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ABSTRACT. We prove bounded stability for strongly coupled critical elliptic
systems in the inhomogeneous context of a compact Riemannian manifold
when the potential of the operator is less, in the sense of bilinear forms, than
the geometric threshold potential of the conformal Laplacian.

Let (M, g) be a smooth compact Riemannian manifold of dimension n > 3. For
p > 1 an integer, let also M;(]R) denote the vector space of symmetrical p x p real
matrices, and A be a C' map from M to Mj(R). We write that A = (Ay;)i ;.
where the A;;’s are C' real-valued functions in M. Let Ay, = —divyV be the
Laplace-Beltrami operator on M, and H!(M) be the Sobolev space of functions
in L?(M) with one derivative in L?(M). The Hartree-Fock coupled systems of
nonlinear Schrédinger equations we consider in this paper are written as

p
Agu; + > Ag(x)uy = U 2 (0.1)

j=1
in M for all i, where [U|* = P u?, and 2* = 2% is the critical Sobolev expo-

nent for the embeddings of the Sobolev space H'(M) into Lebesgue’s spaces. The
systems (0.1) are weakly coupled by the linear matrix A, and strongly coupled by
the Gross-Pitaevskii type nonlinearity in the right-hand side of (0.1). As is easily
seen, (0.1) is critical for Sobolev embeddings.

Coupled systems of nonlinear Schrédinger equations like (0.1) are now parts of
several important branches of mathematical physics. They appear in the Hartree-
Fock theory for Bose-Einstein double condensates, in fiber-optic theory, in the the-
ory of Langmuir waves in plasma physics, and in the behavior of deep water waves
and freak waves in the ocean. A general reference in book form on such systems
and their role in physics is by Ablowitz, Prinari, and Trubatch [1]. The systems
(0.1) we investigate in this paper involve coupled Gross-Pitaevskii type equations.
Such equations are strongly related to two branches of mathematical physics. They
arise, see Burke, Bohn, Esry, and Greene [9], in the Hartree-Fock theory for double
condensates, a binary mixture of Bose-Einstein condensates in two different hyper-
fine states. They also arise in the study of incoherent solitons in nonlinear optics,
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as described in Akhmediev and Ankiewicz [2], Christodoulides, Coskum, Mitchell
and Segev [13], Hioe [24], Hioe and Salter [25], and Kanna and Lakshmanan [26].

A strong solution U of (0.1) is a p-map with components in H' satisfying (0.1).
By elliptic regularity strong solutions are of class C>?, 6 € (0,1). In the sequel a p-
map U = (uq,...,up) from M to RP is said to be nonnegative if u; > 0 in M for all
i. We aim in this paper in discussing bounded stability for our systems (0.1). With
respect to the notion of analytic stability, as defined and investigated in Druet and
Hebey [19], no bound on the energy of the solution is required in the stronger notion
of bounded stability. This prevents, see Section 2, the existence of standing waves
with arbitrarily large amplitude for the corresponding critical vector-valued Klein-
Gordon and Schrodinger equations. Let Sa4 be the set consisting of the nonnegative
strong solutions of (0.1). Bounded stability is defined as follows.

Definition. The system (0.1) is bounded and stable if there exist C >0 and § > 0
such that for any A’ € C* (M, M;(R)) satisfying ||A" — Al|lcr < 6, and for any
U € S, there holds that ||U||cze < C for 6 € (0,1).

An equivalent definition is that for any sequence (A4, ) of Cl-maps from M to
My (R), a € N, and for any sequence of nonnegative nontrivial strong solutions U,
of the associated systems, if A, — A in C' as o — +00, then, up to a subsequence,
U, — U in C% as a — +oo for some nonnegative solution U of (0.1). Moreover, see
Druet and Hebey [19], we can assert that I/ is automatically nontrivial if A, + A
is coercive, or, more generally, if Ay 4+ A does not possess nonnegative nontrivial
maps in its kernel.

The question we address in this paper is to find conditions on the vector-valued
operator Ay + A which guarantee the bounded stability of (0.1). We answer the
question in the theorem below when the potential of the operator is less, in the
sense of bilinear forms, than the geometric threshold potential of the conformal
Laplacian. As one can check, there is a slight difference between the case n = 3,
where the Green’s matrix of Ay + A and the positive mass theorem come into
play, and the case n > 4. Following standard terminology we say that A, + A is
coercive if the energy of the operator controls the H'-norm, and we say that —A
is cooperative if the nondiagonal components A;; of A, ¢ # j, are nonpositive in
M. When —A is cooperative, seec Hebey [23], the existence of U = (u1,...,u,) such
that U solves (0.1) and u; > 0 in M for all ¢, implies the coercivity of A; + A. In
the sequel we let S; be the scalar curvature of g and let Id, be the identity matrix
in M;(R). The theorem we prove is stated as follows.

Theorem. Let (M,g) be a smooth compact Riemannian manifold of dimension
n >3, p>1 be an integer, and A: M — MJ(R) be a C'-map satisfying that
< n—2
4(n—1)
in M in the sense of bilinear forms. When n = 3 assume also that Ay + A is

coercive and that —A is cooperative. Then the associated system (0.1) is bounded
and stable.

S,Id, (0.2)

A closely related notion to stability, which has been intensively investigated, is
that of compactness. Among possible references we refer to Brendle [6, 7], Brendle
and Marques [8], Druet [14, 15], Druet and Hebey [17], Gidas and Spruck [21],
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Khuri, Marques and Schoen [27], Li and Zhang [29, 30], Li and Zhu [32], Marques
[33], Schoen [40, 41], and Vétois [42]. A system like (0.1) is said to be compact if
sequences of nonnegative solutions of (0.1) converge, up to a subsequence, in the
C2-topology. A direct consequence of our theorem is as follows.

Corollary. Let (M,g) be a smooth compact Riemannian manifold of dimension
n >3, p > 1 be an integer, and A : M — M3(R) be a Cl-map satisfying (0.2).
When n = 3 assume also that Ay + A is coercive and that —A is cooperative. Then
(0.1) is compact.

Another consequence of our theorem is in terms of standing waves and phase sta-
bility for vector-valued Schrédinger and Klein-Gordon equations. Roughly speak-
ing, we refer to Section 2 for more details, it follows from our result that fast os-
cillating standing waves for Schrodinger and Klein-Gordon equations cannot have
arbitrarily large amplitude. The same phenomenon holds true for slow oscillating
standing waves if the potential matrix A is sufficiently small. Instability comes in
the intermediate regime.

