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Abstract. We prove bounded stability for strongly coupled critical elliptic

systems in the inhomogeneous context of a compact Riemannian manifold
when the potential of the operator is less, in the sense of bilinear forms, than

the geometric threshold potential of the conformal Laplacian.

Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3. For
p ≥ 1 an integer, let also Ms

p (R) denote the vector space of symmetrical p× p real
matrices, and A be a C1 map from M to Ms

p (R). We write that A = (Aij)i,j ,
where the Aij ’s are C1 real-valued functions in M . Let ∆g = −divg∇ be the
Laplace-Beltrami operator on M , and H1(M) be the Sobolev space of functions
in L2(M) with one derivative in L2(M). The Hartree-Fock coupled systems of
nonlinear Schrödinger equations we consider in this paper are written as

∆gui +
p∑
j=1

Aij(x)uj = |U|2
?−2

ui (0.1)

in M for all i, where |U|2 =
∑p
i=1 u

2
i , and 2? = 2n

n−2 is the critical Sobolev expo-
nent for the embeddings of the Sobolev space H1(M) into Lebesgue’s spaces. The
systems (0.1) are weakly coupled by the linear matrix A, and strongly coupled by
the Gross-Pitaevskii type nonlinearity in the right-hand side of (0.1). As is easily
seen, (0.1) is critical for Sobolev embeddings.

Coupled systems of nonlinear Schrödinger equations like (0.1) are now parts of
several important branches of mathematical physics. They appear in the Hartree-
Fock theory for Bose-Einstein double condensates, in fiber-optic theory, in the the-
ory of Langmuir waves in plasma physics, and in the behavior of deep water waves
and freak waves in the ocean. A general reference in book form on such systems
and their role in physics is by Ablowitz, Prinari, and Trubatch [1]. The systems
(0.1) we investigate in this paper involve coupled Gross-Pitaevskii type equations.
Such equations are strongly related to two branches of mathematical physics. They
arise, see Burke, Bohn, Esry, and Greene [9], in the Hartree-Fock theory for double
condensates, a binary mixture of Bose-Einstein condensates in two different hyper-
fine states. They also arise in the study of incoherent solitons in nonlinear optics,
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as described in Akhmediev and Ankiewicz [2], Christodoulides, Coskum, Mitchell
and Segev [13], Hioe [24], Hioe and Salter [25], and Kanna and Lakshmanan [26].

A strong solution U of (0.1) is a p-map with components in H1 satisfying (0.1).
By elliptic regularity strong solutions are of class C2,θ, θ ∈ (0, 1). In the sequel a p-
map U = (u1, . . . , up) from M to Rp is said to be nonnegative if ui ≥ 0 in M for all
i. We aim in this paper in discussing bounded stability for our systems (0.1). With
respect to the notion of analytic stability, as defined and investigated in Druet and
Hebey [19], no bound on the energy of the solution is required in the stronger notion
of bounded stability. This prevents, see Section 2, the existence of standing waves
with arbitrarily large amplitude for the corresponding critical vector-valued Klein-
Gordon and Schrödinger equations. Let SA be the set consisting of the nonnegative
strong solutions of (0.1). Bounded stability is defined as follows.

Definition. The system (0.1) is bounded and stable if there exist C > 0 and δ > 0
such that for any A′ ∈ C1

(
M,Ms

p (R)
)

satisfying ‖A′ − A‖C1 < δ, and for any
U ∈ SA′ , there holds that ‖U‖C2,θ ≤ C for θ ∈ (0, 1).

An equivalent definition is that for any sequence (Aα)α of C1-maps from M to
Ms
p (R), α ∈ N, and for any sequence of nonnegative nontrivial strong solutions Uα

of the associated systems, if Aα → A in C1 as α→ +∞, then, up to a subsequence,
Uα → U in C2 as α→ +∞ for some nonnegative solution U of (0.1). Moreover, see
Druet and Hebey [19], we can assert that U is automatically nontrivial if ∆g + A
is coercive, or, more generally, if ∆g + A does not possess nonnegative nontrivial
maps in its kernel.

The question we address in this paper is to find conditions on the vector-valued
operator ∆g + A which guarantee the bounded stability of (0.1). We answer the
question in the theorem below when the potential of the operator is less, in the
sense of bilinear forms, than the geometric threshold potential of the conformal
Laplacian. As one can check, there is a slight difference between the case n = 3,
where the Green’s matrix of ∆g + A and the positive mass theorem come into
play, and the case n ≥ 4. Following standard terminology we say that ∆g + A is
coercive if the energy of the operator controls the H1-norm, and we say that −A
is cooperative if the nondiagonal components Aij of A, i 6= j, are nonpositive in
M . When −A is cooperative, see Hebey [23], the existence of U = (u1, . . . , up) such
that U solves (0.1) and ui > 0 in M for all i, implies the coercivity of ∆g + A. In
the sequel we let Sg be the scalar curvature of g and let Idp be the identity matrix
in Ms

p (R). The theorem we prove is stated as follows.

Theorem. Let (M, g) be a smooth compact Riemannian manifold of dimension
n ≥ 3, p ≥ 1 be an integer, and A : M →Ms

p (R) be a C1-map satisfying that

A <
n− 2

4(n− 1)
SgIdp (0.2)

in M in the sense of bilinear forms. When n = 3 assume also that ∆g + A is
coercive and that −A is cooperative. Then the associated system (0.1) is bounded
and stable.

A closely related notion to stability, which has been intensively investigated, is
that of compactness. Among possible references we refer to Brendle [6, 7], Brendle
and Marques [8], Druet [14, 15], Druet and Hebey [17], Gidas and Spruck [21],



BOUNDED STABILITY FOR SYSTEMS 3

Khuri, Marques and Schoen [27], Li and Zhang [29, 30], Li and Zhu [32], Marques
[33], Schoen [40, 41], and Vétois [42]. A system like (0.1) is said to be compact if
sequences of nonnegative solutions of (0.1) converge, up to a subsequence, in the
C2-topology. A direct consequence of our theorem is as follows.

Corollary. Let (M, g) be a smooth compact Riemannian manifold of dimension
n ≥ 3, p ≥ 1 be an integer, and A : M → Ms

p (R) be a C1-map satisfying (0.2).
When n = 3 assume also that ∆g +A is coercive and that −A is cooperative. Then
(0.1) is compact.

Another consequence of our theorem is in terms of standing waves and phase sta-
bility for vector-valued Schrödinger and Klein-Gordon equations. Roughly speak-
ing, we refer to Section 2 for more details, it follows from our result that fast os-
cillating standing waves for Schrödinger and Klein-Gordon equations cannot have
arbitrarily large amplitude. The same phenomenon holds true for slow oscillating
standing waves if the potential matrix A is sufficiently small. Instability comes in
the intermediate regime.

Condition (0.2) in the theorem is the global vector-valued extension of the semi-
nal condition introduced by Aubin [3]. Aubin proved in [3] that (0.2), when satisfied
at one point in the manifold, and when A and U are functions, implies the exis-
tence of a minimizing solution of (0.1). Our theorem establishes that (0.2) does
not only provide the existence of minimal energy solution to the equations, but also
provides the stability of the equations in all dimensions. The condition turns out
to be sharp. Assuming that (0.2) is an equality, then, see Druet and Hebey [16, 19],
we can construct various examples of unstable systems like (0.1) in any dimension
n ≥ 6. These include the existence of clusters (multi peaks solutions with fewer
geometrical blow-up points) and the existence of sequences (Uα)α of solutions with
unbounded energy (namely such that ‖Uα‖H1 → +∞ as α→ +∞). By the analysis
in Brendle [6] and Brendle and Marques [8] we even get examples of noncompact
systems in any dimension n ≥ 25. Of course, the sphere, because of the noncom-
pactness of its conformal group, is another example where noncompactness holds
true (however, in this case, in all dimensions). Conversely, when we avoid large
dimensions, avoid the sphere, and restrict the discussion to compactness, it follows
from the analysis developed in this paper that for any smooth compact Riemann-
ian 3-manifold (M, g), assumed not to be conformally diffeomorphic to the unit
3-sphere, for any p ≥ 1, and any C1-map A : M →Ms

p (R), if the inequality in (0.2)
is large, ∆g+A is coercive, and −A is cooperative, then the associated system (0.1)
is compact.

Our paper is organized as follows. In Section 1 we provide a complete classi-
fication of nonnegative solutions of the strongly coupled critical Euclidean limit
system associated with (0.1) and thus obtain the shape of the blow-up singulari-
ties associated to our problem. We briefly discuss the dynamical notion of phase
stability in Section 2. In Section 3 we prove strong pointwise control estimates for
blowing-up sequences of solutions of perturbed equations. These estimates hold
true without assuming (0.2). In Section 4 we prove sharp asymptotic estimates for
sequences of solutions of perturbed equations when we assume (0.2) and get that
rescalings of such sequences locally converge to the Green’s function plus a globally
well-defined harmonic function with no mass. We construct parametrix for vector-
valued Schrödinger operators when n = 3 in Section 5 and get an extension of the
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positive mass theorem of Schoen and Yau [37] to the vector-valued case we consider
here. This is the only place in the paper where we use the 3-dimensional assump-
tions that ∆g + A is coercive and that −A is cooperative. We prove the theorem
in Section 6 by showing that there should be a mass in the rescaled expansions of
blowing-up sequences of solutions of perturbed equations.

1. Nonnegative solutions of the limit system

Of importance in blow-up theory, when discussing critical equations, is the clas-
sification of the solutions of the critical limit Euclidean system we get after blowing
up the equations. In our case, we need to classify the nonnegative solutions of the
limit system

∆ui = |U|2
?−2

ui , (1.1)
where |U|2 =

∑p
i=1 u

2
i , and ∆ = −

∑n
i=1 ∂

2/∂x2
i is the Euclidean Laplace-Beltrami

operator. The result we prove here provides full classification of nonnegative solu-
tions of (1.1). It is stated as follows.

Proposition 1.1. Let p ≥ 1 and U be a nonnegative C2-solution of (1.1). Then
there exist a ∈ Rn, λ > 0, and Λ ∈ Sp−1

+ , such that

U(x) =

 λ

λ2 + |x−a|2
n(n−2)


n−2

2

Λ (1.2)

for all x ∈ Rn, where Sp−1
+ consists of the elements (Λ1, . . . ,Λp) in Sp−1, the unit

sphere in Rp, which are such that Λi ≥ 0 for all i.

We prove Proposition 1.1 by using the moving sphere method and the result in
Druet and Hebey [19] where the classification of nonnegative H1-solutions of (1.1)
is achieved by variational arguments. The method of moving sphere, a variant of
the method of moving planes, has been intensively investigated in recent years.
Among possible references we refer to Chen and Li [11], Chou and Chu [12], Li and
Zhang [28], Li and Zhu [31], and Padilla [34]. Proposition 1.1 in the special case
p = 1 was known for long time and goes back to Caffarelli, Gidas and Spruck [10].
The novelty in Proposition 1.1 is that p is arbitrary.

For any a ∈ Rn, and any λ > 0, we define the Kelvin transform Ua,λ = Ka,λ(U)
of a map U : Rn → Rp as the p-map defined in Rn\{a} by

Ua,λ(x) = Ka,λ(x)n−2U
(
a+Ka,λ(x)2(x− a)

)
for all x ∈ Rn\{a}, where Ka,λ is given by Ka,λ(x) = λ

|x−a| . As one can check, for
any u ∈ C2(Rn,R), for any a ∈ Rn, for any λ > 0, and for any x ∈ Rn\{a},

∆ua,λ(x) = Ka,λ(x)n+2∆u
(
a+Ka,λ(x)2(x− a)

)
. (1.3)

In particular, if U is a nonnegative solution of (1.1), so is Ua,λ in Rn\{a} for all
a ∈ Rn and all λ > 0. Writing that Ua,λ = ((u1)a,λ, . . . , (up)a,λ), it follows that

∆(ui)a,λ = |Ua,λ|2
?−2(ui)a,λ (1.4)

in Rn\{a} for all a ∈ Rn, all λ > 0, and all i = 1, . . . , p. Before proving Proposition
1.1 we establish three lemmas. Our approach is based on the analysis developed in
Li and Zhang [28].
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Lemma 1.1. Let U be a nonnegative C2-solution of (1.1). For any point a in Rn,
there exists a positive real number λ0(a) such that for any λ in (0, λ0(a)), there
holds (ui)a,λ ≤ ui in Rn\Ba(λ) for i = 1, . . . , p.

Proof of Lemma 1.1. Without loss of generality, we may take a = 0. We denote
(ui)0,λ = (ui)λ for i = 1, . . . , p. By the superharmonicity of the function ui and by
the strong maximum principle, for i = 1, . . . , p, there holds either ui ≡ 0 or ui > 0
in Rn. In case ui > 0, as is easily seen, there exists a positive real number r0 such
that for any r ∈ (0, r0) and for any point θ ∈ Sn−1, there holds

d

dr

(
r
n−2

2 ui(rθ)
)
> 0 ,

for i = 1, . . . , p. It follows that for any λ ∈ (0, r0], there holds

(ui)λ ≤ ui (1.5)

in B0(r0)\B0(λ). On the other hand, by the superharmonicity of the function ui
and by the Hadamard Three-Sphere theorem as stated, for instance, in Protter and
Weinberger [35], for any real number r > r0 and for any point x ∈ B0(r)\B0(r0),
we get(

r2−n
0 − r2−n)ui(x) ≥

(
|x|2−n − r2−n) min

∂B0(r0)
ui +

(
r2−n
0 − |x|2−n

)
min
∂B0(r)

ui

≥
(
|x|2−n − r2−n) min

∂B0(r0)
ui

for i = 1, . . . , p. Letting r → +∞ gives

ui(x) ≥
(
r0

|x|

)n−2

min
∂B0(r0)

ui (1.6)

for i = 1, . . . , p. We take

λ0 = r0 min
i∈I0

 min
∂B0(r0)

ui

max
B0(r0)

ui


1

n−2

,

where
I0 =

{
i ∈ {1, . . . , p} s.t. ui 6≡ 0 in Rn

}
.

For any real number λ ∈ (0, λ0) and for any point x ∈ Rn\B0(r0), there holds

(ui)λ(x) ≤
(
λ0

|x|

)n−2

max
B0(r0)

ui ≤
(
r0

|x|

)n−2

min
∂B0(r0)

ui (1.7)

for i = 1, . . . , p. It follows from (1.5)–(1.7) that for any λ in (0, λ0), there holds
(ui)λ ≤ ui in Rn\B0(λ) for i = 1, . . . , p. This ends the proof of Lemma 1.1. �

By Lemma 1.1, for any point a in Rn, we can now define

λ(a) = sup {λ > 0 s.t. (ui)a,λ ≤ ui in Rn\Ba(λ) for i = 1, . . . , p} .

The next lemma in the proof of Proposition 1.1 is as follows.

Lemma 1.2. Let U be a nonnegative C2-solution of (1.1). If there holds that
λ(a) < +∞ for some point a in Rn, then there holds

∣∣∣Ua,λ(a)

∣∣∣ ≡ |U| in Rn\ {a}.
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Proof of Lemma 1.2. Without loss of generality, we may take a = 0. We denote
λ(0) = λ and (ui)0,λ = (ui)λ for i = 1, . . . , p. By definition of λ, in case λ < +∞,
we get that for any λ ∈ (0, λ], there holds

(ui)λ ≤ ui (1.8)

in Rn\B0(λ) for i = 1, . . . , p, and that there exist an index i0 and a sequence of
real numbers (λα)α in (λ,+∞) converging to λ such that property (1.8) does not
hold true for i = i0 and λ = λα. For any positive real number λ, we let vλ be the
function defined on Rn\ {0} by vλ = ui0 − (ui0)λ. By (1.1), (1.4), and (1.8), we get

−∆vλ = |U|2
∗−2

ui0 −
∣∣Uλ∣∣2∗−2 (ui0)λ ≥ 0 (1.9)

in Rn\B0(λ). We clearly have that

min
Rn\B0(λ)

vλ = min
∂B0(λ)

vλ = 0 . (1.10)

We claim that there holds vλ ≡ 0 in Rn\B0(λ). In order to prove this claim, we
proceed by contradiction and assume that vλ 6≡ 0 in Rn\B0(λ). By (1.10) and by
the Hopf lemma, it follows that the outward normal derivative of the function vλ
on ∂B0(λ) is positive. By the continuity of ∇ui0 , we then get that there exists a
real number r0 > λ such that for any λ ∈ [λ, r0), there holds

vλ > 0 (1.11)

in B0(r0)\B0(λ). Using the Hadamard Three-Sphere theorem as in Lemma 1.1, we
also get that for any point x ∈ Rn\B0(r0), there holds

vλ(x) ≥
(
r0

|x|

)n−2

min
∂B0(r0)

vλ . (1.12)

On the other hand, by the uniform continuity of the function ui0 on B0(r0), there
exists a positive real number ε such that for any λ ∈

[
λ, λ+ ε

]
and for any point

x ∈ Rn\B0(r0), there holds∣∣vλ(x)− vλ(x)
∣∣ =

∣∣(ui0)λ(x)− (ui0)λ(x)
∣∣ ≤ 1

2

(
r0

|x|

)n−2

min
∂B0(r0)

vλ . (1.13)

It follows from (1.11)–(1.13) that for any λ ∈
[
λ, λ+ ε

]
, there holds vλ ≥ 0 in

Rn\B0(λ). This contradicts the definition of λ, and this ends the proof of our
claim, namely that there holds vλ ≡ 0 in Rn\B0(λ). Taking into account that

vλ(x) = −
(
λ

|x|

)n−2

vλ

((
λ

|x|

)2

x

)
for all points x in Rn\{0}, we even get that there holds vλ ≡ 0 in Rn\{0}. Moreover,
the function ui0 cannot be identically zero without contradicting the definition of λ,
and thus, by the maximum principle, ui0 is nowhere vanishing. By (1.9), it follows
that there holds

∣∣Uλ∣∣ ≡ |U| in Rn\{0}. This ends the proof of Lemma 1.2. �

The third and last lemma in the proof of Proposition 1.1 states as follows.

