SIGN-CHANGING BLOW-UP FOR THE
MOSER-TRUDINGER EQUATION

LUCA MARTINAZZI, PIERRE-DAMIEN THIZY, AND JEROME VETOIS

ABSTRACT. Given a sufficiently symmetric domain Q € R2, for any k € N\ {0} and
B > 4mk we construct blowing-up solutions (ue) C H () to the Moser-Trudinger
equation such that as € | 0, we have HVueHig — B, ug — up in H& where ug is a sign-
changing solution of the Moser—Trudinger equation and u. develops k positive spherical
bubbles, all concentrating at 0 € 2. These 3 features (lack of quantization, non-zero
weak limit and bubble clustering) stand in sharp contrast to the positive case (ue > 0)
studied by the second author and Druet [8].

1. INTRODUCTION AND MAIN RESULT

Given a smooth, bounded domain £ C R? and a smooth, positive function h on Q, we
consider the Moser-Trudinger functional Ij, : H} () — R defined as

Ip, (u) == /Qhexp (uQ) dz Yu € Hy (Q).

For any 8 > 0, let Ej 3 be the set of all the critical points u € H} (Q) of Ij, under the
constraint ||Vu||2Lz = (. Note that u € E}, g if and only if u is a solution of the problem

Au=Mhf(u) inQ e
u=0 on 0f), (Enp)

where we use the notation A := —82 — 92,

28 B
DI, (u).w [, hu?exp (u?)dx’

f(u) :=uexp (u®) and X:= (1.1)
We first introduce the following definition in the spirit of [13, Chapter 5] (see also Re-
mark 4.8):

Definition 1.1. We say that 8 > 0 is a stable energy level of I, if, for all (h.), (8:) and
(Ae) such that he — h in C3(Q) and Be — B with A. = O(1), any family (u.) such that u.
solves (En, p.) with X = X\ for all & converges in C%(Q) to some u solving (En5) as e — 0,
up to a subsequence. We say that 8 > 0 is a positively stable energy level of I}, if the same
holds true with u. > 0.
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As a consequence of the Moser—Trudinger inequality [17,22], every § € (0,47) is a stable
energy level of Ij,. Druet-Thizy [8] obtained that every 8 € (0,00) \47N* (N* := N\ {0})
is a positively stable energy level of I;,. In contrast to this result, we obtain in this paper
that every S > 47 is an unstable energy level provided 2 and h are such that 0 € Q2 and the
following symmetric condition holds true for some even number [ € 2N*:

(A) Q is symmetric and h is even with respect to the lines

0 = {(tcos (f) tsin (g)) : teR}, 0<j<2—1.

Under this assumption, we obtain the following:

Theorem 1.2. Let Q C R? be a smooth, bounded domain, | € 2N*, o € (0,1) and h €
Cl=22(Q) N C% () be a positive function such that 0 € Q and (A) holds true. Then every
B > 4x is an unstable energy level of I,.

In order to prove Theorem 1.2 we will construct a sign-changing weak limit wy with
arbitrary energy 8y € (0,8nl) and use a Lyapunov-Schmidt procedure to glue to wp an
arbitrary number k£ € N* of bubbles, all concentrating at the origin. This is in sharp
contrast to the positive case studied by Druet—Thizy [8], in which blow-up can happen only
at energy levels § € 47N*  the weak limit vanishes and the bubbles blow up at distinct
points. See also [5,6,9] for the constructive counterpart of [8].

To be more concrete, given h € C'=% (Q) N C? (ﬁ) and By > 0, using the symmetry of
Q and h, we will construct wg € E}, g, such that

wo (z1,0) ~ apzl, asx; — 0, for some ag > 0. (1.2)

Up to a perturbation and a diagonal argument, we can assume that wp is non degenerate,
and construct families h, — h in C? (Q), Be — Po and we, 0 < e < gy, smooth with respect
to € such that w. € Ej, g, and 0 > w, (0) 1 0 as € — 0. The behaviour (1.2) of the weak limit
wp near the origin will be crucial to glue bubbles and the value of w, (0) T 0 will determine
the parameter 7. — oo (see (3.6)), which is the approximate height of the bubbles.

In fact, if B, is the radial solution to AB. = f(ﬁv) with B, (0) = v, we will attach
to the function w. a fixed number k of perturbations of B._ along the x; axis, at points
(7¢1,0), ..., (7= %, 0). The centers (7. ;,0) of the bubbles will satisfy for some § € (0, 1),

_ kde it U1

5 <Tep <o < Teg < 5 |Teyi — Tej| > 0de,  de =7 — 0, (1.3)

and, up to scaling, (7. 1/dc, . . ., 7= 1 /dz) will converge to a zero of N = (N1, ... N¥), defined
in a suitable convex subset of R* as

; _ 2
N* (yla"'ayk) = aOlyﬁ ! *Z . (14)
oy Yi —Yj

Note that, contrary to the case studied in [5, 6, 8], the function h (more specifically, its
gradient) plays no role in (1.4), hence at main order it does not influence the location of the
bubbles, which instead depends on ag > 0 and ! as in (1.2) and on k.

A diagonal argument allows to treat the case Sy = 0. Thus we finally obtain:

Theorem 1.3. Given Q, I, a and h as in Theorem 1.2 and 3 > 4w, k € N*, 5y > 0 such
that 8 = Bo + 4wk, there exist wog € Ey g, and 9 > 0 such that for every ¢ € (0,e9), we
can find he — h in C%(Q), B. — Bo, ase — 0, w. € Ep.p as in (1.2), numbers B — f3,
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N. = 00, Ve, Te, 0 € RE, with i ~7,, 0.; — 0 ase — 0, 7.; as in (1.3), and a function
ue € By_ g of the form

k
Ue = We + Z(l +0c,i)Beyeire + Yeome + Peyo,m s (1.5)
i=1
where the approzimate bubble Be . , -, € Hj(Q) is as in Section 3.1 and the remainder
H(Q)-terms Ve . . and .., g. . are given by Propositions 3.2 and 4.2. In particular,

Ve rllez =0(1), [[V®Pep o7 llz =0(1), ase—0.

In contrast with several other works constructing blowing-up solutions to the Moser—
Trudinger equation, starting with del Pino-Musso—Ruf [5, 6], our Lyapunov-Schmidt reduc-
tion will be performed in H} (2), avoiding the use of weighted C%-norms. While this is more
in the spirit of the seminal work of Rey [19], the elegance of working with the Hilbert space
H} () requires a very precise ansatz (see Section 3), and a very sharp analysis of the radial
bubble Ew as obtained in [8,14,15] and further extended in our Section 6. In fact, we will
construct the ansatz in two steps. First we construct the approximate solution

k
Uepyr = we + E :Be,'v1,,r7¢ + Wy 7,

i=1

for every T as in (1.3) and v in a fairly broad range (see (3.4) and Proposition 3.2). Then we
shall strongly restrict the range of v (Proposition 3.3 and (3.28)) and add the terms 6, B; , -,
to the ansatz. This will be crucial in the energy estimates of Section 4. In order to estimate
the error terms near the bubbles, we shall use the spherical profile of the bubble to treat
the blow-up regions as approximate spheres and apply Poincaré-Sobolev-type estimates, as
given in Section 7. Finally we will perform the Lyapunov-Schmidt reduction to find the
correct value (., 0., 7.) and the correction term ®. - g, -, to finally obtain u. as in (1.5)
(see also Remark 4.6).

Recently, Problem (&, g) has received attention also when the nonlinearity f is suitably
perturbed. Mancini and the second author [16] constructed radial (both positive and nodal)
solutions u., to (£,8) on the unit disk, blowing up at 0 and having non-zero weak limit as
v — 00, in the case h = 1, f,(u) = A\yu+ Byuexp(u?) or f,(u) = Byuexp(u® — au) for
suitable A, 8, and a > 0. Grossi-Mancini-Naimen-Pistoia [12] constructed nodal solutions
up to (Ep,p) with h =1 and f,(u) = wexp (u2 + |u\p)7 having one blow-up point as p | 1.
Naimen [18] further gave a very detailed blow-up analysis of the blow-up of radial nodal
solutions to (£,,5) when h =1 and f(u) = uexp (u* + alu|?), & > 0. To our knowledge, our
work is the first one in which non-zero weak limits appear in the unperturbed case f(u) =
wexp(u?), and an arbitrary number of bubbles concentrates at the same point. Indeed, these
two phenomena cannot occur in the unperturbed case without (radial) symmetry breaking
of the solution.

To conclude, it would be very interesting to investigate whether our symmetry assump-
tions on the domain 2 can be relaxed or even removed. Indeed, we mainly use these as-
sumptions to obtain the existence of a weak limit wg such that the point £, € Q) at which the
bubbles concentrate not only is a critical point of wy but also satisfies the closed condition
wp (&) = 0. This latter delicate condition is crucial for our construction in the unperturbed
case f(u) = uwexp(u?). By contrast, in the strongly perturbed regime considered in [12],
Grossi-Mancini-Naimen—Pistoia were able to construct solutions with one bubble which
concentrates at a critical point & of wg satisfying the open condition wg(§p) > 1/2. Then
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their assumptions not only cover the case of a symmetric and convex domain 2 but even a
generic class of domains (see [12, Remark 1.2]).

2. PRELIMINARY STEPS

This section is devoted to the construction of a smooth family of critical points satisfying
some regularity, symmetry and asymptotic conditions which we will then use in the next
sections to construct our blowing-up solutions.

Definition 2.1. For everyl € N*, p € N and o € (0,1), we let C’l’jz:;m (Q) be the vector space

of all functions in CP (1) that are even with respect to the line {s; for all j € {0,...,1 — 1},
where Ly is as in (A).

Definition 2.2. Let 3 > 0, h be a continuous, positive function on Q and w € Ey 5. Then
we say that w is non-degenerate if there does not exist any solution v # 0 to the problem
{Av = Mf (w)v inQ

v=20 on 09, (2.1)

where A and f are as in (1.1). We let E,’Z’% be the set of all non-degenerate elements of Ey, g.
The main result of this section is the following:

Proposition 2.3. Let Q be a smooth, bounded domain, | € 2N*, By € (0,8I7), a € (0,1)
and h € C'=22(Q) N C% (Q) be a positive function such that 0 € Q and (A) holds true.
Then we have the following:
(i) There exist wo € Ep g, N Cll,’;"ym
as r1 — 0.
(ii) There exists ko > 0 such that for every k € (—ko, ko) \ {0}, wx == (1+K)wy €
E}:gﬂﬁﬂq{fym (Q)NC? (), where By, == (1+k)?By and hy, := hexp (—k (k4 2) wi).

(iii) For every € (—ko, ko) \ {0}, there exist h,, € Cll;;s‘ (Q)NC? () and o (k) € (0,1)
N

such that for every e € (0,e0(k)), there exist B > 0 and wy. € Ej
C’llf‘ym (Q) N C?%(Q), where hy e = h, + eh,., such that the families (B,ﬁys)OSESEO(H)
and (wm75)0<€<60(ﬁ), where By o = B and wy o 1= w,, are smooth in € and moreover

O [Wee (0)]._y <0 and we e (0) <0 for all e € (0,e0 (k)).
Proof of Proposition 2.3 (i). Define

Q= {(:cl,xg) € Q: |za| < z1tan (%)}

Since (2 satisfies (A), we obtain that € is symmetric with respect to the line £y. In particular,
we can define the vector space H of all functions in H} (1) that are even in xo. Note that
(A) also gives that h[q is even in z2. By applying standard variational arguments (see for
instance Proposition 6 of Mancini-Martinazzi [15] in case h = 1 and H = H} (€1)), we then
obtain that for every By € (0,8I7), there exists a critical point wy of the functional Ij|,,

(Q)NC*(Q) and ag > 0 such that wo (z1,0) ~ apa}

n,sz»‘s

under the constraint HVwOHQLQ(Ql) = fo/2l such that wy > 0 in Q;. By using (A), we can
then extend wp to the whole domain €2 as an odd function with respect to the line f5;41
for all j € {0,...,0l —1}. We claim that wy € E}, g,. To see this, for every test function
v € Hi (Q), we define

-1 -1
Usym = E vo S2j+1 0S) — g vo 52j+1,
Jj=0 Jj=0
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where S;j41 : £2 — (2 is the symmetry operator with respect to the line £5;41. By remarking
that vsym € H& (Q41) and using vsym as a test function for the Euler-Lagrange equation of
ug, we obtain

/ (Vuo, Vogym) da Bo
|95

- L fo, hwg exp (wg) do

By changes of variable and using the symmetry of wg and h, we obtain

/ hf (wo) vsymde. (2.2)
(951

/ (Vwo, VUgym) dz z/ (Vwg, V) dz, (2.3)
(o Q
1 1
hwiexp (wg) dz = — | hwjexp (wg) dz = — DIy, (wo) .w, (2.4)
N 21 O 2l
hf (wo) vsymdz = / hf (wp) vdz. (2.5)
o Q

By putting together (2.2)—(2.5), we obtain

260 /
Vwy, Vvyde = ——— [ hf (wp) vdx
/Q < 0 > DIh (wo) Wo Jo ( O)
and so wy € Ej, g,. Since h € C'=2(Q) N C%* (Q) and 0 is smooth, by using the Moser—
Trudinger inequality together with standard elliptic regularity theory, we then obtain that
wy € CH* (Q) N C** (©). Since wolq, is even in x5 and wo is odd with respect to the line

lyj41 for all j € {0,...,1— 1}, we then obtain that wy is even with respect to ¢5; for all
je{0,...,1—1}, ie. wg € Cll:s;m (©2). Furthermore, since wy € C4* () and wy = 0 on
l9j41 for all j € {0,...,1— 1}, we obtain that DJwq (0) =0 for all j € {0,...,0 — 1} and so

wo (21,0) = aga} + O (z1%) (2.6)

as x1 — 0 for some ag € R. It remains to prove that ag > 0. Since 0 € € and € is open,
there exists ro > 0 such that B (0,79) C . For every € > 0, we define

Sie(ro) :={(rcosf,rsinf) : 0 <r <rpand |8 <w/(2(l+¢))}
and let v : Sic (o) — R be the function defined as
v (rcos®,rsinf) := r'€ cos ((1 4 ¢) 0)

for all (rcos@,rsinf) € S;c(ro). It is easy to check that v;. is harmonic in S (ro),
continuous on S, (r9) and v = 0 on B(0,79) N JS; ¢ (r9). On the other hand, since

Sie(ro) C 1, we have that wg is continuous on S;. (r9) and positive on S;. (ro)\ {0}.
Furthermore, since h,wg > 0 in S; ¢ (r¢), it follows from the Euler-Lagrange equation of wq
that Awg > 0 in S; . (r9). It follows that there exists §; . > 0 such that wg > d;.v;. on
0S¢ (ro) N OB (0,79). By comparison, we then obtain that wg > &, .v; in S (ro). Since
v (r,0) = r'*¢| by taking € < «, we then obtain that the number aq in (2.6) is positive.
This ends the proof of (i) in Proposition 2.3. O

Proof of Proposition 2.3 (ii). It is easy to check that w, € Ej_ g, N Cﬁ’sm (ﬁ) for all k €
(—1,1). Tt remains to prove that w, € Eﬁim for k € (—ko, ko) \ {0} with k¢ small enough.
Assume by contradiction that this is not the case, i.e. there exists a sequence of real numbers
(I{j)j cn such that w,; is degenerate and x; — 0. Let v; be a nonzero solution of the linearized
equation

Avj = N\, by, f (wﬁj) v; in Q2

v; =0 on 0f,
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with

A, 1= 2, = 250 =)

= DI},%]_ (w,.gj).wﬁj DIh (’wo) Wo '

By renormalizing and passing to a subsequences, we may assume without loss of generality
that [|Vv;|l . = 1 and (v;),;. converges weakly to some function vy in H} (). By using
the compactness of the embedding H} (2) < L%(Q) and remarking that 8, — Bp and
hy, we — h,wy in C° (ﬁ), we obtain that (”j)jeN converges strongly to vg in H} () and so
IVvoll;2= = 1. Furthermore, we obtain that vy is a solution of (2.1) with k = 0. By using
the definitions of h,, 8. and wy, in particular noticing that h, exp (wz) = hexp (wg), and
recalling the equation satisfied by v; and vy, it follows that

1
/ h (1 + Qwij) exp (w%) vjvoda = §DIh (wp) .wo/ (Vu;, Vug) de = / hf' (wo) vjvodx
Q Q Q

and so

— w?

/ hwg exp (wg) vjvodr = / hm exp (wg) vjvodz = 0. (2.7)

By passing to the limit into (2.7), we obtain
/ hwd exp (w%) vadr = 0,
Q

which gives wovg = 0 in €. Since HVwOHQLQ = By # 0, by unique continuation (see Aron-
szajn [1] and Cordes [4]), we obtain that wg # 0 in a dense subset D of  and so vg = 0 on D.
By continuity of v, it follows that vo = 0 in . This is in contradiction with ||[Vvo| . = 1.
This ends the proof of (ii) in Proposition 2.3.

The result of (iii) in Proposition 2.3 will follow from the following:

Proposition 2.4. Letl € N*, p > 2, a € (0,1) and Q be a smooth, bounded domain such
that 0 € Q and § is symmetric with respect to the line ly; for all j € {0,...,1—1}. Let
By >0, h e CP2%(Q )ﬁCQ()bepasztwemQandwerﬂi ncre (Q )ﬂC’z( ) be

l,sym l,sym

such that Wy (0,0) = 0 and wq (r,0) > 0 for small r > 0. Let D be the set of all functions
heCl2*(Q)nC? (Q) such that

l,sym

/ Gy 0) hf (Wo) dz < 0,
where Gy, is the Green’s function of the operator

_ QBOEJH (wo)
A DI (wy) .wo

= 0. Then D is a non-empty open subset of C*~ 2% (Q)N

with boundary condition G 1,sym

|8Q
C? (Q ( ) and for every he D the're exists €9 > 0 such that for every e € (0,eq), there exist

B. >0 and w. € B 3. Nere () NC?(Q), where he == h+ eh, such that (B.)

l,sym 0<e<eo
and (We)g< <., are smooth in & and 0. [W: (0)]._y < 0 and W, (0) <0 for all ¢ € (0,&p).

Proof. We begin with proving that D is not empty. Since Gy (-,0) > 0 near 0, Wy €
Cligm (©2) and w@o (r,0) > 0 for small r > 0, we obtain that there exists xo € 2 and ro > 0

such that G5 (-,0) W > 0 in B (zg,70) and B (xg,79) C o, where
Qo :={(z1,22) € Q: 0 < 23 <y tan(n/l)}.
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Let x € C* (Q2) be such that x > 0 in B (zg,r9) and x = 0 in B (z9,70). Let xsym be the
unique function in C} ;yzma Q)nc? (ﬁ) such that xsym = x in Q0. By symmetry and since
Gy (+,0) xwo > 0 in B (z9,70) and x = 0 in B (20, 70)°, we obtain

/G (-, )ngmf(wo)dx—Zl/G (-,0) xf (wWp) dz > 0,
Q

i.e. —xsym € D. This proves that D is not empty. Now, we prove the second part of
Proposition 2.4. Since h € CF_2* () N C? (Q) and @y € Eg%o NClam () NC?(Q), it

l,sym
follows from the implicit function theorem together with standard elliptic regularity that
there exist a neighborhood A of & in CP_ %% (Q) N C? (Q) and a smooth mapping w : N —

l,sym

Clim () N C? () such that w (k) = wo and for every he N, U =w(h) is a solution of
the problem
~ 2Bhf(U
AUziﬁoj( l in Q
DI+ (wo) -wo (2.8)
U=0 on 0f.

