolev’s embedding HZ(M) — L* (M), it follows from (6.29) that
HL;I (fe/(Ws,tﬁ)Zi,e,t,&) - Zi7€7t75”172 =0 <||fs, (We,t,§> Zi,s,t,ﬁ - LgZi,e,t,éHﬂ%) : (6-30)
By conformal covariance (2.2) of L, and by (2.5), in Be (r9), we can write that
fé (Wa,t,é) Zi,s,t,{ - LgZi,s,t,£
= A2 = 1) Gy (&) W2 Ziee — Ly (Gye (+.6) Ziene)] — €hZiene . (6.31)

Since Z,&% (§) =0 and L, Gy, (-, &) = 0¢, we get that
ng (Ggg ('v f) Z\i,&tvﬁ) = Ggg ('7 f) AggZ\i,E»fqé - 2<VG95 ('a 5) ) V217€7t£>g§ : (6'32)
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We begin with considering the case i = 0. Since 20757,575 o exp; is radially symmetrical and Vj
is a solution to the equation Ag,qVp = (2* — 1) U? ~2V} in R", writing Ag Zoee (exp5 y) in

polar coordinates and using (2.4), we find that
Ggg (eng Y, S)Agg 20,5,1575 (eng ?J)
= Gyelexpe , €) Apuat( Zoee 0 xpe) (1) + O (Jy1Y IV (Zoere 0 expe) (v)])
— 2* -1 n(sg t —nt2 anG U |y| 2*72‘/
( )B ( ) 2 X’y| gg(expgyaf) <55(t)) 0((55(t>>

(n+2)[y[* = (n — 2)6.(t)”
(3:(1)% + [yl?) ™=

0e(t) "3 [y N2 n2
H%@W+Wﬁwﬁ)> (039

—2(n — 2)B,0.(t) % X|y|"* Gye (expe y, €)

uniformly with respect to y € By (ry). Moreover, since 2075,,575 o exp; is radially symmetrical,
we get that

<VG95 (expg v, §) ,VZO,EM (expg y) >95 =0, [Gg§ (expg Y, 5)} O, [20757@,5 o expg] (6.34)

= Ba0-(t)"% X|y|" 20, [Gye (expe y, €)] (n +(25)|Z|)21(|Z|2_)”2;)258(t) L0 (56@)%—2) |

By (6.32)—(6.34) and Lemma A.1, we get that

(2* o 1) Gg.g (eXp§ Y, 5)2*_1 /Ws,t,f (eng y)2*_2 Z\O,s,t,f (eng ?/) - ng (Ggg ('7 f) Z\O,s,t,f) (eXp§ y)
5. (1) O (Jy[") ifn=4,50r (M,g) lct.
=0 ((55(15)”772) + = S X O (ly[*In|y|) if n=6and (M,g) non-lc.f.
2
(6:(8)° + IyT") O (Jy?) if n > 7and (M,g) non-lcf,

B

which, inserted into (6.30)—(6.31), yields to the validity of (6.27) in view of (2.6). Now, we
consider the case i = 1,...,n. Using (2.4), we find that

o (8)% Jy"*

AgZiere (expey) = Apua(Ziene 0 expe ) (y) — Bax ([y]) 0598 (expe y)

(6 (0 + o)
H%@@y‘?HMWVGMD&%WEn)>@W
(5. (07 + IyP)’ (- (0% + IyP)’

uniformly with respect to y € By (rg), where @-géj are the derivatives of the components of
Je 'in geodesic normal coordinates. Since ge defines conformal normal coordinates of order

N > 3, see Lee—Parker [27, Theorem 5.1 and Lemma 5.5], we get that the Ricci curvature
Ricy, of g¢ vanishes at £, and thus

0 if (M,g) ledf.