Lemma 1.3. Let U be a nonnegative C2-solution of (1.1). If there holds that
λ(a) = +∞ for some point a in Rn, then the p-map U is identically zero.
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Proof of Lemma 1.3. By definition of λ(a), in case λ(a) = +∞, we get that for any
positive real number λ, there holds

(ui)a,λ ≤ ui
in Rn\Ba(λ) for i = 1, . . . , p. Without loss of generality we may here again assume
that a = 0. In particular, we get

λn−2ui(0) ≤ lim inf
|x|→+∞

(
|x|n−2ui(x)

)
.

Letting λ→ +∞, it follows that for i = 1, . . . , p, either ui(0) = 0 or

|x|n−2ui(x)→ +∞

as |x| → +∞. If there holds ui(0) = 0 for some i = 1, . . . , p, then by the super-
harmonicity of the function ui and by the strong maximum principle, ui is identi-
cally zero. Therefore, we may now assume that there holds |x|n−2ui(x) → +∞ as
|x| → +∞ for all i = 1, . . . , p such that ui 6≡ 0. We then claim that there holds
λ(y) = +∞ for all points y in Rn. Indeed, if not the case, namely if there holds
λ(y) < +∞ for some point y in Rn, then by Lemma 1.2, we get

|x|n−2 |U(x)| = |x|n−2
∣∣∣Uy,λ(y)(x)

∣∣∣ −→ λ(y)n−2 |U(y)|

as |x| → +∞, which is a contradiction. By Lemma 11.2 in Li and Zhang [28] if
there holds λ(y) = +∞ for all points y in Rn, then we get that the p-map U is
constant. Taking into account that U satisfies (1.1), it follows that U is identically
zero. �

We are now in position to end the proof of Proposition 1.1.

Proof of Proposition 1.1. By Lemma 1.3, we may assume that for any point y ∈ Rn,
there holds λ(y) < +∞. By Lemma 1.2, it follows that for any point y in Rn, there
holds

∣∣∣Uy,λ(y)

∣∣∣ ≡ |U| in Rn\{y}. By Lemma 11.1 in Li and Zhang [28], we then get
that there exist a point a ∈ Rn and two positive real numbers λ and λ′ such that

|U(x)| =

(
λ′

λ+ |x− a|2

)n−2
2

(1.14)

for all points x in Rn. For any positive real number R, we define the function ηR in
R+ by ηR(x) = η(x/R), where η is a smooth cutoff function in R+ satisfying η ≡ 1
in [0, 1], 0 ≤ η ≤ 1 in [1, 2], and η ≡ 0 in [2,+∞). For any positive real number R,
multiplying (1.1) by ηRui, summing over i and integrating by parts in Rn gives∫

Rn
|∇U|2 ηRdx+

1
2

∫
Rn
|U|2 ∆ηRdx =

∫
Rn
|U|2

?

ηRdx . (1.15)

By (1.14), we get∣∣∣∣∫
Rn
|U|2 ∆ηRdx

∣∣∣∣ ≤ ‖∆η‖C0(Rn)

R2

∫
B0(2R)\B0(R)

|U|2 dx = O
(
R2−n) (1.16)

as R → +∞. Passing to the limit into (1.15) as R → +∞, it follows from (1.16)
that ∫

Rn
|∇U|2 dx =

∫
Rn
|U|2

?

dx < +∞ .
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By Proposition 3.1 in Druet and Hebey [19] we then get that the p-map U is of the
form (1.2). This ends the proof of Proposition 1.1. �

2. Phase stability

We very briefly discuss the implications that the stationary notion of bounded
stability introduced in the introduction has in terms of dynamics. For this we de-
fine a notion of phase stability, see below, and discuss standing waves of critical
nonlinear Klein-Gordon and Schrödinger equations associated with (0.1). The crit-
ical nonlinear vector-valued Schrödinger equations we consider in this section are
written as

i
∂ui
∂t
−∆gui −

p∑
j=1

Aij(x)uj + |U|2
?−2

ui = 0 (2.1)

in M for all i. The critical nonlinear vector-valued Klein-Gordon equations we
consider are written as

∂2ui
∂t2

+ ∆gui +
p∑
j=1

Aij(x)uj − |U|2
?−2ui = 0 (2.2)

in M for all i. In the above equations A ∈ C1
(
M,Ms

p (R)
)
. The vector-valued

Schrödinger equations traditionally arise as a limiting case of the Zakharov system
associated with plasma physics. In this framework equation (2.1) is a special case of
the traditional vector nonlinear Schrödinger equation corresponding to the addition
of a matrix potential in the linear part of the equation, and to the choice α = 1
of the thermal velocity parameter in the original equations. Let Ue−iωt be the
standing waves model for (2.1) and (2.2), where the amplitude U : M → Rp is
assumed to be nonnegative. It is easily checked that Ue−iωt is a standing wave for
(2.1) if and only if U solves

∆gui +
p∑
j=1

(Aij(x)− ω̃δij)uj = |U|2
?−2

ui (2.3)

in M for all i, where ω̃ = ω, and that it is a standing wave for (2.2) if and only if U
solves (2.3) with ω̃ = ω2. In other words, Ue−iωt is a standing wave for (2.1) and
(2.2) if and only if U solves (0.1) with the phase translated matrix A − ωIdp and
A− ω2Idp.

In what follows, we define phase stability by the property that a convergence
of the phase implies a convergence of the amplitude. When phase stability holds
true, the corresponding standing wave sequence converges to another standing wave
and phase stability clearly prevents the existence of standing waves with arbitrarily
large amplitude in L∞-norm.

Definition. A phase ω is stable if for any sequence of standing waves with ampli-
tudes Uα and phases ωα, the convergence ωα → ω in R as α → +∞ implies that,
up to a subsequence, Uα → U in C2 as α→ +∞.

An easy consequence of our theorem and of (2.3) is that large phases are always
stable (with extra assumptions on A when n = 3). In particular, fast oscillating
standing waves (|ω| � 1) for the critical nonlinear vector-valued Klein-Gordon and
Schrödinger equations cannot have arbitrarily large amplitude. We also get that
small phases are stable, and thus that slow oscillating standing waves (|ω| � 1)



BOUNDED STABILITY FOR SYSTEMS 9

cannot have arbitrarily large amplitude as well, if the potential A is sufficiently
small. Recall that standing waves here are like Ue−iωt, where U ≥ 0.

Corollary. Large phases, required to be positive for (2.1), are generically stable.
In particular, fast oscillating standing waves cannot have arbitrarily large ampli-
tude. Small phases are also stable, and slow oscillating standing waves cannot have
arbitrarily large amplitude as well, if the potential A is sufficiently small.

To be more precise, assume that −A is cooperative, that ω̃ = ω (resp. ω̃ = ω2)
is such that ∆g + (A− ω̃Idp) is coercive, and that

A <

(
n− 2

4(n− 1)
Sg + ω̃

)
Idp . (2.4)

Classical minimization arguments give that standing waves with nonnegative am-
plitude and phase ω exist for the critical nonlinear vector-valued Klein-Gordon and
Schrödinger equations. Our theorem provides the stability of such standing waves
with respect to ω. As is easily checked, (2.4) is satisfied by large phases. Let (aij)i,j
be a symmetrical matrix of C1 functions aij : M → R such that

∑p
j=1 aij(x) = 1

for all i = 1, . . . , p and all x ∈M , and let A(g) be the C1 maps from M to Ms
p (R)

given by A(g)ij = n−2
4(n−1)Sgaij for all i, j = 1, . . . , p. By Druet and Hebey [16, 19],

the system (0.1) associated with A(g) is unstable when posed on spherical space
forms in any dimension n ≥ 6. By the noncompactness of the conformal group
on the sphere the system is noncompact when posed on the sphere in any dimen-
sion n ≥ 3, and by the constructions in Brendle [6] and Brendle and Marques
[8], there are examples of nonconformally flat manifolds for any n ≥ 25 such that
the system (0.1) associated with A(g) is noncompact, and thus also unstable. If
A − ωIdp = A(g), or A − ω2Idp = A(g), we then get instability of the phase ω
for (2.1) and (2.2). However, if A is sufficiently small such that (0.2) is satisfied,
then (2.4) is still satisfied with |ω| � 1 sufficiently small, and our theorem provides
the stability of such ω’s. In particular, small phases are also stable, and thus slow
oscillating standing waves cannot have arbitrarily large amplitude as well, if the
potential A is sufficiently small. Instability comes in the intermediate regime.

3. Pointwise controls in blow-up theory

We let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3,
p ≥ 1 be an integer, and (Aα)α be a sequence in C1

(
M,Ms

p (R)
)
, α ∈ N. We

consider the sequence of approximated equations

∆gui +
p∑
j=1

Aαij(x)uj = |U|2
?−2

ui , (3.1)

where Aα = (Aαij)i,j , and we assume that

Aα → A (3.2)

in C1
(
M,Ms

p (R)
)

as α → +∞ for some A ∈ C1
(
M,Ms

p (R)
)
. We let (Uα)α be a

sequence of nonnegative solutions of (3.1) and we assume that

max
M
|Uα| → +∞ (3.3)
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as α→ +∞. For U ∈ C1(M,Rp) we define |U|Σ by

|U|Σ =
p∑
i=1

ui , (3.4)

where U = (u1, . . . , up). If U ≥ 0 solves an equation like (0.1), summing the
equations in (0.1), we get that

∆g |U|Σ + Λ |U|Σ ≥ 0 ,

where, for example, Λ = p‖A‖∞ and ‖A‖∞ = maxM maxij |Aij(x)|. In particular,
|U|Σ satisfies the maximum principle and we get that either |U|Σ ≡ 0 or |U|Σ > 0
everywhere in M . As a consequence, either U ≡ 0 or |U| > 0 everywhere in M ,
and we get that |U| is of class C2,θ, θ ∈ (0, 1), exactly like U is. In what follows we
let (xα)α be a sequence of points in M and (ρα)α, 0 < ρα < ig/7, be a sequence of
positive real numbers, where ig is the injectivity radius of g. We assume that the
xα’s and ρα’s are such that

∇ |Uα| (xα) = 0 and

dg (xα, x)
n−2

2 |Uα(x)| ≤ C
(3.5)

for all α, all x ∈ Bxα(7ρα), and some C > 0 independent of α and x. We define

µα =
1

|Uα(xα)|
2

n−2
(3.6)

for all α, and aim in getting pointwise control estimates on the Uα’s around the
xα’s. We start with a general Harnack type inequality in Lemma 3.1 and then get
our control estimates in Lemmas 3.2, 3.4, and 3.5 under the additional assumption
that

lim
α→+∞

ρ
n−2

2
α sup

Bxα (6ρα)

|Uα| = +∞ . (3.7)

Lemma 3.3 is used as an intermediate state between the asymptotic description in
Lemma 3.2 and the sharp pointwise control in Lemma 3.4.

Lemma 3.1. Let (M, g) be a smooth compact Riemannian manifold of dimension
n ≥ 3, p ≥ 1 be an integer, (Aα)α be a sequence in C1

(
M,Ms

p (R)
)
, and (Uα)α be

a sequence of nonnegative solutions of (3.1) such that (3.2) and (3.3) hold true.
Let (xα)α and (ρα)α be such that (3.5) holds true, and let R ≥ 6 be given. There
exists C > 1 such that for any sequence (sα)α of positive real numbers satisfying
that sα > 0 and Rsα ≤ 6ρα for all α, there holds

sα ‖∇Uα‖L∞(Ωα) ≤ C sup
Ωα

|Uα| ≤ C2 inf
Ωα
|Uα| ,

where Ωα is given by Ωα = Bxα (Rsα) \ Bxα
(

1
Rsα

)
and, for U = (u1, . . . , up),

‖∇U‖L∞ = maxi ‖∇ui‖L∞ .

Proof of Lemma 3.1. Let R ≥ 6 be given and (sα)α be a sequence of positive real
numbers such that sα > 0 and Rsα ≤ 6ρα for all α. We set for x ∈ B0( 7R

6 ),

Ûα(x) = s
n−2

2
α Uα

(
expxα (sαx)

)
,

Âα(x) = Aα
(
expxα (sαx)

)
, and

ĝα(x) =
(
exp?xα g

)
(sαx) .
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Up to a subsequence, ĝα → ĝ in C2
loc

(
B0( 7R

6 )
)

as α → +∞, where ĝ is some
Riemannian metric in B0( 7R

6 ), and ĝ = ξ as soon as sα → 0, where ξ is the
Euclidean metric. We know thanks to (3.5) that

|Ûα(x)| ≤ C|x|1−n2 (3.8)

in B0( 7R
6 ) \ {0}. Thanks to equation (3.1), we also get that

∆ĝα(ûα)i + s2
α

p∑
j=1

Âαij(x)(ûα)j = |Ûα|2
?−2(ûα)i (3.9)

in B0( 7R
6 ) for all i, where Ûα = ((ûα)1, . . . , (ûα)p). It follows from (3.8) and (3.9)

that
|∆ĝα(ûα)i| ≤

(
C2?−2 |x|−2 + ps2

α ‖Aα‖∞
)

sup
B0( 13R

12 )\B0( 12
13R )
|Ûα|

in B0

(
13R
12

)
\ B0

(
12

13R

)
for all i = 1, . . . , p. Sobolev embeddings lead then to the

existence of some D > 0 such that

sup
B0(R)\B0( 1

R )
|∇(ûα)i| ≤ D sup

B0( 13R
12 )\B0( 12

13R )
|Ûα| (3.10)

for all i = 1, . . . , p. Let i ∈
{

1, . . . , p
}

be given and let ûα = |Ûα|Σ, where | · |Σ is as
in (3.4). By the maximum principle, ûα > 0. Summing the equations in (3.9) we
have that

∆ĝα ûα = Fαûα (3.11)

in B0( 7R
6 ), where

Fα = |Ûα|2
?−2 − s2

α

∑p
i,j=1 Â

α
ij(ûα)j

ûα
. (3.12)

Combining (3.8) and (3.12) we get that

|Fα| ≤
(

7R
6

)2

C2?−2 + s2
α ‖Aα‖∞ (3.13)

in B0( 7R
6 ) \ B0

(
6

7R

)
. Thanks to the Harnack inequality that we apply to the

solutions ûα of (3.11), see for instance Theorem 4.17 of [22], we get the existence
of some D > 0 independent of α, K and x such that

sup
Bx(2K)

ûα ≤ D

(
inf

Bx(K)
ûα +K ‖Fα‖Ln(Bx(2K)) sup

Bx(2K)

ûα

)
for all α and all balls Bx (2K) ⊂ B0( 7R

6 ). Using (3.13) and choosing K small
enough clearly leads to the existence of some D > 0 such that

sup
B0(R)\B0( 1

R )

ûα ≤ sup
B0( 13R

12 )\B0( 12
13R )

ûα

≤ D inf
B0(R)\B( 1

R )
ûα ≤ D sup

B0(R)\B0( 1
R )

ûα
(3.14)

for all α. It remains to note that 1
p û

2
α ≤ |Uα|

2 ≤ û2
α to conclude the lemma with

(3.10) and (3.14). �

Lemmas 3.2 to 3.5 below are involved with getting pointwise control estimates
on the Uα’s.
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Lemma 3.2. Let (M, g) be a smooth compact Riemannian manifold of dimension
n ≥ 3, p ≥ 1 be an integer, (Aα)α be a sequence in C1

(
M,Ms

p (R)
)
, and (Uα)α be

a sequence of nonnegative solutions of (3.1) such that (3.2) and (3.3) hold true.
Let (xα)α and (ρα)α be such that (3.5) and (3.7) hold true. After passing to a
subsequence,

µ
n−2

2
α Uα

(
expxα(µαx)

)
→

 1

1 + |x|2
n(n−2)


n−2

2

Λ (3.15)

in C1
loc(Rn) as α → +∞, where µα is as in (3.6), Λ ∈ Sp−1

+ , and Sp−1
+ is the set

of vectors in Rp with nonnegative components and such that |Λ| = 1. Moreover,
ρα
µα
→ +∞ as α→ +∞. In particular, µα → 0 as α→ +∞.