Note that (2.8) is equivalent to U € B ha () where

B(R) = BODI;L(U);U .
DIy (wo) .wo
In particular, we obtain that for every h e D, there exists g9 € (0,1) such that for every
€ (0,0), there exist 3. = B (h.) > 0 and w. = w (h.) € Ep 3. N Cliom () N C%(Q),
where h. := h + ¢h such that (BE)
differentiating (2.8), we obtain

0<e<e, and (We)g<.<., are smooth in e. Furthermore, by

(& = 2B, (DI (wo) wo) ™" Bf (w0) ) 0. [w.].y = m

O: [We]._,y =0 on Of).

n

Since h € D, it follows that
Oe [we (0 607/G hfwo)dx<0

Since W (0) = 0, by taking g smaller if necessary, we then obtain that w. (0) < 0 for all
e € (0,g0). This ends the proof of Proposition 2.4. O

Proof of Proposition 2.3 (iii). The result of (iii) in Proposition 2.3 is a direct consequence
of Proposition 2.4 applied to S, := Bk, ho := h,, and Wy := w. a

3. CONSTRUCTION OF THE ANSATZ

This section is devoted to the construction of our ansatz. We let €2, [, a and h be as in
Theorem 1.2, fix 8 > 4w, By > 0 and k € N* such that g = 5y + 4knm and let ag, ko, €0, Br,
Wy, Ny Bre, Uk and hy . be as in Proposition 2.3. To prove that § is an unstable energy
level of I, by using a diagonal argument, one can easily see that it suffices to show that for
every k € (—ko, ko) \ {0}, the number 5, + 4k7 is an unstable energy level of I}, . In what
follows, we fix k € (—ko, ko) \ {0} and for the sake of simplicity, we drop the dependance in
 from our notations. More precisely, we denote £ := €¢ (k), 8o := Bx, ho := Iy, Wo 1= Wy,
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Be = Pr.e, he := hy e and we := w, . Remark that the new function wy still satisfies the
properties of (i) in Proposition 2.3 but now this function is moreover non-degenerate.

3.1. The bubbles. For every 79 > 0, we let B,, be the unique radial solution to the
problem - -

AB,, = f(B,,) inR?

E"/O (O) = "0,
where f (s) := sexp (32) for all s € R. Note that by standard ordinary differential equations

theory, B., is defined on [0, 00). For every e € (0,&9), 70 > 0 and z¢ € 2, we then define

Be oz (T) := B, (\/)\Eh‘S (z0) |z — z0] ) Vz € R?,

20 26
= —
DIy, (we) .we DI, (wp) .wo

so that EE’%M solves the problem
AEE»”/Ova = Ache (LL'()) f (EE,"/O,:L’O) in R2
EEv'YO#EO (zo) = 0.

For every r > 0 such that B (xg,r) C Q, we then let B, 2., : & — R be the function
defined as

BE,’YOJOJ (l‘) = {

for all x € 2, where G is the Green’s function of the Laplace operator in 2 with boundary
condition G (-,zo)|y = 0, H is the regular part of G, i.e.
1 1
G(x,z9) = —1

n— -
21 |x — xo)

Yo

where

Ae =A>0,

§€,707$0 (J,‘) - C&’Yo,ﬂﬂoyT + AE;'YCHIO,TH (.%‘,.1‘0) r€B (xo,T)

. (3.1)
Ac v0,20,7G (T, 20) otherwise

+ H (z,z0)

and Ac o 20,75 Ce,no,m0,r are constants chosen so that By, z,,» € C* (©), i.e.

AENO@O-,T = /B( )AEE,’YOJO dz, (3'2)
ZTo,T
- A z0,r 1
Ce o ,z0,r = By (V Ache (z0)T) — %ﬂo In e (3.3)

3.2. The primary ansatz. For every € € (0,g0) and § € (0,1), let T¥ and T* (§) be the
sets of parameters defined as

TE @) = {y=(r,-o s m) €(0,00)" : |y = 7| < 7., Vi€ {1,... .k} }, (3-4)
kd. kd.
Tf(é)::{T:(Tl,...mk)ERk:—5 < << T < 5

and |7 — 75| > 0de, Vi, j € {1,... k},i ;éj}, (3.5)

where (k41 1) .
= t+i— ——1/1
Yo = In and d.:=7_"/". 3.6
o @ " - O 0
From (3.6), wo(0) = 0 and 0. [w.(0)]c=o # 0, we get
2(k+1-1)In% we(0) <1n’y >
we(0) ~ — —=, e~ =0(—=%), ase—0, 3.7
v X TH () il A 1)
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and since wy (r,0) ~ agr! as r — 0, using the continuity of d.w. () jointly in € and x, and

(3.7) we get for some &7 € (0,¢)
we (73) = wo (77) + [we (7)) — wo (7)) = O (dla) + €0: [we (T7)]e=e,

~ €0:[we (0)]e=0 ~ we (0) ~ — 2(k+ ll; D) lnﬁs’ as e — 0, (3.8)
uniformly in 7 € T (§). For every (v,7) € I'* (§) x TF (5),Ewe define
k
[76,%7' = We + Z Be ~; 7
i=1
where Be +, 7, := Be ~, 7,r., T := (73,0), and for &y € (0,1/2) to be fixed later,
=n, m=exp(—72). (3.9)

Claim 3.1. Set A, ,, r, = Ae,'yi,?i,ra and Ce y, 7, = Cer, 75,r.. For every 6 € (0,1) and
ie{l,...,k}, we have

4 1 2In7, 1
AE, T + O <> 9 CE, iTi -——= + O () 5 3.10
E Vi g v Yi e ( )
4 1 2In7% 1
Oi [Ac ysrs] = 72T +0 < ) and 0y, [Ceryr] = nz% +0 <2> (3.11)
77, ’YE ’Yi 5

as € — 0, uniformly in (y,7) € Tk (8) x T*(8). Furthermore, for every a > 0 and §' €
(0,1 —=+/3g) (i.e. such that (1 — 8 > 6y), we have

| ~ Ou,he (7) ( 1 )
aTi AE, Tl = O ~a and 87’:‘ CE, Tl 7 ———=0 = 3.12
Aol =0 () Conrl~ =325 =0 (2] @1)

as € — 0, uniformly in (y,7) € I"; (6") x TE’c (4).

The proof of Claim 3.1 is based on a precise asymptotic study of the bubbles B., and is
postponed to the Appendix.

3.3. Correction of the error at the bottom of the bubbles. In this section, we modify
our ansatz so to correct the error made outside the balls B (77, 2r.). We prove the following:

Proposition 3.2. Let Q, | « and h be as in Theorem 1.2. Let k, €0, he, we, e, Ve, Ti,

e, 00, TX(8), TF (6) and [75,7,7 be as in Sections 3.1 and 3.2. Let x € C* (R) be such that
0<x<1linR,x=1in (—o0, 1] and x =0 in [2,00). Define

Xe,r ( —1—ZX |z — 75 4 r2 —rg)/r) Ve € R2.
i=1
For every § € (0,1) and 6" € (0,1—+/2d), there exist £1(d,0") € (0,e0) and C; = C4 (4,4") >
0 such that for every € E (0,e1 (6, §")) and (y,7) € T (8") x TF (8), there exists a unique
solution V. , € CH* () N C? (Q) to the problem

{A(w5+\I},77) AheXerf( ,'\/T""\Ijs'y‘r) in €

(3.13)
V.yr=0 on 0N

such that U, . - is even in xo, continuously differentiable in (v, T) and

Cl Ol
[Weyrller < = 1D ey rlllcr < =1 (3.14)
€

g
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&
D7 [We y L g + 1D [Yey,r]ll o < = (3.15)
£
Finally, setting Ue . = Ngmr + U, -, there exists pg = po (d0,0") such that for every
p€[l,po], a>0andie{1,...,k}, we have
1 . 1
Jesp (2, Voo s = O (55 ) loww (02,022, =0 ().
Ye Ve
(3.16)

F Uenyr) 0r, [Uey el e,

105, er] £ Uer)ll o = O (j) N L =0()  (317)

€

uniformly in (y,7) € T¥ (8') x T¥ (8), where R, := exp (—7.) and

k
A(,m, R) = B(7,R)\B (7,7) and Q.,:=Q\ (U B (7, r)) (3.18)

forall R>r>0

In other words, the function
k

Ueyr = Uv&mf T Ve = we + Z Be i + Ve, (3.19)
i=1
where W, , - is given by Proposition 3.2, is an exact solution outside the balls B (ﬂ, re + rf)
for all i € {1,...,k}, and it satisfies
ABe ey = ABe 77 = Ahe () f(Beyy,7)  in B(7,7e)
AUE = €, Ti €, Ti efve \ "1 €, Ti . e 3.20
" { )\sths,‘rf (UE,%T) m Qreﬂ" ( )

Since the proof of Proposition 3.2 is lenghty, but not necessary to understand the rest of the
construction, it is postponed to Section 5.

For later use, we also observe that (3.1), (3.6), (3.9), (3.10) and (3.14) give U.,» =
507-(1 +o(1)) in Q := B(F, 7 +12) \ B(7;,re), hence

f(Uers) =0 (ﬁ;253+°(1)), in Q. (3.21)

3.4. Adjustment of the values at the centers of the bubbles. In this section, we
refine the range of the parameters ; so to optimize the error made in the regions B (77, ).
Let us start by expanding

Ueiyr (€) = Be i () + B, + FU) L (2) (3.22)
for all © € B (7, re), where

B = w. (7) = Ceypr, + Acryyr H (T 7) + Y Aciy G (7, 75) + Ve r (7)), (3.23)

J#i
Ff(»iﬂ)’,T (Z‘) = We (l‘) — We (7—71) + AE;’WF&' (H(l‘,f) -H (7—7177—71))
Y Acry iy (G (@,75) = G (7)) + Ve () = Ve r (7). (3.24)

J#i
Note that FE(Z%T (7)) = 0, so Fs(l»)” is small in B (7;,7rc). Instead the constant Eél,)”
might be large depending on the choice of v and 7. In the next proposition we show that
we can choose 7, (1) ~ 7, depending on 7 and ¢ in such a way that Eé% ( = 0 for all

ie{l,...,k}.

T),T
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Proposition 3.3. Let §y, €1 and V., . be as in Proposition 3.2. Then for every 6 €
(0,1) and &' € (0,1 —\/28), there exists £5(8,8") € (0,21 (6,0")) such that for every e €
(0,62 (6,0")) and 7 € TF (8), there exists a unique 7, (1) = (V1.0 (7) -, Tpe (1)) € TE (&)
such that 7, . (7) is continuous in 7 and for every i € {1,...,k}, we have

UEWE(T)’T (?l) = 7@5 (T) and ﬁi,e (T) ~ Ve (325)
as € = 0, uniformly in T € TF (5).

Proof. For every v € I'¥ (§), we denote 7 := v/¥.. Welet [ := (1—4',1+¢) and E., :
Ik — Rk, E.,= (EéT), ey ng)) be the function defined by
EW (3) = B9 yyerl* ie{l,... k}.

= €,7Y,T
) ln,ye sV

In particular, E. , € C1(I*). By definition of d., G and H, we obtain

1 1 In%
G(7y7) ~ o=ln— ~ ==
(7% 75) 2w nd6 2l

as € — 0, uniformly in 7 € TF (§). It follows from (3.8), (3.10), (3.11), (3.14) and (3.26)
that E. , — Ey = (E(()l), e ,E(()k)) in C1(I*) as ¢ — 0, uniformly in 7 € T¥ (§), where
Do 2 2e~1 2(k+l-1)
0 ( ) s l L 'Y] l

and H (7,7)=0(1) (3.26)

foralli € {1,...,k} and ¥ = (31,...,%) € I*. In particular,

Eo(1,...,1) =0 and det(DEy(1,...,1)) #0. (3.27)
By applying the implicit function theorem, it follows from (3.27) that there exists e5 (8,4") €
(0,21 (6,6")) such that for every ¢ € (0,62 (6,0")) and 7 € TF (), there exists a unique
e (1) € I* such that 4. (7) is continuous in 7, E. ; (% (1)) = 0 and 7. (1) — (1,...,1) as
£ — 0, uniformly in 7 € T (§), i.e. there exists a unique 7. (7) = 7.7 (1) € I'* (§') such that
7. (1) is continuous in 7 and (3.25) holds true. This ends the proof of Proposition 3.3. [

Now, we refine the set T'%(§’) by defining

ff (1) := {*y =(7,.-,7) € (O,oo)k Dy — Ve (N < %7 Vie{l,...,k} }7 (3.28)

€

where 7; . (7), ..., (T) are the numbers obtained in Proposition 3.3 and
b = tY2, (3.29)
where 7, is as in (3.9) and §; € (0,1/2) is a number that we shall fix later.
Note that for every 6,4’ € (0,1), we have
T (1) T (8) (3.30)
for small € > 0, uniformly in 7 € T (§). Therefore, we can fix

1— /25,
2

in what follows and let €3 (0) € (0,e2(d,d’)) be such that (3.30) holds true together with
the results of Propositions 3.2 and 3.3 for all € € (0,3 (§)) and T € T* (4).

& =
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3.5. An additional variation in the directions of the bubbles. We now introduce an

additional family of parameters § = (1,...,60;) € R* and define our final ansatz as
k k
Ue,'y,rﬁ = UE,'y,T + Z QiBe,'yi,Ti = we + Z (]- + 07,) Be,’yi,‘ri + \Ile,'y,‘ra
i=1 i
for
0 In7
0 € ©F(5) == {9 = (04,...,00) €RF: 0] < =272 vie {1,... K} } (3.31)
€

where 7, and J. are as in (3.6) and (3.29). Finally, we define
PE(6) = { (7,7.6) € (0,00)" x TF (9) x ©F : v € T (1) },
where TF (3), f: (7) and ©F are defined as in (3.5), (3.28) and (3.31), respectively.

3.6. Pointwise estimates near the centers of the bubbles. We can now prove the
following:

Proposition 3.4. Let 7, (7) be as in Proposition 3.3. Then for every i € {1,...,k} and
0 € (0,1) we have

i 2ln7y, In7y, i 2In7y, In7y, ..
Dy, [Eéif] = T2 +0< —2 > o Oy, [Eézyr] =——= *to 2 ) for j #1,

€

e i
as € — 0, uniformly in T € T* (8) and v € f’; (7).

Proof. Using (3.11), (3.23), (3.14) and noticing that for (vy1,...,7%) € fls (1) we have v; ~ 7,

for j =1,...,k, we get
8"/1 [Es(l')y 'r] = _a"/i [C 7"/1"7'1‘] + 05, [A ”Yz‘,ﬂ} (7—277-1) + 8 £, T]
21 1 21 1
= n% (1+o0 (1)),70 <2> H’Ys o< H’Ys)
'Vi 71 Ve ’YE
as € = 0. For the case j # 1, using (3.6), we estimate
1

uniformly in 7 € TF (§) , hence
O, [ELy ) = Oy, [Aciy ] G (70,75) + O [V ]
_4 1 2In7%, In7?
= ﬂ( ln7€+0())+0< > n;5+o<nzs)-
7] 2ml ’ys Z’Ye Ve

= 0, integrating the gradient of Eél»)” with respect to v from 7, (7) to

(1)
Now, since EE ()

a generic v € I‘: (1), the last identity follows at once. a
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Proposition 3.5. For everyi € {1,...,k} and § € (0,1), we have

FE(QT (z) = (aolﬁl_l - ; Z . > (x1 —7)+o <H> , (3.32)

’75 i T — Tj 75da

and for every i,5 € {1,...,k},

i T—Ti
0, [F ] (z) =0 (' = |) (3.33)

as € — 0, uniformly in x = (v1,22) € B (7i,7e) and (y,7,0) € P* (4).

Proof. Note that Fs(z'z/T (77) = 0. Then, by using (3.7), (3.10) and (3.15) and since w. =
wo + O () in C1(Q), wo (r,0) ~ agr! as r — 0 and 9,,w (0,0) = 0, we obtain

1
F{) , (2) = /0 (VE (1= )T +ta) a2 ) dt
Ae,'yj;rj <(1 - t)ﬁ‘f’ tx — T, — T4

= 1 -1 ttx),x —7;) — i
7/0 <<vw0((1 D7 +te), -7 - PRI e — )dt

j#i

_ _ 2 1 |z — 7]
N -1 2 o i
+O0(e|lr—74]) = (aolTi = E p— Tj) (x1 —Ti)+o (7;_1/1 >

€ j#i

as ¢ — 0, uniformly in = = (z1,72) € B(%,7.), 7 € TF (§) and v € f’j (1), hence proving
(3.32). Differentiating (3.24) and using Claim 3.1, (3.33) also follows at once. O

Proposition 3.6. For everyi € {1,...,k} and 6 € (0,1), we have

— _ 2 1
Uey,r6 (z) = Beyimi (z) + (aolTil - = Z ) (x1 — 1)

Ty — T4
Teim T

- 7 68 1 75
+o (le_ﬂ) +0 ( o7 ) (3.34)
Ye Ve
as € — 0, uniformly in © = (v1,22) € B (7,7:) and (v,7,0) € P¥(5). In particular, for
every § € (0,1), there exists e4 (0) € (0,e3(0)), where €3 () is as in Section 3.5, such that
Be iz () >0 and Ue 79 > 0 in B (T, 72) (3.35)
for all £ (§) € (0,4 (9)), (7,7,0) € PX(8) andi € {1,...,k}.

Proof. In order to prove (3.34), it suffices to write
k
UEV’Y7T7‘9 (l’) = EE,%‘,‘H (l‘) + Eagf?y,r + Fe(,i')y,r (CE) + Z ejBE,'yj,Tj (17) in B (?1’ 7‘5)
j=1

and apply Proposition 3.4 to bound

k
; 0 In7
Eél,)“. + ZaiBE=’Y7‘»T;‘ =0 (611376>
= | e
and Proposition 3.5 to estimate FE(’%T (x). It then follows from (3.34) and (6.2) that (3.35)
holds true for small & > 0, uniformly in (v, 7,6) € P* (6). O
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4. PROOF OF THEOREMS 1.2 AND 1.3

This section is devoted to the proof of Theorems 1.2 and 1.3. We let Q, I, @ and h be as
in Theorem 1.2, fix 8 > 4w, By > 0 and k € N* such that § = By + 4k7 and letNﬁE, he, we,

/\57 75? ﬁg) de> Te, 65; 507 617 77;,5 (T), EE,’Yo,woa Ae,'y,:mr; Ce,'y,:v,r; G7 H7 Be,'yi,na Ue,'y,Ta Xe, s
Ve yry Ueyr, TF(6), f’; (1), TF (8), ©F and PF (§) be as in Section 3. We define

Rsyyn',e = Ua,'y,-rﬁ [)\ h f( €,7, 70)] (41)
As a first step, we obtain the following:

Proposition 4.1. Let €4 be as in Proposition 3.6. Assume that

35 <Gy <1 and 0<d; <30 —202 1. (4.2)
Then for every § € (0,1), there exist €5 (0) € (0,4 (9)) and Cs = C5 () > 0 such that

5. In7,
32

HRem'rﬁ”Hé <Cs (4.3)

for all e € (0,e5 (8)) and (v,7,0) € Pk (6).