Condition (0.2) in the theorem is the global vector-valued extension of the semi-
nal condition introduced by Aubin [3]. Aubin proved in [3] that (0.2), when satisfied
at one point in the manifold, and when A and U are functions, implies the exis-
tence of a minimizing solution of (0.1). Our theorem establishes that (0.2) does
not only provide the existence of minimal energy solution to the equations, but also
provides the stability of the equations in all dimensions. The condition turns out
to be sharp. Assuming that (0.2) is an equality, then, see Druet and Hebey [16, 19],
we can construct various examples of unstable systems like (0.1) in any dimension
n > 6. These include the existence of clusters (multi peaks solutions with fewer
geometrical blow-up points) and the existence of sequences (Uy ), of solutions with
unbounded energy (namely such that ||Uy||g1 — +00 as & — +00). By the analysis
in Brendle [6] and Brendle and Marques [8] we even get examples of noncompact
systems in any dimension n > 25. Of course, the sphere, because of the noncom-
pactness of its conformal group, is another example where noncompactness holds
true (however, in this case, in all dimensions). Conversely, when we avoid large
dimensions, avoid the sphere, and restrict the discussion to compactness, it follows
from the analysis developed in this paper that for any smooth compact Riemann-
ian 3-manifold (M, g), assumed not to be conformally diffeomorphic to the unit
3-sphere, for any p > 1, and any C'-map A : M — M, (R), if the inequality in (0.2)
is large, Ay, + A is coercive, and —A is cooperative, then the associated system (0.1)
is compact.

Our paper is organized as follows. In Section 1 we provide a complete classi-
fication of nonnegative solutions of the strongly coupled critical Euclidean limit
system associated with (0.1) and thus obtain the shape of the blow-up singulari-
ties associated to our problem. We briefly discuss the dynamical notion of phase
stability in Section 2. In Section 3 we prove strong pointwise control estimates for
blowing-up sequences of solutions of perturbed equations. These estimates hold
true without assuming (0.2). In Section 4 we prove sharp asymptotic estimates for
sequences of solutions of perturbed equations when we assume (0.2) and get that
rescalings of such sequences locally converge to the Green’s function plus a globally
well-defined harmonic function with no mass. We construct parametrix for vector-
valued Schrédinger operators when n = 3 in Section 5 and get an extension of the
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positive mass theorem of Schoen and Yau [37] to the vector-valued case we consider
here. This is the only place in the paper where we use the 3-dimensional assump-
tions that Ay + A is coercive and that —A is cooperative. We prove the theorem
in Section 6 by showing that there should be a mass in the rescaled expansions of
blowing-up sequences of solutions of perturbed equations.

1. NONNEGATIVE SOLUTIONS OF THE LIMIT SYSTEM

Of importance in blow-up theory, when discussing critical equations, is the clas-
sification of the solutions of the critical limit Euclidean system we get after blowing
up the equations. In our case, we need to classify the nonnegative solutions of the
limit system

Auy = U Py, (1.1)
where |U|> = Y7 u?, and A = —>"" | 9?/027 is the Euclidean Laplace-Beltrami
operator. The result we prove here provides full classification of nonnegative solu-
tions of (1.1). It is stated as follows.

Proposition 1.1. Let p > 1 and U be a nonnegative C?-solution of (1.1). Then
there exist a € R", A >0, and A € S_’;_l, such that

n—2
)\ 2
Z/{(SU) = m A (12)
+ n(n—2)
for all x € R™, where Sﬁ_l consists of the elements (Ay,...,A,) in SP™1, the unit

sphere in RP which are such that A; > 0 for all i.

We prove Proposition 1.1 by using the moving sphere method and the result in
Druet and Hebey [19] where the classification of nonnegative H!-solutions of (1.1)
is achieved by variational arguments. The method of moving sphere, a variant of
the method of moving planes, has been intensively investigated in recent years.
Among possible references we refer to Chen and Li [11], Chou and Chu [12], Li and
Zhang [28], Li and Zhu [31], and Padilla [34]. Proposition 1.1 in the special case
p = 1 was known for long time and goes back to Caffarelli, Gidas and Spruck [10].
The novelty in Proposition 1.1 is that p is arbitrary.

For any a € R™, and any A > 0, we define the Kelvin transform U, » = Ko A (U)
of amap U : R™ — RP as the p-map defined in R™\{a} by

U\ (z) = Kav,\(a:)”dbl (a + Ka,,\(m)Z(x — a))

for all x € R™\{a}, where K, ) is given by K, »(z) = =2 . As one can check, for

= oeal
any u € C%(R™,R), for any a € R", for any A > 0, and for any = € R"\{a},
Aug \(7) = Koz (2)" T2 Au (a + Ko (2)* (2 — a)) . (1.3)

In particular, if I is a nonnegative solution of (1.1), so is U, » in R™\{a} for all
a € R™ and all A > 0. Writing that Uy x = ((©1)a,xr,-- - (Up)a,r), it follows that

A(ui)ax = Uar* 72 (ui)an (1.4)

in R"\{a} foralla € R”, all A\ > 0, and all i = 1, ..., p. Before proving Proposition
1.1 we establish three lemmas. Our approach is based on the analysis developed in
Li and Zhang [28].
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Lemma 1.1. Let U be a nonnegative C?-solution of (1.1). For any point a in R™,
there exists a positive real number Ao(a) such that for any X\ in (0, Ao(a)), there
holds (u;)ax < u; in RM\Bg(X) fori=1,...,p.

Proof of Lemma 1.1. Without loss of generality, we may take a = 0. We denote
(ui)ox = (u;)x for i =1,...,p. By the superharmonicity of the function w; and by
the strong maximum principle, for ¢ = 1,. .., p, there holds either u; =0 or u; > 0
in R”. In case u; > 0, as is easily seen, there exists a positive real number ry such
that for any r € (0,79) and for any point § € S"~1, there holds

dir (rngz ui(rﬂ)) >0,

for i =1,...,p. It follows that for any A € (0, 7], there holds

in Bo(ro)\Bo(A). On the other hand, by the superharmonicity of the function w;
and by the Hadamard Three-Sphere theorem as stated, for instance, in Protter and
Weinberger [35], for any real number r > ry and for any point = € By(r)\Bo(ro),
we get

(rg_" — 7’27”) ui(x) > (|x|27” — 1"27") ag{l)i(go)ui + (7’3_” — |a:|27") 311?018) U;

Y

22" —r2™™) min
(J] i
9Bo (7o)

fori=1,...,p. Letting r — 400 gives
r n—2
0 .
, > (2 , 1.6
wi> (G) in o

fori=1,...,p. We take

. n—2
min u;
. 830(7’0)
A =romin | ———— ,
icly max u;
Bo(To)

where
Iy = {z e{l,...,p} s.t. u; %OinR”} .
For any real number A\ € (0, ) and for any point x € R™\ By(rp), there holds
/\0 n—2 o n—2 -
(ui)a(z) < | — max u; < [ — min u; (1.7)
|x‘ Bo(r0) |$| 0Bo(r0)

for i = 1,...,p. It follows from (1.5)—(1.7) that for any A in (0, Ag), there holds
(ui)x < u; in RM\By(A) for i =1,...,p. This ends the proof of Lemma 1.1. O

By Lemma 1.1, for any point a in R", we can now define
Aa) =sup{\ > 0s.t. (u3)an < u; in R"\B,(\) fori=1,...,p}.
The next lemma in the proof of Proposition 1.1 is as follows.