Proof of Lemma 3.2. Let yα ∈ Bxα(6ρα) and να > 0 be such that

|Uα(yα)| = sup
Bxα (6ρα)

|Uα| and |Uα(yα)| = ν
1−n2
α

for all α. By (3.7), να → 0 and ραν
−1
α → +∞ as α→ +∞. By (3.5),

dg (xα, yα) ≤ Cνα (3.16)

for all α. Let Ωα = B0

(
ραν

−1
α

)
, Ωα ⊂ Rn. For x ∈ Ωα we set

Ũα(x) = ν
n−2

2
α Uα

(
expxα(ναx)

)
and gα(x) =

(
exp?xα g

)
(ναx). Since να → 0 we get that gα → δ in C2

loc (Rn) as
α→ +∞, where ξ is the Euclidean metric. As is easily checked,

∆gα(ũα)i + ν2
α

p∑
j=1

Ãαij(x)(ũα)j = |Ũα|2
?−2(ũα)i (3.17)

for all i, where Ũα = ((ũα)1, . . . , (ũα)p) and

Ãαij(x) = Aαij
(
expxα(ναx)

)
for all α and all i, j. Since |Ũα| ≤ 1 in Ωα, and since ραν

−1
α → +∞ so that

Ωα → Rn, we get from (3.17) and standard elliptic theory that Ũα → Ũ in C1
loc(Rn)

as α→ +∞, where Ũ ≥ 0 solves (1.1). Let ỹα be given by

ỹα =
1
να

exp−1
xα (yα) .

By (3.16) we have that |ỹα| ≤ C for all α and we may thus assume that, up to a
subsequence, ỹα → ỹ0 as α → +∞. Since |Ũα(ỹα)| = 1, we get that |Ũ(ỹ0)| = 1
and ỹ0 is a point where |Ũ | attains its maximum. Also we have that 0 is a critical
point of |Ũ | since xα is a critical point of |Ũα|, and we have that

|Ũ(0)| = lim
α→+∞

(
να
µα

)n−2
2

. (3.18)

By Proposition 1.1, since |Ũ | attains its maximum 1 at ỹ0, we get that

Ũ(x) =

 1

1 + |x−ỹ0|2
n(n−2)


n−2

2

Λ ,
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for all x ∈ Rn, where Λ ∈ Sp−1
+ . Since 0 is a critical point of |Ũ |, we get that ỹ0 = 0,

and by (3.18) we get that να = µα (1 + o(1)). This proves Lemma 3.2. �

At this point we define ϕα : (0, ρα) 7→ R+ by

ϕα(r) =
1

|∂Bxα (r)|g

∫
∂Bxα (r)

|Uα|Σ dσg , (3.19)

where |∂Bxα (r)|g is the volume of the sphere of center xα and radius r for the
induced metric and | · |Σ is as in (3.4). As a consequence of Lemma 3.2 we have
that

(µαr)
n−2

2 ϕα (µαr)→

(
r

1 + r2

n(n−2)

)n−2
2

|Λ|Σ (3.20)

in C1
loc ([0,+∞)) as α→ +∞. We define rα ∈ [2R0µα, ρα] by

rα = sup
{
r ∈ [2R0µα, ρα] s.t.

(
s
n−2

2 ϕα(s)
)′
≤ 0 in [2R0µα, r]

}
(3.21)

where R2
0 = n(n− 2). Thanks to (3.20) we have that

rα
µα
→ +∞ (3.22)

as α→ +∞, while the definition of rα gives that

r
n−2

2 ϕα is non-increasing in [2R0µα, rα] (3.23)

and that (
r
n−2

2 ϕα(r)
)′

(rα) = 0 if rα < ρα . (3.24)

Given R > 0 we define

ηR,α = sup
Bxα (Rrα)\Bxα ( 1

R rα)

|Uα| . (3.25)

Now we can prove the following estimate.

Lemma 3.3. Let (M, g) be a smooth compact Riemannian manifold of dimension
n ≥ 3, p ≥ 1 be an integer, (Aα)α be a sequence in C1

(
M,Ms

p (R)
)
, and (Uα)α be

a sequence of nonnegative solutions of (3.1) such that (3.2) and (3.3) hold true.
Let (xα)α and (ρα)α be such that (3.5) and (3.7) hold true, and let R ≥ 6 be such
that Rrα ≤ 6ρα for all α � 1. For any ε > 0 there exists Cε > 0 such that, after
passing to a subsequence,

|Uα(x)| ≤ Cε

(
µ
n−2

2 (1−2ε)
α dg(xα, x)(2−n)(1−ε) + ηR,α

(
rα

dg(xα, x)

)(n−2)ε
)

(3.26)

for all x ∈ Bxα(Rrα)\ {xα} and all α, where ηR,α is as in (3.25), µα is as in (3.6),
and rα is as in (3.21).

Proof of Lemma 3.3. By Lemma 3.1 there exists C > 1 such that

1
C

sup
Bxα (Rsα)\Bxα ( 1

R sα)

|Uα| ≤ ϕα(sα) ≤ C inf
Bxα (Rsα)\Bxα ( 1

R sα)
|Uα| (3.27)
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for all 0 < sα ≤ rα and all α. By (3.23) and (3.27) we then get that for D � 1
sufficiently large,

sup
x∈Bxα (Rrα)\Bxα (Dµα)

dg(xα, x)
n−2

2 |Uα(x)| ≤ C sup
Dµα≤r≤rα

r
n−2

2 ϕα(r)

≤ C(Dµα)
n−2

2 ϕα(Dµα)
(3.28)

and it follows from (3.20) and (3.28) that

lim
D→+∞

lim
α→+∞

sup
x∈Bxα (Rrα)\Bxα (Dµα)

dg(xα, x)
n−2

2 |Uα(x)| = 0 . (3.29)

In particular, by (3.22) and (3.29),

r
n−2

2
α ηR,α → 0 (3.30)

as α → +∞. Let G be the Green’s function of ∆g in M , where we choose G such
that G ≥ 1. Then, see for instance Aubin [4, 5],∣∣∣∣dg(x, y)n−2G(x, y)− 1

(n− 2)ωn−1

∣∣∣∣ ≤ τ (dg(x, y)) (3.31)

and ∣∣∣∣dg(x, y)n−1|∇G(x, y)| − 1
ωn−1

∣∣∣∣ ≤ τ (dg(x, y)) (3.32)

for some continuous function τ : R+ → R+ satisfying τ(0) = 0. We fix 0 < ε < 1
2

and set
Φεα(x) = µ

n−2
2 (1−2ε)

α G(xα, x)1−ε + ηR,αr
(n−2)ε
α G(xα, x)ε .

By (3.31) it suffices, in order to get Lemma 3.3, to prove that

sup
Bxα (Rrα)\{xα}

|Uα|Σ
Φεα

= O(1) . (3.33)

We have Φεα(x)→ +∞ as x→ xα. Let yα ∈ Bxα(Rrα)\{xα} be such that

sup
Bxα (Rrα)\{xα}

|Uα|Σ
Φεα

=
|Uα(yα)|Σ
Φεα(yα)

. (3.34)

First we assume that dg(xα, yα) 6→ 0 as α → +∞. Then rα 6→ 0 since there holds
dg(xα, yα) ≤ Rrα and we get that Φεα(yα) ≥ CηR,α for some C > 0 independent
of α. By Lemma 3.1 we can also write that |Uα(yα)| ≤ CηR,α for some C > 0
independent of α. This proves (3.33) when dg(xα, yα) 6→ 0 as α→ +∞. From now
on we assume that

dg(xα, yα)→ 0 (3.35)
as α→ +∞ and we distinguish three different cases:

Case 1. dg(xα,yα)
µα

→ D as α→ +∞,

Case 2. yα ∈ ∂Bxα(Rrα) for all α,

Case 3. yα ∈ Bxα(Rrα) and dg(xα,yα)
µα

→ +∞ as α→ +∞.

Assume first that we are in case 1. Then, by Lemma 3.2,

µ
n−2

2
α Uα(yα)→

(
1

1 + D2

n(n−2)

)n−2
2

Λ (3.36)
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as α→ +∞, where Λ ∈ Sp−1
+ . By (3.22), (3.30), and (3.31),

µ
n−2

2
α Φεα(yα) =

(
1

(n− 2)ωn−1

)1−ε(
µα

dg(xα, yα)

)(n−2)(1−ε)

+ o(1)

+O
(
ηR,αµ

n−2
2

α r(n−2)ε
α dg(xα, yα)(2−n)ε

)
=

(
1

(n− 2)ωn−1Dn−2

)1−ε

+ o(1)

+O
(
ηR,αr

(n−2)ε
α µ

n−2
2 (1−2ε)

α

)
=

(
1

(n− 2)ωn−1Dn−2

)1−ε

+ o(1)

+o
(
r
−n−2

2 (1−2ε)
α µ

n−2
2 (1−2ε)

α

)
=

(
1

(n− 2)ωn−1Dn−2

)1−ε

+ o(1)

if D 6= 0, and if D = 0, noting that by (3.31),

µ
n−2

2
α Φεα(yα) ≥ Cµ(n−2)(1−ε)

α dg(xα, yα)−(n−2)(1−ε) ,

we get that

lim
α→+∞

µ
n−2

2
α Φεα(yα) = +∞ .

It follows that in case 1, for D = 0 or D > 0, using (3.36),

|Uα(yα)|
Φεα(yα)

→
(
(n− 2)ωn−1D

n−2
)1−ε( 1

1 + D2

n(n−2)

)n−2
2

(3.37)

as α → +∞, and (3.33) follows from (3.37). Now we assume we are in case 2.
Then, by the definition of ηR,α, we have that |Uα(yα)| ≤ ηR,α and since by (3.31),

Φεα(yα) ≥ ηR,αr
(n−2)ε
α G(xα, yα)ε

≥ ηR,αr
(n−2)ε
α

(
1

(n− 2)ωn−1
+ o(1)

)ε
dg(xα, yα)−(n−2)ε

= ηR,α

(
1

(n− 2)ωn−1Rn−2
+ o(1)

)ε
we get that, here again, (3.33) holds true. At this point it remains to discuss case
3. Since yα ∈ Bxα(Rrα) in case 3, it follows from (3.34) and (3.42) below that

∆g|Uα|Σ(yα)
|Uα|Σ(yα)

≥ ∆gΦεα(yα)
Φεα(yα)

. (3.38)

Since
∆g|Uα|Σ ≤ C1|Uα|Σ + C2|Uα|2

?−1
Σ ,

where C1, C2 > 0 are independent of α, we get by (3.35) and (3.29) that

lim
α→+∞

dg(xα, yα)2 ∆g|Uα|Σ(yα)
|Uα|Σ(yα)

= 0 . (3.39)
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On the other hand, we compute

∆gΦεα = ε(1− ε) |∇Gxα |
2

G2
xα

Φεα (3.40)

and by (3.31), (3.32), and (3.40) we get that

lim
α→+∞

dg(xα, yα)2 ∆gΦεα(yα)
Φεα(yα)

= ε(1− ε)(n− 2)2 . (3.41)

Combining (3.38), (3.39), and (3.41) we get a contradiction so that only cases 1
and 2 can occur. This ends the proof of Lemma 3.3. �

In the above process we used that if Ω is an open subset of M , u, v are C2-
positive functions in Ω, and x0 ∈ Ω is a point where v

u achieves its supremum in Ω,
then

∆gv(x0)
v(x0)

≥ ∆gu(x0)
u(x0)

. (3.42)

Indeed, ∇
(
v
u

)
= u∇v−v∇u

u2 so that u(x0)∇v(x0) = v(x0)∇u(x0). Then,

∆g

( v
u

)
(x0) =

u(x0)∆gv(x0)− v(x0)∆gu(x0)
u2(x0)

and we get (3.42) by writing that ∆g

(
v
u

)
(x0) ≥ 0. At this point, thanks to Lemma

3.3, we can prove the following sharp estimate.

Lemma 3.4. Let (M, g) be a smooth compact Riemannian manifold of dimension
n ≥ 3, p ≥ 1 be an integer, (Aα)α be a sequence in C1

(
M,Ms

p (R)
)
, and (Uα)α be

a sequence of nonnegative solutions of (3.1) such that (3.2) and (3.3) hold true.
Let (xα)α and (ρα)α be such that (3.5) and (3.7) hold true, and let R ≥ 6 be such
that Rrα ≤ 6ρα for all α � 1. There exists C > 0 such that, after passing to a
subsequence,

|Uα(x)|+ dg(xα, x) ‖∇Uα(x)‖ ≤ Cµ
n−2

2
α dg(xα, x)2−n (3.43)

for all x ∈ Bxα(R2 rα)\ {xα} and all α, where, for U = (u1, . . . , up) and x ∈ M ,
‖∇U(x)‖ = maxi |∇ui(x)|, where µα is as in (3.6), and where rα is as in (3.21).

Proof of Lemma 3.4. We prove that there exist C,C ′ > 0 such that

|Uα(x)| ≤ C
(
µ
n−2

2
α dg(xα, x)2−n + ηR,α

)
(3.44)

for all x ∈ Bxα(R2 rα)\{xα} and all α, and

ηR,α ≤ C ′µ
n−2

2
α r2−n

α (3.45)

for all α. Lemma 3.4 follows from Lemma 3.1, (3.44), and (3.45). In particular,
it suffices to prove (3.44) and (3.45). We start with the proof of (3.45) assuming
(3.44). By (3.23), for any η ∈ (0, 1),

(ηrα)
n−2

2 ϕα(ηrα) ≥ r
n−2

2
α ϕα(rα)

for all α� 1. By (3.27) we then get that

1
C
r
n−2

2
α ηR,α ≤ (ηrα)

n−2
2 sup

∂Bxα (ηrα)

|Uα| .
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Assuming (3.44) it follows that

1
C
ηR,α ≤ η

n−2
2

(
µ
n−2

2
α (ηrα)2−n + ηR,α

)
and if we choose η ∈ (0, 1) sufficiently small such that Cη

n−2
2 ≤ 1

2 , we obtain that

ηR,α ≤ η2−nµ
n−2

2
α r2−n

α .

This proves (3.45) when we assume (3.44). Now it remains to prove (3.44). For
this it suffices to prove that for any sequence (yα)α such that

yα ∈ Bxα(
R

2
rα)\{xα} (3.46)

for all α, there exists C > 0 such that, up to a subsequence,

|Uα(yα)| ≤ C
(
µ
n−2

2
α dg(xα, yα)2−n + ηR,α

)
. (3.47)

Let (yα)α be such that yα satisfies (3.46) for all α. As a preliminary remark one
can note that (3.47) directly follows from Lemma 3.2 if dg(xα, yα) = O(µα). In
a similar way, (3.47) follows from Lemma 3.1 if r−1

α dg(xα, yα) 6→ 0 as α → +∞.
From now on we assume that

lim
α→+∞

1
µα
dg(xα, yα) = +∞ and lim

α→+∞

1
rα
dg(xα, yα) = 0 . (3.48)

Let λ > 1 be such that λp‖A‖∞ 6∈ Sp(∆g), where Sp(∆g) is the spectrum of ∆g,
and let G be the Green’s function of ∆g − λp‖A‖∞. There exist, see for instance
Robert [36], positive constants C1 > 1 and C2, C3 > 0 such that

1
C1
dg(x, y)2−n − C2 ≤ G(x, y) ≤ C1dg(x, y)2−n , and

|∇G(x, y)| ≤ C3dg(x, y)1−n
(3.49)

for all x 6= y. By (3.49) there exists δ > 0 such that G ≥ 0 in Bxα(δrα) for all α.
By (3.48), yα ∈ Bxα( δ2rα) for α� 1. By the Green’s representation formula,

|Uα|Σ(yα) =
∫
Bxα (δrα)

G(yα, x) (∆g|Uα|Σ − λp‖A‖∞|Uα|Σ) (x)dvg(x)

+
∫
∂Bxα (δrα)

G(yα, x) (∂ν |Uα|Σ) (x)dσg(x)

−
∫
∂Bxα (δrα)

(∂νG(yα, x)) |Uα|Σ(x)dσg(x) ,

(3.50)

where ν is the unit outward normal to ∂Bxα(δrα). Since λ > 1,

∆g|Uα|Σ − λp‖A‖∞|Uα|Σ ≤ |Uα|2
?−2|Uα|Σ

≤ √
p|Uα|2

?−1

and since G ≥ 0 in Bxα(δrα) we get with (3.49) that∫
Bxα (δrα)

G(yα, x) (∆g|Uα|Σ − λp‖A‖∞|Uα|Σ) (x)dvg(x)

≤ C
∫
Bxα (δrα)

dg(yα, x)2−n|Uα(x)|2
?−1dvg(x) .