Proof. For every ¢ € H} (), using that B: ., r, € V..., integrating by parts and using
(3.20), we obtain

<R8,7,T,9aw>1—[é = <UE,'y,T,9 [)‘ h f( ,779)] ¢>Hé

k
/ <Z 1+0:) he () f (Beryum) 1(m) + heXer f(Uerrr)

i=1
k
— hef (UEW,O))M;E +) 6 / YAB. ., ;.dz. (4.4)
i=1 79
By using the definition of x. , together with the mean value theorem, we obtain
k

Z (1405 he (72) f (Beyir) L(mr) + heXer f (Ueyr) = hef (Uey o)

— ) B
Z \he (70) f (Beyiiri) = hef Ueyr0)| 4 10il he (72) f (Be i) 1m0
i=1

+ h Z |f €,7,T ]-A (Fisre,re+12) + h |f( £,Y, 7') - f (Ua,'y,‘r,é) |]-QT517.

k
Z (h f ((1 - t1>§6,’yi,n + ter,’y,T,O) |Us,'y,T,€ - Ee,’yi,n

+[Vhe (1= t2) T + ta2)| |2 = | f (Beyr) ) 1B
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k
+ hs Z |f(U57’Yv7') |1A(E7TE7TE+T§) + <h€ (ﬁ) f (E&’Yiﬂ'z‘)
i=1
k
+hf( W+t32035m)>2w|BE% o (4.5)

i=1 i=1

for some functions t1,ts,t3 : Q — [0,1], where A (7'7;, TeyTe + r?) and Q,_, are as in (3.18).
Since As — Ao and h. — hg in C* (ﬁ), it follows from (4.4) and (4.5) that

<RE,%T79’ HY = <Z/ ( 1 —t1) B ey T termm‘)) ‘Ue,%ﬂ@ _Esmm

+ e =Tl [ (Berirs) ) + [ F(Uey o) [Lam e rete2)

+f< M+t4293,wj>|9|B,Wl Ts,)|¢|dx> (4.6)

j=1

For every i € {1,...,k}, by using (3.34) and remarking that f’ (u) < 3uf (u) for all u > 1,
we obtain

/ ( ) (f/ ((1 - tl)Ee,’yi,T,; + ter,’y,T,S) |Us,fy,r,9 - Es,fyi,n + |55 - ?z| f (Es,'yi,n))
B(7i,re

— O0eIny, _
XMWO</? )fwmm»(,gy+1”mm)MM) (47)
B(7i,re

€

By integrating by parts, we obtain

Jo 7 Benin) Wl = Ok ()™ (B Wiy
< Oehe ()™ Bemmlling Wy = O (0l ) (49)

On the other hand, for every p > 1, by using Holder’s inequality together with the continuity
of the embedding H} () < L¥' (Q), where p’ is the conjugate exponent of p, we obtain

Jo I el =Tl = O (1 (B b= Lol ). (49)

il ). (4.10)

[ W) Wl de = O (1 Vo) L st
A(Ti,re,re+12)

/Q <f (B m,n)+f< ew+t429 ‘B ,,W]> ,wl) | da

Te,T Jj=1

=0 (H(f( ”y“ﬂ) +f ( 7T+t429 B ’"/J’TJ>B€,“/1',T¢)1QTE,T

j=1

Wl )- (410
p

By rescaling, we obtain

ip = ufi_Q/ f (Bew'Yiﬂ'i (Til—i_ luiﬁx))p ‘xlp dz,
B(O 7'5/.“7 s)

Hf (Eﬁm’ﬂ') |z — 7] 1pEr)
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where ;. is defined by p2, :=4v; Z exp (—72.). By using (3.10) and (6.2), it follows that

Hf (EE,’W,TI') |$ - ?Z| 13(?1'17’5) Il),P

p
1 1
=0 IlfH/ f{vie——h |z|” dx
( = B0 i) T Ve 14 Mohe (7) |2

_ _ P

_o(HE ja” da o o ((2mAN Y s

= 7P 282 | T ~ | =%\ | = (4.12)
e JB(0,re/pie) (1 + Ache (TZ) ‘CL‘| ) Ve Ve

provided we choose p such that 2 —p > p (61 +1/2), i.e. 1 < p < 4/(2d; + 3), which is
possible since §; < 38p — 203 — 1/2 < 1/2. As regards the terms in the right-hand sides of
(4.10) and (4.11), by using (3.10) and (5.11) and proceeding as in (5.12)—(5.15) and (5.29),
we obtain

H.f(Ue,'y,T)1A(’rﬁ,r5,r5+r§) ip =0 (ﬁg In (1 + TE) €xp ((p‘SO - 1) 5075 +o (ie)))

~0 <'y€ exp ((mo - g’) 5072 + o (ﬁ))) —o ((‘“;7)p> , (4.13)

k p
j=1 b
1
=0 (ﬁpﬂ exp ((pdo — 1) 6072 + 0 (72)) + 5/ |z — 7]+ O (1) d$>
€ Re,T
o) (4.14)

as ¢ — 0, uniformly in (v, 7,0) € P¥ (§), provided we choose p such that

3 1
<p502> o < *g (51+2> and pdy—1 <0,

1
ie. 1 <p<min ( 3% ) 3%

200461 +1/20) 202+, +1/2°
which is possible when assuming (4.2). By putting together (4.6)—(4.14) and using the fact
that |0;| < 6-7-* In7¥_, we obtain (4.3). This ends the proof of Proposition 4.1. O

We let H be the vector space of all functions in H} (2) that are even in z5. For every
T €TF(5) and v € fls (1), we define

VE,’Y,T = span {ZOJ,E,%T’ Zl%sﬁﬂ" BE,’nm }1§i§k )
where
Zoieryr = Oy [Ueyrol  and Zijcyri=0r [Ueyrol Vic{l,....k}.

Note that U. -0 € Hand V., C H. Welet II. ., , and IIZ, | be the orthogonal projection

E,Y,T
of H onto V., » and VE{:Y’T7 respectively. We obtain the following;:

Proposition 4.2. Assume that (4.2) holds true. Let €5 be as in Proposition 4.1. Then
for every 6 € (0,1), there exist e (§) € (0,e5 () and Cs = Cg () > 0 such that for every
e € (0,66 (8)) and (v, 7,0) € Pk (6), there exists a unique solution ®. . 9 € VEf%T to the
equation

ML (Ueyro + @eyro — A Nohef (Usyro + ®@eryir)]) =0 (4.15)

£,79,T
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such that

e 1nfyE

[[®e v, 0||H1 <Ce——— (4.16)

8

Furthermore, ®.  » ¢ is continuous in (v, T,6).
The proof of Proposition 4.2 relies on the following:

Lemma 4.3. Let €5 be as in Proposition 4.1. For every § € (0,1), there exist e (0) €
(0,5 (0)) and CL = CL(8) > 0 such that for every € € (0,5 (8)) and (v,7,0) € P¥(6), the
operator Le .9 : Vo . — VL defined by

E,7Y,T E,7,T
LE,’Y,Tﬂ ((I)) - s'y T ((I) A~ [)‘ h f ( €7 7'9) Q)]) Ve € vg—’y T (417)
satisfies
1011 < CL 1L ()] - (4.18)

In particular, L. ~ +¢ s an isomorphism.

Proposition 4.2 and Lemma 4.3 (together with Proposition 4.4 and Lemma 4.5), are the
heart of the Lyapunov—Schmidt procedure. We prove them by using a similar approach
as in the case of higher dimensions (see for instance Deng—Musso—Wei [7] and Robert—
Vétois [20,21]). Aside from the usual differences in the computations due to the exponential
term, the main difference here lies in the use of the Poincaré-Sobolev inequalities (7.2) and
(7.7), which take advantage of the additional dimensions of the kernel V. , - given by the
directions of the bubbles.

Proof of Lemma 4.3. We proceed by contradiction. We assume that there exist sequences
(€ns Yns Tns Ony @) eny» Such that e, — 0, (Y, 7o, On) € PEk (6) and

P, € Vet,yn,rn H(I)HHH(% =1 and ||L57L7'YnyT7L79n (q)n)HHé = 0(1) (4-19)
as n — oo. For simplicity of notations, we denote 7, := 7. , m, = 1, dn = de,,

An = AE%’ h’” = hEn’ Wp = w5n7 \I/n = \I/En;'Ynﬂ—n’ Un = UEn7'Yn7Tn;0n7 §i7” = E‘s'ru'ﬂ,n;m’
Bivn = Bgna'ﬁ,nv"‘i,n’ L'n' = Lsn77n77-n19n7 VTLJ_ ‘/Et YnsTn and Zjvivn = Zjv":venv'anTn fOr all ( €
{17 R k} and .] € {07 1}7 where Tn = (71,n7 s 7’Yk,n)7 Tn = (7—1,7” o 77—k:,n)a T,n = (Ti,na 0)
and 6, := (01, ..., 0kn). It follows from (4.19) that

An hnf (Un) @5z = [|® |73 = (@s L (B0)) g = 1+ 0(1) (4.20)
as n — oo. On the other hand, since f’ > 0, A, = Ao and h,, = hg in C° (ﬁ), we obtain
An / hof' (U,) ®2dx = O (I,), where I, / (U, ®2da. (4.21)

In what follows, we will prove that I,, — 0 as n — oo, thus contradicting (4.20) and (4.21).

Estimation of I,, in the balls B (T ,,ry). Fori € {1,...,k}, by rescaling and using (4.19),
we obtain

/ U @idw = an/ f (’}/Z nU + v n)(I)Q dx, (4.22)
B(Tin,Tn) ’ (0,70 /i, m)
/ <V§>n, V¢>dm — )\nuin/ iLnf (’yz nU + v n) ndx

(Q m)/l"t n (Q—Tim,)//—"i,n

=o(|V¥ll.) Yy eCx(R?) (4.23)
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as n — oo, where fi; , fzn, &)n and ﬁn are defined by
17, =4y kexp (—12,) s i (@) = ho (Fim + pin) |
O, (z) 1= Oy (Tim + i) and Uy () = Yi (Un (Tim + Hin) — Vi)
for all x € (2 —7;,)/n. By using (3.10), (3.34) and (6.2), we obtain

~ . 1
Un )~ Yin Bi,n m + inL) — Yimn) ~~ In
() ~ Vi (Bi ( Hin®) = Yin) ~In - PEwE——

as n — oo, uniformly in € B (0,7,/pi,n). By using (4.24) together with the definition of
i n, We obtain

(4.24)

8
(14 Al (i) |2
as n — oo, uniformly in « € B (0,7,/p; ). By remarking that

(4.25)

.uiz,nf, (71_77—1 ﬁn + 'Yz',n) ~

HVEI\)nHLz = HV(I)nHLQ =1

and using (4.23) and (4.25), we obtain that (&Dn)n converges, up to a subsequence, weakly
in D12 (R?), strongly in LY _(R?) for all p > 1 and pointwise almost everywhere in R? to a

loc
solution ® of the equation

8\oho (0) @
0 0() 02 5 in R?
(1 + Noho (0) |2[7)

Ady = (4.26)

Furthermore, since ®,, € H, we obtain that <f>0 is even in z9. By using a result of Baraket—
Pacard [2], it follows that ®y € span {Zy, Z1}, where

Zo () = L= 200 (0 Jal”

= 5 and 7 () := 220k (0) 71
1+ Aoho (0) ||

= 2Ty e g2
L+ Xoho (0) ||

In particular, note that the Poincaré—Sobolev inequality (7.2) applies to C/I;O. On the other

hand, for every i € {1,...,k}, since ®,, € EELT“%’TH, we get (B n, ¢">H5 =(Zo,ins <I>n>Hé =

(Z1,i,n, Pn) g = 0, which, by integrating by parts and using the equations satisfied by B; ,,
0

Zo,in and Zy 5y, gives

/ [ (Bin) ®pdz =0, (4.27)
B(Timrn)

Anhn (m) /B( )f/ (§77n) 877, |_§5n7777,n:| Y=Yi,n Qndl‘ + <¢n7 a’Yi, [\IIEW,777TTL70]~YZ’Y">H1 =0
TimoTn 0

(4.28)
together with an analogous estimate for the derivative in 7;. It follows from (4.19), (4.27)
and the Poincaré-Sobolev inequality (7.7) that

[ rBa)eia=o(Ive.l;) =0, (4.29)
B(Tin:rn)

On the other hand, by using Cauchy—Schwartz’ inequality together with (3.14), (3.15) and
(4.19), we obtain

<<I>n,6w [\I/E“,%Tn70]7=%> _=o(1) and <q>n,an [\115,,“%770]T=7n> —o(1)  (4.30)

Hg Hy



SIGN-CHANGING BLOW-UP FOR THE MOSER-TRUDINGER EQUATION 19
as n — 0o. By rescaling, it follows from (4.28) and (4.29) that

u?,n/ F' (B Fim + pin)) @, ()7 dz = O (1), (4.31)
B(O;Tn/l//i,n)

(000 Vel ),y = —Aabo () 2 [ 7' (Bin (i + 1s.0))

B(0,7n /i n)

X a’Yt [Efnmm (m + ,U,Z’nl')}

Hj
= D, (z)dx. (4.32)
Here again, we obtain an analogous estimate to (4.32) for the derivative in 7;,. By using

(6.2) and (6.3) together with the definition of y; ,, we obtain

0, [Bep vy (Tim + W,nm)]y:% — Zy (z) for a.e. x € R?, (4.33)

Oy, [Be,r, (Tim + binz)] . =0(1), (4.34)

Or; | Be, vin(r.0) (Tin + pin®)|__ = +o0 4.35
[ enYim 70)( )] T=Tin HinYimn HinYin ( )

as n — oo, uniformly in x € B (0,7, /). For every R > 0, since (:I;n)n converges strongly
to @ in Ll (R?), it follows from (4.24), (4.25) and (4.33) that

B [ B i+ 1002) 0, B (i + )], B (2) d
B(0,R)
Zo () Dp () d
8/ 87y (x) Do () 2:02
B(0,R) (1+ Aoho (0) |z]*)

as n — oo. On the other hand, by using Hoélder’s inequality together with (4.24), (4.25),
(4.31), (4.34) and (7.2), we obtain

(4.36)

(z)dx

Y=Tn

1 / f (Binm (Tim + pin)) 8y, [Be, v 7 (Tim + pin)]
A(0,R,mn /i n)
1/2
= O Hin/ f/ (Ez,n (Ti,n + ,U/z,nx)) d-T
A(OvRan/Mi,n)

de 1/2
) </B(O,R)C (1 + Auh (7)) |2 )2> =or(l), (4.37)

P 1/2
Zy (x) @g (x) dx o i » |
/B <~/B(07R)C(1 + Xoho (0) \1:|2 )2> r(1), (4.38)

©.0° (1 + Aaho (0) [z[*)?
where og (1) = 0 as R — oo, uniformly in n € N*, where A (0, R, 7,/ ) is as in (3.18). It
follows from (4.30), (4.32) and (4.36)—(4.38) that

Zo (x) Bo (z) d

/ 0 () %o (@) =0 (4.39)
R2 (1 + )\oh() (0) |£C‘ )

By proceeding in the same way but using (4.35) instead of (4.33)—(4.34), we obtain

/ Zy (x) Bo («) d —0 (4.40)
= (1+ Aoho (0) )
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Since @y € span {Zo, Z1}, it follows from (4.26), (4.39) and (4.40) that ®o = 0. For every
R > 0, by using (4.25) and since (®,) converges strongly to @ in L . (R?), we then
obtain

uin/ F (Vi Un + i) @2dz = 0 (1) (4.41)
B(0,R)
as n — 00. On the other hand, by proceeding as in (4.37), we obtain
u?,n/ F (VikUn + i) @2dz = 0g (1), (4.42)
A(0,R,mn /i ,n)

where og (1) = 0 as R — oo, uniformly in n € N*. It follows from (4.22), (4.41) and (4.42)
that

/ F(U) ®2dz = 0 (1) (4.43)
B(ﬁﬂ’n)

as n — 0o.
Estimation of I, in the annuli A (Tipn,Tn, Rn), where R, = exp(—7,). For every i €
{1,...,k}, for small p > 1, by using Holder’s inequality, (3.16) and (4.19) together with the
continuity of the embedding H{ (Q) — L2’ (Q2), we obtain
/ f/ (Un) ‘I)idx = (Hf 1A (TomornsBa) || 1o ||(I>7LHH1>
A(Tin,rn,Rn)

=0 (Il W) Lagrz ) =0 (1) (4.44)

as n — o0.

Estimation of I, in Qg, -,. By using (4.19), we obtain that (®,), converges, up to a
subsequence, weakly in Hj (Q) and pointwise almost everywhere in  to a function ®.
Furthermore, (4.19) gives that

/ (Y0, Vib) d — An / ho ' (Un) Dripda = o (1) (4.45)
Q Q

as n — oo, for all ¢ € C° (). By rescaling as in (4.22) and using (4.25) together with the
fact that ®,, — 0 in D2 (]R?) we obtain that

Z /B — (Up) ®pipda = o (1) (4.46)

as n — oco. By using similar estimates as in (4.44), we obtain

Z / / (Un) ¢, dr =o0 (1) (4.47)

as n — 0o. By using (3.10), (3.14) and since w,, — wo in C° (Q), we obtain that U, 1,
is uniformly bounded and converges pointwise to ug in §2. Since moreover ®, — ®q in
H} (), Ay = Ao and hy, — hg in C° (Q), it follows from (4.45)—(4.47) that ®g is a solution
of the equation

A(Do = thof/ (wo) q)o in R™.
Since wg is non-degenerate, we then obtain that ®; = 0. It then follows from standard
integration theory that

/ ' (U,) ®2dz = o(1) (4.48)
Q

Rn,7n

as n — oQ.
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Finally, by combining (4.43), (4.44) and (4.48), we obtain a contradiction with (4.20) and
(4.21). This ends the proof of Lemma 4.3. O

Proof of Proposition 4.2. We let N¢  r¢ : Vsl7 - VE’L%T and T; v 76 : Veﬁw — VE{Y » be
the operators defined as

Ne,’yﬂ'ﬂ (CI)) - Hé—'y T(A [)‘ h (f( £,7,7,0 + (I)) f (Ue,"/,r,a) - f, (Ue,'y,T,O) (I))])a
TefyTH((I)) L_7'\/7'9 (N&%Tﬂ (‘I)) Hj’yT(RE,%Tﬂ))

for all ® € V£ ., where R ;¢ and L. - are as in (4.1) and (4.17). Remark that the

equation (4.15) can be rewritten as the fixed point equation T; - ¢ (®) = ®. For every
C >0,e€(0,ef) and (v, 7,0) € P* (), we define

e ln’y6
ol < %55}

€

£,7Y,T

Verrp (O) = {cp eVt

We will prove that if C' is chosen large enough, then Ty , - ¢ has a fixed point in V;, -4 (C).
By using (4.18), we obtain

||T6,%T,9 (‘1))HH1 < Cé( HN&%T,G ((I))”Hé + ||R€,% )

For every ®1,®5 € V., .9 (C) and ¢ € V,

1) (4.49)

by integrating by parts and applying the

€ 'y T
mean value theorem, we obtain
<N £,7,7,0 (Dl) N,"/TG((I’Q) w>H01
= A / he (f' (Ueyro +t@1 + (1 —1t) @2) — [/ (Ue y,r0)) (91 — Do) Y

=X [ hef” (Ueryrp+ st®1+s(1—1)P2) (t®1 + (1 — t) Do) (D1 — Po) pdz (4.50)
Q

for some functions s,¢: Q — [0, 1]. Since A. — Ao, he — hg in C° (ﬁ) and f” is increasing,
it follows from (4.50) that

<NE,’)’,T,9 (Ql) - NE,’)’,T,Q (¢2) 7¢>Hé
=0 (/ F"(Ueyr0l +1@1] + [®2]) (|@1] + [P2]) [ 1 — Pa [¥] dfﬂ)- (4.51)
Q

For every p > 1, by using Holder’s inequality together with the continuity of the embedding
H} () — L?" (Q), we obtain

/ F (e yirol + 1®1] + [@2]) (|1] + [@2]) [@1 — P2 [¢)] dov

= O (IS (Ueirol + 1@1] + (92Dl 121] + ol g 101 = @all gy 14615 ). (4:52)
Since f” is increasing, we obtain

f” (‘Uam s + |<I>1| + |‘I)2|) < f//(ﬁfs,v,rﬁ) + fﬁ(a)a)a (4-53)

where
Ueyro = (14 6)|Ueyrp] and @ = (1+02") (|@1] +|®2]) -

Remark that @, — 0 in H{ (Q) as ¢ — 0 since &1, P, € Vevy,.0 (C). By using Hélder’s in-
equality together with the Moser—Trudinger’s inequality and the continuity of the embedding
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H} () < L% (Q), we then obtain
£ ()| = 2]|@e (3 + 202) exp (82) ] 2,
< 2y 3+ 2B 0 (B o)) (450

as € — 0. For every i € {1,...,k}, by remarking that " (s) < 6sf’ (s) for all s > 0 and
using similar estimates as in (4.24) and (4.25), we obtain

— N— N2
~ (T (T
f/l(Ue,'y,70<x)) — O ’yzi ):uz( ) ; 5 (455)
(7 (7 + o = =)
uniformly in x € B (7, 7.), where 7, (7) is defined by
fi; (1) = 43, (1) 2 exp (= 7; (7)%).