Lemma 1.2. Let U be a nonnegative C*-solution of (1.1). If there holds that
U ,m] = [U| in R™\ {a}.

a

Ma) < +o0o for some point a in R™, then there holds
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Proof of Lemma 1.2. Without loss of generality, we may take a = 0. We denote
A(0) = X and (u;)on = (u;)a for i = 1,...,p. By definition of A, in case A < 400,

we get that for any A € (0, A], there holds

in R™"\By(A) for ¢ = 1,...,p, and that there exist an index ig and a sequence of
real numbers (\,)q in (X, +00) converging to A such that property (1.8) does not
hold true for i = ig and A = \,. For any positive real number A\, we let vy be the
function defined on R™\ {0} by vy = u;, — (u4,)x- By (1.1), (1.4), and (1.8), we get

2% _9 2% -2
in R\ By(\). We clearly have that
min_ vy = min vy =0. (1.10)

R™\ Bo (X) dBo(X)

We claim that there holds vy = 0 in R™\By(A). In order to prove this claim, we
proceed by contradiction and assume that vy # 0 in R"\By()). By (1.10) and by
the Hopf lemma, it follows that the outward normal derivative of the function vy

on OBy(A) is positive. By the continuity of Vu,,, we then get that there exists a

real number 7o > A such that for any A € [\, rg), there holds
vy >0 (1.11)

in Bo(ro)\Bo(A). Using the Hadamard Three-Sphere theorem as in Lemma 1.1, we
also get that for any point € R™\By(rg), there holds

n—2
To .
— > | — . 1.12
vy(a) > (m) Jin o3 (1.12)

On the other hand, by the uniform continuity of the function w;, on By(ro), there
exists a positive real number € such that for any A € E,X + 5} and for any point
x € R™\By(ro), there holds

o) = 0r ()] = [(wa ) — (s < 5 (18] win o (113)

It follows from (1.11)~(1.13) that for any A € [A,A+¢], there holds vy > 0 in
R™\By()\). This contradicts the definition of A, and this ends the proof of our
claim, namely that there holds v5 = 0 in R™\By(X). Taking into account that

o= () ()"

for all points « in R™\{0}, we even get that there holds vy = 0 in R™\{0}. Moreover,
the function u;, cannot be identically zero without contradicting the definition of X,

and thus, by the maximum principle, u;, is nowhere vanishing. By (1.9), it follows
that there holds |Ux| = |¢| in R™\{0}. This ends the proof of Lemma 1.2. O

The third and last lemma in the proof of Proposition 1.1 states as follows.

Lemma 1.3. Let U be a nonnegative C?2-solution of (1.1). If there holds that
Aa) = 400 for some point a in R™, then the p-map U is identically zero.
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Proof of Lemma 1.3. By definition of A(a), in case A(a) = +o00, we get that for any
positive real number A, there holds

(ui)axn < u;
in R"\B,()) for i = 1,...,p. Without loss of generality we may here again assume
that a = 0. In particular, we get
A" 2;(0) < liminf (2" 2ug(2)) .

|| —+o00
Letting A — +o00, it follows that for ¢ =1, ..., p, either u;(0) = 0 or
|| 2ui(z) — 400

as |z| — 4oo. If there holds w;(0) = 0 for some ¢ = 1,...,p, then by the super-
harmonicity of the function u; and by the strong maximum principle, u; is identi-
cally zero. Therefore, we may now assume that there holds |z|"~2u;(z) — +oo as
|z| — +oo for all i = 1,...,p such that u; Z 0. We then claim that there holds
Ay) = 4oo for all points y in R”. Indeed, if not the case, namely if there holds

A(y) < +oo for some point y in R™, then by Lemma 1.2, we get

2" (@) = Jol" 2 U, 5 (@

2)| — M) 2 U()]

as |x| — +o0o, which is a contradiction. By Lemma 11.2 in Li and Zhang [28] if
there holds \(y) = +oo for all points y in R”, then we get that the p-map U is
constant. Taking into account that U satisfies (1.1), it follows that U is identically

ZEero. (Il
We are now in position to end the proof of Proposition 1.1.

Proof of Proposition 1.1. By Lemma 1.3, we may assume that for any point y € R",
there holds A(y) < +oo. By Lemma 1.2, it follows that for any point y in R™, there

holds o4 ’ A@)’ = U] in R"\{y}. By Lemma 11.1 in Li and Zhang [28], we then get

that there exist a point a € R™ and two positive real numbers A and )\’ such that

n—2

N :
U ()| = <A+|xa|2> (1.14)

for all points x in R™. For any positive real number R, we define the function ng in
R* by nr(x) = n(z/R), where 7 is a smooth cutoff function in R satisfying n = 1
in [0,1],0<n <1in [1,2], and n =0 in [2,4+00). For any positive real number R,
multiplying (1.1) by nru;, summing over ¢ and integrating by parts in R™ gives

1 .
/ \VU|2anz+§/ |M|2A77Rdx:/ U* nrd . (1.15)
By (1.14), we get
,’7 n
’/ U|* Anpda ’ 14 ”CO(R)/ UPde =0 (R>™)  (1.16)
R? Bo(2R)\Bo (R)

as R — +o00. Passing to the limit into (1.15) as R — 400, it follows from (1.16)
that

/ |VU|2dx:/ U)* do < 400 .
Rn n
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By Proposition 3.1 in Druet and Hebey [19] we then get that the p-map U is of the
form (1.2). This ends the proof of Proposition 1.1. O

2. PHASE STABILITY

We very briefly discuss the implications that the stationary notion of bounded
stability introduced in the introduction has in terms of dynamics. For this we de-
fine a notion of phase stability, see below, and discuss standing waves of critical
nonlinear Klein-Gordon and Schrédinger equations associated with (0.1). The crit-
ical nonlinear vector-valued Schrédinger equations we consider in this section are
written as

Ou;

p
i~ Dgui = Ay + UT T u =0 (2.1)
j=1

in M for all . The critical nonlinear vector-valued Klein-Gordon equations we
consider are written as

% + A U; + ZAU@?)’LLJ - ‘Z/[|2*_2Ui =0 (2.2)

in M for all i. In the above equations A € C' (M, MS(R)). The vector-valued
Schrédinger equations traditionally arise as a limiting case of the Zakharov system
associated with plasma physics. In this framework equation (2.1) is a special case of
the traditional vector nonlinear Schrodinger equation corresponding to the addition
of a matrix potential in the linear part of the equation, and to the choice o = 1
of the thermal velocity parameter in the original equations. Let Ue™** be the
standing waves model for (2.1) and (2.2), where the amplitude & : M — RP is
assumed to be nonnegative. It is easily checked that e~ ! is a standing wave for
(2.1) if and only if U solves

P
Agui + Y (Aij(x) = 3655) uj = [U* " u; (2.3)
j=1

in M for all 4, where @ = w, and that it is a standing wave for (2.2) if and only if &/
solves (2.3) with © = w?. In other words, Ue~** is a standing wave for (2.1) and
(2.2) if and only if U solves (0.1) with the phase translated matrix A — wId, and
A — w?ld,,.

In what follows, we define phase stability by the property that a convergence
of the phase implies a convergence of the amplitude. When phase stability holds
true, the corresponding standing wave sequence converges to another standing wave
and phase stability clearly prevents the existence of standing waves with arbitrarily
large amplitude in L*°-norm.

Definition. A phase w is stable if for any sequence of standing waves with ampli-
tudes U,, and phases w,,, the convergence w, — w in R as a — +oo implies that,
up to a subsequence, U, — U in C? as o — +00.