~ 2 (Riey),, (07 + O (3y") =0 (1y?) if (M) non-lef

(%-g? (expey) = (6.36)
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Since V; is a solution of Ag,qV; = (2 — 1)U? 72V} in R", by (6.35)—(6.36), we find that

Gle (exPe Y, §) Dy Zic v (expe y)

= (2° = 1)Ba0:() "% x|y|" Gl (expy y’f)U(éﬂ))Q*m((Sjt))

lyI> = (n — 1o (2)*
(0:(6)2 + y|?) =
. 5. ()2 |yl
+0 <5E(t)2 + <2) |y|2 ) (6.37)
(6 ()" + lyl") ®
where a = N — 2 if (M, g) is L.c.f. and a = 2 is (M, g) is not l.c.f. Moreover, we get that

<VG95 (eng Y, f), VZ\i,a,t,f (eng y)>g€

Baxd=(t)% |y|" 2
(0:(£)2 + |y|?) 2

+2(n — 2)8,0:(t) 2 x|y["*yi Gy, (expe v, €)

Buxd. (8)2 |y
(0- ()" + |y*)®

] + ayi [Gga (exp€ y,f)]

n -3 2|y|2 - (n - 2)55(15)2
= — n5€ 2 a?” Gg5 ex , " 7 n+2
Brde(t)2 x(|yl) [ ( Pey 5)} [yI"y (0.(8)2 + |y[2) "2

5a(t)%|y‘n_2 n
G+ E OO0 (6.35)

By (6.32), (6.37)—(6.38) and Lemma A.1, we get that

= yzar [Ggg (eng Y, 5)} 87‘ |:

+/8n6€(t)%X(|y|)ayi [Ggg (expg Y 5)]

2% _1 =

(2 = 1) Gy (expey.€)" " Were (ex0e)” " Zice (expey) — Lyg (Goe (- €) Zicre) (expey)
S5:(t)2 O(ly|"?) ifn=4,50r (M,g) Let.
(55(15)2 + |y|2)% O (]y\2) if n > 6 and (M,g) non-lc.f.

which, inserted into (6.30)—(6.31), yields to the validity of (6.28) in view of (2.6). This ends
the proof of Lemma 6.3. U

=0 (6.(t)2) +

By Proposition 2.1, for ¢ small, for any ¢ € [a,b] and £ € M, there exist .t € R and
were € TeM such that

DJE (Ws,t,§ + (bs,t,ﬁ) - </\s,t,§Zs,t,§ + Ze,t,.ﬁ,wa,t@a '>Lg ) (639)

where Z ;¢ and Z. ¢, . are as in (2.11). We let Zoi¢, ..., Znere € R be as in (6.1). We
let Aoctes---r Anere € R be such that

n
Mg i =Aere and Y Nicyee; = wope, (6.40)

i=1
where A. ¢ ¢ and w. ;¢ are as in (6.39). We estimate the \;.;¢’s in Lemma 6.4 below.

Lemma 6.4. For anyi=0,...,n, in case n > 5, there holds

DJ. (Were) Zicse {o@@@%@ﬁzo

IVVill 0 (0.(0") ifi=1. . (641

i te =
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and in case n = 4, there holds

Nigte = DJ. (We,t,é) éZO’E’t’g { © (5a(t)2) ZfZ =0 (6.42)
o IVVolls O (e%0:(t)*) ifi=1,....n
as € — 0, where 0. (t) is as in (2.6). In particular, there holds
O (6-(t)°In|6.(t)]) ifi=0 andn=4
Aiete=4 O (55(75)2) ifi=1,...,n andn =4 (6.43)
O (£6.(1)?) if n > 5.
Proof. For any i = 0,...,n, by (6.39)—(6.40), we get that
DJ. Wepe+ Gere) Zicre = O Newe Zicrer Zicre)yr, (6.44)

=0
For any 4,5 = 0,...,n, we find that

(Zicnes Ziene)r, = IVVill3 655 + 0 (6. (1)) (6.45)
as € — 0, where the §;;’s are the Kronecker symbols. It follows from (6.44)-(6.45) that

DU (Wese + duse) Zicne = Mose | VVIE + 0 (65 03 Nere ) (6.46)
=0

as € — 0. Independently, we get that
DJ& (Wa,t,f + ¢a,t,§) -Zi,a,t,f = DJE (Wat,{) ~Zi,a,t7£ + <Zi,a,t,§ - Lg_l (fé (Wa,t,f) Zi,a,t,&) ’¢57t7§>Lg