It follows from (4.55) that

1" (o) Lernn o = O (72 (D)7 ()77, (4.56)
where p’ is the conjugate exponent of p. By using (3.16), we obtain
L, =o(1) (4.57)

as € — 0, where R, := exp (—7,), provided we choose p such that p < 1/dp. Furthermore,
since Ue .- ¢ is uniformly bounded in Qp_ ,, we obtain

Hf// ([75,'7,7,0)1935,7 HLp =0 (1) . (458)
By putting together (4.51)—(4.53), (4.54) and (4.24) and (4.58), we obtain

INeryr0 (1) = Neiyir (8253 = O (7, (1) 75 (1) 1] 4 182l gy 01— Ball )
(4.59)

£ (Ueryrp) a0 R

Remark that since ®1, Py € V; 7.9 (C), we obtain
— — —2/p
i (1) 1 (1) [||®4] + [®a ] 173 = o (1) (4.60)

as ¢ — 0, provided we choose p such that 2/p’ < §; +1/2, i.e. p <4/(3 —201). It follows
from (4.59) and (4.60) that

[Nz 3,70 (21) = Ne 0 (22) [ p = 0 (1|21 — @2l 7y ) (4.61)

as ¢ — 0. By using (4.3), (4.49), (4.61) and since N¢ 79 (0) = 0, we obtain that there exist
g6 (0) € (0,e5(0)) and Cg = Cg (6) > 0 such that for every € € (0,6 (0)) and (v,7,0) €
Pk (68), T.. +p is a contraction mapping on Vz ., (Cs). We can then apply the fixed
point theorem, which gives that there exists a unique solution ®. ~ -9 € Vz 5 -0 (Cs) to the
equation (4.15). The continuity of ®. . ¢ in (v, 7,0) follows from the continuity of U. 4 - g,
Zoie 70 and Z1 ;e .70 in (7, 7,6). This ends the proof of Proposition 4.2. O

As a last step, we prove the following:

Proposition 4.4. Let eg and ®. .9 be as in Proposition 4.2. Then there exists 07 €
(0,1) such that for every 6 € (0,d7), there exists €7 (5) € (0,e7(9)) such that for every
e € (0,e7(6)), there exists (Ye,7e,0.) € PF(8) such that

UEv’YEvTEagE + ¢57'YE77'5795 = A_l [)\Eh’ff (U57757TE795 + ¢)5;757Ts795)] . (462)

The proof of Proposition 4.4 relies on the following:
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Lemma 4.5. Set
Es,'yﬂ',@ = Ue,’y,T,O + q)s,'y,rﬁ — A” P\ h f( £,7,7,0 + (P £,7,T 0)]
Then for every i € {1,...,k} and § € (0,1), we have

k _
_ . . am dc In7y,
<R€,’Y,7797 ZOJ,E,%T>H1 = —8m § :a i [EE(]')Y,T] ( E(J')y r 9]%2) 7 Eé ')y T ( =5 > ’
0 —

Ve

(4.63)

> 1)
<R€”Y7T"97 B577i17i>H1 = _87775 (Eéz')y T + eiie) +o0 (é) ) (464)

0 e

~ Ar 2 1 1
<Rsmne’ Zl,z‘,s,w>Hé =5 (aoln - = > — Tj) +o <2d > (4.65)
£ £ j#’L K3

as € — 0, uniformly in (y,7,0) € Pk (§).

Remark 4.6. As an evidence of the strong interaction generated by the Moser—Trudinger
critical nonlinearity, we stress that the variables 0 and ~ are intricately coupled in the ex-
pansions (4.63)—(4.65) used to determine (e, 0c,7:). This is not the case for 2-dimensional
Liouville-type equations (see for instance [3]), for which it is possible to construct blowing-up
solutions without introducing neither the parameter 6 nor the bubbles B; ., -, in V., (see
for instance [10] working also in the HE(Q2)-framework). Finally, even not facing a situation
with clustering or nonzero weak limit like ours, it is delicate to get a clean energy expansion
in the Moser—Trudinger critical case (see [6]). In particular, this expansion has to eventually
fit with the cancellation pointed out by [15] for the blow-up solutions.

Proof of (4.63). We start with computations that will be used also in the proofs of (4.64)-
(4.64). Given Z € H}(Q), integration by parts yields

<Es,'y,'r,07 Z>H1 = /Q[A(Us,'y;r,() + CI)E,'V,T,G) fs( €,7,7,0 + (I) €,7,T a)]de

0

where we use the notation f. = A\.h.f.! We now expand for real numbers U and R,

exp[(U + R)?] = exp(U?) exp(2UR + R?) = exp(U?)[1 + 2UR + O(U?R?)] (4.66)
uniformly for [UR| < 1 and |R| < 1 < |U|, so that, recalling that f/ (t) = (1 + 2t*) exp (%),
fU+R)=fU)+f (U)R+0 (UR?exp (U?)), (4.67)

and similarly for f. since A\;he = O (1). We apply this to

k k
U=Uepir=u+Y Bempr, + Vernr, R=®prg=3 0:Beryr+Prrp (4.68)

=1 i=1

to obtain

k
Je (Ua,%ﬂ@ + q)&%n@) fe (Ue €7,T 7+ fs (Ue €77 (Z 0iBe i r + Q&%Tﬁ)

i=1

+0 (exp (U2, U2, 82, ).

1We shall always write f-(U) instead of f-(z,U), ignoring the dependence on z.
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Recalling Proposition 3.2, and in particular that U, . , is an exact solution outside the balls
B (7‘7, re + r?), we get

<§a,’y,r,9a Z/ ) 577— fg( e, )] Zdx
fZ/m[ e — o (Uey )] Zda

Jj=177"¢
k
+ Z 9.7 /Q [A €,Y55T5 fE ( €7 T) BEW]‘)TJ] Zdx
j=1

+ / [A €,7,7,0 — fg ( £,Y,T ) q:’s,'y,‘r,@] Zdz

(/ |U5"/7'| eXp s'yT) s’y‘rGZ|dx>

k
=D [(A); + (A); + (B);] + (O) + (D), (4.69)

j=1

where QJ := B (7’1, Te + 7T ) \B (T;,7¢). We now set Z = Zy; - ~.- in (4.69) and estimate the
various terms.

In order to evaluate (A4) := 25:1(/1)1" expand as in (3.22)

Ueryr = Bepy, s+ BY) _+FY) . in B(7,7.). (4.70)

YT

Using Proposition 3.5 and omitting some indices, we get

By @)= B+ P, @) = 89, +0 (o F ) wm@ R

for all € B (7, r.), where the letters s and r stand for “symmetric” and “remainder”,
respectively. Using (4.70) and (3.33), we get

Z0,i = Z0jieyr = Oy, [Bey, 75 + R‘]
- a’Yi r5 Vi T] Eagj’zl T] + O (|'T - ﬁD ’ in B (ﬁ’ 7'5) ) (472)

where we also replaced O (|z —7;| / (2d.)) by O (|z —7;|) for simplicity. Using Proposi-
tion 3.2 and (3.20), i.e. AB., r, = AB., =, in B(7j,r.), we can write

(A)J = / [Ai RN fa( €,7Y,T )] ZO,idl‘-
B(E,T‘E)

We now Taylor expand as in (4.67) with

U= Eﬁ,’ﬁ,‘f;’a R = RJ = EE(?), +F(]),
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and since B, ., 7 is an exact solution in B (7, r.), we estimate

(A); = /B (BB ek () (B, )] Zosie

=0

— / )\5 (hs — ha (ﬁ)) f (E&*)ryj 7-,—7.) Zo,idx — / Agh/sfl (Eé‘,"/j 7-,—7.) RjZoﬂ‘dl‘
B(?j’rs)

B(7j.re)
+0 </ 72 exp (Eiﬁjﬁ)R? |20, d:v) . (4.73)
B(Tijf"s)

Observing that h. — h. (77) = O (|z — 7]), using (4.71) to bound F%) . writing

£ (Buoys) = O (7f (B ) = O (Fexp (B, ). i B(re).
and using |Zp ;| = O (1), we simplify to

(A)j T /B( ) Ache (ﬁ) f/ (Eeﬁj 777) Eg%rra% [EEPM Ti + Eg%ﬂ_]dx
‘I'j,’r‘E

+0 / 72 exp (Ei o) (|E§Q e ﬁ|> dx | . (4.74)
B(Tija"%) B o
Now write
8%’ [E&W 7T Eg’)y;r] = 51']'6% Efﬁi»‘ﬁ'] + a%‘ [Eg’)y,T]’ on B (ﬁ’ Tf) )

where d;; is the Kronecker symbol. Observing that

B, 7 (@) =By, (VA (@ —75)), where Ao j := Ache (75) (4.75)
with the change of variables \/A. ; (x —7;) = y and Proposition 6.3, we get

_ _ 1
Mejf' (Ben, = dx:/ 1 (B, dy—87r+0(), (4.76)
/B el Bemyae= [ (By) =

where ij is as in Proposition 6.1. With the same change of variables and Proposition 6.3,
we also get

— dr +0(1)
Aeif'(Be o7) Oy |Bepim dﬁ:/ ' By,) Zoqyidy = —————,
/B(n,rs) f'(Benm) O [Becnor] B(o,\/grg)f( ) Zody 72

where Zj -, is as in Proposition 6.2. Now, using Proposition 3.4, the dominant term in (A),
becomes

B sl (Benyim) (2 [BD) 400 [P, )

) 1 . 4 1
— —EU) ((SW +0 (72» 0y, [EY) ] - 514]4”?20())

€
. . 4 0e In7,
——50).. (370,159, - 8,25 ) 4o (257
v o Ve Ve
Concerning the remainder term in (4.74), again using Proposition 6.3, we have

/ exp (Ezﬁj ,T—j)ﬁgégdx =0 (755?) =o0 (W) )
B(.re) e
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and, with the usual change of variables and Proposition 6.4, we obtain

-2 _ _ 360 —283+0(1 380—262+0(1
/( P (B, )72 le =75l de = O (7?#%0 ol )) 0 (us o200l ))
B ﬁ""s

(55 ln'ys)
=0 — ,
Ve

where in the last identity, we used that o, *61“/2 and 38y — 208 > 61 + % thanks to (4.2),
so that

Mgéo 265+0(1) _ 0] (Z) , for any a € R.

€

We therefore get

.
(), = ~B4),, (370, (B8] - 055 ) +o (25T

1> ’yE
Summing over j, we then obtain

k

dr 0c In7,

(4)=>(4) 8WZE§Q 20y, [EY) 1+ B +o <5> : (4.77)
= Ve Ve
As for the error term in the annuli, we have from Proposition 3.2,
(Al)j = /Qj (Xs,‘r - )fs( s'yT)ZOzs'yrd:L'
hence, from (3.21),

i i _—28240(1) 360—262+0(1) 0c In7y

= Y0 (jaE ) < o () <o (ST was)
; Ve

Jj=1

where in the last line, we used that d. *(SIH/Q and 38y — 262 > 61 + 1/2.
We now move on to the estimate of (B ) Integration by parts and using that Us 4, is an
exact solution outside the balls B (ﬁ, re + r?) give

(B); = Qj/ [AZo,i = [ (Uey,0) Zo,i) Bz, oy dac

= 0]’ / 0 n [AUe,'y,T - fs (Us,'y,(?)] BE,’Y]‘,T]' dz

=0; Z / Ueryir = fo (Uery0)] Be vy

B(Tm. 7TE)

+0]Z 87 s'yT fa( 7’)’9)] 5'7717'Jd

QTYL
k
=Y [(B)jm + (B )jm]. (4.79)

Using the same notations as in (4.70)—(4.71) and using (4.66), which gives
f'(B+R)=f"(B)+ 0O (B*|R|exp (B?)) (4.80)
with

B= Em = BE,’Ym,va R=R,, = — pm + F(m)

E,7Y,T £,7Y,T?
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on B (T, 1), we can now write

Oy, (AU r = fe (Uey,7)] = 0y, [ABn] — fL (U,v, ) Oy, [Ue 7]
=0y, [ABn] = [fL (Bm) + O (Flexp (B )lle)} i [Bm + o]
=0y, [AEm—)‘EhE (m)f(B )] —I—O(’ygexp( )(‘m_7'7n| + ‘RmD . B m])

=0

[ (Bu) + 0 (F2exp (By) Rl )10, [Run] . (481)

where we have also bound h. — he (Tr;) = O (|Jz — Tn|). Expanding 0., [Ry,] as in (4.72), we
then get

(B)jm = _91' fé (Bs,'ym,ﬁ) B€,7j7T78% [Rm] dz

B(mﬂ'a)
2
] <|0j|7§/3( )exp (B ﬂmﬁm)(é + |z —Tn|)d )

hence

— d:In7%,
(B)jm = —0; 8%[ s'y‘r] /B( )fé (Bs”ymaﬁ) B&’Yjv‘fjdx"_o( sr;'75>'

€

Together with (6.11), for j = m, we obtain

_ 0 In7y
(B);; = —817.0;05, [Egﬂ)/ ] +o0 (:f) ,
while, observing that B. ,, -, = O (1) on B (7, 7:) if j # m, we get
0e In7y,
’Ys

(B)jm=0< >7 for j # m.

As for (B') jm, similarly as in (4.78), we can bound with (3.21) and Proposition 6.4
(B = [ (xeir = 105 e Wer ) By

_ 36028240 0c In7,
-0 (vg /Q £ (Us,v,r)||Zo,j,smfdfC> =0 (o) =o( =1 ) (4.82)

€

Hence, finally, summing over m and j, we obtain

k
(B) =Y (B); = —87. Ze 0., [EY) (‘“IW) . (4.83)

’75

We now estimate the term (C). Similar to (4.79), integration by parts and Proposition 3.2
give

(©) = [ 1820; = £ (Ueiy) Z0) ey rad
Q
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= Z /( a’h‘ [AUE,’Y,T - fs (Ue,'y,f)] (I)e,'y,f,(?dl'
B(=

j=1 T;,Te)
k k
Yy /Q 00 AUy = I (Ueiy )] ey gl = S0 (O), + ()]
=7l =1

We can now use (4.81), and with the same notations, we write

(C)J == /B( ) fE/ (E‘S"Yjv?j) a'yi [RJ} (psv’YvTvedz + O (L( )ig exp (Ez,'Yj 7ﬁ)

x ((lz =751 + [R;1) [0, [Bj]] + |R;1 10, [R]]) @s,w,f,eldJT)-
The main term in (C'); will be
(C1); = 0y, [BY) /] / i Bz ) ey roda
B(7jre)

= —0,, [Eg%'r] /B* )2'7jf5 (EEWJ"TT‘) Pe y.rodr
Tj,Te

In¥y _ _
+ O < 726 L( ) |2’Y.7f5 (BE’ij?j) - fﬁ/ (BE*Vjv?j) | |(I)57'Yv7-79| d{E)

€

- 72%8’” [Eg%,r] /B(. )ABE,%Tj(I)smT,GdI

+0 (’Ys /B( : |z — 75| f (Esm,?j) | ey 70 dx)

2

In%, —2 = —
+0 < —° / exXp (Ba,yj ,77-) |2'YjB€m,TT - 23577]-777 — 1} |®c,5,r0 dx) )
’76 B(?jwrs)

where we used that
Mejf (Beny,75) = ABey, 7 = ABey, 7, in B(7j,7e).
Since @, ., 0 L B4, 7, in H} () and ABc ;7 =0in Q\ B (7j,7.), we have
/ ABE,’Yj,Tj Pe y,rode = / <VB&’Y;'7T]"V‘I)E,%7'79> dx =0, (4.84)
B(7j,re) Q

and by Proposition 6.1,

2
Vi Be ;75 —

§8,’Yj77'7:0(1+t’)’j (_ﬁ)) ) inB(?jare)~

so that with a change of variables and Propositions 4.2 and 7.2, we get

_ —2
(Cl)j =0 (’Y?Tg/ )exp (Bem-,rj-) |<I)E,%T79| da:)
B(?jars

1 ~ S
0 (M [ () (4 o) )
Ve B(7j,re)
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In7, e 1n'y€
_o(r5||v<1>ewg|L2)+o< = ||V<I>5779|L2>—o< = )

€ €

Note that we crucially used the orthogonality condition (4.84) to gain a factor j-2. Again,
with a change of variables and Proposition 7.2, we bound

(Ca); =— /B( : f: (EEW_;’-,TT) Dy, [Ff:‘(]’z‘l'} De y r0da
TjTe

=0 </( ) fe/ (Ee,ﬂ/jﬂ-) |z — ﬁ| |‘I)E,’Y,T,9| dx)
B(7j,re

_ 0. 1ln~
-0 ( / L (Bey =) [@crm0] da:> = O (r||V®. 0]l 12) = 0 (”) ~
B(7j,re) Ve

Similarly, for some exponent a > 0 (which plays no role),

(C3); =0 (/B(‘ )72’ exp (E:xyj,r?) ((lz =751 + |R;]) [0y, [B;]] + IR;] 105, [R;]])

u —2
X |(I)€,’y,7',9| dm) =0 <(5s + Te) Ve / ( ) exp (Bs,'yj,?j) |(I)s,’y,~r79| dx)
B TjsTe

0 0c In7y,
=0 ((0c +72) 722V iy rplllz2) = 0 ( 757 > . (4.85)

As for (C');, in analogy with (4.82) (with ®. ., instead of B. ,, ;,), using (3.21) together
with the Holder and Poincaré inequalities, we bound

(Cl)j = O( f ( E'VT) |<I>5,%7-,9|dx) = (”f ( s'yf) ||L2(QJ)||(I)€’YT9HL2(Q))

1(360—262)+o(1 deIn%y
=0 (ué( 0= 28) kol )||V‘I>a,y,7,9||L2(Q)> =0 (675%> .

€

Summing over j, we arrive at
k

(€)= " U(Ch); + (Ca); + (Ca); +(C)] = 0 (56“;%> . (4.86)

= 72
As for (D), recalling that |Zg ;| = O (1), we bound

(/ |U7"/T| eXp s'yT (@277T9+29175> )

:O(/'yg’exp(UfVT) 8779d$>+20<92 /|UEV7| exp ( 577) )
Q

= (Dl) + (Dg)
We first claim that

/ exp (va S)dz=0(1). (4.87)
Q
Indeed, with the usual decomposition given by (4.70), we get

/ exp (U2, ,)dz =0 (/ exp (Biﬁ_ﬁ,)dm> =0 (12> .
B(75,re) B(75,re) o Ve
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thanks to the usual change of variables and Proposition 6.3. Then, summing over j = 1,... k
and also using (3.16), we obtain (4.87). Then we immediately estimate

(D2) = 0 (6297) = o (551;;%) .

As for (Dy), from Holder’s inequality and (3.16), we have
(Dy) = /Q Teexp (U2, )2, ; pdw = O (7§’| exp (U2, -)1a,. |, ||‘1>5,7,T,9||izp/)

) 0c In7y
=0 (R IV0rrall) =0 (575 ).