An easy consequence of our theorem and of (2.3) is that large phases are always
stable (with extra assumptions on A when n = 3). In particular, fast oscillating
standing waves (|w| > 1) for the critical nonlinear vector-valued Klein-Gordon and
Schrodinger equations cannot have arbitrarily large amplitude. We also get that
small phases are stable, and thus that slow oscillating standing waves (Jw| < 1)
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cannot have arbitrarily large amplitude as well, if the potential A is sufficiently
small. Recall that standing waves here are like Ue~*?!, where U > 0.

Corollary. Large phases, required to be positive for (2.1), are generically stable.
In particular, fast oscillating standing waves cannot have arbitrarily large ampli-
tude. Small phases are also stable, and slow oscillating standing waves cannot have
arbitrarily large amplitude as well, if the potential A is sufficiently small.

To be more precise, assume that —A is cooperative, that @ = w (resp. @ = w?)
is such that Ay + (A — @Id,) is coercive, and that

A< (4(’;__21)59 + w) Id, . (2.4)

Classical minimization arguments give that standing waves with nonnegative am-
plitude and phase w exist for the critical nonlinear vector-valued Klein-Gordon and
Schrédinger equations. Our theorem provides the stability of such standing waves
with respect to w. As is easily checked, (2.4) is satisfied by large phases. Let (a;;)i,;
be a symmetrical matrix of C" functions a;; : M — R such that >-7_, a;;(z) = 1
foralli=1,...,p and all x € M, and let A(g) be the C*' maps from M to M;(R)
given by A(g);; = #’_%Sgaij for all i,j = 1,...,p. By Druet and Hebey [16, 19],
the system (0.1) associated with A(g) is unstable when posed on spherical space
forms in any dimension n > 6. By the noncompactness of the conformal group
on the sphere the system is noncompact when posed on the sphere in any dimen-
sion n > 3, and by the constructions in Brendle [6] and Brendle and Marques
[8], there are examples of nonconformally flat manifolds for any n > 25 such that
the system (0.1) associated with A(g) is noncompact, and thus also unstable. If
A —wld, = A(g), or A —w?1d, = A(g), we then get instability of the phase w
for (2.1) and (2.2). However, if A is sufficiently small such that (0.2) is satisfied,
then (2.4) is still satisfied with |w| < 1 sufficiently small, and our theorem provides
the stability of such w’s. In particular, small phases are also stable, and thus slow
oscillating standing waves cannot have arbitrarily large amplitude as well, if the
potential A is sufficiently small. Instability comes in the intermediate regime.

3. POINTWISE CONTROLS IN BLOW-UP THEORY

We let (M, g) be a smooth compact Riemannian manifold of dimension n > 3,
p > 1 be an integer, and (A,), be a sequence in C* (M,M;(R)), a € N We
consider the sequence of approximated equations

p
Agu; + ZA%(x)u] =UP Pu, (3.1)
j=1

where A, = (45};)i;, and we assume that

Ay — A (3.2)
in C' (M, M3(R)) as @ — 4oo for some A € C* (M, M3(R)). We let (Us)a be a
sequence of nonnegative solutions of (3.1) and we assume that

max |Uy | — +00 (3.3)
M
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as a — +o0. For U € C'(M,RP) we define |U|, by

p
Ul = ui, (3.4)
=1

where U = (u1,...,up). If U > 0 solves an equation like (0.1), summing the
equations in (0.1), we get that

AU, + AU >0,

where, for example, A = p||A||oc and ||Al|oc = max; max;; |A;;(z)|. In particular,
||y, satisfies the maximum principle and we get that either [U|y;, =0 or [U|;, > 0
everywhere in M. As a consequence, either i = 0 or [U| > 0 everywhere in M,
and we get that [U| is of class C%¢, 6 € (0, 1), exactly like U is. In what follows we
let (za)a be a sequence of points in M and (pa)a, 0 < pa < i4/7, be a sequence of
positive real numbers, where i, is the injectivity radius of g. We assume that the
T,’s and p,’s are such that

VUl (z4) =0 and

no2 (3.5)

dg (Ta,z) T |[Ua(z)] < C

for all o, all z € B, (7pa), and some C' > 0 independent of o and x. We define
1

Ua(za)|7=2

for all a, and aim in getting pointwise control estimates on the U,’s around the
zo’s. We start with a general Harnack type inequality in Lemma 3.1 and then get
our control estimates in Lemmas 3.2, 3.4, and 3.5 under the additional assumption
that

fla (3.6)

n-2
lim po*  sup |Us|=+oc0. (3.7)
amree Bag (6p0)
Lemma 3.3 is used as an intermediate state between the asymptotic description in
Lemma 3.2 and the sharp pointwise control in Lemma 3.4.

Lemma 3.1. Let (M, g) be a smooth compact Riemannian manifold of dimension
n >3, p>1 be an integer, (Aa)a be a sequence in C* (M, M;(R)), and (Uy)a be
a sequence of nonnegative solutions of (3.1) such that (3.2) and (3.3) hold true.
Let (xo)a and (pa)a be such that (3.5) holds true, and let R > 6 be given. There
exists C' > 1 such that for any sequence (so)a of positive real numbers satisfying
that s > 0 and Rs, < 6p,, for all o, there holds

Sa ”vu&”L‘x’(Qa) é nglzlp ‘uoz| é 02 lélf |ua| )

where Qg is given by Qo = By, (Rsa) \ Bz, (55a) and, for U = (u1,...,up),
IVU[ oo = max; || V| oo -
Proof of Lemma 3.1. Let R > 6 be given and (s,)n be a sequence of positive real
numbers such that s, > 0 and Rs, < 6pq for all a. We set for @ € By(™),

Uy (z) = 5;;21/{& (exp,. (sa®)) ,

An(z) = A, (exp,, (sa)) , and

ga(x) = (exp}_ g) (sax) .
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Up to a subsequence, §o — § in C7, (Bo(*£)) as o — +oo, where § is some
Riemannian metric in BO(%), and § = £ as soon as s, — 0, where & is the
Euclidean metric. We know thanks to (3.5) that

Ua(@)| < Claf'=% (3:8)
in Bo(“)\ {0}. Thanks to equation (3.1), we also get that

)i + 55 ZA = |Uo|* (i1 (3.9)

in By(ZE) for all i, where Uy = ()1, - - -, (la)p). Tt follows from (3.8) and (3.9)
that
Ag, ()il < (€% 2lal 4 ps2 [ Aalle) sl
BU(HR)\BO(MR)
in By (138)\ By (15%) for all i = 1,...,p. Sobolev embeddings lead then to the
existence of some D > 0 such that

sup |V (Gq)il <D sup [Uo | (3.10)
Bo(R)\Bo(%) Bo(*4*)\Bo(15%)

foralli=1,...,p. Leti € {1, e ,p} be given and let 4, = |L?a|g, where |- |y is as
n (3.4). By the maximum principle, @, > 0. Summing the equations in (3.9) we
have that