(3.51)
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Independently, by (3.49) and Lemma 3.1,∫
∂Bxα (δrα)

G(yα, x) |∂ν |Uα|Σ(x)| dσg(x) ≤ CηR,α , and∫
∂Bxα (δrα)

|∂νG(yα, x)| |Uα|Σ(x)dσg(x) ≤ CηR,α
(3.52)

for some C > 0. Combining (3.50)–(3.52), we get that

1
C
|Uα|Σ(yα) ≤

∫
Bxα (δrα)

dg(yα, x)2−n|Uα(x)|2
?−1dvg(x) + ηR,α . (3.53)

We fix ε = 2
n+2 . By Lemmas 3.2 and 3.3, and by (3.48), we can write that∫

Bxα (δrα)

dg(yα, x)2−n|Uα(x)|2
?−1dvg(x)

= O
(
µ
n−2

2
α dg(xα, yα)2−n

)
+O

(
µ
n+2

2 (1−2ε)
α

∫
Bxα (δrα)\Bxα (µα)

dg(yα, x)2−ndg(xα, x)−(n+2)(1−ε)dvg(x)

)

+O

(
η2?−1
R,α r(n+2)ε

α

∫
Bxα (δrα)\Bxα (µα)

dg(yα, x)2−ndg(xα, x)−(n+2)εdvg(x)

)
= O

(
µ
n−2

2
α dg(xα, yα)2−n

)
+O

(
η2?−1
R,α r2

α

)
and we thus get from (3.5), that∫

Bxα (δrα)

dg(yα, x)2−n|Uα(x)|2
?−1dvg(x)

= O
(
µ
n−2

2
α dg(xα, yα)2−n

)
+O (ηR,α) .

(3.54)

Indeed r2
αη

2?−1
R,α =

(
r2
αη

2?−2
R,α

)
ηR,α, and by (3.5),(

r2
αη

2?−2
R,α

) 1
2?−2

= r
n−2

2
α sup

Bxα (Rrα)\Bxα ( 1
R rα)

|Uα|

≤ C sup
x∈Bxα (Rrα)

dg(xα, x)
n−2

2 |Uα(x)| ≤ C .

Then (3.47) follows from (3.53) and (3.54). This ends the proof of Lemma 3.4. �

At this point we define Bα by

Bα(x) =

 µα

µ2
α + dg(xα,x)2

n(n−2)


n−2

2

(3.55)

for all α, where x ∈ M . As a last estimate in this section we prove Lemma 3.5
below.

Lemma 3.5. Let (M, g) be a smooth compact Riemannian manifold of dimension
n ≥ 3, p ≥ 1 be an integer, (Aα)α be a sequence in C1

(
M,Ms

p (R)
)
, and (Uα)α be

a sequence of nonnegative solutions of (3.1) such that (3.2) and (3.3) hold true.
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Let (xα)α and (ρα)α be such that (3.5) and (3.7) hold true. There exist C > 0 and
(εα)α such that, up to a subsequence,

|Uα −BαΛ| ≤ Cµ
n−2

2
α

(
r2−n
α + Sα

)
+ εαBα (3.56)

in Bxα(2rα)\{xα} for all α, where Λ ∈ Sp−1
+ is as in Lemma 3.2, εα → 0 as

α→ +∞, Sα(x) = dg(xα, x)3−n for all x, µα is as in (3.6), and rα is as in (3.21).

Proof of Lemma 3.5. Let G be the Green’s function of ∆g + 1 in M . Let (yα)α be
any sequence of points in Bxα(2rα)\{xα}. By the Green’s representation formula,
for any i = 1, . . . , p,

(uα)i =
∫
Bxα (2rα)

G(yα, x) (∆g(uα)i + (uα)i) (x)dvg(x)

+
∫
∂Bxα (2rα)

G(yα, x) (∂ν(uα)i) (x)dσg(x)

−
∫
∂Bxα (2rα)

(∂νG(yα, x)) (uα)i(x)dσg(x) ,

(3.57)

where ν is the unit outward normal to Bxα(2rα) and Uα = ((uα)1, . . . , (uα)p). We
have, see, for instance, Druet, Hebey and Robert [20], that G ≥ 0 and that there
exist positive constants C1, C2 > 0 such that∣∣∣∣dg(x, y)n−2G(x, y)− 1

(n− 2)ωn−1

∣∣∣∣ ≤ C1dg(x, y) , and

|∇G(x, y)| ≤ C2dg(x, y)1−n
(3.58)

for all x 6= y. By (3.58) and Lemma 3.1,∣∣∣∣∣
∫
∂Bxα (2rα)

G(yα, x) (∂ν(uα)i) (x)dσg(x)

∣∣∣∣∣ ≤ Cη6,α ,∣∣∣∣∣
∫
∂Bxα (2rα)

(∂νG(yα, x)) (uα)i(x)dσg(x)

∣∣∣∣∣ ≤ Cη6,α

(3.59)

and by (3.45),

η6,α ≤ Cµ
n−2

2
α r2−n

α . (3.60)

By Lemma 3.4 and (3.58),∫
Bxα (2rα)

G(yα, x)|Uα|dvg(x) ≤ Cµ
n−2

2
α

∫
Bxα (2rα)

dg(yα, x)2−ndg(xα, x)2−ndvg(x)

and by Giraud’s lemma we get that∫
Bxα (2rα)

G(yα, x)|Uα|dvg(x) ≤ Cµ
1
2
α if n = 3 ,∫

Bxα (2rα)

G(yα, x)|Uα|dvg(x) ≤ Cµα (1 + |ln dg(xα, yα)|) if n = 4 , and∫
Bxα (2rα)

G(yα, x)|Uα|dvg(x) ≤ Cµ
n−2

2
α dg(xα, yα)4−n if n ≥ 5 .

(3.61)
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Now we let Rα : M → Rp be given by

Rα(x) =
∫
Bxα (2rα)

G(x, y)|Uα(y)|2
?−2Uα(y)dvg(y) (3.62)

for x ∈M , and let f : M → R be given by

f(x) = (n− 2)ωn−1dg(x0, x)n−2G(x0, x)

if x 6= x0 and f(x0) = 1, where, up to a subsequence, xα → x0 as α → +∞. By
(3.58), f is continuous at x0 and

|f(x)− 1| ≤ Cdg(x0, x) . (3.63)

We claim that

lim
α→+∞

∥∥∥∥Rα(yα)
Bα(yα)

− f(yα)Λ
∥∥∥∥ = 0 . (3.64)

As is easily checked, Lemma 3.5 follows from (3.64). Indeed, by (3.64), since (yα)α
is arbitrary in Bxα(2rα)\{xα}, for any x ∈M
‖Rα(x)−Bα(x)Λ‖Rp ≤ ‖Rα(x)− f(x)Bα(x)Λ‖Rp + |f(x)− 1|Bα(x)

≤
∥∥∥∥RαBα − fΛ

∥∥∥∥
L∞

Bα(x) + |f(x)− 1|Bα(x)

≤ εαBα(x) + |f(x)− 1|Bα(x) ,

(3.65)

where εα → 0 as α→ +∞, and by (3.63) we can write that

|f(x)− 1| ≤ Cdg(x0, x)
≤ ε′α + Cdg(xα, x) ,

where ε′α = Cdg(x0, xα) is such that ε′α → 0 as α→ +∞. Moreover,

dg(xα, x)Bα(x) ≤ µ
n−2

2
α dg(xα, x)3−n (3.66)

and we thus get (3.56) by combining (3.57), (3.59), (3.60), (3.61), (3.65), and
(3.66). Summarizing, at this point, it remains to prove (3.64). Up to passing to a
subsequence we may assume that yα → y0 as α→ +∞. Suppose first that y0 6= x0.
By Lemmas 3.2, Lemma 3.4, and the Lebesgue’s dominated convergence theorem,
writing that

Rα(yα) = µ
n−2

2
α

∫
B0(2 rαµα )

G
(
yα, expxα(µαx)

)
|Ũα(x)|2

?−2Ũα(x)dvg̃α(x) ,

where

Ũα(x) = µ
n−2

2
α Uα

(
expxα(µαx)

)
and

g̃α(x) =
(
exp?xα g

)
(µαx) ,

(3.67)

we get that

lim
α→+∞

Rα(yα)
Bα(yα)

=
(
dg(x0, y0)2

n(n− 2)

)n−2
2
(∫

Rn
u2?−1

0 dx

)
G(x0, y0)Λ ,

where

u0(x) =

 1

1 + |x|2
n(n−2)


n−2

2

. (3.68)
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Since ∫
Rn
u2?−1

0 dx = (n− 2)ωn−1 (n(n− 2))
n−2

2

we get that if y0 6= x0, then

lim
α→+∞

Rα(yα)
Bα(yα)

= (n− 2)ωn−1dg(x0, y0)n−2G(x0, y0)Λ

= f(y0)Λ .

This proves (3.64) when y0 6= x0. Now we assume that y0 = x0. In addition, as a
first case to consider, we assume also that

dg(xα, yα)
µα

→ D (3.69)

as α→ +∞ for some D ≥ 0. Let zα be such that yα = expxα(µαzα). Then

Rα(yα)
Bα(yα)

=
(

1 +
|zα|2

n(n− 2)

)n−2
2

µn−2
α

∫
Bxα ( 2rα

µα
)

G̃α|Ũα|2
?−2Ũαdvg̃α , (3.70)

where Ũα and g̃α are as in (3.67), and

G̃α(x) = G
(
expxα(µαzα), expxα(µαx)

)
.

By (3.58),

dg
(
expxα(µαzα), expxα(µαx)

)
G̃α(x)→ 1

(n− 2)ωn−1
(3.71)

as α→ +∞ for all x, and we also have that

dg
(
expxα(µαzα), expxα(µαx)

)
= µαdg̃α(zα, x) . (3.72)

Combining (3.70), (3.71), and (3.72), by Lemmas 3.2 and 3.4, and by the Lebesgue’s
dominated convergence theorem we get that

lim
α→+∞

Rα(yα)
Bα(yα)

=
(

1 +
|z0|2

n(n− 2)

)n−2
2
(∫

Rn

u0(x)2?−1dx

(n− 2)ωn−1|x− z0|n−2

)
Λ , (3.73)

where zα → z0 as α → +∞, and u0 is as in (3.68). We have that ∆u0 = u2?−1
0 ,

and since
G0(x, y) =

1
(n− 2)ωn−1|y − x|n−2

is the Green’s function of ∆, we get from (3.73) that

lim
α→+∞

Rα(yα)
Bα(yα)

= Λ .

This proves (3.64) when y0 6= x0 and we assume (3.69). Now it remains to considser
the case where y0 = x0 and

dg(xα, yα)
µα

→ +∞ (3.74)

as α→ +∞. Then

Rα(yα)
Bα(yα)

=
(

1
n(n− 2)

+ o(1)
)n−2

2

dg(xα, yα)n−2µ
−n−2

2
α Iα , (3.75)

where
Iα =

∫
Bxα (2rα)

G(yα, x)|Uα(x)|2
?−2Uα(x)dvg(x) .
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We write that

Iα =
∫

Ωα

G(yα, x)|Uα(x)|2
?−2Uα(x)dvg(x)

+
∫

Ωcα

G(yα, x)|Uα(x)|2
?−2Uα(x)dvg(x) ,

(3.76)

where

Ωα =
{
x ∈ Bxα(2rα) s.t. dg(yα, x) ≥ 1

2
dg(xα, yα)

}
and Ωcα = Bxα(2rα)\Ωα. We have that

µ
−n−2

2
α

∫
Ωα

G(yα, x)|Uα(x)|2
?−2Uα(x)dvg(x)

=
∫

1
µα

exp−1
xα (Ωα)

G
(
yα, expxα(µαx)

)
|Ũα(x)|2

?−2Ũα(x)dvg̃α(x) ,

where Ũα and g̃α are as in (3.67). Let zα = expxα(µαx). For x ∈ 1
µα

exp−1
xα (Ωα),

dg(yα, zα)
µα

→ +∞

as α→ +∞, and since

dg(yα, zα)− dg(xα, zα) ≤ dg(xα, yα) ≤ dg(yα, zα) + dg(xα, zα)

and dg(xα, zα) = µα|x|, we get that

lim
α→+∞

dg(xα, yα)
dg(yα, zα)

= 1 . (3.77)

By (3.58) and (3.77),

lim
α→+∞

dg(xα, yα)n−2Gα
(
yα, expxα(µαx)

)
=

1
(n− 2)ωn−1

.

By Lemmas 3.2 and 3.4, and by the Lebesgue’s dominated convergence theorem,
we then get that

lim
α→+∞

dg(xα, yα)n−2µ
−n−2

2
α

∫
Ωα

G(yα, x)|Uα(x)|2
?−2Uα(x)dvg(x)

=
1

(n− 2)ωn−1

(∫
Rn
u2?−1

0 dx

)
Λ

= (n(n− 2))
n−2

2 Λ .

(3.78)

Independently, by (3.58) and by Lemma 3.4,

dg(xα, yα)n−2µ
−n−2

2
α

∫
Ωcα

G(yα, x)|Uα(x)|2
?−2Uα(x)dvg(x)

≤ Cdg(xα, yα)−4µ2
α

∫
Ωcα

dg(yα, x)2−ndvg(x)

≤ C
(

µα
dg(xα, yα)

)2

= o(1)

(3.79)

since
dg(xα, x) ≥ dg(xα, yα)− dg(yα, x) ≥ 1

2
dg(xα, yα)
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for x ∈ Ωcα. Noting that (3.64) follows from (3.75), (3.76), (3.78), and (3.79), we
get that (3.64) holds true when y0 = x0 and we assume (3.74). This ends the proof
of Lemma 3.5. �

4. Sharp pointwise blow-up estimates

In this section we prove sharp blow-up estimates for sequences of solutions of
perturbed equations like (3.1) when we assume (0.2). The main result of this section
is Lemma 4.3. Lemmas 4.1 and 4.2 are preliminary lemmas for the proof of Lemma
4.3. In what follows we let Xα be the 1-form given by

Xα(x) =
(

1− 1
6(n− 1)

Rc]g(x) (∇fα(x),∇fα(x))
)
∇fα(x) , (4.1)

where fα(x) = 1
2dg(xα, x)2 and, in local coordinates, (Rc]g)

ij = giµgjνRµν , where
the Rij ’s are the components of the Ricci curvature Rcg of g.

Lemma 4.1. Let (M, g) be a smooth compact Riemannian manifold of dimension
n ≥ 3, p ≥ 1 be an integer, (Aα)α be a sequence in C1

(
M,Ms

p (R)
)
, and (Uα)α be a

sequence of nonnegative solutions of (3.1) such that (3.2) and (3.3) hold true. Let
(xα)α and (ρα)α be such that (3.5) and (3.7) hold true. Let R1,α be given by

R1,α =
p∑
i=1

∫
Bxα (rα)

(
∇Xα −

1
n

(divgXα)g
)]

(∇(uα)i,∇(uα)i) dvg , (4.2)

where Uα = ((uα)1, . . . , (uα)p), Xα is as in (4.1), and A] is the musical isomor-
phism of A. Then

R1,α = µαrα if n = 3 ,

R1,α = o

(
µ2
α ln

1
µα

)
+ o

(
µn−2
α r2−n

α

)
if n = 4 ,

R1,α = o
(
µ2
α

)
+ o

(
µn−2
α r2−n

α

)
if n ≥ 5 ,

(4.3)

where µα is as in (3.6) and rα is as in (3.21).