€

where p is sufficiently small and p’ is the conjugate exponent of p. Moreover, with Proposi-
tion 7.2, and the same change of variables used to estimate (C1);, we obtain

p— . 72
(D1); = /B - )7? exp (U2, ) ®Z 7 pda = O (vi /B ) P (BeijaTj)(I)ng,T,de)

0:-In7
=0 (7. |[V®eryrolle :0< - > 4.88
(7: 199 rall3) ) (189)

Summing up, we conclude

j=1

k; p—
(D) = YD) + (D) + (D) =0 (*557). (1.59)

72
Now, putting together (4.77), (4.78), (4.83), (4.86) and (4.89), we conclude. O

Proof of (4.64). We consider now (4.69) with Z = B, ,, -, and estimate the terms from (A)
to (D). Using (4.67), we get

(A)] = / - [AE&’YJ"T*J' - )\Ea.jf (Eet'Yj ’ﬁ)] BE»"/i,Tidx
B(7j,re) ~

_ / ( )AE (he = he (7)) f (Bery 7) Bemymda
B(7j,re

S —2
_ /( ) Aehe f! (Bemfj) R;B; ~, r,dz+ O </( )igexp (BE,,YJ_JJ,)R?) )
B(7;,re B(7j,re

where R; is as in (4.71). Similarly as in (4.74), we reduce to

()=~ /B( ))\E’j F' (Besy 77) BY) - Be
Tj,Te

+ O (/B( )751 exp (Eim,ﬁ) (|x -7+ 53) dx) '

In the case j =i we use that

_ In~
Beopri = Beryim, (1 +0 (HZE» . in B(F,r.). (4.90)

€
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(see Claim 3.1) and with the usual change of variables, taking (4.75) and Propositions 6.3
and 6.4 into account, we obtain

1 , _ _ 5
(4); = ( +0 ( n’Ye)) Eélzw/ /\6,ij (Bemﬁ) B, rdx+o0 (Z)

73 B(7,7re) Ve

1 . o
(o (e rmmae(l

’Yg B(0,4/Ac,iTe) Ve

ny, O R 1)

(87T+O< 2 )) 7.B% 4o (7) — _8r7.EW  +o (7) |

For the case j # i, we use that B. ., -, = O((In%,)/7.) in B(7j,r.) and with the same

computations, we obtain
1 , — 0 1)
;=0 (252 ) 184, 7@ aro (%) =0 (%)
v B(07\/ )\E,j""s) P)/e ’75

g

so that summing up we conclude

k
de
=> (A); =-8m7.EY)  + (2> : (4.91)
= 7z
As for the annuli, similarly as in (4.78), we bound

W)= [ Oer =D Un) B o =0 (@ 550) o () aom
uk_

Ve

We now turn to the estimate of (B). Using a Taylor expansion, together with (4.66),
(4.70) and (4.71), we write

(B)jm :=0; B(rmre) [AB&W,U — fLUey,r) Be,“/j,fj] Be 5, 7

=0; / - [‘5ij§€,%‘ = I (Eewm,ﬁ) Bs,'vj,‘rj] Be y; 7id

_ —=2
+0 <|9J|/ 72 exp (Bemn,Tm)RmBE,,%Tidx) .
B(Tm,re

With Propositions 6.3 and 6.4, we estimate the last term as o (65/75). For j = m =1, still
with Proposition 6.3, we compute, keeping (4.90) in mind

0; B(Fre) [As,if(Eiﬁi,Tﬁ) - fé (EE,%"IT') BE,'Yi’Ti:I BE»"/iﬂ'idx

= —8m0;72 + O (|6i|7.) = —87652 + o (i;) )

while for j # m, or j # i a similar computation based on Proposition 6.3 and (4.90)
gives (B)jm = 0 (0./77) . Considering the integral in Q,_ ., where AB. ., -, = 0 for every
j=1,...,k, we estimate with the help of (3.16),

(BY)jm = 0; fe(Ueyr) By Be i midac
B(Tm ;R \B(Trmre )

, 5
=0 <|9j|yg/ exp (UfmT)dz) -0 <2> ,
B(ﬁaRa)\B(ﬁ;Ta) ’YE
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where R. = exp (—7,) and, since B. -, -, = O (1) in Q\ B (75, 7.), still with (3.16), we get

(B85 [ L Uerr) By B = 0 (85 =0 (5 ).
QRr, + Ve
In conclusion, we have proven that
b 5
(B) = _[(B)jm + (B')jm + (B") jm] = —87077 + 0 (%) . (4.93)
j=1 €

To estimate (C), we integrate by parts to obtain

(C) = / [AB: 7, — I (Uey,7) Beyi i) Pey 7 0de = _/ f: (Ue,,r) Beysri ey, m0d,
Q Q

where we also used that ®. - ;¢ L Bc ., -, in H}. Using (4.80), we write

(Ch)j = — /( : fl (Uey,r) Be i ri ey r0da
B Tj,Te

= _/ ! (Ee,w,ﬁ) Be i 7 Pey,r0d
B(?jvrs)

= —2
+0 (/( )vi’ exp (BW,T].)|RjB€%Tiq>EW’0|> .
B(.re

=0(6:/72) as in (4.85)

Then, recalling that [’ (s) = (1 + 252) exp (52) = 2sf (s) + exp (32), which gives

(Ch); = 2/3( Ee,’mﬂfa (E&’UTJ) Be ;7 ®e y 7 0d

_ —2 1)
+0 ('Ye /( )exp (Be,"/jﬂ) |Pc,y,76] dac) +o <62) g
B(7j,Te

€

and using Proposition 7.2, we obtain

B 9 VO, ., 6 1)
'75/ exp (BE’%,T—J_) |<I>€’%T)9| dr =0 (H 51 HLz) 0 (52) -
B(7j.r2) e e

Using Proposition 7.2 again, we simplify

(Cr)i = 2%‘2 / ( : Aehe (T7) f (Eemﬁ) Py, rod
B(Ti,re
+0 <’Y§/ |z — 7| f (Esm,ﬁ) ‘(I)E«,%T,9| dx)
B("ﬁﬂ’z)
_ - e
+0 (1+ by (x—7)) f (BE,%,TT) |<I)E,%T’9| de | +o ?
B(7i,re) €

— 1 d
= 2%‘2/ ABc ;7 Pe y rpde + O ((Ts + 2) |V(I)87%T79||L2> +o (Z) ’
B(73,re) Ve €
where the last integral vanishes thanks to AB.., 7 = AB.., . and to the condition

B 7 L ®.4 9. A similar computation holds on B (7j,7), where we can use that
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Be .- =0(1) if j # 4. Hence

=3, =(fi)

With (3.16) and the Holder and Poincaré inequalities, we now bound
k

(Ca); = —

j=1

/ fgl (Ue,’yﬂ') Be,'yi,n q)s,'y,r,ﬂdx
B(?ija)\B(?ijE)

k
>0 7 exp (U2, ) ronsm.oll o 120l L)

Jj=1

V@E ,T 2 £
_O<|| en 39||L>_0(52),
Ve Ve

upon choosing a > 3. Again with (3.16) and the Holder and Poincaré inequalities, and
observing that U, 5 = O (1) in Qg_,, we get

(C3) = _/ fL(Ue o) Be i @e ym0da
QR+

IV
e roll) = O (

) ()
Ve 72)’

where p is sufficiently small and p’ is the conjugate exponent of p. Adding up, we conclude

(C) = (C1) + (C2) + (Cs) = o (5) . (4.94)

€

O (0 (U2,,)Beryr o |

Finally the estimate
1
(D)=o (Z) (4.95)

follows exactly as the analog estimate in the proof of (4.63) (replacing Zo i ~,r by Be~;,r)s

since all the terms contain 67 or ||V<I>€)%T,9||2LQ, which actually allows an estimate of the
form (D) = O (8./72) for every a > 0. Now, putting together (4.91), (4.92), (4.93), (4.94)
and (4.95), we conclude. O

Proof of (4.65). We now use (4.69) with Z = Z3 ; . .-, and again we need to estimate the
terms from (A) to (D).
We start with some estimates of Z ; := Z1 ;¢ 4,~. From Claim 3.1, we have

aﬂ [ ”YHTL a‘rl r 7’)'1,71] - C 3’YL7TL] + 87' [ 7'YiniH(.’?i)]

= aﬂ IEEKY'iﬂTi:I +0 (ﬁy) ) in B (71‘77"5)-

Now, recalling (3.19) and using (3.15), we write

1
Zl,i = 877 [BE,’Yiﬂ'i] + aTi [\IIEJY,T] = 8Ti E&’n,ﬁ] + 0 <> = Zil,i + Z1T7i’ (496)
g
in B (7;,r.), and with (4.75) and Proposition 6.1, we estimate
2 Al —m 1 1 . _
Zi, = ——=—= (#1 — ) 5 +0 <3> , in B(T,re), (4.97)
T Y+ A |r - T Ve mi + o =i
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where p; = p,, = ﬁ?(’“’ is given by (6.1), while directly from the definition of B. ., -,
Claim 3.1 and (3.15), we also obtain

@M@ =) (1Y o\ e

which can be specialized to

1
Z1;,=0| = , in B(7j,7e), forj#i. (4.99)
' 75d5
Let us also write from (3.32),
PO @) =4 - +o () B, (4100)
where
; 2 1 1
A;Z_ :aole_l—f O< >
' Ve T T Vede

With the help of (4.70), as in (4.73), we can write

(A4), = — /B L Delhe=he(m) S (Bon, =) Zy.da

B(Tijv"%)

- /( ) )\E,jf/ (Egyryj’?j) RjZLidl' - / )\5 (hE - ha (ﬁ)) f/ (Es,wj ’7—7) RjZLid.’E
B(7j,re

+0 (/ 72 exp (Eim,rj)Rﬁ |Z1, dl’) =: (A1); + (A2); + (A3); + (Aa),
B("Tj""a)

where R; is as in (4.71).
We start with the main order term, which turns out to be the one involving Fé% and
which we write, using (4.97) and (4.100), as

(Ag)z = /( )fs/ (EE,vi,ﬁ)Fzz(,if)y,rZLidx
B(7i,re

AL _ 2Xe.i - )’ !
= 7i\/ )‘s,if/(Bs,’Yiniz‘) < 2 = (xl Tl 2 +0 () >dm
- B(Fre) 3 —+ )\571' ‘(ﬂ — Ti‘ Ve

1 / —
Yol Neif' (Bey=)de | .
<7?de B(7T,re) : ( = ) >

With the usual change of variables /A ; (z —7;) = y and using (4.75) and Proposition 6.3
together with v; =%, (1 +0(1)) and Aﬁfl =0(1/(7.de)), we get
ALY _ 22 1
(Ag)i:_ = / f/(B'Yi) (212+O(1)>dy+0(2)
Vi JB(0/Aeire) w; + 1yl Vede
4 1)AY) 1 4w AL 1
(47 + o(1))AS —|—0( >:_7rs, +0(2 )7
Vi Ve Vede

J2de
For j # 4, using (4.99) and Proposition 6.4, we get

=0 ([ 0 B 80 )
B(7j,re)
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— -7 1
=0 / {(Beny ) Tl Ly,
( B(75,re) f ( = J) ’YEdE ’YEdE

1 — 1
(736@ B(0,y/3es7e) (B b RECE

Using (4.96), canceling the integral of the anti-symmetric term and using Proposition 6.3,
we get

(AB); = — / o B Benr) B2+ 2

B
<| €,Y,T | / )fE ’yL,T1> >

_In¥ _ 1
=0 > 31’75 / fL(By)dz | =o () .
’75 B(07\/Agyi/r‘5) Wad

When j # i, we have thanks to (4.99),

(47); =0 (/ f(Bepy, ) |EY) [1Z1,4] dm)
B(Tj,re)

0:In7y. 1 — 1
=0 —r;%— fL(By,) dx :0<2 )
Ve Fede B(0,4/ e, ;7<) yid.

We now estimate (A4;1). Using that h. — h. =0 (|Jz —7|) in B(7,1e), by (4.97), we
have

1
|(he — he (7)) Z1,:] = O < > in B (7,7.), (4.101)

and with Proposition 6.3, we estimate

1
A i — O f/ i Tl
(A1) <’7€ B(ﬁrg €%, )

0 ( f(B-,) dy)
Ve JB(0,/Aeire)

-0(%) =(zz)

Observe that this says that thanks to d. = o (1), the term Vh. (7;) does not play a role,
contrary to what happens when the blow-up points are separated by a finite distance. For
J # i, with (4.99), Proposition 6.4 and the usual change of variables we obtain

1 — - 1
(4); =0 (vgda /Bm,w f (Besy z) lo =51 dx) -0 (7?%) '

Similarly, one can bound with (4.97),
—_ / ].
(A3); =0 |z = 7| f' (Be s, n)|R|f7de
B(rire) Ve lz =il

1 — e Iny, |z —T 1
-0 f/ f’B,im<55+ dz | =o ,
<75 B(7,re) ( = ) ’YS 'Yada ’-Yed
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where we also used Propositions 6.3 and 6.4. For j # i, an easier estimate holds, using
(4.99) instead of (4.97), and h. — he (7;) = O (r.), so that

— deln7y, |z —T;] 1
_ O / BE = £ J d — ,
( ) <’st /B("'j,ra) f ( T J) ( ﬁg - WsdE v ¢ ngf

As for (A4);, using that ’E(m | = 0(53 (In7.)? /WS) = O(ﬁz51+1+0(1)), and ¢ =
0] (ug( )) for every a € R, we bound

—2 1
(AE), = O | g20rt1+e)) / exp(B. ., —)———dx
; o Beoir) oo =1

_ 1
=0 7261"’0(1)/ exp B2)dz| =0 2oty = ¢ ( ) ,
( B(0,\/Ae.ire) (55) ( ) ¥2d.

and, similarly, for j # i,

. 1
AEY. — 0O ﬁ261+1+o(1)/ exp (B . de ) = o ( > _
( : )J ( c B(75,re) ( o 7)75d5 ngs

Using that F(jv)r = O(r:/ (7.d.)), similarly as in the case of (AF);, we obtain (A%}); =

o) (VQT) , including the case j = i. Summing over j, we obtain

4mAl) 1
A)=3"(4); = -~ +0<2 > (4.102)

= Ve Yede

It remains to show that all the remaining terms are o (1/(2d.)).
Let us now estimate (A’). By (3.20), (3.21), (4.98) and (4.99), we have

k 200 +0(1), 2
Z/ |fe (Uepy o)l Z1,ilde | = O e p .
=1 0l Y

g

1
— O (722t , 4103
( ) 0 ﬁgde ( )

absorbing powers of 7, in the term ﬁg(l) and using that 209 — 262 > 0.
We now estimate (B). Since AB. ,, -, = AB. , 1B r.), We have

Zl Zdl‘

€757

(BT)J = 9_7/ ABgﬂj,Tj Zl,idx = Gj AB
Q B(?jvre)

Then for j # i, together with (4.99) we obtain

o B (z2)
0; AB.. ~Zyde=0 [ 24 B =)de)| =o(——).
) R ! <75d5 B(rj,rg)f( .7) y2d.

For j = ¢, we use the anti-symmetry to obtain
9i/ AB. ., 721 idx = 91‘/ Aeif (Beryis) Beyim (21 + 21 ;) da
B(7i,re) B(75,re)

_ _ 1
=0, )\Ewif(BE,,yiﬁ)Bs_’.yiﬁDﬂ\Ilg’%rdx =0 <2) .
B(ire) Vede
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In order to estimate the second term in the integral in (B);, we start with the integral away
from the blow-up points, and using (3.17), the definition of B, ,, , and (3.10), we get

Lr

1
N=0/(16;17 —o——
Lr ) ( J|'Ya Lp’) ? ('Ygde) ,

where p is sufficiently small and p’ is the conjugate exponent of p. It remains to estimate

(B)) = Qj/ﬂ FrUeyr) Beyy iy Z1adae = O (105 | £2 (Uey.7) Z1ila, .

1 C
jln

% || Beyr, LonB () =

(B)jm = Qj BE’A/J.’TJ. fé (Ue,'y,r) ZLZ'dLL'.

B(Tm,re)

For m # 14, it easily follows from (4.99) and Proposition 6.3 that

|0j| / / 1
B jm — £,7Y,T d = S, |-
( )J O ( ds B(Timﬂ"s) fE (U 3> ) xz O 'Ygds

The case m = 4 is more subtle. Using (4.80) to split

(B)ji =0; Be ;7 fL(Be i 7) 21 idx
B(?iars)

_ —2
+0 <|9j72/( , P (B i) | Ril |Zl,z'dff> =1 (B1)ji + (B2)ji-  (4.104)
B(Ti,re

Now, writing

_ s g
Ba‘mm - Bem,n + Bsmaﬂ"

where
557%:77'1‘ = E&’Yfﬂ'ﬁ' - O&’Yi,‘ri + Ae,’yi,ﬂ:H (7'77 ?z) ,
R ) -
B;»'Yi,‘rq‘, = AE»’H,‘H (H (aﬁ) - H(ﬁaﬁ)) =0 <| 5 Z> , 1n B (TZ-,’)"E),
€

and also using (4.96) and (4.101), we get
(Bl)” = 01 /( )B:’%7_7)\5774f/(§577“?1)21aﬂd$
B(Ti,re

_ _ o 1
+o (1o P (B (1472 = T 21 ) =0 (- )+ (4.105)
N €
—0(1/7.) )
where we used skew-symmetry to cancel the first integral, and the usual change of variables
to estimate the second one with Proposition 6.3. When j # 4, a similar approach gives

B(7i,re)

analog results, with the splitting of B. ., -, = B . B, . (2), where
B;,’Yjﬂ'j = AEv'YjvTjG (ﬁa 7_7) )
T = = — w27 =
BE,’YJJ'J' _AEWJ’TJ‘ (G(Tj’aj) _G(ijTi)) =0 7.d , 1nB(7—i»r5)»
ge

which allows to cancel the symmetric term and obtain
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As for (Bs)j;, the term involving FE(IW)T can be estimated using a similar approach as in
(4.105), since Fs(ﬂ),T () = O(Jx — 7| /(F.d:)) in B (7, 7). In the term involving Egz” =
O (6-In%,./72), we use the estimate

1 1
71 :o( ):o L 4.106)
121 Ve (pty, + |2 = 7)) (ui““)) (

CAEE 1
(B2);: =0 =o| = )
’ e Ved.
Summing up, we conclude

k
5=y

Jj=1

to finally obtain

~o(z27 ) (4.107)

To bound the term (C), let us start by observing that ®. .o L Z;; implies

k
(BN + (B); + Y _(B)jm

m=1

(Cl) = / A@EW’TVQZde = 07
Q
so that it remains to bound
(Co) = _/ fe/ (Uey,7) Pey,r,0 21 0d.
Q

Observe that a rough estimate on B (77, r.) using |Z1 ;| = O (1/f.) would lead to an expo-
nentially large error term. Therefore we have to be more subtle and use again the Sobolev—
Poincaré estimates which follow from ®. ~ -9 L B. ~, ,. We start by noticing that by (3.17)
and the Sobolev embedding, we have

(C3) = 7/9 f; (Usmf) P y,r021,dr = O (Hf/ (Usmf) Zl,ilQTE,r ||Lp

- 6:In7 1
<Ieiyrall) = 0 (G 90 mall ) = 0 (F222) o ().
Ve Vede
For j # 4, we bound with (4.99) and Proposition 7.2 (which we can use thanks to (4.84)),

(€]); = —/( )fé (Uey,7) Z1,i%e 7 0dx
B(7j,re

1
_of_ / P (Uer ) [Beymol do
(%ds IR AUSSICEY

||V(I)e,'y,r,0| 2 e lnig 1
o(Fpt) o () <o ()

We are left with (C’;r ); which we expand as in (4.80), giving

(Cg)l = _/ fé (Egg')’i’?i) Zlvi(bef‘/f‘rsedx
B("Tiﬂ's)

o] w0
B("Tiy"‘s)

(BY) .+ F;fgﬁ)zuéswﬂyda (4.109)
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The remainder term in (4.109) can be estimated as follows. By (4.97) and (4.100), we get
|F5(7A),,TZM\ =0 (1/ (¥2d-)), and we use Proposition 7.2 to obtain an error term of order

Ve yrollez\ 1
O( 5.d- —°\F4. )

As regards the term involving Es(lz,T, using (4.106) and Proposition 7.2, we obtain an error

term of order
55”V¢)577—9HL2 —25 1
e VT _ O( 1+o(1)) _ )
( ) e *\ 72

The first integral in (4.109) can be estimated by using (4.96) together with the estimate
(he = he (73) )07, [Be,y,7) = O (1/7:) to obtain

/ fgl (Ee,’yi,ﬁ) Zl,i(I)s,'y,T,de = / )\E,if/ (Ee,m,‘rﬁ-)aﬂ [Ee,%,rﬁ-] ®E,’Y,T,9dx
B(‘IT‘,TE) B(‘IT,’I"E)

1 S

+0 (/ fI(BEm,TT) |Pe .70l da:) =: _(Cg)i +(C3):-
Ve B(Ti,re)

The remainder term (C%); can be handled as in (4.108), giving

||V<I357.,-9||L2) < 1 )
C’r’ 7’ — O IR RS — .
() ( Te *\F2d.