Ag lq = Fola (3.11)
in Bo(%)7 where
o P A% (Gy)
Fo,= U, % - Siw ) (3.12)
lia

Combining (3.8) and (3.12) we get that
TR N
rls () el (3.13)
in Bo(ZE) \ By (s%). Thanks to the Harnack inequality that we apply to the

solutions 7, of (3.11), see for instance Theorem 4.17 of [22], we get the existence
of some D > 0 independent of ar, K and x such that

sup G, < D | inf 4, + K| F,|
B, (2K) B, (K)

for all o and all balls B, (2K) C By(“£). Using (3.13) and choosing K small
enough clearly leads to the existence of some D > 0 such that

L7 (Ba(2K)) BS‘EIZI;() ﬁa>

sup Uy < sup Uy
BO(R)\BO(%) Bo ISR)\BO(H‘,R) (3 14)
<D inf 4,<D sup fa '
Bo(R)\B(%) Bo(R)\Bo(%)

for all . It remains to note that 1% < |L{(,K|2 < 42 to conclude the lemma with
(3.10) and (3.14). O

Lemmas 3.2 to 3.5 below are involved with getting pointwise control estimates
on the U, ’s.
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Lemma 3.2. Let (M, g) be a smooth compact Riemannian manifold of dimension
n >3, p>1 be an integer, (Aa)a be a sequence in C* (M, M;(R)), and (Uy)a be
a sequence of nonnegative solutions of (3.1) such that (3.2) and (3.3) hold true.
Let (24)a and (pa)a be such that (3.5) and (3.7) hold true. After passing to a
subsequence,

n—=2
n-2 1 ’
fa® Ua (exp,, (Hax)) — — A (3.15)
1+ n(n—2)
in C} (R™) as o — 400, where i, is as in (3.6), A € SP", and S%~" is the set
of vectors in RP with nonnegative components and such that |A| = 1. Moreover,
Z—Z — 400 as a — +o0o. In particular, o — 0 as a — +00.

Proof of Lemma 8.2. Let y, € B, (6ps) and v, > 0 be such that
1—n
Ua(ya)l = sup [Ua| and |[Un(ya)| =va *

By, (6pa
for all . By (3.7), v — 0 and pov;! — +00 as @ — +o0. By (3.5),
dg (xomya) < Cvqy (3'16)
for all ov. Let Q, = By (pal/(;l), Q, C R™. For x € ), we set

- n=2
Un () = va? Ug (exp, (Vat))

and g (z) = (expk. g) (Vaz). Since vo — 0 we get that g, — & in CZ_(R™) as
a — +o00, where ¢ is the Euclidean metric. As is easily checked,
P ~ ~ *
Ay (ia)i +va Y A () (Ta); = Ual® 2 (@a)i (3.17)
j=1

for all 4, where Uy = ((@ia )1, - - -, (fla)p) and
Ajy () = AT (exp,, (vaz)

for all @ and all 4,j. Since |Z]a| < 1 in ©Q,, and since payojl — —+o00 so that
Q. — R”, we get from (3.17) and standard elliptic theory that U, — U in C}. (R")
as a — 400, where U > 0 solves (1.1). Let §, be given by
Jo = i expy (Vo) -

By (3.16) we have that |§,| < C for all @ and we may thus assume that, up to a
subsequence, o — fo as & — 400. Since [Uy ()| = 1, we get that [U(fo)| = 1
and g is a point where || attains its maximum. Also we have that 0 is a critical
point of |U| since x,, is a critical point of |I,|, and we have that

n—2

- Vg 2
|U(0)] = QEIEOO (Ma) . (3.18)
By Proposition 1.1, since |Z/~{ | attains its maximum 1 at g, we get that
n—2
Z;{(x) = H_;CI_W A,

n(n—2)
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for all z € R™, where A € Si_l. Since 0 is a critical point of ||, we get that o = 0,
and by (3.18) we get that v, = pq (1 4 0(1)). This proves Lemma 3.2. O

At this point we define p,, : (0, po) — RT by

.. 1,
Pall') = Z/{a do y 3.19
( ) |aBzQ (r)|g 9Ba.. (1) ‘ |E g9 ( )

where |0B;, (r)|, is the volume of the sphere of center z, and radius r for the

induced metric and | - |y is as in (3.4). As a consequence of Lemma 3.2 we have
that

n—2
n—2 r
(:U’Ozr) 2 Pa (/‘a"") - <1T2> |A‘)j (320)
n(n—2)

in CL . ([0,400)) as @ — +o0. We define ro € [2Rofia, pa) by

. ’
T'o = SUP {7‘ € [2Roptas P St (stapa(s)) <0in [2R0,ua,r]} (3.21)

where R2 = n(n — 2). Thanks to (3.20) we have that

T oo (3.22)
[he
as a — 400, while the definition of r, gives that
Pz ©Yq 18 non-increasing in [2Rofiq, 7o) (3.23)
and that
e /
(rTzwa(r)> (ra) =01if ro < pa . (3.24)

Given R > 0 we define

NR,a = sup [Us| - (3.25)
Bz, (Rra)\Bz, (%ra)

Now we can prove the following estimate.

Lemma 3.3. Let (M,g) be a smooth compact Riemannian manifold of dimension
n >3, p>1 be an integer, (Ay)a be a sequence in C* (M, M;(R)), and (Uy)a be
a sequence of nonnegative solutions of (3.1) such that (3.2) and (3.3) hold true.
Let (x4)a and (pa)a be such that (3.5) and (3.7) hold true, and let R > 6 be such
that Rry < 6p, for all a > 1. For any € > 0 there exists C. > 0 such that, after
passing to a subsequence,

n—2
Un(z)] < C- M?(l—QE)d (2o 33)(2_")(1_6) +NRa _Ta e (3.26)
- grren T\ dg(za, )

for all x € B, (Rro)\ {za} and all o, where ng o is as in (3.25), pq is as in (3.6),
and rq is as in (3.21).

Proof of Lemma 3.3. By Lemma 3.1 there exists C' > 1 such that

1
- sup Us| < valsq) <C inf [Us | (3.27)
C Bwa (RSQ)\BIO‘(%SO{) Bma (Rsa)\Bza(%Sa)
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for all 0 < s, < ry and all a. By (3.23) and (3.27) we then get that for D > 1
sufficiently large,

sup dg(Tas x)n52 |Un ()| < C  sup I ©al(r)
1eBzu (RTa)\Bma (Dﬂa) Dpa<r<rq (3'28)

< C(Dpa)™™ ¢a(Dpa)

and it follows from (3.20) and (3.28) that

n—2
lim  lim sup dg(Za,z) 2 |Ua(z)]=0. (3.29)
D—+ooa—+o0 fDEBza (R"'a)\Ba:a (D/‘«x)
In particular, by (3.22) and (3.29),
n—2
Ta® NRa — 0 (3.30)

as o — +00. Let G be the Green’s function of Ay in M, where we choose G such
that G > 1. Then, see for instance Aubin [4, 5],

dg(x7y)n—2G(;[:7y) — m <T (dg({L‘7y)) (331)
and
o) VG - S| <y e) (332

for some continuous function 7 : R* — R satisfying 7(0) = 0. We fix 0 < e < 1
and set
€ 22 (1-2¢) 1—¢ (n—2)e €
P (2) = pa G(za,2) " +0Rars 7 G(Ta, )"
By (3.31) it suffices, in order to get Lemma 3.3, to prove that

U
sup %‘E =0(1). (3.33)
By (Rra)\{za} Y

We have ®,(x) — +00 as * — 4. Let yo € By (Rra)\{za} be such that
|ua|2 _ ‘Z/[a(ya)k}

sup = . (3.34)
By (Rra)\{za} P& PE, (Vo)

First we assume that dg(2a,ya) 7 0 as &« — +00. Then r, /4 0 since there holds
dg(Ta;Ya) < Rrq and we get that @5, (ya) > Cnr,a for some C' > 0 independent
of a. By Lemma 3.1 we can also write that |Us(ya)| < Cng,o for some C > 0
independent of . This proves (3.33) when dy(zq,ya) 7 0 as @ — +o0o0. From now
on we assume that

dy(Te:Ya) — 0 (3.35)

as a@ — 400 and we distinguish three different cases:
Case 1. W%DaS(XH—FOO,
Case 2. y, € 0B, (Rr,,) for all a,
Case 3. yo € By, (Rry) and W — 400 as @ — +o0.