- / (fO (Ws,t,f + (bs,t,é) - fO (Ws,t,f) - f(/] (We,t,ﬁ) ¢€,t,£) Zi,s,t,fdvg . (647)
M
By Cauchy—Schwarz inequality, we get that
(Zicoe = Ly ()L (Wer) Zic)  Oee),,

<\ Zieae = Lyt (fL (Were) Zi,s,t,s)HLg [@eeelly, -

By the Mean Value Theorem and Holder’s inequality, we get that (649
/M (fo <W€:t»€ + ¢€,t:£) — Jo (Wa,t,ﬁ) - f(l) (Ws,t,g) ¢s,t,£) Zietedvg
_J O ((Wepe 3:_3 + [ e e ;i_g) | Pe.t.¢ ; Zierely ) ifn=4,5
- { O ( HWaQ,;ESZi@t,ﬁ oo 1Pet g ; ) if n > 6.
=0 ( ||¢a,t,§ 3* ) (6.49)

By (2.6), (6.47)—(6.49), Propositions 2.1, 2.2, and Lemma 6.3, we get that in case n > 5, there
holds

DJ. Wepe + bene) Zoete = DI Wepe) Ziepe + { o (0:(t)) ifi=0 (6.50)
" AT e o(ed.(t)?) ifi=1,....n
and in case n = 4, there holds
DJE(WEthr@tg).ZOEtg:DJE(WEtg).ZiEthr{O<5£(t>2> =0 (6.51)
” ” ” O(szée(t)Q) ifi=1,....n
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as € — 0. Finally, (6.41) and (6.42) follow from (6.46), (6.50), and (6.51). The estimate (6.43)
follows from (6.41)-(6.42) and the validity of (4.2)-(4.5) in a C'-uniform way with respect to
¢ € M and t in compact subsets of (0,00) as € — 0. This ends the proof of Lemma 6.4. [

We then prove the following result.

Lemma 6.5. For anyt=1,...,n, there hold

n—2 n+2

d nt (n—2)4 2 -
—Je t, == 7 )\is )"E 52
n—2 n+2 n
d nt (n—2)7% d§.(t)
5 (8.6) = 2. (1) IVVoll3 Ao +0 | D I Njerel (6.53)

=0
as € — 0, where J. (t) is as in (2.6).
Proof. For any i = 1,...,n, by (6.39)-(6.40), we get that

d - d

%Js (., expe ) ’77:0 = Z )\j,s,t,§<Zj7€,t,§7 dn; (Ws,t,expgn + ¢E¢,exp§n) n=0>L . (6.54)

(2 j:0 (3 g

For any 2 =1,...,n and j =0,...,n, an integration by parts gives that
n— nt2

d d n"t (n—2)1

<Zj7€,t,§7 d_mWE,t,eng’V] 770>Lg = /M LyZjcre (d_mWE,t,expgn o 5. (@) Zicre |dug
(-2
n i (n—

+ 5. (1) (Zjere Zi757t15>Lg . (6.55)

By Holder’s inequality and (6.3), we get that

n—2 n+2
d n 1 (n—2)
. __ _ . < ) .
/M LgZJ,E,ti (dm W&t,expgﬂ =0 . (t Zl,s,t,é‘) dvg = ||Lng,s,t,5Hn2T2
n—2 n+2
d nt (n—2)1
W - Zivell = ( LoZ:. n>: 1) (6.56

as € — 0. It follows from (6.45) and (6.55)—(6.56) that

n—2 n+2
n 4 (n_2>T )
= . .. 1 )
ol ooy IVVilla 8+ o (1) (6.57)

as ¢ — 0, where the §;;’s are the Kronecker symbols. Since ¢, ;¢ belongs to K, jm, differentiating
the equation (Z,. ¢, ¢€7taf>Lg = 0, we find that

d
<Zj,€,t,§ ? % ¢57t76xp577
(2

d
<Zj,s,t,£7 % Wa,t,expg n

d
nO>L - _<d_an’E’t’exp5n‘no’¢8’t’§>L ' (6.58)

7

By (6.58), Cauchy—Schwarz inequality, Propositions 2.1 and 2.2, we get that
nzOH

d )
=0 (5. (1) [|perell,n) =0 (1) (6.59)