Then we are left with the term (C% )i, which is actually more subtle to bound. Let us
first rewrite it as

(Cg)l = _/ )‘E,iAZI,i(I)E,"/,T,dea
B(?ivTE)
using that
AZys = 07, [AU. o 2] = 0y, [ABenym] = A, [f (Bernm)] s in B (712

i

In order to estimate (C’ét )i we start by observing that the orthogonality condition Z;; L
@, , 0 and integration by parts imply

0= / <VZl,i, V(I’a,'y,f,9> dr = / AZl,i (1)57%7—79d33
Q B(ﬁars)

+ / AZy; e rpd + / (0,217 — 0, Z5%") ®e y,r0do. (4.110)
Q\B(‘ﬁ,rs) 83(?737745)

Here v denotes the exterior normal to 9B (77, r.) and

2 = Dl 215 = Zuilovse)-
Note that the boundary integral in (4.110) is in general non-zero because B; -, -, is C* but
not smooth across 9B (77, 7:). Now we reduced the estimate of (Cét )i to

(ch, = AZy i @y pds + 0,7 — 9,7 d. ., - gdo.

2 s YTy 1,2 1,4 sV Ts
O\B(7i,re) 0B(7i,re)

Now using that

AZl,i =0y, [AUE,’Y,T] = 0r, [Xs,rfs (UE,’Y,T)]
= 87'1‘ [XE,T] fs (UE,"Y,T) + X&,ngl (UE,’y,T) an [Us,'y,r] , inB (?za 7"5) .
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from (3.17), we obtain

r 0 (75)

for some p > 1, hence with the Holder and Sobolev inequalities

|AZ1 10\ B r.)

/ AZy; Peqyrode = O (|| AZ1iloy B ) Lo [®c~,r0ll 10)
Q\B(77,7e)

_ 1
=0 (’ys |\V<I>57%779||L2) =0 <75d5) .

Observe that D, [¥. . ;] € C* (Q), by elliptic estimates (the function . , in Proposition 3.2

is smooth), hence we get

O, Z{" — 0,255 = 9,0, [B™ ] - 0,0, B ] (4.111)

€,YiyTi EYisTi

Using the definition of B. -, -, and (3.12), we compute
9,0, [Bmt ] = 0r, [&/Bim ] = 0r, [avgsmﬁ] + 0r, [au(Ae’vi,nH(',Tii))]

€,YiyTi €,Yi»Ti

— 1
=0, [6VBE,%,TT-] +0 (,yg) :
Similarly,

aﬁﬂ&%A&{AW“@Qn]L>%aammmeumn

27 |z — 75|

A 1
== —87[ 777“ L + O p—— .
" 27| -l Ve

Now in order to compute the difference of the two terms in (4.111), set

A 1

€,%Yi,Ti ln
2 |z — 7]

Ve, i, (LC) =

and Note that v] (re) = B _ (r2) by the definitions in Section 3.1, where with a little

€%y Ti €:YiyTi
abuse of notation, we use the prime to denote the radial derivative from 7;. Then, with a

similar abuse of notation

-/
1!

— B, —(r) _ _
_Bs,'yi,‘ﬁ (TE) — SR E = ABE,%,TT (Te) = )\s,if (BE,%,TT (T5>) P

Te
vl (re)
_’U‘/E/,'nﬂ'i (Ta) o 67%;—1 = Avav’)’iﬂ'i (TE) =0,
£

and subtracting we finally estimate

1

0,217 = 0,25 = O (Bl = () = 1 ()

=0 (f (Bepm (re))) + O <1> =0 <;ﬁ‘551+°(1)> . (4.112)

Ve

‘We now claim that

1 — o
LB = O <7"e\/111 —+ ”vq)e,'m—,@'Lz) = O (petem). (4.113)

||<I)5,%T,9
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This, together with (4.112) allows to bound
||®€770||L1 OB(F
8,23 — 8,75 ®. ., 1 pdo = O P L (OB (Tre))
[— ) der 0

_ —80—255+0(1)) _ 1
_O(ﬂa >_O<%d>'

This completes the estimates of (C3);, hence

K 1
@ =@+ + D [ehs+chy] =o (z22)- (1114)

In order to prove (4.113), set ® (y) := ®. -+ (T; + rey). We then have

||V(I>HL2(B(0,1)) = ||V(I)6»%719|‘L2(B(ﬁ,ra)) )
By the trace inequality, we get

@70l L1 (B )

2D [l g5 =0 (I ¥y

&)dy
1B(0,1)] /o1

(4.)115)

since the right-hand side contains a norm equivalent to the H'-norm. Now, by the Jensen
and Moser—Trudinger inequalities, we have

2
1 1 ~
exp _ <I>dy < — / exp (®?)dy
<|B 0, D] JBo,1) ) 1B(0,1)] /B0, (%)
1 1
= P2 dr <
TTe /B(ﬂ re) P ( 87%7—79) v TTe

It follows that

1 / ~ 1
. ddy| < {/In
|B (0, 1) | B(0,1) TTe

and (4.113) follows at once from (4.115). This completes the proof of (4.114).
We finally estimate

/‘Ua"/, | exp 5'y7— E’YT9+ZQ2 €,74,Tj |Z1,i|d$
:O(/ |UEWT| eXp e'y‘r) 67,7’9|Z11|d$>
k k
+Zo<9ﬂ€/ Ue | * exp ( MT)Z“dx) =:(D1)+ Y (D

Jj=1 j=1
For every j € {1,...,k}, with the rough estimate
Z1;=0 (p3') =0 (r W), in B(7,r.),

we obtain as in (4.88)

3
(D1); = /B( )|U€W| exp (U2, )92, |21l dx
T]' Te
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=0 T (B2, . )®2_ _,d
B ﬁy_o(l) B(75,7¢) SR ey ) Feanm ot
V@ - r6l2 52 o5 1
= O RS RLASAaLE = O € = O M 1+O(1) =0 .
( T T (7 ) y2d.

Similarly, with (3.17),

(D= [ Wl ex0 (U292, 10121,

9 1
%@ ralfr ) = O (2 IVPerroll}s) = ( 20 ) -

As for the terms involving 6;, we can use the rough estimate Z; ; = O (* Ho(l)) to get

(DQ) 0]76/;( |U€’YT‘ eXp( s'y'r) |le|dl'

Tm,Te )

92 —2 1
<M1+0(1) ( Brmr) ( s ) )) (7 ) ~2d.

while in Q,_ -, we can use (3.17) with p =1 to obtain

_ 1
D3); = 0372 [ Wl e (02,) [20s1 s = 06378 = o (1)
Q Vele

Te,T

(%Hf €., Zlﬂ’lﬂv-a,fHLP

Summing up, we obtain

: RS : 1
=Y "(Dy); + (D)) +;1 [(Dy); (D)]—o(7§d€>. (4.116)

Jj=1

Now, (4.102), (4.103), (4.107), (4.114) and (4.116) allow us to conclude. O

Proof of Proposition 4.4. We claim that for § and e small enough, we can find (7., 0, 7:) €
PE (8) such that

<R57’Ye 1Tes0e ZOJ»E/YsyTs >H1 = <R57'Ys77's795 ’ BEv'stTs> = <R57’st7—6705 ) Zl,i,s,’ys,*ra >H1 = 07
0 0

(4.117)

Hj

fori=1,...,k, so that
HE”YE7TE (UEKYa:Ta"ga + ¢5"Yss7'ay95 - A ()\ h‘ f( €,7e,Te,0c + (I) 77577'5,05))) = 07
hence, together with Proposition 4.2, U . r. . +®c ~. . 6. is a solution to (4.62). For every
7 €TF(8) and v € T¥ (1), let us set 4 := v — 7, () and
= . . . e
B = {3 = G i) € 0,00 s il < 2 Wi i b

€

and define (L., M., N.) : P (6) :=T* x ©F x T* () — R3* as

. 1
Lz(%T@) 87< s’y‘rt?vZOZE'y'r>H1
0

k (i) _
E:j - dc In7y,
;:1 0y, [EY) ) (EY) . +60;7.) — 2 +o0 ( = ,

£
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i (4 1 53 i = de
M; (¥, 7,0) = _87775 <R57%T-,9? B€7Vi,Ti>Hé = Eé,')y,‘r + 0. +o (g) )
» T2d. / )\ 2d
NZ(y,7,0) == *’YLTE <Rsmf,6v Zl,i,sm7'>H1 = aol <d) o Z T _87-, +o(1)
0 : g#

fori =1,...k, where the error terms in the right-hand sides are uniform for (¥, 7,0) € 1351C (6).
(Note that we wrote 4 in the left-hand side and ~ instead of 4 + 7, (7) in the right-hand
side for simplicity, so that for instance the terms Eéj»)” should be read as Eg(ji (1) 2)

We claim that T

deg ((Le, M., N.), P¥ (6),0) #0 (4.118)

for 6 and e small (to be fixed), where deg denotes the Brouwer degree. Let us consider the
homotopy (L%, M!,N?): P¥ (§) — R3 with Lt = (LL!,...  Lt*), etc. defined by

i W) 1(EW) _y_ B
a’w [Es,'y,r] (E + 9j78) -

LY =1 —t) L. +tLl, I.:=

M=

. €T ~2
= 27;
MY = (1= )M, +tM;, ML= B +67.,
‘ , ‘ , - -1 2
NY' = (1—t)N. +tN:, N.:=aol () - —
d. xRl

fori=1,...kand ¢ € [0,1]. We first show that (L%, M!, N*) # 0 on OP* (8) for any t € [0,1]
if ¢ > 0 is sufficiently small. Otherwise there would be a sequence ¢, | 0 (which we still
denote by ¢), t. € [0,1] and

(3, 0c,72) € OPF, ie. 4. € OTF, or 6. € 9OF, or 7. € OTF (), (4.119)
such that
(Lég (’3/87 O, TE) , Mgs (’3’57 O, TE) > N* (’3/67 O, Ts)) = 0.
Then, multiplying M= by 9., Egﬂ),aﬁs, subtracting it from L' for j = 1,...,k and using

Proposition 3.4, we obtain (upon multiplication by 2%2)

. In~
EQ | :o(‘“fﬂ) fori=1,... k. (4.120)
)y lesle /.YE

Plugging (4.120) into the equation for M!=¢ we then obtain
5.In%
6. — o ( ETE> , (4.121)
Ve
hence 0. ¢ 9OF. Now (4.121), the equation for L!** and Proposition 3.4 yield

k 2 _
, ‘ 5.1
N0, [BY),, |EY). . o(“lS%) fori=1,...,k (4.122)
— v /esxlE y JexlE ,.YE

Jj=1

We can rewrite (4.122) as

5. In¥
QeEep.pr. =0 (E;%) , (4.123)
€
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where, taking Proposition 3.4 into account, Q. = (ngij)1<ij<k is a k X k matrix with
Qeij = Qij+0(1) ase — 0 and

1 1/t ... 1/l jos)
/1 ... 1)1 &eTe
Q= (Qij)lgi,jgk = . . I Eeror. = (4.124)
’ o (k)
0 10 ... 1 Ee s

Now, since

k-1 1\
dethdetQ+0(1)<1+l) <1l> +0o(1)>0

for £ > 0 sufficiently small, uniformly with respect to (7,8, 7) € P (§), we can invert Q. in
(4.123) and get

. In~
E® :o(‘m), fori=1,... k. (4.125)

€,Ye5Te 72
On the other hand, still by Proposition 3.4, we have

In% In¥
EE, e Te — -2 — EQE’?& +o <|’?E| — E) ’
Y 72 72

€ €

where we recall that 4 = v — 7, (7). Then, inverting Q. and using (4.125) we end up with
4e = 0(6¢/7.), which, for € > 0 sufficiently small implies that 4. ¢ 8?5.

Finally, writing 7. := 7./d., we have N’ (7.) = o(1), where N = (N!,...,N¥) is as in
(4.130). On the other hand, 7. € 9T () implies 7. € OT* (§), where

_ k k
T (8) == {y:(yl,...7yk)€Rk: s <m<m <o <g <
and |y; — y;| > 6, Vi,je{l,...,k},z’;«éj}, (4.126)

which is compact and this contradicts Lemma 4.7 for § = 0 (ao, !, k) > 0 sufficiently small
such that y* € T%(8). Then we also have 7. ¢ 8T* (&), which contradicts (4.119).

We have therefore proven that (L, M!, Nt) # 0 on dPF (§), for ¢ > 0 sufficiently small,
hence by homotopy invariance of the degree

deg ((Le, Mc, N.), P¥ (8),0) = deg ( (L., M., N.), P¥ (9),0). (4.127)

The degree of (ZE,ME,WE) does not change upon multiplication by an invertible matrix
with determinant 1, namely if we consider

26 Iy —Dy[Ech -] 0 zs
ME = 0 Ik 0 Mg Pl
N, 0 0 Iy, N,

where D, [E. ~ ;] = (6% [Eg’)ﬁ"'])1<ij<k’ I}, is the k x k identity matrix and L.: I?’Ek () —
RF, is defined by Li = fEéf%, fori=1,...k, we get

deg ( (L., M.,N.), PF (5),0) = deg (L., M., N.), P¥ (6),0).
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Expanding EéZ%T as in Proposition 3.4, we do a final homotopy between (Eg,ﬂg) and

(Lz, MZ) : P¥ (8) — R?*, where

: 2In7y o7 ) )
L === (e | M=o,
’YE ]?é’L

for i = 1,...k (with the same method as above to prevent zeroes on P (8)), so that
deg ((Le,M.,N.), P¥ (5),0) = deg ((LZ, MZ,N.), P¥ (),0)
Using the matrix Q defined in (4.124), we see that

Lt —Q%Q 0 0 4
Mz | = —21‘;ng Y1, 0 0. (4.128)
Ne 0 0 1) \Ne

Since Q has positive determinant, if we call A the 3k x 3k matrix on the right-hand side of
(4.128) we have sign (det .A) = (—1)*, and noticing that N. only depends on 7, we obtain

Lz
AN [ M) =1d xId x N, : TF x ©F x TF (5) = R* x RF x R¥,
N.

and using the product formula for the degree, we finally obtain
deg ((Le, M., N.), P¥ (5),0) = deg ((L:, MZ,N.), P¥ (6),0)
= (—1)* deg (Id, T*, 0) deg (Id, ©%,0) deg (N., T* (5) , 0)
= (—1)"deg (N.,T¥ (5),0). (4.129)

In order to compute the degree of N_, observe that N; (1) = N%(%.), where 7. = 7/d.
and N = (N',...,N¥) is as in (4.130). Moreover, since € (0,1) was chosen such that

y* e f’“(é), with y* as in Lemma 4.7, it follows that
deg (NE,TEIC 9), O) = deg (N, T* 9), O) =1.

We then conclude with (4.129) that there exists (%, 0:,7¢) € ﬁf (6) such that (v,0:,7:) =
(3 + 7. (1) ,0-,7-) € P* () solves (4.117). O

Lemma 4.7. The function
N:TH0) :={y=(y1,...,0) ER" : y1 <y < - <y} — RF
given by
1

N (y1y .- yx) ::aolyé_l—QZ , fori=1,...k, (4.130)
i Yi —Yj

has exactly one zero, which we call y*. Moreover deg(H,T*(0),0) = 1.
Proof. We have that N = VJ, with

k

1 1 ~

J(y)=a02y5+§zm(_—7‘2, Yy = (y1,-- -, Uk) GTk(O)-
i=1 ] Yi yg)
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The Hessian V2.J is positive definite on 7 (0), since

02.J = 0,,N' = aol(l — 1)y, }:
];ﬁz J)
; 2 C
0y, 0y, J = 0y, N! = —————  for i # j,
(yi — y5)

so that for every ¢ € R¥\ {0}, using that ¢ + 5]2 > 26,5, we get

£TV2J§ 252 CL()Z [ — ]_ —|— Z Z Z 25]67,

i=1 iz ( ya i1 7 ( yJ)
k

>N agl(1—1)y >
i=1

and, using that y € T* (0) and | € 2N*, the right-hand side is positive, unless £ =
0,...,&q,--.0) and y;, = 0 for some ig € {1,...,k}, in which case

ﬁWﬁ:Z—£%7>a

Then J is strictly convex in 7%(0) and since |J(y)] = o0 as y — aT*(0) or ly| — oo,
J has a minimum y*, which is its only critical point and the only zero of N. Moreover
det(V N (y*)) = det(V2J(y*)) > 0, hence deg(N,T*(0),0) = 1. O

Finally, we can now conclude the proof of Theorems 1.2 and 1.3.

End of proof of Theorems 1.2 and 1.3. 1t follows from Proposition 4.4 that for small € > 0,
Ue = Ucn. 7. 0. +Pc v 7.0, € En, ., where 3. := HVUEH;. We denote ve = (Y1,e, - - - s Vhe)s
Te = (Te, - sThe)y 0 = (B1e,...,0k:). By using (3.14) and (4.16), we obtain that
We o, Peyr0. — 0in Hy (Q) as ¢ — 0. Since moreover w. — wo in C' (Q), H €
C'(Qx9Q),0;,.—~0and A, . —Oforallie{l,...,k}, we obtain

k
HVUEHLz = vao + Z (1 + 91‘75) (VEEJYLE?ﬁlB(T,EyTE)

i=1
+ Ao VG (Tic) LBz HL2 +o(1) (4.131)
as ¢ — 0. By integrating by parts, we obtain

1 1 807>
= G (,72) 0,G (- 7i2) do ~ ——In — ~ 20
OB(Tic,re)

VG (,72) Lo\ Bz, o 1. Ar

(4.132)

<VG (,T,E) ].Q\B(mﬂ‘g), Vwo>L2 = /,9 ( ) wo0, G (7@) do =0 ( ”wOHCO(aB(ﬁ,rE)) )
B(Ti,e,re

=o(1) (4.133)
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and

<VG (+7i2) YovB(mzr.), VG (5 T50) 1sz\3<m,re>>p

G (7z)0,G (-, 75z) do = O (m 1) =0(In7.) (4.134)

/83(m,r5)uas(%,r£) de

ase = 0foralli,je{l,...,k}, i # j, where v and do are the outward unit normal vector
and volume element of 0B (T;,7:) U OB (Tj ¢, 7<), respectively. On the other hand, since
Vie ~ Ve, by using (6.2), we obtain

VA
e

i (r) )2r dr

2
[2 =27

||V§sm,g,ﬁ13(ﬁfs)

2

~ —In
,72'75 Mi,a

s < Aeha(%m)wﬂ(la@ (4.135)

for all i € {1,...,k}, where p; . is defined by uis = 4%752 exp (_%‘2,5)~ For every j # i, by
remarking that B (7, z,7.) N B (Tjz,7:) = 0 for small £ > 0 and

1
=0 =o0(1),
o (vgd) M
we obtain
<V§am,a,ﬁ1B(ﬁ,r5)7 Vwg + Z (1 + 91‘,5) (vgsm,e,ﬁlB(T,g,rs) + Aam,a,n.aVG ('a T,s)

J#i
E5) r

< Lovpirzrn)) , = O ([VBen mzlpeznll ) = O (v) —o(1) (4.136)
€

as € — 0. Since moreover 6. — 0, it follows from (3.10) and (4.131)—(4.136) that
Ive.