Assume first that we are in case 1. Then, by Lemma 3.2,

n—2

n—2

1 2
ta” Ua(Ya) — <1+(D2> A (3.36)
n(n—2)
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as a — 400, where A € S7. By (3.22), (3.30), and (3.31),

ez 1 1-¢ i (n—2)(1—e)

o P (ya) = 2 1

o 4 (ba) <<n—2>wn1> (dgm,ya)) o)
(

n—2
10 (nR,aHFT,&n72)€d9 To, ya)(2fn)e)

1 1—¢
= 1
((n — 2)wn1D”_2> +o(1)
+0 (nR ar&"’”su?(kzg))

- ((n - z)wi_mm)l_a +o(1)

n—2 n—2
to (T‘; 5 (1—25)M7(1—25))

l1—e
- 1 +o(1)
(n —2)wp_1 D2
if D # 0, and if D = 0, noting that by (3.31),

Hs%@i(ya) 2 O.ngnin(lis)dg(xaaya)i(nin(lig) )
we get that
i 5 (ga) = +o0.
It follows that in case 1, for D =0 or D > 0, using (3.36),

n—2

RO R G
2 — (1= 2enaD") <1+n<522>> (3.37)

as a — +oo, and (3.33) follows from (3.37). Now we assume we are in case 2.
Then, by the definition of 7g o, we have that |y (ya)| < Mg« and since by (3.31),

(I)Z(ya> 2 UR,aT&n_Q)EG(ﬂUm ya>6

n— 1 : —(n—

Y

1 g
@ 1
b ((n S T )>

we get that, here again, (3.33) holds true. At this point it remains to discuss case
3. Since y,, € By, (Rry) in case 3, it follows from (3.34) and (3.42) below that

BgUals(ya) - By (0a)

> (3.38)
Uals(ya) PE, (Ya)
Since
Ag|Z/{oc|Z S Cl|ua|2 + C2|ua@; -1 )
where C1,Cy > 0 are independent of «, we get by (3.35) and (3.29) that
A (03 [}
lim dg(xa,ya)QM =0. (3.39)

a—-+oo Uals (Yo )
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On the other hand, we compute
IVGy,|?

AP, =¢e(1—¢) o2 o° (3.40)
and by (3.31), (3.32), and (3.40) we get that
. Ay PG (Ya)
229 Fa\da) 2
QEIEmdg(Ia,ya) W —6(1 76)(77/72) . (341)
Combining (3.38), (3.39), and (3.41) we get a contradiction so that only cases 1
and 2 can occur. This ends the proof of Lemma 3.3. g

In the above process we used that if Q is an open subset of M, u,v are C?-
positive functions in (2, and x¢ € € is a point where  achieves its supremum in €2,
then

Agu(zo) o Agu(wo)
v(zo) — ufxo)
Indeed, V (2) = Y20Vt g6 that u(2o) V(o) = v(ze) Vu(zo). Then,

ICA
u

(3.42)

v u(zo)Agv(zg) — v(zo)Agu(zo)
A, (1) (an) = FEOREE :

U u?(wo)
and we get (3.42) by writing that A, (%) (z¢) > 0. At this point, thanks to Lemma
3.3, we can prove the following sharp estimate.
Lemma 3.4. Let (M, g) be a smooth compact Riemannian manifold of dimension
n >3, p>1bean integer, (Aa)a be a sequence in C* (M, M5(R)), and (Us)a be
a sequence of nonnegative solutions of (3.1) such that (3.2) and (3.3) hold true.
Let (x4)a and (pa)a be such that (3.5) and (3.7) hold true, and let R > 6 be such

that Rr, < 6py for all a > 1. There exists C > 0 such that, after passing to a
subsequence,

Un(@)] + dy (20, 2) [Via (2)]] < Cpta? dy(wa,2)>" (3.43)
for all x € By (Zra)\{za} and all a, where, for U = (uy,...,u,) and x € M,
IVU(x)|| = max; |Vu;(z)|, where o is as in (3.6), and where 4, is as in (3.21).
Proof of Lemma 3.4. We prove that there exist C,C’ > 0 such that
Ua@)] < C (1a™ dy(wa,2)* " + 11,0 (3.44)
for all z € B, (£r,)\{za} and all «, and

n—2
NRa < C'ua® r27" (3.45)

for all . Lemma 3.4 follows from Lemma 3.1, (3.44), and (3.45). In particular,
it suffices to prove (3.44) and (3.45). We start with the proof of (3.45) assuming
(3.44). By (3.23), for any n € (0,1),

n—2 n—-2
(Mra) 2 @a(ra) 2 1a® @al(ra)
for all &> 1. By (3.27) we then get that
1 n2 ne2

57“777R,a <(mra) 2 sup Ul -
9B.,, (7a)
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Assuming (3.44) it follows that

1 n—2 ( n-2 _n
o' <nz (ucﬂ (17ra)? +773,a)

and if we choose 7 € (0, 1) sufficiently small such that C’nanQ < 1, we obtain that

n—2
2— 2—
T"R,« <n n,uaz To "

This proves (3.45) when we assume (3.44). Now it remains to prove (3.44). For
this it suffices to prove that for any sequence (y, ) such that

Yo € Bxa( To)\{%a } (3.46)

for all «, there exists C' > 0 such that, up to a subsequence,
n—2
Ua(9e)] < C (1™ dylasya)* ™" + 7a ) - (3.47)

Let (ya)a be such that y, satisfies (3.46) for all o. As a preliminary remark one
can note that (3.47) directly follows from Lemma 3.2 if dg(2a,ya) = O(la). In
a similar way, (3.47) follows from Lemma 3.1 if r 'dy(za,ya) # 0 as a — +oo.
From now on we assume that

lim —d 9(Ta,Ya) = +00 and  lim —d (TasYa) =0. (3.48)

a——+00 Ma a——+00 Ta

Let A > 1 be such that Ap[|Al|cc & Sp(4Ay), where Sp(4,) is the spectrum of A,
and let G be the Green’s function of Ay — Ap||A||oc. There exist, see for instance
Robert [36], positive constants C; > 1 and Cs,C3 > 0 such that