Proof of Lemma 4.1. Thanks to the expression of Xα,

(∇Xα)ij −
1
n

(divgXα) gij = O
(
dg(xα, x)2

)
(4.4)

for all i, j. Assuming n = 3 we can write by Lemma 3.4 that

|R1,α| ≤ C

∫
Bxα (rα)

dg(xα, x)2‖∇Uα(x)‖2dvg(x)

≤ Cµα

∫
Bxα (rα)

dg(xα, x)−2dvg(x)

≤ Cµαrα .

This proves (4.3) when n = 3. From now on we assume that n ≥ 4. We have that(
∇Xα −

1
n

(divgXα) g
)]

(∇Bα,∇Bα) = O
(
dg(xα, ·)3|∇Bα|2

)
, (4.5)
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where Bα is as in (3.55). Thanks to (4.4) and (4.5) we can write that

R1,α = O

(∫
Bxα (rα)

dg(xα, x)3|∇Bα(x)|2dvg(x)

)

+O

(∫
Bxα (rα)

dg(xα, x)2|∇Bα(x)| × ‖∇(Uα −BαΛ)(x)‖dvg(x)

)

+O

(∫
Bxα (rα)

dg(xα, x)2‖∇(Uα −BαΛ)(x)‖2dvg(x)

)
.

(4.6)

We have that∫
Bxα (rα)

dg(xα, x)3|∇Bα(x)|2dvg(x) = o

(
µ2
α ln

1
µα

)
if n = 4 ,∫

Bxα (rα)

dg(xα, x)3|∇Bα(x)|2dvg(x) = o
(
µ2
α

)
if n ≥ 5 .

(4.7)

Moreover, given i ∈
{

1, . . . , p
}

, integrating by parts,∫
Bxα (rα)

dg(xα, x)2 |∇ ((uα)i −BαΛi) (x)|2 dvg(x)

= O

(∫
∂Bxα (rα)

|((uα)i −BαΛi) (x)| dg(xα, x)2 |∇ ((uα)i −BαΛi) (x)| dσg(x)

)

+O

(∫
∂Bxα (rα)

dg(xα, x) |((uα)i −BαΛi) (x)|2 dσg(x)

)

+O

(∫
Bxα (rα)

|((uα)i −BαΛi) (x)|2 dvg(x)

)

+
∫
Bxα (rα)

dg(xα, x)2 ((uα)i −BαΛi) (x) (∆g ((uα)i −BαΛi)) (x)dvg(x) ,

and we get by Lemma 3.4 that∫
Bxα (rα)

dg(xα, x)2 |∇ ((uα)i −BαΛi) (x)|2 dvg(x)

=
∫
Bxα (rα)

dg(xα, x)2 ((uα)i −BαΛi) (x) (∆g ((uα)i −BαΛi)) (x)dvg(x)

+O
(
µn−2
α r4−n

α

)
+O

(∫
Bxα (rα)

|(uα)i −BαΛi|2 dvg

)
.

(4.8)

We have that∫
Bxα (rα)

B2
αdvg = 64ω3µ

2
α ln

rα
µα

+ o

(
µ2
α ln

1
µα

)
if n = 4 , and∫

Bxα (rα)

B2
αdvg =

(∫
Rn
u2

0dx

)
µ2
α + o

(
µ2
α

)
if n ≥ 5 ,

(4.9)
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where u0 is as in (3.68). Moreover,∫
Bxα (µα)

|(uα)i −BαΛi|2 dvg = o
(
µ2
α

)
(4.10)

by Lemma 3.2, while if Sα is as in Lemma 3.5, we can write that

µn−2
α

∫
Bxα (rα)\Bxα (µα)

S2
αdvg = O

(
µn−2
α r4−n

α

)
+ o

(
µ2
α

)
. (4.11)

By (3.22),

µn−2
α r4−n

α = o
(
µ2
α

)
(4.12)

if n ≥ 5. By Lemma 3.5 and (4.9)–(4.12) we then get that∫
Bxα (rα)

|(uα)i −BαΛi|2 dvg = o

(
µ2
α ln

1
µα

)
if n = 4 , and∫

Bxα (rα)

|(uα)i −BαΛi|2 dvg = o
(
µ2
α

)
if n ≥ 5 ,

(4.13)

and coming back to (4.8) we get that∫
Bxα (rα)

dg(xα, x)2 |∇ ((uα)i −BαΛi) (x)|2 dvg(x)

=
∫
Bxα (rα)

dg(xα, x)2 ((uα)i −BαΛi) (x) (∆g ((uα)i −BαΛi)) (x)dvg(x)

+ o

(
µ2
α ln

1
µα

)
if n = 4 , and

=
∫
Bxα (rα)

dg(xα, x)2 ((uα)i −BαΛi) (x) (∆g ((uα)i −BαΛi)) (x)dvg(x)

+ o
(
µ2
α

)
if n ≥ 5 .

(4.14)

Thanks to the equations (3.1) satisfied by the Uα’s, and thanks to the expression
of ∆g in geodesic polar coordinates,∫

Bxα (rα)

dg(xα, x)2 ((uα)i −BαΛi) (x) (∆g ((uα)i −BαΛi) (x)) dvg(x)

= O

(∫
Bxα (rα)

dg(xα, x)2 |((uα)i −BαΛi) (x)| × |Uα(x)|2
?−1

dvg(x)

)

+O

(∫
Bxα (rα)

dg(xα, x)2 |((uα)i −BαΛi) (x)|Bα(x)2?−1dvg(x)

)

+O

(∫
Bxα (rα)

dg(xα, x)2 |((uα)i −BαΛi) (x)| × |Uα(x)| dvg(x)

)

+O

(∫
Bxα (rα)

dg(xα, x)3 |((uα)i −BαΛi) (x)| × |∇Bα(x)| dvg(x)

)
.

(4.15)
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By Lemmas 3.2, 3.4, and 3.5, letting Fα = |Uα|2
?−1 +B2?−1

α , we can write that∫
Bxα (rα)

dg(xα, x)2 |((uα)i −BαΛi) (x)|Fα(x)dvg(x)

=
∫
Bxα (µα)

dg(xα, x)2 |((uα)i −BαΛi) (x)|Fα(x)dvg(x)

+
∫
Bxα (rα)\Bxα (µα)

dg(xα, x)2 |((uα)i −BαΛi) (x)|Fα(x)dvg(x)

= o
(
µ2
α

)
+ o

(
µn−2
α r2−n

α

)
.

(4.16)

In a similar way, by Lemmas 3.4 and 3.5,∫
Bxα (rα)

dg(xα, x)2 |((uα)i −BαΛi) (x)| × |Uα(x)| dvg(x)

=
∫
Bxα (µα)

dg(xα, x)2 |((uα)i −BαΛi) (x)| × |Uα(x)| dvg(x)

+
∫
Bxα (rα)\Bxα (µα)

dg(xα, x)2 |((uα)i −BαΛi) (x)| × |Uα(x)| dvg(x)

= o
(
µ2
α

)
+O

(
µn−2
α r4−n

α

)
,

(4.17)

and since

|∇Bα(x)| ≤ Cµ
n−2

2
α dg(xα, x)1−n ,

we also have that∫
Bxα (rα)

dg(xα, x)3 |((uα)i −BαΛi) (x)| × |∇Bα(x)| dvg(x)

= o
(
µ2
α

)
+O

(
µn−2
α r4−n

α

)
.

(4.18)

Plugging (4.15)–(4.18) into (4.14), we get that∫
Bxα (rα)

dg(xα, x)2 |∇ ((uα)i −BαΛi) (x)|2 dvg(x)

= o
(
µn−2
α r2−n

α

)
+ o

(
µ2
α ln

1
µα

)
if n = 4 , and

= o
(
µn−2
α r2−n

α

)
+ o

(
µ2
α

)
if n ≥ 5 .

(4.19)

Noting that∫
Bxα (rα)

dg(xα, x)2|∇Bα(x)|2dvg(x) = O

(
µ2
α ln

1
µα

)
if n = 4 ,∫

Bxα (rα)

dg(xα, x)2|∇Bα(x)|2dvg(x) = O
(
µ2
α

)
if n ≥ 5 ,
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and since ∫
Bxα (rα)

dg(xα, x)2|∇Bα(x)| × ‖∇(Uα −BαΛ)(x)‖dvg(x)

≤

(∫
Bxα (rα)

dg(xα, x)2|∇Bα(x)|2dvg(x)

) 1
2

×

(∫
Bxα (rα)

dg(xα, x)2‖∇(Uα −BαΛ)(x)‖2dvg(x)

) 1
2

,

we get (4.3) by plugging (4.19) into (4.6). This ends the proof of Lemma 4.1. �

Another lemma we need for the proof of Lemma 4.3 is as follows.

Lemma 4.2. Let (M, g) be a smooth compact Riemannian manifold of dimension
n ≥ 3, p ≥ 1 be an integer, (Aα)α be a sequence in C1

(
M,Ms

p (R)
)
, and (Uα)α be a

sequence of nonnegative solutions of (3.1) such that (3.2) and (3.3) hold true. Let
(xα)α and (ρα)α be such that (3.5) and (3.7) hold true. Let R2,α be given by

R2,α =
∫
Bxα (rα)

〈AαUα, Xα(∇Uα)〉Rpdvg

+
n− 2

4n

∫
Bxα (rα)

(∆gdivgXα) |Uα|2dvg

+
n− 2

2n

∫
Bxα (rα)

(divgXα) 〈AαUα,Uα〉Rpdvg ,

(4.20)

where Uα = ((uα)1, . . . , (uα)p), 〈·, ·〉Rp is the scalar product in Rp, Xα(∇Uα)i =
(Xα,∇(uα)i), and Xα is as in (4.1). Then

R2,α = O (µαrα) if n = 3 ,

R2,α = C(4)LA,Λ(x0)µ2
α ln

rα
µα

+ o

(
µ2
α ln

1
µα

)
if n = 4 ,

R2,α = C(n)LA,Λ(x0)µ2
α + o

(
µ2
α

)
if n ≥ 5 ,

(4.21)

where
LA,Λ(x) = 〈A(x)Λ,Λ〉Rp −

n− 2
4(n− 1)

Sg(x) ,

µα is as in (3.6), rα is as in (3.21), Λ is as in Lemma 3.2, C(4) = −64ω3,
C(n) = −

∫
Rn u

2
0dx when n ≥ 5, u0 is as in (3.68), and xα → x0 as α→ +∞.

Proof of Lemma 4.2. By the expression of Xα,
|Xα(x)| = O (dg(xα, x)) ,

divgXα(x) = n+O
(
dg(xα, x)2

)
, and

∆g (divgXα) (x) =
n

n− 1
Sg(xα) +O (dg(xα, x)) .

(4.22)

Assume first that n = 3. By (4.22),∫
Bxα (rα)

〈AαUα, Xα(∇Uα)〉dvg

= O

(∫
Bxα (rα)

|Uα(x)| × ‖∇Uα(x)‖dg(xα, x)dvg(x)

)
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and by Lemma 3.4 we get that∣∣∣∣∣
∫
Bxα (rα)

〈AαUα, Xα(∇Uα)〉dvg

∣∣∣∣∣
≤ Cµα

∫
Bxα (rα)

dg(xα, x)−2dvg(x) ≤ Cµαrα .
(4.23)

Similarly, it follows from (4.22) and Lemma 3.4 that∣∣∣∣∣
∫
Bxα (rα)

(∆gdivgXα) |Uα|2dvg

∣∣∣∣∣ ≤ Cµαrα and that∣∣∣∣∣
∫
Bxα (rα)

(divgXα) 〈AαUα,Uα〉Rpdvg

∣∣∣∣∣ ≤ Cµαrα .
(4.24)

It follows from (4.23) and (4.24) that (4.21) holds true when n = 3. From now on
we assume that n ≥ 4. We write that

Aα(x) = Aα(xα) +O (dg(xα, x)) .

Then, by (4.22),∫
Bxα (rα)

〈AαUα, Xα(∇Uα)〉dvg

=
p∑

i,j=1

Aαij(xα)
∫
Bxα (rα)

(uα)iXα(∇Uα)jdvg

+O

(∫
Bxα (rα)

dg(xα, x)2|Uα(x)| × ‖∇Uα(x)‖dvg(x)

)
.

(4.25)

By the Cauchy-Schwarz inequality,∫
Bxα (rα)

dg(xα, x)2|Uα(x)| × ‖∇Uα(x)‖dvg(x)

≤

(∫
Bxα (rα)

dg(xα, x)|Uα(x)|2dvg(x)

) 1
2

×

(∫
Bxα (rα)

dg(xα, x)3‖∇Uα(x)‖2dvg(x)

) 1
2

.

(4.26)

By Lemmas 3.2 and 3.4,∫
Bxα (rα)

dg(xα, x)|Uα(x)|2dvg(x)

=
∫
Bxα (µα)

dg(xα, x)|Uα(x)|2dvg(x)

+
∫
Bxα (rα)\Bxα (µα)

dg(xα, x)|Uα(x)|2dvg(x)

= o
(
µ2
α

)
+O

(
µn−2
α r4−n

α

)
.

(4.27)
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Independently, thanks to the equations (3.1) satisfied by the Uα’s, integrating by
parts, ∫

Bxα (rα)

dg(xα, x)3|∇(uα)i(x)|2dvg(x)

= O

(∫
∂Bxα (rα)

dg(xα, x)3|(uα)i(x)| × |∇(uα)i(x)|dσg(x)

)

+O

(∫
∂Bxα (rα)

dg(xα, x)2|(uα)i(x)|2dσg(x)

)

+O

(∫
Bxα (rα)

dg(xα, x)3|Uα(x)|2
?

dvg(x)

)

+O

(∫
Bxα (rα)

dg(xα, x)|Uα(x)|2dvg(x)

)

(4.28)

for all i = 1, . . . , p. By Lemma 3.4,∫
∂Bxα (rα)

dg(xα, x)3|Uα(x)| × ‖∇Uα(x)‖dσg(x) = O
(
µn−2
α r4−n

α

)
, and∫

∂Bxα (rα)

dg(xα, x)2|Uα(x)|2dσg(x) = O
(
µn−2
α r4−n

α

)
.

(4.29)

By Lemmas 3.2 and 3.4,∫
Bxα (rα)

dg(xα, x)3|Uα(x)|2
?

dvg(x)

=
∫
Bxα (µα)

dg(xα, x)3|Uα(x)|2
?

dvg(x)

+
∫
Bxα (rα)\Bxα (µα)

dg(xα, x)3|Uα(x)|2
?

dvg(x)

= o
(
µ2
α

)
+O

(
µn−2
α r4−n

α

)
.

(4.30)

In particular, we get from (4.25)–(4.30) that∫
Bxα (rα)

〈AαUα, Xα(∇Uα)〉dvg

=
p∑

i,j=1

Aαij(xα)
∫
Bxα (rα)

(uα)iXα(∇Uα)jdvg + o
(
µ2
α

)
+O

(
µn−2
α r4−n

α

)
.

(4.31)

Integrating by parts, by (4.22) and (4.27),

p∑
i,j=1

Aαij(xα)
∫
Bxα (rα)

(uα)iXα(∇Uα)jdvg

= −n
2

p∑
i,j=1

Aαij(xα)
∫
Bxα (rα)

(uα)i(uα)jdvg + o
(
µ2
α

)
+O

(
µn−2
α r4−n

α

)
.

(4.32)
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By (4.22) and (4.27) we also have that∫
Bxα (rα)

(∆g(divgXα)) |Uα|2dvg

=
nSg(xα)
n− 1

∫
Bxα (rα)

|Uα|2dvg + o
(
µ2
α

)
+O

(
µn−2
α r4−n

α

)
,

(4.33)

and that∫
Bxα (rα)

(divgXα) 〈AαUα,Uα〉Rpdvg

= n

p∑
i,j=1

Aαij(xα)
∫
Bxα (rα)

(uα)i(uα)jdvg + o
(
µ2
α

)
+O

(
µn−2
α r4−n

α

)
.

(4.34)

By (4.31)–(4.34),

R2,α = −
p∑

i,j=1

Aαij(xα)
∫
Bxα (rα)

(uα)i(uα)jdvg

+
n− 2

4(n− 1)
Sg(xα)

∫
Bxα (rα)

|Uα|2dvg + o
(
µ2
α

)
+O

(
µn−2
α r4−n

α

)
.

(4.35)

Let Sα be as in Lemma 3.5. We can write that

µ
n−2

2
α r2−n

α

∫
Bxα (rα)

Bαdvg = O
(
µn−2
α r4−n

α

)
, and

µ
n−2

2
α

∫
Bxα (rα)

BαSαdvg = o
(
µ2
α

)
+O

(
µn−2
α r4−n

α

)
.