“AE7’Yj,E7Tj,EvG ('v ﬁ) 13(7,5’7‘5)

L

13, — IVwoll 32 + dkm = Bo + 4k

as € — 0. Standard elliptic theory gives that HugHLw — o0 as € — 0. Since h, — hg in
C? (ﬁ), we then obtain that Sy + 4k is an unstable energy level of I;,. This ends the proof
of Theorem 1.2.

The above construction also proves Theorem 1.3 if wg is non-degenerate. Otherwise
we apply a diagonal procedure. More precisely, thanks to Proposition 2.3, for xk € (0, ko)
and € = e(k) sufficiently small we construct wy c(x) € Ep, (1) hm.oinys With Wk c() — wo,
Pige(y — b in C?(Q) and B, := Brex) — Bo as k — 0; we further construct

k
Uy, = Wy, + Z(l + on,i)Bm,’ymi,Tmi + Wy T Py beme € By B
i=1
where each subscript x on the right-hand side actually means (k,e(k)), with (k) > 0
sufficiently small so that

||V\IIN’€(N)”YME(N)’TN‘E(N) HL2 + ||V¢515(H)s7m5(»)79m,£(m)’7—n,6(n) ||L2 = 0(1) as k — 0.

Up to renaming the indices, we conclude. O

Remark 4.8 (Stable vs. positively stable energy levels). As in Definition 1.1, let (u.) be
a family of functions such that u. € Ey_ 5. with he — h >0 in C%(Q) and B — B> 0. In
particular, ue solves (€, p.) with A = Ao > 0 obtained from h., Be and u. thanks to (1.1).
As a simple claim, testing (En, 5.) against v > 0, first eigenfuntion of A with zero Dirichlet
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condition on 0L, the bound A = O(1) is automatic when defining a positively stable energy
level in Definition 1.1. In the sign changing case, however, let us consider the following
unstable situation: u. goes uniformly to 0 & Ey, g, while looking like a (h-weighted) Dirichlet
eigenfunction associated to some large eigenvalue . ~ \. — 400, but still having the given
energy B ~ B >0 as € — 0. Then, in order not to have an empty notion of stable energy

level, we further assume the bound Ae = O(1) in Definition 1.1.

5. PROOF OF PROPOSITION 3.2

We fix ¢ € (0,1) and &' € (0,1 —/28). For every p > 1, we define Wy* () :=
W2P (Q) N H} (). Note that we have a compact embedding of W27 (Q) into H! () and
C° (Q) when p > 1 and into C* () when p > 2. For every ¢ € (0,20) and 7 € T¥ (6), we
let L, : WP (2) — WP (Q) be the operator defined as

Ler (U) =0 — A M hoxe f (wo) U] VO € WEP(Q). (5.1)
As a first step, we prove that there exists a constant C' = C (p,d) > 0 such that
1Wllyyzn < CllLeyr (P)llyan  YE €W (Q) (5.2)

so that in particular L. , is an isomorphism. We assume by contradiction that there exist
sequences (g, Tn, ¥p,),, such that g, — 0, 7, € T¥ (), ¥,, € WP () and

Wallyz, =1 and |[[Le, r, (Vn)lly2p =0 (5-3)

as n — oo. In particular, we obtain that (¥,,), converges, up to a subsequence, weakly in
WP () and strongly in Hj (Q2) and C° (Q) to a function ¥g. By using the second part of
(5.3), we obtain

/Q (VU,,V¢)dr — A, A he, Xey mn f (ue,) Unddr =o0(1) (5.4)

for all ¢ € Cg° (). Since Ag, he, Xe, .7 ' (e, ) is uniformly bounded and converges pointwise
to Aohof’ (uo) in Q and W,, — Vg in H} () and C° (©2), by passing to the limit into (5.4),
we obtain that Wy is a solution of the problem

A\I’O = )\OhOf/ (UO) \IIO in Q

Vo=0 on 9.
Since ug is non-degenerate, it follows that Wy = 0. By using (5.3) together with standard

LP-estimates for the Dirichlet problem (see Lemma 9.17 of Gilbarg-Trudinger [11]), we then
obtain

”\I'n”vv?m < | Lep .7 (\Pn)szp + HA71 e, hsnXsn,Tn,f, (ue,) \I/n]HWz,p
=o(1)+0 (H)‘snhen,Xsn,mf/ (usn) \I’nHLp) =o(1)
as n — 0o, which is in contradiction with (5.3). This ends the proof of (5.2).
Now, for every € € (0,e0) and (v, 7) € TF (6) x T¥ ("), we let Ne o, Tenr s WeP (Q) —

WZP (Q) be the operators defined as

Neyr (0) = A7 Mchexe r (f (Uer +0) = f (we) = f (we) )],

Tenr (V) := L;i (NE,%T (V) — RE,T)
for all ¥ € Wi” (2), where

Re ;= w. — AT P\shEXs,‘rf (ws)] =A"! P\Ehs(l - Xs,‘r)f (ws)] .
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Note that the problem (3.13) can be rewritten as the fixed point equation T , » (¥) = ¥.
For every C' > 0 and ¢ € (0,&p), we define

Vo (C)i= {W eWST () [¥llya < O/}

We will prove that if C' is chosen large enough, then 7T}, - has a fixed point in V. (C') for
small € > 0. By using a standard LP-estimate and since A\. — Ao, he — ho and w. — wp in
C? (Q), we obtain

IRzl = O (IAche (1= xeyr) £ (we)ll ) = O (1 = Xerrlln) = 0 (1/72) (5.5)
as € — 0, uniformly in 7 € T (§). Similarly, for every ¥, ¥, Wy € V. (C), we obtain

1Nz (0)llgyzn = O ([[Xerr (f (Uerr + ) = f (we) = f (we) W) ,), (5.6)
||N6,'y,7' (\Ill) - Ns,’y,‘r (\IIQ)HWz,p = O (HXE,T (f(ﬁs,'y,f + \Ijl) - f(fjs,’y,‘r + \112)
—f/ (ws) (\Ijl _\112))HLP)‘ (57)

By applying the mean value theorem together with Holder’s inequality, it follows from (5.6)
and (5.7) that

k

k
Xe,‘rfl (wa +4 Z BE,%,‘H + \IJ) Z BE/Yi,Ti

i=1 i=1

len " (e + 10| 1920 ) (5.8)

INeyr (1)l ey = O (]

Lr

HNEK%T (\I’l) - Nem'r (‘IIZ)”Wz,p
= O (|Ixer (f' (Ueyir + (1 = 52) U1 + 5200) — f (we) )|, [1%1 = sl o)

of

k
XE,’Tf” (we + t2 Z Bs,ﬁ/i,‘ri + t2 (1 - 32) \IJI + t252\112>
i=1

k
X (Z B 7+ (1 —59) Uy + SQ\I/Q) ||\I’1 — \IJQHCO ) (5.9)
=1

Lp

for some functions sy, sz, t1,t2 : @ — [0,1]. Since 0 < x. - < 1in Q, w. — wo in C° (Q) and
U € V. (C), we obtain

[Xe,r f" (we +519)||,, =O(1). (5.10)
For every j € {1,...,k}, by using (3.10), we obtain
2 1
By r () = — (ln — +0(1 ) 5.11)
&5 J( ¥4 |1'*7'j| () (

uniformly in z € Q\B (75,7:). We let R, := exp (—7,) > r.. Since x.,» = 0 in B (7j,r.),
0<Xer <1inQ, we = wp in Co (ﬁ), ug (0) =0, U, ¥y, Uy € V. (C) and 0 < s1, 59,t1,t2 <
1, it follows from (5.11) that

k k
Xe,‘rf/ (wa +1 Z Be ;i + \I/) Z B&’Yz'ﬂ'ilB(TT,Ra)

i=1 i=1

Re 2 1 p
-0 (75/ f! (tlln—i—o(l)) rdr
re Vi r

P

Lpr
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) 5073/’7? )
=0 [ 1 s o) exp (—o3s) ds
2

e /;

3p+2 8072/7; 2 2
=0 |7t / exp ((ptls — 1) syj +o0 ('yj)) ds
2

e/}

so/(1-6")*
=0 72”“/ exp ((ptis — 1) 57]2 +o(vy))ds | =0(1), (5.12)
8o/ [7. (1+6")%]

k
‘ Xer [ (ws Hty Y B 2 (1—s2) U1 + t252‘1’2>
i=1
P
X (ZBEKH,H + (1 — 82) \Ill + 52‘1’2)13(7_77135)
‘ Lp

=1

fe (2t 1 P
(fyg/ i (7,‘2 In-+o (1)) rdr
Te ’YJ r
5075/7]2'
=0 7{;*’2/ I (tavjs +0(1))" exp (—’YJZS) ds
2

exp ((pt3s — 1) S’)/? +0(v5)) ds)

so/(1-6")*
=0 7‘;”"’2/ exp ((pt3s — 1) S’yJ2 +o0(vj))ds | =o(1) (5.13)
do/[7-(1+67)%]

as € — 0, uniformly in (vy,7) € T¥ (§") x TF (§) and ¥, ¥y, ¥y € V.(C), provided we choose
p such that pdy/ (1 —6)°> —1<0,ie p< (1—46)/d. By using (5.11), we obtain

k

k P
‘ XE,Tf/ (ws +h Z Be ;7 + \Ij) Z Be qi 7 ]-QREJ-
i=1 i=1 Lp
1k
=0 (p Z/ In |z — 7] + O (1)|de) =o0(1) (5.14)
Ve iZ1 YR -

and, similarly,

k
Xs,Tf// (ws + tg Z BE)%,H + to (1 — 82) U, + thgWg)

=1

k
x (Z BE,’Yi»Ti + (1 - 52) vy + 32\112>1QR51,_
i=1
as € — 0, uniformly in (vy,7) € T¥ (§') x T* (6) and ¥, ¥y, ¥y € V(C).
Note that similar estimates as in (5.12)—(5.14) yield (3.16).
By putting together (5.9)~(5.15) and using the continuity of the embedding W?*? (Q) —
C° (Q), we obtain

—o(1) (5.15)
Lr

2
INeyr (D)2 =0 (1 [l20 ) (5.16)
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[N y.r (W1) = Ne oy r (W2)llyyrae = 0 (W1 — Wallyy2) (5.17)

as € — 0, uniformly in (v, 7) € T¥ (§') x TF (8) and ¥, ¥y, Uy € V.(C). Tt follows from (5.2),
(5.5), (5.16) and (5.17) that there exist €1 (p,d,6’) € (0,&0) and C = C (p,,0") > 0 (here we
do not specify the dependence in dy as this number is considered to be fixed) such that for
every € € (0,¢1 (8)) and (v, 7) € T¥ (§') x T¥ (), T - is a contraction mapping on Vz (C).
By the fixed point theorem, we then obtain that there exists a unique solution ¥, , , € V; (C)
to the problem (3.13). By fixing a number p such that 2 < p < (1 — 50)2 /00, the first
inequality in (3.14) then follows from the continuity of the embedding W?2? () < C* ().
By using the Moser—Trudinger inequality together with standard elliptic regularity theory,
we obtain that ¥, , € C»*(Q) N C? (). Furthermore, by symmetry of Q, we, he, Xer
and ﬁgﬁﬁ, we obtain that W, , - is even in x5 and by using the continuous differentiability
of ﬁgyw and x. - in (v, 7), we obtain that ¥, , - is continuously differentiable in (v, 7).

Now, we prove the second inequality in (3.14). Fori € {1,..., k}, by differentiating (3.13)
in ~;, we obtain

A [LE,T (8% [\Ile,'y;r])] = AEhEXE,Tf/(ﬁe,w,T + \Ils,'y,‘r)a% [ﬁe,v,‘r]
+ )\EhSXE,T (f/(ﬁs,%‘l' + \ija%T) - fl (wE) )8’71 [\I/&’Yﬂ'] ) (5'18)

where L. ; is as in (5.1). By using (5.2) and (5.18) together with a standard LP-estimate
and since A\, — Ao and h. — ho in C° (ﬁ), we then obtain

XE,Tf, (ﬁe,w,r + \Ila,'y,‘r)a“/i [UE»’Y,T]

105 92yl =0 |

Lr

+ ‘ Xe,r (f/(Us,'y,T + \I]s,’y,f) - f/ (ws) )8’71 [\1187%7'] Lp

). (5.19)

By using (3.11), we obtain

0, (] = =5 (mle =]+ 0 (1) (5.20)

?

uniformly in z € Q\B (77, 7). By using (5.11) and (5.20) and proceeding as in (5.12)—(5.15),

we obtain
P Re , 2 1 P
=0 ffl—=In=+0(1)) rdr
Lr re Yi r
1

1

7 Qre,r €

XE,Tf/<(757"/7T + \I’Ex'YxT)a'Y’i [(757777—]

uniformly in (v,7) € T* (8') x T¥ (§), provided p is chosen so that p < (1 —§")* /6. On
the other hand, by applying the mean value theorem together with Hélder’s inequality, we
obtain

Xe, T (f/((7€7’777' + \IIE,’Y,T) - f/ (wE) )a’h [\1157"/77']

Oy, [Weyr.r]

<
Lp co

k

k
Xs,‘rf// (ws +1 Z BE,’Yi,'ri + t\IJE,’Yﬂ') (Z B&,%,'ri + \Ile,%‘f)

=1 i=1

x (5.22)

Lp
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for some function ¢ :  — [0,1]. By using (5.11) and proceeding as in (5.12)—(5.15), we
obtain

as ¢ — 0, uniformly in (vy,7) € T#(§’) x TF (5), provided we choose p such that p <
(1 —0")* /6. By putting together (5.19) and (5.21)~(5.23), we obtain

T, (1) (5.23)

k
i=

k
Xer f" (ws +t Z B yr + t\IfsmT> (Z Berymi + Ve, 7-)
i=1

1

Lp

1
10r, eyl = O (25 ) + 0 105 [0 lco) (.20
as € — 0, uniformly in (v,7) € T¥ (§') x T (5). By choosing p such that
9 <po L=00)" 5)”
do

and using the continuity of the embedding W?2? (Q) — C* (ﬁ), the second inequality in
(3.14) then follows from (5.24).
Now, we prove (3.15). For every i € {1,...,k}, by differentiating (3.13) in 7;, we obtain
A[LE,T(a‘f‘i [\Il ,’77‘])] —)\ h f( E’YT+\IJ ,"/T)aTL[XET] +A haXan ( a'y‘r_’_\l’ £,Y,T )
X a‘rL [ £,7, ‘r} + A haXs T (f (Us;yn' + \1/5,’)/,7') - f (wa) )aTL [\1157'777'] 5 (525)

where L. ; is as in (5.1). By using (5.2) and (5.25) together with a standard LP—estimate
and since A — Ao and h. — ho in C° (©2), we obtain

||8‘r7 [\Ile,'y,‘r]sz,p =0 <Hf([75,’y,7' + \Ijs,’y,‘r)an [Xs,‘r] e + ‘ Xs,rf/(fjs,’y,‘r + \I]s,’y,‘r)
X 07, [Ue 7] Lt ‘ Xevr (F' (Ueryr + 0oy r) = f (w2))0r, [Oe s 1] B ) (5.26)
It is easy to see that
1
Or [xer] =0 <7,21A(n,ra,rs+r§)) (5.27)
€
uniformly in . By using (3.10) and (3.12) and since §' < 1 — /25y, we obtain
~ 2
0 [0err) = 2 (140 2T w0 () (5.28)
Yi |lx — 7'1|

uniformly in z = (z1,22) € Q\B (7, r:). By using (5.11), (5.27), (5.28) and proceeding as
n (5.12)—(5.15), we obtain

Hf(fje,'y,r + \Ija,'yn—)a‘ri [XE,T] I

1 frete ro 1 1\\?
O<T§p/r5 f(wlnr(lJro(l))JrO(%)) rdr)

§p+2 607?/71’2 2
o5 /5 exp ((ps — 1) 577 (1 +0(1))) ds

p | _
Te 072/v2—(2/92) In(1+rc)

—p 2
O (f};‘fp ln(l +7“5)exp ((p50 _ 1) (5073 +o (7?)))
" v?

€ 7

p
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=0 (75 exp (1%50 : + (p - ) 807z +0 (%)))
=0 (72 exp _Pho__ +p—= )07 +o (7 ) =0 (1) ) (5.29)

: (1-4)° : : oK

p
" ~o0 i/ L) @
Ly % Jop, . \|lz =T
R. P
Jri I (21n1(1+0(1))+0<1>) rlpdr>
'Y,L Te Vi r Ye

B 1 2 50/(1—5/)2 P B 9 9 B 1
—O<7p+% /{S - ) exp((ps+§ 1) s +0(%-)> ds| =0 = (5.30)

€ o/[F(1+8")7] €

X&Tf( E’y‘r—"_\:[ls’yfr)aﬂ [ﬁE,W,T]

as € — 0, uniformly in (v,7) € T¥ (§') x T¥ (), provided we choose p such that

p50 3
———+p—-<0 and ——=+
1-ay "2 (1-0)

i.e. max 1JrLQ,g 1+5702 <1<1,
2 (1-6)3 (1-9¢) P

which is possible since ' < 1 — V/20g. Note that in this case, we cannot choose p > 2 and so
W?2P (Q) does not embed into C* (€2). Furthermore, by proceeding as in (5.22)—(5.23), we

obtain
‘ Xe,r (f/ (ﬁa,v,r + \11577,7') - f/ (wa) )an [\1’5,7,7] I =0 (Han [\Da,v,r] HCO) (531)

as ¢ — 0, uniformly in (y,7) € T* (§') x T* (§). By putting together (5.26), (5.29), (5.30)
and (5.31), we obtain

1
Jor [Tl = O (3-) 0 (105 [0 o) (532

as ¢ — 0, uniformly in (v, 7) € T¥ (§') x T (§). By using the continuity of the embeddings
of W% (Q) into C° (Q) and H' (Q), (3.15) then follows from (5.32).

Note that (5.29) corresponds to the first identity in (3.17), while the second one follows
from (5.30) together with the already proven (3.15) and (3.16), which yield

pdo P
S _1<o,
2

||f £,7,T D7-1\IJ £,79,T TE:THLP = (75 Hexp( &,7,T )1QT5:THLP ||DT7\I/ Y

This ends the proof of Proposition 3.2.

)=0(.).

6. EXPANSIONS OF THE BUBBLE AND ITS DERIVATIVES

In this section we give a precise asymptotic analysis of spherical solutions, and prove
some useful consequences.

Proposition 6.1. For every v > 0, let B, be the unique radial solution to the problem
AB, = f(B,) inR?
E’)’ (0) =7
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where f (s) := sexp (s?) for all s € R. Set
,u,QY =4y ?exp (—?) and t(r):=In(1+7r*) Vr>0 (6.1)
and let ¢ be the unique radial solution to the problem
Ap=4e™ (> —t+2p) inR?
{sa (0) =0.
Then

B (1) =y L) 2U00) ),

t(r) 1
as y — oo, uniformly in r € (O,ui_l), 6 € (0,1) fized. Furthermore, o (r) ~ —t(r) and
o (r) ~=t'(r) as r — co.

where

Proof. This was originally proven in [8], see Claim 5.1 and estimates (5.8) and (5.9) in
particular (note that the function B., in [8] corresponds to the function B. via the relation
B, (r) = B,(r/2)). The estimates (5.8)—(5.9) in [8] are valid as long as 0 < t(r/u,) < v*—T,
where T, is chosen so that ~y e T =0(1) as v — oo for every k > 0. It is not difficult to

see that this condition is satisfied uniformly for 0 < r < ,ufsy, for any fixed 6 > 0. (]

With regard to the derivative of Ev with respect to -y, we obtain the following:
Proposition 6.2. Let B, 1, t and ¢ be as in Proposition 6.1. Set Z (r) := }1:2 and let
1 be the unique radial solution to the problem

{mp =4e7? (Zo (1 — 4t + 2> + 4p) +2¢) in R?