1
—d,(z,y)> " — Cy < G(x,y) < Crdy(x,y)> ", and
;%@ ) 2> < G(x,y) < Crdy(z,y) (3.49)
VG (2, y)| < Cady(z,y)" "
for all z # y. By (3. 49) there exists ¢ > 0 such that G > 0 in B,_(dr,) for all «.
By (3.48), ya € Bma( rq) for a > 1. By the Green’s representation formula,

Unls () = / o C0as®) (Bglhals = Xl Al 5) () )
+ / (o @) (8, a5 ()doy (2) (3.50)
OBy, (0ra)

- / (0,C (Yo, 2)) [Uals (2)doy () |
OBy, (07a)

where v is the unit outward normal to 0B,_ (dr,). Since A > 1,

Aglthals — Ap||AllooUals |ua|2*72|ua|2
Villal* !
and since G > 0 in B,_(0r,) we get with (3.49) that

/ » G(ym ) (AglUals = Apl|Allco[Uas) () dvy ()

IA A

(3.51)
< c/ S Wers )2 U ()2 el () .
(JTQ
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Independently, by (3.49) and Lemma 3.1,

/ G (o 2) 10 [Ua ()| dorg () < Cre , and
OBy, (07a)

(3.52)
[ 106 Uals(w)doy @) < Co
OB, (0ra)
for some C' > 0. Combining (3.50)—(3.52), we get that
1 «
Salse) < [ et )y F e (359)
Bag (57a)

We fix e = ni” By Lemmas 3.2 and 3.3, and by (3.48), we can write that

[ dyluesaP ) (o)
By, (67a)

n—2 a9
== O (Mon dg(xouyoc) n)
n+2q_
40 [ pa? 7 / dg(Ya, ©)? " dy (0, 2) "D dy, (2)
Bwa(gTa)\Bmu(Ha)

+0 (7712{,& tripee dy(ya, )* " dy(a, x)("“)edvg(w))

Lwa ((sra)\Bwa (Ma)
n—2 *
=0 (2™ dy(warpa)® ) + 0 (nE'72)

and we thus get from (3.5), that

/ (Yo )2 U ()2 ey ()
Bi, (670) (3.54)

n—2
2

=0 (ua dg(Tas ya)%") + O (NR,a) -

Indeed 7203 21 = (12175 2%) My and by (3.5),

9 o%_9\ZF2 n—2
(TanR,a ) = 7’ sup |ua‘
Bg,, (Rra)\Bma (%Ta)

< C sup dg(xmm)%z\ua(xﬂ <C.
z€B,,, (Rra)

Then (3.47) follows from (3.53) and (3.54). This ends the proof of Lemma 3.4. O
At this point we define B, by

n—2

I
Ba(#) = | =, G (3.55)
Ha n(n—2)
for all a, where z € M. As a last estimate in this section we prove Lemma 3.5
below.

Lemma 3.5. Let (M, g) be a smooth compact Riemannian manifold of dimension
n >3, p>1 be an integer, (Ay)a be a sequence in C* (M, M;(R)), and Uy )a be
a sequence of nonnegative solutions of (3.1) such that (3.2) and (3.3) hold true.
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Let (x4)a and (pa)a be such that (3.5) and (3.7) hold true. There exist C' > 0 and
(€a)a such that, up to a subsequence,

n—2
Un — BoA| < Cpa® (127" +Sa) +€aBa (3.56)
in By, (2ra)\{za} for all a, where A € S2~ "' is as in Lemma 3.2, ¢4 — 0 as
a — 400, So(x) = dy(Te, )3~ for all x, pq is as in (3.6), and ry is as in (3.21).

Proof of Lemma 3.5. Let G be the Green’s function of Ay +1in M. Let (ya)a be
any sequence of points in B, (2r,)\{zs}. By the Green’s representation formula,
foranyi=1,...,p,

(ua); = / G (s 7) (D (t10)i + (1)) () g ()
Bg,, (214)
b Gl ) Oufwa)) () (o) (3.57
OBz, (21a)

- / (00 (o)) (tt)s ()0 ()
OBz, (274)

where v is the unit outward normal to B,_(2ry) and Uy = ((ua)1, - - -, (Ua)p). We
have, see, for instance, Druet, Hebey and Robert [20], that G > 0 and that there
exist positive constants C7,Cy > 0 such that

1

dg(l',y)n72G(£L',y) - < Cldg(xvy) ) and

(n—2)wn_1| (3.58)
IVG(2,y)| < Cady(x,y)' "
for all x # y. By (3.58) and Lemma 3.1,
/ Gy @) (D (ua)s) (@)dory (@) < O
0By, (274)
(3.59)
/ (0,6 (Yo 2)) (1a)i(2)doy (@) < Cro.
OBg, (214)
and by (3.45),
Moo < Cpia® 127 (3.60)

By Lemma 3.4 and (3.58),
n—2
[ Glmnthalvy@) < Cua™ [ (e (o) oy (o)
B, (2ra) By, (2ra)

and by Giraud’s lemma we get that

/ G(Ya, ) Ua|dvg(z) < Cpé ifn=3,

By, (2r4)

/ G (Y ) ldvg(2) < Cptor (1 + Indy(2arya)l) ifn=4, and (3.61)
Bg, (2ra)

n—2
/ G(Ya, ) Up|dvy(z) < Cpa® dg(xa,ya)4_" ifn>5.
B, (2ra)
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Now we let R, : M — RP be given by

Ralz) = /B oGP Ualy)y ) (3.62)

T o

for x € M, and let f: M — R be given by
f(@) = (n = 2)wp—1dy (w0, 2)" G (w0, )

if  # xy and f(xg) = 1, where, up to a subsequence, z, — xo as a — +oo. By
(3.58), f is continuous at zy and

|f(z) = 1] < Cdy(wo, ) - (3.63)
We claim that Rulye)
. a\Ya .
agrfoo H Bolye) f(ya)AH =0. (3.64)

As is easily checked, Lemma 3.5 follows from (3.64). Indeed, by (3.64), since (¥4 )a
is arbitrary in B, (2r4)\{zs}, for any x € M
[Ra(z) = Ba(2)Allgy < |Ra(z) = f(2)Ba(2)Allgy + [f(x) — 1] Ba(2)
Ra
B, *

«

<

. Ba(z) + [f(x) = 1] Ba(x) (3.65)
< eaBa(z) + | f(z) — 1| Ba(z) ,

where £, — 0 as &« — 400, and by (3.63) we can write that
|f(z) =1 < Cdg(xo,x)
< e, +Cdy(za, ),

where ¢/, = Cdy(x0,x4) is such that e/, — 0 as @ — +oo0. Moreover,

n—2
dg(Ta,2)Bo(7) < pa® dy(z0,2)> ™" (3.66)

and we thus get (3.56) by combining (3.57), (3.59), (3.60), (3.61), (3.65), and
(3.66). Summarizing, at this point, it remains to prove (3.64). Up to passing to a
subsequence we may assume that y, — yg as @ — +00. Suppose first that yg # xg.
By Lemmas 3.2, Lemma 3.4, and the Lebesgue’s dominated convergence theorem,
writing that

Ralya) = pia? /B ) O 0000 () W), ).