‘ <Zj,5,t,§7 _¢s,t,exp§17
as e — 0. (6.52) follows from (6.54), (6.57), and (6.59). (6.53) follows from similar arguments

d
dnz S H d_,r/iZj,e,t,expg n
by using (6.2). This ends the proof of Lemma 6.5. O

L, H(be,tyénLg
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Proof of the C*—uniformity of (4.14) with respect to t. The result follows directly from Lem-
mas 6.2, 6.4, and 6.5. U

Proof of the C'—uniformity of (4.14) with respect to £&. In case n > 5, the result follows di-
rectly from Lemmas 6.2, 6.4, and 6.5. The case n = 4 is trickier. In this case, the estimate
(6.42) is not sufficient to get such a direct proof as in higher dimensions. We prove the result
in case n = 4 in what follows. For any i = 1,...,n and x € M, we define

Yiewe (@) = X (dge (2,€)) Ag (2) 0, [Woe ¢ © expe +026 0 expe ] (expg ' @)
where /ant,g = We e/ Ae and @M = Pere/Ae. We claim that

n—2 n+2 n
ni(n-2)¢
DI (Wepe + @ee) Yiene = o (t) ||V‘/%||§>\z‘,a,t7s+0(ZP\J;a,t,d)- (6.60)

J=0

It follows from (6.39)—(6.40) and (6.45) that in order to prove (6.60), it suffices to prove that
foranyt=1,...,nand j =0,...,n, there holds

+2

s E;:(;)% Zi787t7§>Lg —0(1) (6.61)

as ¢ — 0. Integrating by parts and applying Holder’s inequality, we get that

<Z‘7787t7§7 Yi787t7£ +

n+2 n—2 n+2

n"T (n—2)1
Zice) = | LoZsene(Yic Zicrc)d
55 (t) ) 7t9£ Lg [M 97, 7t7§ ) »t7£+ 55 (t) ) 7t7£ Ug

‘X (dg§ (-, f)) A0y, [vae,t{ o expg} o expg1 —i—n

+ ||Lng,8,t,§”2 HX (dgg ('a f)) Afvaa,t,gHg . (6-62)

Using similar arguments as in the proof of Lemma 6.1, we find that

<Zj7€7t’£ ? .}/;:7€7t7£ +

<N LgZjerell 2

o N )
HX (dge (+,€)) AeBy, [Wepe 0 expe | o exp;  + 5.0 Zicre =0 (1) (6.63)
as € — 0. Rough estimates give that
Lo Zjerell 2o =0 (1) and  [LyZjcrell, =0 (6 (1)) (6.64)

Moreover, by (2.6), and Propositions 2.1 and 2.2, we get that in dimension n = 4, there holds

HX (dgg (75)) A§V¢g,t,§H2 =0 (quf»tﬂﬁHLz) = O(Hgbs,t,&HLz) ( H¢st£”L ) - (55 ( ))
(6.65)
(6.61) follows from (6.62)-(6.65), and thus we get (6.60). It follows from (6.2), (6.60), and
Lemmas 6.4 and 6.5 that in dimension n = 4, there holds

d
%sjs (tanpﬁ 77) ’nzo =-DJ. (Wet£ + ¢€t£) ietg T O (5 (t )2 In ‘55<t>’) (6.66)

as € — 0. By the conformal change of metric g¢ = Ag*_zg, we get that

D‘] (Wet§+¢at£) i,e,6,6 — / (<V( st£+¢st£) V}/zat§>

+ (an Scaly, +€A27 7 h) (Weg + Gee) Yiewe — (Wene + Pene) . _1Y15t§>dvg§, (6.67)
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where Y; ¢ = Yicpe/Ae. Since Yiope = 0 in M\ B (ro), letting y = expg1 x and integrating
by parts (6.67), we find that

DJE(Wstg"i_(bstg) zst{—Ilzst§+12zet£+]3zst§+I415t£7 (668)

where

]l,i,e,t,§ = DJ, (Ws,t,£> . (X (d ( 5)) /158 [ et,e © eXPg] © eXPg_l) )
Ipjcre = / o {ggqaypxayq [gge,t,g 0 expg } Oy, [Ws,t,g o expf} |exp2 gg‘
Bo(ro