% (0) = 0.
Then
Zoay ()= 0, B 1)) = Zolr/iwy) + 1) B ),
where
E, (1) =0 <1 Zi(’“)) and E,(r) =0 <71T> (6.3)

as v — 0o, uniformly in r € (0,u§_1), 0 € (0,1) fized. Furthermore, i (r) ~ t(r) and
' (r) ~t' (r) as r — oo.

Proof. We easily see that

AZy, = f/(E'y)ZO,’y in B(0, :uf;y)
Zp(0) =1,

with f (s) = se®. Set
¥ (r)
~2

By (r) o= Zon (y7) = Zo (1) —

and observe that
AZQ = 86721570,
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so that
AE., =12 (B —2y  AY 5—1
v = 13" (By (1) Zogy (11y7) — 8™ Zo — el in B (0,57") 6.4
E, (0) =0.
In order to expand the right-hand side of (6.4) we use (6.2), ¢ = O (1 +t) and recalling that
u?fﬂe”z =4, we find

! (E’Y (/Jv')) = (1+2§2 (MW-))exp( )
t H+0(5 ’
1+2(y_++o . )] ()
1+

de72t [ 1 41
62|:2+2 +O(
wy o LY 72

Using that e® =1 + s+ O(s?)e® for s > 0, we write

74

2

12 t
e’ = ++O(4

t

2

and using that t = O (72) uniformly on (0 u

),

SEHo(HF) Jy 22 (
2

>

) .

We now multiply and reorder, using that exp (t*/7%) > 1, to obtain
— de=2t 1 14 t* 2
£ (B ) = 2 (24 - arag 0 (FE0) ) o
12 2 v
t2
42 1 et 14
=— (2+2(1—4t+2t2+4<p)>+ 5 O( - )
12 e 12 v

Together with (6.4) and using that ¢ = O (1 +¢) (as we shall prove later), we now estimate

I (E“/ (/J"Y')) (

2 + f (E’Y (Nw')) E7>

AE, = Ni (f/ (Ev (Mv')) Zo +

_ Z 2
8¢ 27y —de™? (72 (1— 4t +26% + 4¢) + Vf)

_ opp 22 1+t
We now go back to (6.5) and, still using that ¢ = O (72) on B (0, u§_1)7 we bound

f/ (Ev (MW')) =0 (:26_2“_%> ,

5

+2 4
N <O(|E7|) +0 <1 ;Lf >> . (6.6)

Multiplying by v* and using ODE theory, we see that
YE, — Ey in CL. (Rz) .

so that
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In particular, for any fixed T' > 0 and for v large (v > 70 (T')), we have
C(T) (1)
~A o

|E,| < and |E.| < on [0,77]. (6.7)

From now on, it is understood that v > o (T'), so that (6.7) holds. In order to prove (6.3),
observe that the first identity in (6.3) follows from the second one and (6.7) by integration
over [T, r]. Then, for T, M > 0 to be chosen later, set

_ M
R, :=sup {r € (T,u‘ff iE |Eﬁ{ (p)| < i Vp € [T,r]}.
We shall prove that for 7" and M suitable, we have R, = ug_l for every ~ sufficiently large.
Arguing by contradiction, assume that R, < ,ufsfl, so that in particular
M
- Ryt

|EL(R,)| (6.8)

By definition of R, using (6.7) and integrating, we get
"M c(T) Mt(r)
ErﬁET—l—/—dpSi—i- on [T,R,]|. 6.9
B, 0 <18, @+ [ < S 2 on (1) (6.9
With the divergence theorem, (6.6) and (6.9), we now bound for ¢ € [T, R,],

2nrE!, (r)| < |27TE! (T)| —|—/ |AE, (x) dx|
B(0,r)\ B(0,T)

2rTC" (T o2 [~ ~ (14t
“74()+/ e <C’|E,Y+C( s >)da:
Y B(0,r)\B(0,T) Y

’ 2 42
S 21T C (T) CM e_gt_;'_?tdx

4 2% JB(o.m\B(0,T)
1 g 2~
+ = eTEC(C(T) + 1 + 1Y) da
7" JB(0,r)\B(0,T)
_.2rTC’(T) + (L) (1)
: 4

B v v

+ (6.10)

Observing that
2

t
—2t+?§—(1—|—5)t and e_gttk:O(l) onB(O,,ui_l), vk >0,

we bound

+2
/ e ke = 0 / e~ (H3)tdg | = or (1),
B(0,u5\B(0,T) B(0,T)°

with op (1) — 0 as T' — oco. We can therefore choose T sufficiently large (independent of
M) so that
M

(Iy) < =~

Then, choosing M sufficiently large (depending on T'), so that
M
27TC' (T) + (IL,) < ”7
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and dividing by 27 in (6.10), we finally obtain
M
T|EI(T)|§W7 VTG[T,R»Y],

which for » = R, is a contradiction to (6.8). Therefore R, = ,ufsfl.
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To prove that ¢ (r) ~ ¢ (r) and ¢’ (r) ~ t' (r) as r — oo, we recall from [15, Lemmas 15

and 16] (see also [8, Lemma 5.1]) that if ¢ is radially symmetric and solves
A =de™ (g +29),
with g (r) = O ( (lnr)k) as r — oo for some k > 1, then

r r3 T

k
b (r) = Blr + 0 (r), w/<r>—5+0<“”) ) pi=2 [ Zuegs
RQ

as r — oo. With g = Z, (1 — 4t 2% + 4<p) we compute
_ — 16
/ Zoe Hdy = T, / Zoe 2 dtdy = —°
R2 3 R2 9

_ 70 _
/ de_2t2t2da? =T and / de_2t4<pdx =—
R2 27 R2

4r
277
so that g = 2.

Let us see a few consequences of the above estimates.

Proposition 6.3. Let Fv, JT Zy and Zo,~ be as in Propositions 6.1 and 6.2.

0€(0,1), a,b >0 and t, (r) = t(r/pny), we have

/ exp (Ei)ﬁi (1 +0 (%)) dr = 47y""2 + 0 (’Yb_4) 7
B(0,r) ¥

as v — oo, uniformly for yp, <r < ufsy. Moreover,

/ f (Ev) Zo,ydx =
B(0,r)

as v — 00, uniformly for ypu, =o(r) and r < ug, and

/ I (By (2)) idm =47+ 0 (1)
B 2+ |z 7

as v — 00, uniformly for yu, <r < ,ufr.

—4r +o0(1)
42

Given

(6.11)

(6.12)

(6.13)

Proof. Using Proposition 6.1 and noticing that ¢ = O (1+1¢), t, = O (¥*) in B(0,r) for

r < ug, we write

22

exp (E?y) _ e[v*t%Jro(l:;w”? _ 672672t76%+0<%) _ ﬁ (1 +0 <t'2y

where we used the inequality |e* — 1| < || e/*! to estimate

eo<%> - 1’ =0 (t%> e%.

,)/2

)

(6.14)
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Further, we use Proposition 6.1 together with (1 4+ z)* = 1+ O (x) uniformly for x = O (1),
to bound

- £\ )" 14+6,\\" )"
meo(B)) = (ro(57) (ro(B))
Y y Y
1 " a+b 1—|—t2
7b<1+o< i ”)) =+4"[1+0 - (6.15)
Y Y
We can then estimate the left-hand side of (6.11) as
4e—2t 1+ 2
/ |10 (e | e
B(0,r) 37 gl
de2t 1+ 2 dr [Tm 2
[ (o () )= 5 [
B0,r/uy) Y v vy 0 (1+ p?)

1‘/wﬁ )O<u+t36t@w®>dx_wnv+UDw

4—
’YbB

+
Using that r > ~yu, one computes
T -2
(1), = Jb (1+0(v77),

and using that 0 < ¢t/4% < (1—46+o0(1)) in B(0,r/u,) as v — oo, uniformly for r < ,ufi,
and observing that (1 -+ ¢?) (1)t ¢ 1 (R?) for every ¢’ > 0, one has

1 1
(II), =0 / 1+ 12) g~ t(F0+0(1)) :o() (6.16)
74 B(o,r/w( ) vt

as v — oo, uniformly for r < ug, so that (6.11) is proven.
In order to prove (6.12) we use Proposition 6.2 to expand Zy ., and compute

/ 7' (B,) Zode = / 0, [f (B,)] do = / AZy.de
B(0,r) B(0,r) B(0,r)
= AlZ
Jron 2 (0 G) 30 () 72 () )
(B ()2 ()
Hy ey 2
A direct computation shows

2
1
5 (2)-0(5) (3
Hey My r Y
as y — oo, uniformly for v/, = o (r). Using that

V) =1 () (1 +o() = o

2
:;(14—0(1)) as s — 00,

we obtain

/7777[} <Mv> =2+4+0(1).
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Finally, from the second part of (6.3), we infer

()0 () o(3)

Summing up, (6.12) follows at once.
It remains to prove (6.13). Using (6.14) and (6.15), we write

2
2x7

f (B, (z)) ———dz
/B<o.,r> () K2 +
2 t2 ﬁ 2
= 4y2%e? / (1 +0 (1 +2t7)> e P [140 % en? (yl) dy
B(0,r) v v oy

- L+ (5
= / 16e 3ty%dy +0 (/ — € ¢(3 ch)y%dy) =: (I)’Y + (I1),
B(0,r/py) BO,r/uy)

To compute (1) -» we observe that its value does not change if we replace y1 with y2, so that

/by

1
=4r+o0(1)

1+2p?
(), = f/ 16e 3 2> dy = 167 tep
2 /B0 /uy)

4(1+p2)°

p=0

as v — oo, uniformly for » > yu,. The term (II), can be estimated as in (6.16) since

y? < el so that
t i(46to(1)) 1
(II)’Y = O 76 © dﬂf = O 5
B(0,r/py) Y Y

as v — oo, uniformly for r < /ﬁy. O
Proposition 6.4. Let B., and i, be as in Proposition 6.1. Given §y € (0,1/2), we have
_ 582
/( o (By ()?) |2] da = O (2P0~ 200 tet)y (6.17)
B(0,r

as v — oo, uniformly for r = 0O (,ugo).

Proof. Let t, be as in Proposition 6.2. Using Proposition 6.1, we write

o) o (|12 ro (T )] ) <ot ol
v v
o ot (2-t2/7°) S 5
= (/J%’YQ) , forr=0(u), (6.18)
Then, using that
ty (r) < (1—6+0(1)7%, forr=0 (u), (6.19)

together with a change of variables, we get

_ 9 e_tw (2_tw/"/2)
/ exp (B, (z)7) |z|dz = O / —— |7|dz
B(0,r) B(0,r) HYY
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—o(u/ lydy>_o<u/ lyl dy )

— . S .

BOr/n) (14 [y*)* ™" B/ (14 |y*) oW
1—-28604o0(1)

— r _ 360—26240(1)

a (Mﬂ{ (/‘7) ) _O(u’y )

as 7 — oo, uniformly for r = O (ufyf’), which proves (6.17). O

7. POINCARE-SOBOLEV INEQUALITIES

The standard Poincaré-Sobolev inequality on S? says that for every p € [1,00) there
exists Cp > 0 such that for every ¢ € H'(S?) with [, ¢dvs: = 0, we have

2

v <c, ([ 1voras) . (r1)
SZ SQ

Pulling back the spherical metric onto R?, we can also rewrite (7.1) as
I3
2

/|¢|pe_2td$§0p (/ |V¢|2dx) , (7.2)
R2 R2

for every ¢ € D2 (R?) such that [y, ge~>!dax = 0, where ¢ (z) := In (1 + |2|°), so that
4e=2@) = 4(1 4 |x|2)72 is the conformal factor of the pull-back metric.
We will need a perturbed version of (7.2), where we replace e~ with suitable scaled

versions of exp (Ei)

Lemma 7.1. Let (x:)e>0 be a sequence of functions in R? such that for every q > 1, we
have x. — Xo as € = 0 in L7 (R?, e~ ?!dz), i.e.

/ Ixe — xo0|?e " *dx — 0
R2
for some function xo in R? and further assume that

/]R2 xoe 2tdx # 0. (7.3)

Then, for every p € [1,00), there exists a constant C > 0 (depending on p and (xc)) such
that for € > 0 small enough, the following holds:

/ |p|P e *tdx < C (/ [Vol|? dx) ’ (7.4)
R2 R2

for every ¢ € DY? (R?) such that [, ¢x.e”?tdx = 0.
R

Proof. Assume by contradiction that there exists a sequence (¢.). in D2 (Rz) such that

/2 |pe|Pe 2 dr =1, / bexee 2tdr =0, 15%/ |V |*dx = 0. (7.5)
R R- R

Let IT : S — R? be the stereographic projection. By the first equation in (7.5), the average
of ¢. oIl on S? is bounded, so by the Sobolev-Poincaré inequality and weak compactness, up
to a subsequence, ¢. o Il — ¢ o IT strongly in L9 (S?), in LP(S?), and weakly in H'(S?), for
some function ¢y € LP(R?, e~2'dx). By lower-semicontinuity of the Dirichlet integral we get
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[V(¢ooIl)||12(s2) = [[VollL2(r2) = 0, so that ¢ is constant, non-zero since ||¢o o || 1 (s2) =
1. Then, we obtain

0:/ qﬁsxse*%d:c%/ (;So)(oe*ztdx = Xgefztdx:(),
R2 R2 R2

contradicting our assumption. ]

Proposition 7.2. Let Ew ty and t, be as in Propositions 6.1 and 6.2. Let ¢ € D12 (R2)
be such that

/ f(By)pdz =0 (7.6)

"

for r such that py =o(r) andr =0 (ufsy") for some 0y € (0,1). Then for every p € [1,00),

we have p
73 1 bl
/B(Om) exp (BS) (1+1,) ¢l dz = O (72 (/}R |V¢|2d:v> ) : (7.7)

Proof. With Proposition 6.1 we can rewrite condition (7.6) as

1+t ot 4+ jo(tt
0:7/ <1+O< +27)>6726 2t7+’y2+0( vzw)qﬁdx
B(0,r) Y

4 1+t o 2 14t 4 ~
= 7/ <1 + O (t)) e 2412 +O(17+2 )¢(Hw')dx = 7/ efztxfyz,bdy,
Y JB(0,r/ ) Y Y JRr2

where @ (y) = é(pvy), and we claim that

1+t 12 it
Xy = 1B(0,r/u) (1 o ( 72 )> 6W2+O( *) — X0 =1

in LY(R? e %dx) for 1 < ¢ <

1
. (7.8
s (7.8)
Indeed, it is clear that x4 — xo pointwise, while we can uniformly bound x, by a function
in L7 (R?, e~ ?'dz) as follows. By using (6.19), we obtain

xy =0 (e%) =0 (615(1—60-&-0(1)))7 so that x? = O (etQ(1—50+0(1)))’

On the other hand,

1
tq(1—8o+o(1)) ,—2t 7, _ —t(2—q+gdo+o(1)) 7,. —
/]1&2 e e “dx = /R2 e de = /R2 0 (1 1 |x4—2q+2q50+0(1)> du

=0(1) ford—2¢+2qy>2, ie 1<g<

1—4do’
so that (7.8) follows by dominated convergence.

We can then apply Lemma 7.1 to 5, so that (7.4) holds. On the other hand, for any
r € [1,00),

—2
/ exp (B2) (1 + 1) 9" de
B(0,r)

1 _opyp t2 14t ~ 1 ~
:7/ e 2t+;2+o(w2)(1+t)|¢\pdx: 7/ Xy |0lPe?tdx, (7.9)
7" JBO,r/ 1) v JRr2
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where, as in (7.8) we have

S Z+o(L) - 2 -2t
Xy = 1Br/p,) (1 +1t)er ) — 1+t in LYR* e *"dx)
for ¢ <1/ (1 — ), and with Holder’s inequality, we obtain

1
7

[wlirean< ([ gezar) ([ o)’ =o((42v@ﬁ2>
0 (( v¢|2)2> :

Substituting into (7.9), we then obtain (7.7). O

IS}

o

8. PrROOF OF CrLAIM 3.1

From (3.2), (6.2) and the divergence theorem, we get

Aeypr = =218, = (r2) = —21ro\/Ache (70) B, (VAche (7)) = ‘E +0 (13> .

Yi Ve
(8.1)
Considering that
1
In\. =0(1) and Inp, = —5712 —Invy +0(1),
from (6.2), we infer
- 21 )+ In(Ahe (74 1
B (R = - LAl R ED) o (1)
2Inr. 2Inwy; 1
= — nr — n’y +O<)7 (8'2)
Vi Yi e

which together with (3.3) and (8.1) gives

2Iny; 1 2In%y, 1
CE,’Yi,Ti = - ik +0 () = _LnVe +0 <> .
Vi Ve Vi Ve

This proves (3.10). Further, Proposition 6.2 gives

Bn, [Ae i mi] = =21/ Aehe (70)05, [BL, (VAche (7o) ]
_ Ao (s LN_ 4 (1
- ﬁ+0<@>+o(ﬁ>_ Zro(5):

— — 2Inr.  2In~y; 1
Dy, [B'n(\/ Ache (7'11)7"5)] =——+— 10 <2> )

Vi Yi

Similarly,

so that

8%' [CE,’Yiﬂ'i] = 6% [Ew( Ache (71‘)7"5)] +

21ny; (1) 2In%y (1)
= +0|= )= £4+0( =),
7 72 7 72

1
T 6’%‘ [AE,%‘,‘H] In Te
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which proves (3.11). To prove (3.12), we observe that

AE,'yi,n = Ashs (7-71)/

B(?iwrs)

! (EEKW ,TT) dx = 21\ he (T5) /TE f(EW( Ache (ﬁ)r))rdr
0

/ V Ache (7—71?)7'5

0

f (Ew (r) )rdr. (8.3)

=27

By differentiating (8.3) in 7;, we obtain
87'1' [A51'Yi77'i] = 7T)‘€ar1h€ (7—7) T?f(g’% ( V )‘EhE (?Z)TE)) (84)
By using (8.2) together with the definition of r., and using that ~; > (1 — ¢’) 7., we obtain

V2 1(B,, (VA ) = O (7 exp (j (nr. + I + 0 (1))2))

K2

=0 (’ys exp (21an (1 4ol +4lnzi)>)
Vi Vi
72
=0 (exp (—6ofy§ (1 - 50,73 +o (1)) + lnfye)>
J 1
= O exp _6075 1-— ﬁ + (0] (1) =0 (a) (85)

uniformly in (y,7) € T¥ (8') x TF (6) for all a > 0, provided ¢ < 1 — /3. By using (8.4)
and (8.5) and since A. = Ao and h. — hg in C* (), we obtain the first part of (3.12). By
differentiating C. , -, in 7; and using (6.2), (8.4) and (8.5), we then obtain

\/Zaxl hs ?i Te = —
a‘ri [Cs,’nm] = H(g—))B;’ ( V Aehe (Ti)Ts)

1 1 Oy, he (73) |0z, he (73)|
— —O0r; Ag T 1 —_— = — L S ! )
27‘_81 [ 3Yis 1] n’/’g ha (Tz)'Yz +O ( 71:

which gives the second part of (3.12). This ends the proof of Claim 3.1.
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