(4.36)

By (4.9) and (4.13), and by Lemma 3.5, we get (4.21) from (4.35) and (4.36). This
ends the proof of Lemma 4.2. �

Now, at this point, we can state the main result of this section. This is the
subject of the following lemma. We assume (0.2) in the lemma.

Lemma 4.3. Let (M, g) be a smooth compact Riemannian manifold of dimension
n ≥ 3, p ≥ 1 be an integer, (Aα)α be a sequence in C1

(
M,Ms

p (R)
)
, and (Uα)α be

a sequence of nonnegative solutions of (3.1) such that (0.2), (3.2), and (3.3) hold
true. Let (xα)α and (ρα)α be such that (3.5) and (3.7) hold true. Assume rα → 0
as α→ +∞, where rα is as in (3.21). Then ρα = O (rα) and

rn−2
α µ

1−n2
α Uα

(
expxα(rαx)

)
→ (n(n− 2))

n−2
2 Λ

|x|n−2
+H(x) (4.37)

in C2
loc (B0(2)\{0}) as α → +∞, where µα is as in (3.6), Λ is as in Lemma 3.2,

and H is a harmonic function in B0(2) which satisfies that 〈Λ,H(0)〉Rp ≤ 0 with
equality if and only if H(0) = 0. Moreover, assuming n ≥ 4, it is necessarily the
case that rα → 0 as α→ +∞.

Proof of Lemma 4.3. Let R ≥ 6 be such that Rrα ≤ 6ρα for α � 1. We assume
first that rα → 0 as α→ +∞. Then we set, for x ∈ B0(3),

Wα(x) = rn−2
α µ

1−n2
α Uα

(
expxα (rαx)

)
,

gα(x) =
(
exp?xα g

)
(rαx) , and

Ãα(x) = Aα
(
expxα(rαx)

)
.
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Since rα → 0 as α→ +∞, we have that g̃α → ξ in C2
loc(Rn) as α→ +∞, where ξ

is the Euclidean metric. Thanks to Lemma 3.4 we also have that

|Wα(x)| ≤ C |x|2−n (4.38)

in B0(R2 )\{0}. By (3.1),

∆gα(wα)i + r2
α

p∑
j=1

Ãαij(wα)j =
(
µα
rα

)2

|Wα|2
?−2 (wα)i (4.39)

in B0(R2 ), for all i, where Wα = ((wα)1, . . . , (wα)p) and Ãα = (Ãαij)i,j . Thanks
to (3.22) and by standard elliptic theory, we then deduce that, after passing to a
subsequence,

Wα →W (4.40)

in C2
loc

(
B0(R2 )\{0}

)
as α→ +∞, where W satisfies

∆W = 0 (4.41)

in B0(R2 )\{0}. Moreover, thanks to (4.38), we know that

|W(x)| ≤ C |x|2−n (4.42)

in B0(R2 )\{0}. Thus we can write that

W(x) =
Λ̃

|x|n−2 +H(x) (4.43)

where Λ̃ ∈ Rp has nonnegative components and H satisfies ∆H = 0 in B0(R2 ). In
order to see that Λ̃ = (n(n− 2))(n−2)/2 Λ, it is sufficient to integrate (4.39) in B0(1)
to get that

−
∫
∂B0(1)

∂νWαdσgα

=
(
µα
rα

)2 ∫
B0(1)

|Wα|2
?−2Wαdvgα − r2

α

∫
B0(1)

ÃαWαdvgα .

(4.44)

By (4.38), ∫
B0(1)

|Wα|dvg̃α ≤ C (4.45)

and by changing x into µα
rα
x, we can write that∫

B0(1)

|Wα|2
?−2Wαdvgα = r2

αµ
−2
α

∫
B0( rαµα )

|Ũα|2
?−2Ũαdvg̃α ,

where Ũα and g̃α are as in (3.67). By Lemmas 3.2 and 3.4, we then get that

lim
α→+∞

(
µα
rα

)2 ∫
B0(1)

|Wα|2
?−2Wαdvgα

=
(∫

Rn
u2?−1

0 dx

)
Λ

= (n− 2)ωn−1 (n(n− 2))
n−2

2 Λ ,

(4.46)
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where u0 is as in (3.68). Noting that by (4.40) and (4.43),

lim
α→+∞

∫
∂B0(1)

∂νWαdσgα = −(n− 2)ωn−1Λ̃ , (4.47)

we get that

Λ̃ = (n(n− 2))
n−2

2 Λ (4.48)

thanks to (4.45)–(4.47) by passing into the limit in (4.44) as α → +∞. Now we
prove that 〈Λ,H(0)〉 ≤ 0 and that rα → 0 if n ≥ 4. For that purpose, we let Xα

be the vector field given by (4.1) and we apply the Pohozaev identity in Druet and
Hebey [19] to Uα in Bxα(rα). We get that∫

Bxα (rα)

〈AαUα, Xα(∇Uα)〉dvg +
n− 2

4n

∫
Bxα (rα)

(∆gdivgXα) |Uα|2dvg

+
n− 2

2n

∫
Bxα (rα)

(divgXα) 〈AαUα,Uα〉dvg

= Q1,α +Q2,α +Q3,α ,

(4.49)

where

Q1,α =
n− 2

2n

∫
∂Bxα (rα)

(divgXα) 〈∂νUα,Uα〉dσg

−
∫
∂Bxα (rα)

(
1
2
Xα(ν)|∇Uα|2 − 〈Xα(∇Uα), ∂νUα〉

)
dσg ,

Q2,α = −
p∑
i=1

∫
Bxα (rα)

(
∇Xα −

1
n

(divgXα) g
)]

((∇Uα)i , (∇Uα)i) dvg ,

Q3,α =
n− 2

2n

∫
∂Bxα (rα)

Xα (ν) |Uα|2
?

dσg

−n− 2
4n

∫
∂Bxα (rα)

(∂ν (divgXα)) |Uα|2 dσg ,

and ν is the unit outward normal derivative to Bxα(rα). We have that

|Xα(x)| = O (dg(xα, x)) and |∇ (divgXα) (x)| = O (dg(xα, x)) .

It follows that
Q3,α = O

(
µnαr

−n
α

)
+O

(
µn−2
α r4−n

α

)
. (4.50)

By Lemmas 4.1 and 4.2, by (4.49) and (4.50), we can write that

Q1,α = O
(
µ3
αr
−3
α

)
+O (µαrα) if n = 3 ,

Q1,α = C(4)
(
〈A(x0)Λ,Λ〉Rp −

1
6
Sg(x0)

)
µ2
α ln

rα
µα

+ o

(
µ2
α ln

1
µα

)
+ o

(
µ2
αr
−2
α

)
if n = 4 ,

Q1,α = C(n)
(
〈A(x0)Λ,Λ〉Rp −

n− 2
4(n− 1)

Sg(x0)
)
µ2
α

+ o
(
µ2
α

)
+ o

(
µn−2
α rα2− n

)
if n ≥ 5 ,

(4.51)
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where the constants C(4) and C(n) are as in Lemma 4.2. We wrote here that

µnαr
−n
α = µn−2

α r2−n
α

(
µα
rα

)2

= o
(
µn−2
α r2−n

α

)
.

By Lemma 3.4, (4.22), and the expression of Q1,α, we have that

Q1,α = O
(
µn−2
α r2−n

α

)
.

Thanks to (0.2), this clearly implies that rα → 0 as α → +∞ if n ≥ 4. Now,
assuming that rα → 0 as α→ +∞, it is easily checked thanks to (4.40), (4.42), and
(4.43), that

Q1,α = −
(
nn−2(n− 2)n

2
ωn−1〈Λ̃,H(0)〉Rp + o(1)

)
µn−2
α r2−n

α . (4.52)

Coming back to (4.51), it follows from (4.52) that

nn−2(n− 2)n

2
ωn−1〈Λ̃,H(0)〉Rp = 0 if n = 3 ,

nn−2(n− 2)n

2
ωn−1〈Λ̃,H(0)〉Rp = −C4(x0) lim

α→+∞
r2
α ln

rα
µα

if n = 4 ,

nn−2(n− 2)n

2
ωn−1〈Λ̃,H(0)〉Rp = −Cn(x0) lim

α→+∞

(
µ4−n
α rn−2

α

)
if n ≥ 5 ,

(4.53)

where

Cn(x0) = C(n)
(
〈A(x0)Λ,Λ〉Rp −

n− 2
4(n− 1)

Sg(x0)
)
,

and C(n) is as in Lemma 4.2. Since Cn(x0) > 0 by (0.2), we get with (4.48) and
(4.53) that

〈Λ,H(0)〉Rp ≤ 0 (4.54)
in all dimensions. In what follows we still assume that rα → 0 as α → +∞. We
multiply line i of the system (3.1) by (uα)j and integrate over Bxα(rα). We obtain
that ∫

Bxα (rα)

(uα)j (∆g(uα)i) dvg +
p∑
k=1

∫
Bxα (rα)

Aαik(uα)j(uα)kdvg

=
∫
Bxα (rα)

|Uα|2
?−2(uα)j(uα)idvg .

Inverting i and j and substracting one to the other, we get that∫
Bxα (rα)

(
(uα)j (∆g(uα)i)− (uα)i (∆g(uα)j)

)
dvg

=
p∑
k=1

∫
Bxα (rα)

(
(uα)iAαjk − (uα)jAαik

)
(uα)kdvg .

Integrating by parts, this leads to∫
∂Bxα (rα)

((uα)i∂ν(uα)j − (uα)j∂ν(uα)i) dσg

=
p∑
k=1

∫
Bxα (rα)

(
(uα)iAαjk − (uα)jAαik

)
(uα)kdvg .
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Thanks to (4.40) and (4.43), since H is harmonic in B0(r) with r > 1, it is easily
checked that∫

∂Bxα (rα)

((uα)i∂ν(uα)j − (uα)j∂ν(uα)i) dσg

= µn−2
α r2−n

α

(∫
∂B0(1)

(Wi∂νWj −Wj∂νWi) dσ + o(1)

)
=
(

(n− 2)ωn−1

(
Λ̃iHj(0)− Λ̃jHi(0)

)
+ o(1)

)
µn−2
α r2−n

α .

(4.55)

Suppose first that n = 3. Then, by Lemma 3.4,∫
Bxα (rα)

(uα)i(uα)jdvg = O (µαrα) .

Suppose now that n ≥ 4. By Lemma 3.5, by (4.9), and by (4.13), with similar
computations to those developed in the proof of Lemma 4.1, we have that∫

Bxα (rα)

(uα)i(uα)jdvg

=

(∫
Bxα (rα)

B2
αdvg

)
(ΛiΛj + o(1)) + o

(
µ2
α ln

1
µα

)
=
(
64ω3ΛiΛj + o(1)

)
µ2
α ln

rα
µα

+ o

(
µ2
α ln

1
µα

)
if n = 4, while∫

Bxα (rα)

(uα)i(uα)jdvg

=

(∫
Bxα (rα)

B2
αdvg

)
(ΛiΛj + o(1)) + o

(
µ2
α

)
+O

(
µn−2
α r4−n

α

)
=
((∫

Rn
u2

0dx

)
ΛiΛj + o(1)

)
µ2
α

if n ≥ 5, where u0 is as in (3.68). In particular, we get that
p∑
k=1

∫
Bxα (rα)

(
(uα)iAαjk − (uα)jAαik

)
(uα)kdvg

= O (µαrα) if n = 3 ,

= 64ω3

(
Ajk(x0)ΛiΛk −Aik(x0)ΛjΛk + o(1)

)
µ2
α ln

rα
µα

if n = 4 ,

=
(
Ajk(x0)ΛiΛk −Aik(x0)ΛjΛk + o(1)

)
µ2
α

∫
Rn
u2

0dx if n ≥ 5 .

(4.56)

Assuming that 〈Λ,H(0)〉Rp = 0, we get from (4.53) that

lim
α→+∞

r2
α ln

rα
µα

= 0 if n = 4 , and

lim
α→+∞

µ4−n
α rn−2

α = 0 if n = 4 .

Coming back to (4.55) and (4.56) we get that

ΛiHj(0) = ΛjHi(0)
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for all i, j ∈ {1, . . . , p}. Multiplying by Λi and summing over i, we then deduce
that

Hj(0) = 〈Λ,H(0)〉Λj ,
which proves that H(0) = 0 if 〈Λ,H(0)〉Rp = 0. At this point it remains to prove
that ρα = O (rα). We still assume that rα → 0 as α → +∞ and we proceed by
contradiction so that we also assume that

rα
ρα
→ 0 (4.57)

as α→∞. Then (4.43) holds true in B0(R) for all R. Since H is harmonic we then
get from (4.43) that

(n(n− 2))
n−2

2

Rn−2
Λ +

1
|∂B0(R)|

∫
∂B0(R)

Hdσ

=
(n(n− 2))

n−2
2

Rn−2
Λ +H(0)

=
1

|∂B0(R)|

∫
∂B0(R)

Wdσ

and hence, since W ≥ 0, and since |Λ| = 1, we get that

(n(n− 2))
n−2

2

Rn−2
+ 〈Λ,H(0)〉Rp ≥ 0 . (4.58)

Passing into the limit in (4.58) as R → +∞ we get that 〈Λ,H(0)〉Rp ≥ 0. By
(4.54) we also have that 〈Λ,H(0)〉Rp ≤ 0. It follows that 〈Λ,H(0)〉Rp = 0. Hence,
H(0) = 0. However, since rα < ρα by (4.57), we get with (3.24) that there holds(
(r(n−2)/2ϕ(r)

)′(1) = 0, where

ϕ(r) =
1

ωn−1rn−1

∫
∂B0(r)

|W|Σdσ

=
(n(n− 2))

n−2
2

rn−2
|Λ|Σ + |H(0)|Σ .

Hence,

|H(0)|Σ = (n(n− 2))
n−2

2 |Λ|Σ
and since H(0) = 0, we get a contradiction with the fact that |Λ| = 1. In particular,
(4.57) is false, and thus, ρα = O (rα). This ends the proof of the lemma. �

5. Construction of a parametrix for ∆g +A when n = 3

Let (M, g) be a smooth compact Riemannian manifold of dimension n = 3,
p ≥ 1 be an integer, and A be a map in C1

(
M,Ms

p (R)
)
. We prove the existence of

a parametrix for multi-valued Schrödinger operators like ∆g +A and get a positive
mass theorem for such parametrix from the positive mass theorem of Schoen and
Yau [37] (see also Witten [43]). We assume here that

∆g +A is coercive and −A is cooperative (5.1)

and we also assume that

A <
Sg
8

Idp (5.2)
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in the sense of bilinear forms. Let η ∈ C∞(M ×M), 0 ≤ η ≤ 1, be such that
η(x, y) = 1 if dg(x, y) ≤ δ and η(x, y) = 0 if dg(x, y) ≥ 2δ, where δ > 0 is small.
For x 6= y we define

H(x, y) =
η(x, y)

ω2dg(x, y)
, (5.3)

where ω2 is the volume of the unit 2-sphere. The result we prove in this section
is as follows. We refer to the end of the section for a remark on how to get the
Green’s matrix from Proposition 5.1.

Proposition 5.1. Let (M, g) be a smooth compact Riemannian 3-manifold, p ≥ 1
be an integer, and A : M → Ms

p (R) be a C1-map satisfying (5.1). Let Λ ≥ 0 be a
nonnegative vector in Rp. There exists G : M ×M\D → Rp, G ≥ 0, such that for
any x ∈M , and any i = 1, . . . , p,

∆g(Gx)i +
p∑
j=1

Aij(Gx)j = Λiδx , (5.4)

where D is the diagonal in M ×M , Gx(y) = G(x, y), G = (G1, . . . , Gp), δx is the
Dirac mass at x, and G can be written as

G(x, y) = H(x, y)Λ +R(x, y) (5.5)

for all x, y ∈ M × M\D, where R : M × M → Rp is continuous in M × M .
Moreover, there exists C > 0 such that R(x, x) ≥ CΛ for all x ∈ M if we also
assume that A satisfies (5.2). In particular, R(x, x)i > 0 for at least one i if Λ 6≡ 0
and (5.1)–(5.2) hold true.