+ ggqaypxay [Ws,t,£ ° eXPg]ayi [ﬁgs,t,ﬁ © expg] ‘expz gi|

— X0y, [92) 0y, [We s © expg 1Dy, [ 0= 1 © expe | [expt e

_ X(Ws,t,g 0 exp, ) (gg&t,g 0 expyg )8%. [ (an Scalg, +6/1§’2*h) o expg] ‘expz g§|

- (<V’W5,t,§, Vo), + (n Scaly +eA272 ) We e — Wg;‘jglas,t,g) o expg

x Oy, [x |expg ggH}dy,

foicee = /B (ro) {890, X0,, [0t © expe |0y [Ge 0 expe | exv ge
[VIN]

1 ~ ~
= 3X0u 9" 0y, [Peuc 0 XD 0y, Y © expe] [expE g

1 ~ .
— —X(¢s,t,§ 0 expg )28%. [ (&n ScalgE +8/1§’2 h) o expg] ‘expz g§|

2
1/~ o~
3 (‘nga,t,g‘z + (an Scalg, -I—a?/lg_2 h) ¢§7t75) o expg O, [x ‘exp6 ge| ] }dy,
1
Iyjere = o o ){((ng-ﬁ-@m) W2 2W2t2 gb5t5>oeXP§
olTo

0, [xexvi ge| ] pdy

where ggq are the components of g Yin geodesic normal coordinates. Using similar arguments
as in the proof of Lemma 6.2, we find that

d
Dicre = _d_n-Jg (Were) | +0 (5 (1)) (6.69)

n=0

as € — 0. Now, we estimate Iy;.;¢. Since g defines conformal normal coordinates of order
N > 5, see Lee—Parker [27, Theorem 5.1], we get that

Oy, [Scalye oexpe | () = O (lyl), 9y [[expigel ] () =0 (ly/" ). (6.70)

Since 9y, [g2"] (y) = O (yl), by using Holder’s inequality and (6.70), we find that

et = O (e (€ VWerell [ 90mriell + (e 6 Were]

+6H/WV5J£HH% + ”dgs (" N 1W52:E1|| 213) 0 2*)' (6-71)
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In dimension n = 4, rough estimates give that
ldge () VWerell, = O (0 (1) /I o: (B)]). [l (-, €) Weel| 2 = O (6 (1)),
[Werell 2o =0 (0 (®)), and [ldye ()" W2 o0 =0 (0-(1). (6.72)
It follows from (6.71)-(6.72) and from Sobolev’s embedding HZ(M) < L* (M) that
Dyiere = O (8 () /b (O] | Beell.)- (6.73)
It remains to estimate I3 ;¢ and Iy, ¢ Clearly, we get that
Iyicae = O ([[9ell}, ) (6.74)
Similarly as in (4.17), we get that
Lyjete =0 (ng,t,g 3 + || e ;) (6.75)

Since [|¢zell;, = O ( ||¢a7t,§||Lg) = O (e, (1)), by (6.73)—(6.75), and by Sobolev’s embedding
H2(M) — L* (M), we get that

[2,i,5,t,£ + [3,i,5,t,§ + I4,i,s,t,§ = O (\/555 (t)2) =0 (56 (t)2) (676)
as ¢ — 0. Finally, it follows from (6.66), (6.68), (6.69), and (6.76) that (4.14) is C''-uniform
with respect to &. O

APPENDIX

In this appendix, first, we state the following result which is due to Lee—Parker [27].

Lemma A.1. For any § € M, let g¢ be as in Section 2 and G, be the Green’s function of the
conformal Laplacian with respect to ge. Then the following expansions do hold:

(i) when n =4,5 or (M,g) is l.c.f.,
Goe (xpey, €) = B [yl + Ag + O (Jy)

(ii) when n =6,

_ 4 1 2
G (expen§) = 55" (117" = g | Wewl, (©) [ ) + 0 ().
(iii) whenn > 7,
an |y|”

. 1
G (exmen€) = 5, b (1 il (e W, €02 o

— Oy, [Scalg)E o expg] (0) yly])> +0 (|y|7_”)

C*—uniformly with respect to y and &, where for any & € M, A¢ depends only on the
manifold (M, g) and the point &, A¢ is smooth with respect to §, Weyl, is the Weyl
curvature tensor with respect to g, and Scaly, is the scalar curvature with respect to ge.