Proof of Proposition 5.1. (i) First we construct G such that (5.4) holds true. We
have that, see, for instance, Aubin [4, 5],

|∆g,yH(x, y)|+ |H(x, y)| ≤ C

dg(x, y)
(5.6)

and
∆g,y,dist.H(x, y) = δx + ∆g,yH(x, y) (5.7)

in the sense of distributions, where δx is the Dirac mass at x. We define the maps
Γ1,Γ2 : M ×M → Rp by

Γ1(x, y)i = − (∆g,yH(x, y)) Λi −H(x, y)
p∑
j=1

Aij(y)Λj ,

Γ2(x, y)i = −
∫
M

Γ1(x, z)i∆g,yH(z, y)dvg(z)

−
p∑
j=1

Aij(y)
∫
M

Γ1(x, z)jH(z, y)dvg(z) ,

(5.8)

for all (x, y) ∈M ×M\D and all i = 1, . . . , p. By Giraud’s lemma and (5.6), Γ2 is
continuous in M ×M . Given x ∈ M , we let Sx : M → Rp be the solution of the
linear system

∆g(Sx)i +
p∑
j=1

Aij(Sx)j = (Γ2,x)i (5.9)
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for all i = 1, . . . , p, where Γ2,x(·) = Γ2(x, ·). The existence of Sx easily follows from
the variational theory and the coercivity of ∆g + A. In particular, Sx ∈ H2,q for
all q. We define G : M ×M\D → Rp by

G(x, y) = H(x, y)Λ +
∫
M

H(z, y)Γ1(x, z)dvg(z) + S(x, y) , (5.10)

where S(x, y) = Sx(y). By Giraud’s lemma and (5.6),

(x, y)→
∫
M

H(z, y)Γ1(x, z)dvg(z) (5.11)

is continuous in M ×M . Let ϕ ∈ C2(M), x ∈ M , and i ∈ {1, . . . , p}. Thanks to
(5.7)–(5.9) we get that∫

M

G(x, y)i∆gϕ(y)dvg(y) +
p∑
j=1

∫
M

Aij(y)G(x, y)jϕ(y)dvg(y) = ϕ(x)Λi ,

where G is as in (5.10). This proves (5.4).

(ii) We prove (5.5) and that G ≥ 0. Let x, x′ ∈M . By (5.9),

∆g ((Sx)i − (Sx′)i) +
p∑
j=1

Aij ((Sx)j − (Sx′)j) = (Γ2,x)i − (Γ2,x′)i . (5.12)

Mutiplying (5.12) by (Sx)i − (Sx′)i, integrating over M , and summing over i, it
follows that ∫

M

|∇ (Sx − Sx′)|2 dvg +
∫
M

A (Sx − Sx′ ,Sx − Sx′) dvg

≤ ‖Γ2,x − Γ2,x′‖L2 ‖Sx − Sx′‖C0

and by the coercivity of ∆g + A we get that ‖Sx − Sx′‖L2 ≤ C ‖Γ2,x − Γ2,x′‖L2 .
Then, by standard elliptic theory, we obtain that

‖Sx − Sx′‖C0 ≤ C ‖Γ2,x − Γ2,x′‖L2 . (5.13)

In a similar way, we get by (5.9) that ‖Sx‖L2 ≤ C‖Γ2,x‖C0 ≤ C ′ and then, by
standard elliptic theory, we can write that ‖Sx‖C1 ≤ C. Writing that

|S(x′, y′)− S(x, y)| ≤ |S(x′, y′)− S(x′, y)|+ |S(x′, y)− S(x, y)|
≤ ‖Sx − Sx′‖C0 + ‖∇Sx′‖C0 dg(y, y′)

we get from (5.13), the above estimate on Sx, and the continuity of Γ2, that S
is continuous in M ×M . Together with (5.10), and the above remark that the
map in (5.11) is continuous, this proves (5.5). Now we prove that G ≥ 0. Given
u : M → R a continuous function, we let u+ = max(u, 0) and u− = min(u, 0) so
that u = u+ + u−. By (5.5), there exists δ > 0 such that for any i, if Λi > 0 then
(Gx)−i has its support in M\Bx(δ). On the other hand, if Λi = 0 then, by (5.4),
(5.5), standard elliptic theory, and the Sobolev embedding theorem, we can write
that ∆g(Gx)i ∈ Lq for all q < 3, then that (Gx)i ∈ H2,q for all such q, and at last
that (Gx)i ∈ H1,s for all s. In both cases we can multiply (5.4) by (Gx)−i , integrate
over M , sum over i, and get that∫

M

∣∣∇G−x ∣∣2 dvg +
∫
M

A
(
G−x , G

−
x

)
dvg +

∫
M

A
(
G+
x , G

−
x

)
dvg = 0 . (5.14)
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Noting that for any u, v ∈ C0, u−v+ + u+v− ≤ 0 in M , it follows from the fact
that −A is cooperative that

∫
M
A (G+

x , G
−
x ) dvg ≥ 0. Coming back to (5.14), we

get that G−x ≡ 0 for all x, and thus that G ≥ 0.

(iii) We prove the last part of the proposition that there exists C > 0 such that
R(x, x) ≥ CΛ for all x ∈M if we also assume that A satisfies (5.2). By (5.2), and
since ∆g +A is coercive, the Schrödinger operators ∆g +Aii and ∆g + Sg

8 are also
coercive. We let G̃i be the Green’s function of ∆g + Aii and Gg be the Green’s
function of ∆g + Sg

8 . By (5.4), for any x ∈M and any i ∈ {1, . . . , p},

∆g

(
(Gx)i − (G̃i)xΛi

)
+Aii

(
(Gx)i − (G̃i)xΛi

)
= −

∑
j 6=i

Aij(Gx)j ≥ 0 (5.15)

since G ≥ 0 and −A is cooperative. By (5.5), (Gx)i − (G̃i)xΛi is continuous in M .
Then, by the maximum principle, we get with (5.15) that

Gi ≥ G̃iΛi (5.16)

for all i. By (5.2), given i ∈ {1, . . . , p}, and x ∈M , there exists hi > 0 smooth and
such that

hi ≤
(
Sg
8
−Aii

)
(Gg)x (5.17)

in M . By the coercivity of ∆g +Aii there exists θi ∈ C2, θi > 0, such that

∆gθi +Aiiθi = hi . (5.18)

Noting that by (5.17) and (5.18),

∆g

(
(G̃i)x − (Gg)x − θi

)
+Aii

(
(G̃i)x − (Gg)x − θi

)
≥ 0 ,

and that (G̃i)x − (Gg)x − θi is continuous in M , we get that

(G̃i)x ≥ (Gg)x + θi (5.19)

for all i and all x. Combining (5.16) and (5.19) it follows from the positive mass
theorem of Schoen and Yau [37, 38, 39] that there exists C > 0 such that R(x, x) ≥
CΛ for all x ∈M . This ends the proof of Proposition 5.1. �

Fix x ∈M . As a remark there holds that there exists C > 0 such that

dg(x, y) |∇Rx(y)| ≤ C (5.20)

for all y ∈ M\{x}, where Rx(y) = R(x, y). By (5.4) and (5.6) we get that there
exists C > 0 such that dg(x, y) |∆gRx(y)| ≤ C for all y ∈ M\{x}. In order to get
(5.20) it suffices to prove that for any sequence (yα)α in M\{x} such that yα → x
as α→ +∞,

dg(x, yα) |∇Rx(yα)| = O(1) . (5.21)

Let sα = dg(x, yα) and set Rα(y) = Rx (expx(sαy)). Let also gα be given by
gα(y) = (exp?x g) (sαy), and ỹα be such that yα = expx(sαỹα). We can write that
|∆gαRα(y)| ≤ Csα|y|−1 while Rα is bounded and gα → ξ as α→ +∞ in C1

loc(R3)
since sα → 0 as α → +∞. Moreover |ỹα| = 1 for all α. Let y0 be such that
ỹα → y0 as α → +∞. Since |y0| = 1, we can write by the above estimates and
standard elliptic theory that Rα is bounded in the C1-topology in the Euclidean
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ball of center y0 and radius 1/4. This proves (5.21) and thus (5.20). It also follows
from the proof that

sα max
y∈∂Bx(sα)

|∇Rx(y)| = o(1) (5.22)

for all sequences (sα)α of positive real numbers such that sα → 0 as α → +∞.
Indeed, there holds that ∆gαRα → 0 uniformly in compact subsets of R3\{0} as
α → +∞. Hence Rα → R in C1

loc(R3\{0}), where R is a bounded harmonic map
in R3\{0}. By Liouville’s theorem we get that R is constant and (5.22) follows.

Given j ∈ {1, . . . , p}, let Λj ∈ Rp be defined by (Λj)i = δij for all i = 1, . . . , p,
where the δij ’s are the Kronecker symbols. Also let Gj be the parametrix given by
Proposition 5.1 when Λ = Λj and G = (Gij)i,j be the matrix given by Gij = (Gj)i
for all i, j = 1, . . . , p. Then

∆g,y

p∑
α=1

∫
M

Giα(x, y)fα(x)dvg(x) +
p∑

α,j=1

Aij(y)
∫
M

Gjα(x, y)fα(x)dvg(x) = fi(y)

for all f ∈ C∞(M,Rp), all i ∈ {1, . . . , p}, and all y ∈ M . In other words, G is the
Green’s matrix of ∆g +A.

6. Proof of the theorem

We prove our theorem in what follows. Let (M, g) be a smooth compact Rie-
mannian manifold of dimension n ≥ 3, p ≥ 1 be an integer, (Aα)α be a sequence
in C1

(
M,Ms

p (R)
)
, and (Uα)α be a sequence nonnegative solutions of (3.1) such

that (0.2), (3.2), and (3.3) hold true. As a preliminary remark we claim that there
exists C > 0 such that for any α the following holds true. Namely that there exist
Nα ∈ N? and Nα critical points of |Uα|, denoted by (x1,α, x2,α, . . . , xNα,α), such
that

dg (xi,α, xj,α)
n−2

2 |Uα(xi,α)| ≥ 1 (6.1)

for all i, j ∈ {1, . . . , Nα}, i 6= j, and(
min

i=1,...,Nα
dg (xi,α, x)

)n−2
2

|Uα(x)| ≤ C (6.2)

for all x ∈ M and all α. We prove (6.1) and (6.2). Clearly |Uα|Σ satisfies the
maximum principle since, summing the equations in (3.1),

∆g|Uα|Σ + p‖Aα‖∞|Uα|Σ ≥ 0 ,

where |Uα|Σ is given by (3.4). Hence, |Uα|Σ > 0 and we also get that |Uα| > 0 in
M . In particular, we can use Lemma 1.1 of Druet and Hebey [18] and we get the
existence of Nα ∈ N? and of (x1,α, x2,α, . . . , xNα,α) a family of critical points of |Uα|
such that (6.1) holds true for all i, j ∈ {1, . . . , Nα}, i 6= j, and(

min
i=1,...,Nα

dg (xi,α, x)
)n−2

2

|Uα(x)| ≤ 1 (6.3)

for all critical points of |Uα|. We claim now that there exists C > 0 such that (6.2)
holds true for all x ∈M and all α. We proceed by contradiction and assume that(

min
i=1,...,Nα

dg (xi,α, xα)
)n−2

2

|Uα(xα)| → +∞ (6.4)
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as α→ +∞, where (
min

i=1,...,Nα
dg (xi,α, xα)

)n−2
2

|Uα(xα)|

= sup
M

(
min

i=1,...,Nα
dg (xi,α, x)

)n−2
2

|Uα(x)| .

(6.5)

We set |Uα(xα)| = µ
1−n2
α . Thanks to (6.4) and (6.5), since M is compact so that

the distance between two points in M is always bounded, µα → 0 as α→ +∞. We
let Sα be the above set of critical points xi,α of |Uα|. By (6.4),

dg (xα,Sα)
µα

→ +∞ (6.6)

as α→ +∞. We set, for x ∈ Ωα = B0

(
δ
µα

)
, where 0 < δ < 1

2 ig is fixed,

Vα(x) = µ
n−2

2
α Uα

(
expxα (µαx)

)
,

gα(x) =
(
exp?xα g

)
(µαx) , and

Ãα(x) = Aα
(
expxα (µαx)

)
.

We have that gα → ξ in C2
loc (Rn) as α → +∞, where ξ is the Euclidean metric,

since µα → 0 as α→ +∞. Thanks to (3.1),

∆gα(vα)i + µ2
α

p∑
j=1

Ãαij(vα)j = |Vα|2
?−2(vα)i (6.7)

in Ωα, for all i, where Vα = ((vα)1, . . . , (vα)p), and Ãα = (Ãαij)i,j . We have that
|Vα(0)| = 1 and also that, thanks to (6.5) and (6.6), for any R > 0,

lim sup
α→+∞

sup
B0(R)

|Vα| = 1 . (6.8)

Indeed, for any x ∈ Bxα(Rµα), for any i = 1, . . . , Nα,

dg(xi,α, x) ≥ dg(xi,α, xα)−Rµα
≥ dg(xα,Sα)−Rµα

≥ dg(xα,Sα)
(

1− Rµα
dg(xα,Sα)

)
.

By standard elliptic theory we then get by (6.7) that, after passing to a subsequence,

Vα → U (6.9)

in C1
loc (Rn) as α→ +∞, where U has nonnegative components and satisfies

∆U = |U|2
?−2U

in Rn with |U| ≤ |U(0)| = 1. It follows from Proposition 1.1 that

U =
(

1 +
|x|2

n(n− 2)

)1−n2
Λ

for some Λ ∈ Rp with nonnegative components such that |Λ| = 1. In particular,
|U| has a strict local maximum at 0 which proves that |Uα| has a local maximum,
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and hence a critical point, yα with dg (xα, yα) = o (µα) and µ
(n−2)/2
α |Uα(yα)| → 1

as α→ +∞. This clearly violates (6.3) thanks to (6.6) since for any i = 1, . . . , Nα,

dg(xi,α, yα) ≥ dg(xi,α, xα)− dg(xα, yα)
≥ dg(xα,Sα) + o(µα)
≥ Rαµα + o(µα)
= Rαµα (1 + o(1))

where Rα → +∞ as α → +∞ by (6.6). Thus we have contradicted (6.4). This
concludes the proof of (6.1) and (6.2).

Now we consider the family (x1,α, . . . , xNα,α) given by (6.1) and (6.2) and we
define dα by

dα = min
1≤i<j≤Nα

dg (xi,α, xj,α) . (6.10)

If Nα = 1, we set dα = 1
4 ig, where ig is the injectivity radius of (M, g). We claim

that
dα 6→ 0 (6.11)

as α→ +∞. In order to prove this claim, we proceed by contradiction. Assuming
on the contrary that dα → 0 as α → +∞, we see that Nα ≥ 2 for α large, and we
can thus assume that the concentration points are ordered in such a way that

dα = dg (x1,α, x2,α) ≤ dg (x1,α, x3,α) ≤ · · · ≤ dg (x1,α, xNα,α) . (6.12)

We set, for x ∈ B0(δd−1
α ), 0 < δ < 1

2 ig fixed,

Ûα(x) = d
n−2

2
α Uα

(
expx1,α

(dαx)
)
,

Âα(x) = Aα

(
expx1,α

(dαx)
)
, and

ĝα(x) =
(

exp?x1,α
g
)

(dαx) .

It is clear that ĝα → ξ in C2
loc(Rn) as α→ +∞ since dα → 0 as α→ +∞. Thanks

to (3.1) we have that

∆ĝα(ûα)i + d2
α

p∑
j=1

Âαij(ûα)j = |Ûα|2
?−2(ûα)i (6.13)

in B0(δd−1
α ), for all i, where Ûα = ((ûα)1, . . . , (ûα)p), and Âα = (Âαij)i,j . For any

R > 0, we also let 1 ≤ NR,α ≤ Nα be such that

dg(x1,α, xi,α) ≤ Rdα for 1 ≤ i ≤ NR,α , and
dg (x1,α, xi,α) > Rdα for NR,α + 1 ≤ i ≤ Nα .

Such a NR,α does exist thanks to (6.12). We also have that NR,α ≥ 2 for all R > 1
and that (NR,α)α is uniformly bounded for all R > 0 thanks to (6.10). Indeed,
suppose there are kα points xi,α, i = 1, . . . , kα, such that dg(x1,α, xi,α) ≤ Rdα for
all i = 1, . . . , kα. By (6.10),

Bxi,α

(
dα
2

)
∩Bxj,α

(
dα
2

)
= ∅
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for all i 6= j. Then,

Volg

(
Bx1,α

(
3R
2
dα

))
≥

kα∑
i=1

Volg

(
Bx1,α

(
dα
2

))
and we get an upper bound for kα depending only on R. In the sequel, we set

x̂i,α = d−1
α exp−1

x1,α
(xi,α)

for all 1 ≤ i ≤ Nα such that dg(x1,α, xi,α) ≤ 1
2 ig. Thanks to (6.2), for any R > 1,

there exists CR > 0 such that

sup
B0(R)\

⋃N2R,α
i=1 Bx̂i,α( 1

R )
|Ûα| ≤ CR . (6.14)

Mimicking the proof of Lemma 3.1, one easily gets that, for any R > 1, there exists
DR > 1 such that∥∥∥∇Ûα∥∥∥

L∞(ΩR,α)
≤ DR sup

ΩR,α

|Ûα| ≤ D2
R inf

ΩR,α
|Ûα| (6.15)

where

ΩR,α = B0(R) \
N2R,α⋃
i=1

Bx̂i,α

(
1
R

)
.

Assume first that, for some R > 0, there exists 1 ≤ i ≤ NR,α such that

|Ûα(x̂i,α)| = O(1) . (6.16)

Since (3.5) is satisfied by the sequences xα = xi,α and ρα = 1
8dα, it follows from

Lemma 3.2 that (3.7) cannot hold and thus that (|Ûα|)α is uniformly bounded in
Bx̂i,α( 3

4 ). In particular, by standard elliptic theory, and thanks to (6.13), (Ûα)α is
uniformly bounded in C1

(
Bx̂i,α( 1

2 )
)
. Since, by (6.1), we have that

|x̂i,α|
n−2

2 |Ûα(x̂i,α)| ≥ 1 ,

we get the existence of some δi > 0 such that

|Ûα| ≥
1
2
|x̂i,α|1−

n
2 ≥ 1

2
R1−n2

in Bx̂i,α(δi). Assume now that, for some R > 0, there exists 1 ≤ i ≤ NR,α such
that

|Ûα(x̂i,α)| → +∞ (6.17)
as α → +∞. Since (3.5) and (3.7) are satisfied by the sequences xα = xi,α and
ρα = 1

8dα, it follows from Lemma 4.3 that the sequence (|Ûα(x̂i,α)| × |Ûα|)α is
uniformly bounded in

Ω̂α = Bx̂i,α(δ̃i)\Bx̂i,α(
δ̃i
2

)

for some δ̃i > 0. Thus, using (6.15), we can deduce that these two situations are
mutually exclusive in the sense that either (6.16) holds true for all i or (6.17) holds
true for all i. Now we split the conclusion of the proof into two cases.

In the first case we assume that there exist R > 0 and 1 ≤ i ≤ NR,α such that
|Ûα(x̂i,α)| = O(1). Then, thanks to the above discussion, we get that

|Ûα(x̂j,α)| = O(1)
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for all 1 ≤ j ≤ NR,α and all R > 0. Now, as above, we get that (|Ûα|)α is uniformly
bounded in C1

loc(Rn). Thus, by standard elliptic theory, there exists a subsequence
of (Ûα)α which converges in C1

loc(Rn) to some Û solution of

∆Û = |Û |2
?−2Û

in Rn. Still thanks to the above discussion, we know that U 6≡ 0 and has nonnegative
components. Moreover, |U| possesses at least two critical points, namely 0 and x̂2,
the limit of x̂2,α. This is absurd thanks to the classification of Proposition 1.1.

In the second case we assume that there exist R > 0 and 1 ≤ i ≤ NR,α such that
|Ûα(x̂i,α)| → +∞ as α→ +∞. Then, thanks to the above discussion,

|Ûα(x̂j,α)| → +∞
as α→ +∞, for all 1 ≤ j ≤ NR,α and all R > 0. By (6.13) we have that

∆ĝα(v̂α)i + d2
α

p∑
j=1

Âαij(v̂α)j =
1

|Ûα(0)|2?−2
|V̂α|2

?−2(v̂α)i ,

where V̂α = |Ûα(0)|Ûα and V̂α = ((v̂α)1, . . . , (v̂α)p). Applying Lemma 4.3 and
standard elliptic theory, and thanks to (6.15) and to the above discussion, one
easily checks that, after passing to a subsequence,

|Ûα(0)|Ûα → Ĝ

in C1
loc (Rn\{x̂i}i∈I) as α→ +∞, where

I =
{

1, . . . , lim
R→+∞

lim
α→+∞

NR,α

}
and, for any R > 0,

Ĝ(x) =
ÑR∑
i=1

Λ̃i
|x− x̂i|n−2

+ ĤR(x)

in B0(R), where 2 ≤ ÑR ≤ N2R is such that |x̂ÑR | ≤ R and |x̂ÑR+1| > R, and
where N2R,α → N2R as α → +∞. In this expression, the Λ̃i’s are nonzero vectors
with nonnegative components and ĤR is a harmonic function in B0(R). We have
that

ĤR1(x)− ĤR2(x) =
ÑR2∑

i=ÑR1+1

Λ̃i
|x− x̂i|n−2

for all 0 < R1 < R2. We can write that

Ĝ(x) =
Λ̃1

|x|n−2
+X(x)

in B0

(
1
2

)
where, for any R > 1,

X(x) =
ÑR∑
i=2

Λ̃i
|x− x̂i|n−2

+ ĤR(x) .

Let Ĝ = (Ĝ1, . . . , Ĝp), X = (X1, . . . , Xp), and Λ̃1 = ((Λ̃1)1, . . . , (Λ̃1)p). We have
that Ĝi ≥ 0 for all 1 ≤ i ≤ p. Hence, by the maximum principle, we get that
Xi(0) ≥ −(Λ̃1)iR2−n for all R > 1, so that Xi(0) ≥ 0 for all 1 ≤ i ≤ p. By Lemma
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4.3 we now have that 〈Λ̃1, X(0)〉Rp ≤ 0 with equality if and only if X(0) = 0. Since
all the components of X(0) and of Λ̃1 are nonnegative, we are actually in the case
of equality so that X(0) = 0. Let i be such that (Λ̃2)i > 0. By the maximum
principle,

Xi(0) ≥ (Λ̃2)i −
(Λ̃1)i
Rn−2

− (Λ̃2)i
(R− 1)n−2

.

Choosing R� 1 sufficiently large we get that Xi(0) > 0 and this is in contradiction
with X(0) = 0.

By the above discussion we get that (6.11) holds true. Clearly, this implies that
(Nα)α is uniformly bounded. Now we let (xα)α be a sequence of maximal points
of |Uα|. Thanks to (3.3) and to (6.11), we clearly have that (3.5) and (3.7) hold
for the sequences (xα)α and ρα = δ for some δ > 0 fixed. This clearly contradicts
Lemma 4.3 in dimensions n ≥ 4 and thus concludes the proof of the theorem in
dimensions n ≥ 4.

Suppose now that n = 3. In addition to (0.2), (3.2), and (3.3) we assume that
∆g + A is coercive and that −A is cooperative. Up to a subsequence, since (Nα)α
is bounded, there holds that Nα = N for all α. Let

xi = lim
α→+∞

xi,α (6.18)

for all i = 1, . . . , N . Let also µi,α be given by (3.6) with xi,α instead of xα. By
the above discussion, µi,α → 0 for all i = 1, . . . , N . Up to a subsequence we can
assume that µ1,α = maxi µi,α for all α. Still up to a subsequence we define µi ≥ 0
by

µi = lim
α→+∞

µi,α
µ1,α

. (6.19)

By Lemma 3.4, there exist C, δ > 0 such that

|Uα(x)| ≤ Cµ1/2
i,α dg(xi,α, x)−1 (6.20)

in Bxi,α(2δ) for all i. By (6.20) and Harnack’s inequality we thus get that

|Uα| ≤ Cµ1/2
1,α (6.21)

in M\
⋃N
i=1Bxi,α(δ). Let Ũα be given by Ũα = µ

−1/2
1,α Uα. Then

∆g(ũα)i +
p∑
j=1

Aαij(x)(ũα)j = µ2
1,α|Ũα|2

?−2(ũα)i (6.22)

for all i, where the (ũα)i’s are the components of Ũα. By (6.21), (6.22), and standard
elliptic theory, we then get that, up to a subsequence,

µ
−1/2
1,α Uα → Z (6.23)

in C1
loc (M\S) as α → +∞, where S is the finite set consisting of the xi’s defined

in (6.18). Let Φ ∈ C∞(M,Rp) be given. By (3.1),∫
M

〈Uα, (∆gΦ +AΦ)〉 dvg =
∫
M

|Uα|4 〈Uα,Φ〉 dvg + o

(∫
M

|Uα|dvg
)
. (6.24)
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For any R > 0,∫
M

|Uα|4 〈Uα,Φ〉 dvg =
N∑
i=1

〈
Φ(xi),

∫
Bxi,α (Rµi,α)

|Uα|4Uαdvg

〉

+ o

(
N∑
i=1

∫
Bxi,α (Rµi,α)

|Uα|5dvg

)
+
∫
M\

⋃N
i=1 Bxi,α (Rµi,α)

|Uα|4 〈Uα,Φ〉 dvg .

(6.25)

By Lemma 3.2,

lim
R→+∞

lim
α→+∞

µ
−1/2
1,α

N∑
i=1

〈
Φ(xi),

∫
Bxi,α (Rµi,α)

|Uα|4Uαdvg

〉

=
√

3ω2

N∑
i=1

µ
1/2
i 〈Λi,Φ(xi)〉 ,

(6.26)

where the Λi’s are vectors in Sp−1
+ given by (3.15), and

µ
−1/2
1,α

N∑
i=1

∫
Bxi,α (Rµi,α)

|Uα|5dvg ≤ C (6.27)

for some C > 0 independent of α and R. By (6.20) and (6.21) we can also write
that

lim
R→+∞

lim
α→+∞

µ
−1/2
1,α

∫
M\

⋃N
i=1 Bxi,α (Rµi,α)

|Uα|4 〈Uα,Φ〉 dvg = 0 (6.28)

and that ∫
M

|Uα|dvg = O
(
µ

1/2
1,α

)
. (6.29)

Plugging (6.25)–(6.29) into (6.24) it follows that

µ
−1/2
1,α

∫
M

〈Uα, (∆gΦ +AΦ)〉 dvg =
√

3ω2

N∑
i=1

µ
1/2
i 〈Λi,Φ(xi)〉+ o(1) . (6.30)

Since Φ ∈ C∞(M,Rp) is arbitrary, it follows from (6.23) and (6.30) that

∆gZ +AZ =
√

3ω2

N∑
i=1

µ
1/2
i Λiδxi . (6.31)

Since ∆g +A is coercive, by Proposition 5.1 and (6.31), there holds that

Z(x) =
√

3ω2

N∑
i=1

µ
1/2
i (H(xi, x)Λi +Ri(xi, x)) , (6.32)

where H is as in (5.3), and Ri is a continuous function in M × M such that
Ri(xi, xi) ≥ CΛi for some C > 0. Let i = 1, . . . , N be arbitrary and Xα be
the vector field given by Xα = ∇fα, where fα(x) = 1

2dg(xi,αx)2. We apply the
Pohozaev identity in Druet and Hebey [19] to Uα in Bxi,α(r) for r > 0 small. We
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get that∫
Bxi,α (r)

〈AαUα, Xα(∇Uα)〉dvg +
1
12

∫
Bxi,α (r)

(∆gdivgXα) |Uα|2dvg

+
1
6

∫
Bxi,α (r)

(divgXα) 〈AαUα,Uα〉dvg = Q1,α +Q2,α +Q3,α ,

(6.33)

where Xα(∇Uα) is as in Lemma 4.2,

Q1,α =
1
6

∫
∂Bxi,α (r)

(divgXα) 〈∂νUα,Uα〉dσg

−
∫
∂Bxi,α (r)

(
1
2
Xα(ν)|∇Uα|2 − 〈Xα(∇Uα), ∂νUα〉

)
dσg ,

Q2,α = −
p∑
j=1

∫
Bxi,α (r)

(
∇Xα −

1
3

(divgXα) g
)] (

(∇Uα)j , (∇Uα)j
)
dvg ,

Q3,α =
1
6

∫
∂Bxi,α (r)

Xα (ν) |Uα|2
?

dσg −
1
12

∫
∂Bxi,α (r)

(∂ν (divgXα)) |Uα|2 dσg ,

and ν is the unit outward normal derivative to Bxi,α(r). By (6.23),

lim
α→+∞

µ−1
1,α (Q1,α +Q3,α)

=
1
6

∫
∂Bxi (r)

(divgX) 〈∂νZ,Z〉dσg

−
∫
∂Bxi (r)

(
1
2
X(ν)|∇Z|2 − 〈X(∇Z), ∂νZ〉

)
dσg

− 1
12

∫
∂Bxi (r)

(∂ν (divgX)) |Z|2 dσg ,

(6.34)

where X = ∇f and f(x) = 1
2dg(xi, x)2. We have that

divgX = 3 +O
(
dg(xi, x)2

)
and |∇divgX| = O (dg(xi, x))

while, by (6.20), there also holds that |Z| ≤ Cdg(xi, x)−1 in a neighbourhood of
xi. From (5.20) we have in addition that dg(xi, x)|∇Ri(x)| ≤ C for all x 6= xi. It
follows that

lim
r→0

∫
∂Bxi (r)

(∂ν (divgX)) |Z|2 dσg = 0 (6.35)

and that
1
6

∫
∂Bxi (r)

(divgX) 〈∂νZ,Z〉dσg =
1
2

∫
∂Bxi (r)

〈∂νZ,Z〉dσg + o(1) (6.36)

as r → 0. We choose δ > 0 in the definition of η in (5.3) such that dg(xj , xk) ≥ 4δ
for all j, k = 1, . . . , N such that xj 6= xk. Since the parametrix in Proposition 5.1
are nonnegative, it follows from our choice of δ that Rj(xj , xi) ≥ 0 for all j 6= i. In
a neighbourhood of xi we get from (6.32) that

Z(x) =
√

3dg(xi, x)−1µ
1/2
i Λi +

√
3ω2

N∑
j=1

µ
1/2
j Rj(xj , x) . (6.37)
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By (5.22) and (6.37) we compute

1
2

∫
∂Bxi (r)

〈∂νZ,Z〉dσg −
∫
∂Bxi (r)

(
1
2
X(ν)|∇Z|2 − 〈X(∇Z), ∂νZ〉

)
dσg

= −3ω2

2

〈
µ

1/2
i Λi,

N∑
j=1

µ
1/2
j Rj(xj , xi)

〉
+ o(1) .

(6.38)

Combining (6.36) and (6.38) it follows that

1
6

∫
∂Bxi (r)

(divgX) 〈∂νZ,Z〉dσg

−
∫
∂Bxi (r)

(
1
2
X(ν)|∇Z|2 − 〈X(∇Z), ∂νZ〉

)
dσg

= −3ω2

2

〈
µ

1/2
i Λi,

N∑
j=1

Rj(xj , xi)

〉
+ o(1) .

(6.39)

Noting that

(∇Xα)µν −
1
3

(divgXα) gµν = O
(
dg(xi,α, x)2

)
for all i and all µ, ν, we can write with Lemma 3.4 that |Q2,α| ≤ Cµ1,αr. It follows
that

lim
r→0

lim
α→+∞

µ−1
1,αQ2,α = 0 . (6.40)

Still by Lemma 3.4, we also have that

lim
r→0

lim
α→+∞

µ−1
1,α

∫
Bxi,α (r)

〈AαUα, Xα(∇Uα)〉dvg = 0 ,

lim
r→0

lim
α→+∞

µ−1
1,α

∫
Bxi,α (r)

(∆gdivgXα) |Uα|2dvg = 0 , and

lim
r→0

lim
α→+∞

µ−1
1,α

∫
Bxi,α (r)

(divgXα) 〈AαUα,Uα〉dvg = 0 .

(6.41)

Multiplying (6.33) by µ−1
1,α, passing to the limit as α → +∞, and then as r → 0,

we get with (6.34), (6.35), (6.39), (6.40), and (6.41), that〈
µ

1/2
i Λi,

N∑
j=1

µ
1/2
j Rj(xj , xi)

〉
= 0 (6.42)

for all i. We fix i = 1. Then µ1 = 1. As already mentioned, according to our choice
of δ in the definition of η in (5.3), we get that Rj(xj , x1) ≥ 0 for all j 6= 1. By
Proposition 5.1 we also have that R1(x1, x1) ≥ CΛ1 for some C > 0. Since the
Λj ’s are nonnegative vectors, it follows that〈

Λ1, ω2

N∑
j=1

µ
1/2
j Rj(xj , x1)

〉
≥ 〈Λ1,R1(x1, x1)〉 ≥ C|Λ1|2 (6.43)

and we get a contradiction by combining (6.42) and (6.43) since the Λi’s are nonzero
vectors. This concludes the proof of the theorem when n = 3.
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