Proof. We refer to Lee-Parker [27]. The only point which is not discussed in [27] is the C?—
uniformity of the expansions with respect to £. This point follows from standard arguments.
O

Finally, let us estimate the first derivatives of the geodesic distance in the following result.
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Lemma A.2. For any § € M, let g¢ be as in Section 2 and dgy, be the geodesic distance with
respect to ge. Then there holds

v(dgexpg”l (expg Y, XD 77) ) ‘77:0 | | (| | ) (A1)

uniformly with respect to & € M andy € T M =ZR", y #0, |y| < 1.

Proof. By compactness of M and since g is smooth with respect to £, we get that there exists
a positive real number rq such that ro < i, for all § € M, where iy, is the injectivity radius
of the manifold (M, g¢). For any £ € M, we let By (rg) be the ball in TeM = R" of center 0
and radius 1. For any £ € M and y € By (ro) \ {0}, we write that

V (doexper (xPe ¥ 3D 1) )|, o =V (dgens o (5P 9:€) )|, g + V (g (expe y, expe ) )|,
(A.2)
We begin with estimating the first term in the right hand side of (A.2). Since we have chosen
A¢ so that A (§) =1 and VA, (§) = 0, we get that

Aexpen (expf y) = A (exp, y) (1+0 (|y|2 + |77\2))
uniformly with respect to £ € M and y,n € By (rg). It follows that

2 2 3 2
yoren (€xXPe Y, €) = dy, (expey,€) (L+O (ly[+ ")) = [yl + O (lyl” + lyl In]°) ,
and thus we get that
2

v(dQeXDgn (eng y7§) ) ‘77:0 =0 (|y| ) (AS)
uniformly with respect to & € M and y € By (rg). Now, we estimate the second term in
the right hand side of (A.2). For any £ € M and n € Te M, we let Ty ex, M and XD expy 1
be the respective tangent space and exponential map at exp,n with respect to g¢. For any

n € By (o), we identify T¢ exp .M with R™ thanks to a local orthonormal frame, parallel at &.
Forany i=1,...,n,§ € M, and y € By (rg) \ {0}, we get that

d —1
d_m (dgg (expg Y» XD 77 ‘ Z |?J| dm e p§7expg n ¢XPe¢ y)j n=0 (A-4)
We claim that for any 7,7 = 1,...,n, there holds
d . )
d—m(exp&expweng y)j‘n:() = —(5@' + 0 (|y| ) (A5)

uniformly with respect to & € M and y € By (r9), where the 0;;’s are the Kronecker symbols.
We prove this claim. For any j =1,...,n, £ € M and n,y € By (ro), we define

Eje (Y.n) == (€XDg g, XD Y) ;-

Clearly, &; ¢ (y,7n) is smooth with respect to £, y, and 7. In order to prove the Taylor expansion
(A.5), we compute the first and second order derivatives of &;¢ (y,n) with respect to y and 7.
Since the frame is parallel at £, we get that £;¢ (0,1) = —n; for all n € By (rg). Differentiating
this equation gives that

anigj1£ (07 O) - _5ij and 877i77k8j7§ (07 0) =0 (A6)

for all 4,j,k = 1,...,n. We also remark that &;¢ (y,0) = y; for all y € By (r9), and thus we
get that
ayi€j7§ (07 0) = 5’ij and ayiykgj7§ (07 O) =0 (A7)
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for all 4,5,k = 1,...,n. As a third equation, we find &;¢ (y,y) = 0 for all y € By (ro).
Differentiating this equation and using (A.6) and (A.7), we find that

1
aniyk5j7§ (07 0) = 9 (anmkgjé (07 O) + ayiykgj7§ (07 O)) =0 (AS)
for all 7,7,k = 1,...,n. (A.5) follows from (A.6) and (A.8). Finally, (A.1) follows from
(A.2)-(A.5). This ends the proof of Lemma A.2. O
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