)

where
Z:la(x) = f1a® U, (exp,, (Hax)) and (3.67)
Ja(x) = (exp}, 9) (Hat) ,
we get that
 Raly) _ ((dylrop)\ T [
aEIJIrloo Ba(ya)  \ n(n—2) L dr ) G(zo,90)A ,
where L,
1 2
ug(z) = — . (3.68)




BOUNDED STABILITY FOR SYSTEMS 21

Since

/ ug*_ldaj = (n —2)wp—1 (n(n — 2))%
we get that if yg # xo, then

Ra (ya)

aEr—&I-loo Ba(ya) = (n— 2)wn_1dg(x0,yo)n_2G($o,yo)A
= f(yo)A .

This proves (3.64) when yg # x¢. Now we assume that yg = 2. In addition, as a
first case to consider, we assume also that

dg(tfom ya)

— D 3.69
Ho ( )
as a — oo for some D > 0. Let z, be such that y, = exp, (#a2a). Then
Ra(ya) ( |zl ) / ey
=1+ —"—= o Go|lUy, U, dvg,, 3.70
Ba(Ya) n(n —2) oo (22) el ! 10

where U, and §, are as in (3.67), and

Galx) = G (exp,, (HaZa),exD,, (o)) -

By (3.58),
dy (050, (1o0)- 052, (10) Gol) = g (3.71)
as a — oo for all z, and we also have that
dg (exp,, (HaZa), XDy, (Hat)) = Hadg, (Za; ) - (3.72)

Combining (3.70), (3.71), and (3.72), by Lemmas 3.2 and 3.4, and by the Lebesgue’s
dominated convergence theorem we get that

i Relte) _ (1, el ) (/ o) ~1da )
lim == =\t A, (3.73
a=+00 By (Ya) n(n —2) g (10— 2)wn_1|x — 20|72 (3.73)

(n
where z, — zp as @ — +o00, and ug is as in (3.68). We have that Aug = ug*fl,
and since

1
G -
O(xay) (N—Q)wn71|y—$|”_2
is the Green’s function of A, we get from (3.73) that

. Raya)
lim =
a—+oo B, (yoc)

This proves (3.64) when yy # zo and we assume (3.69). Now it remains to considser
the case where yo = ¢ and

d!](i&aya) — 400 (3.74)
as o — +o00. Then
n—2
Ra(Ya) 1 2 o —n32
= 1 d n a 2 1y, .
Ba(ya) n(n_2) +O( ) g(l'o”ya) 122 @ (3 75)

where
I, = / G Woor ) U ()2 =2 ()l ()
By, (214)

To
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‘We write that

Io = A G (Yo, )| Ua (@) > *Ua (x)dvy ()

+ G(ywx)\ua(x)|2*_2ua(x)dvg(x) )
Qe

(3.76)

where

N | =

Q, = {:c € By, (2rq) s.t. dg(Ya, x) >
and Q5 = By, (2r4)\Qs. We have that

A T 7)|? 2 z)dv,(x
o /Q G (o) U ()" 2y (1)l ()

dyfoart)

- / oty & e €D, (10)) (@)t () g ()
Tie SXPxq (Mo

Ha

where U, and §, are as in (3.67). Let z, = exp, (taz). For x € u% expy (D),

dg (yaa Za)
[ia

— 400

as a — 400, and since
dg(Yors 2a) = dg(Tas 2a) < dg(Ta,s Ya) < dg(Yas 2a) + dg(Tas 2a)
and dg(Za, Za) = palz|, we get that

lim dg (xon ya)

=1. 3.77
a——+00 dg(yomza) ( )

By (3.58) and (3.77),
1

lim dg($avya)n72Ga (Z/aveXan (Uax)) = m .

By Lemmas 3.2 and 3.4, and by the Lebesgue’s dominated convergence theorem,
we then get that

tim_dy (0,502 [ Gl ) @) (@) )

B (n— 21)wn71 (/n u%*_ldx> A 7
= (n(n—2))"T A.

Independently, by (3.58) and by Lemma 3.4,

dy(To, Yo)" i 2 i G (Yo, )| U (2) [ U () dvg ()

< Cdg(l'avya)iélﬂi / dg(ya’x)27”dvg(x) (3.79)

Qc

<o () -

dg(l'onx) Z dg(xonya) - dg(yaax) 2

since
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for z € Q. Noting that (3.64) follows from (3.75), (3.76), (3.78), and (3.79), we
get that (3.64) holds true when yo = x¢ and we assume (3.74). This ends the proof
of Lemma 3.5. g

4. SHARP POINTWISE BLOW-UP ESTIMATES

In this section we prove sharp blow-up estimates for sequences of solutions of
perturbed equations like (3.1) when we assume (0.2). The main result of this section
is Lemma 4.3. Lemmas 4.1 and 4.2 are preliminary lemmas for the proof of Lemma
4.3. In what follows we let X, be the 1-form given by

1
6(n—1)

2

Xolo) = (1= G R @) (Vale) V1a0) ) Viule) . ()
where f, () = $dg(xq,x)? and, in local coordinates, (Rc})" = g*¢/" R, where
the R;;’s are the components of the Ricci curvature Reg of g.

Lemma 4.1. Let (M, g) be a smooth compact Riemannian manifold of dimension
n >3, p>1 be an integer, (Ay)a be a sequence in C* (M, Mg(R)), and (Uy) o be a
sequence of nonnegative solutions of (3.1) such that (3.2) and (3.3) hold true. Let
(Za)a and (po)a be such that (3.5) and (3.7) hold true. Let R1,o be given by

P
Rio=> [
| ;B

where Uy, = ((Ua)1, - - - (Ua)p), Xa is as in (4.1), and A* is the musical isomor-
phism of A. Then

#
) (VXa - :L(dinga)g) (V(ua)is V(ua)i) dvg , (4.2)

T (Tr:v

R17Q = MhaTa an =3,

1
Ria=0 (ui In N) +o(ul?r2™™) ifn=4, (4.3)
Ria=o0(ul)+o(ua ™) ifn>5,
where o is as in (3.6) and 14 is as in (3.21).
Proof of Lemma 4.1. Thanks to the expression of X,
1 .
(VXa)ij T (divgXa) gij = O (dg(xom x)z) (4.4)

for all 7, j. Assuming n = 3 we can write by Lemma 3.4 that

Rial < C / (20, 2)%|| Vo (2) 2y ()
By (ra)
< Cua / dy (0 z) " 2duy(z)
Bz, (Ta)
< Cpara -

This proves (4.3) when n = 3. From now on we assume that n > 4. We have that

B
(vxa - % (divy X,) g) (VBa,VBa) = O (dg(za,)?|VBa|?) , (4.5)
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where B, is as in (3.55). Thanks to (4.4) and (4.5) we can write that
Ria=0 (/ dg(xa,m)3|VBa(x)2dvg(x)>
Bma (T(x)
+0 </ dg(2e, )|V Ba(2)] X |V (Us — BaA)(:z:)|dvg(x)> (4.6)
By, (Ta)

+ 0 </ dg(za,;z:)2||V(Z/{a — BQA)(a:)Hdeg(m)) .
Bag (Ta)
We have that

1
/ 4, (20, )% |V Ba(2)|2dv, () = 0 (Mg In ) ifn =4,
Ba(ra) 2

[

(4.7)
/ dg(za,2)?|VBa(2)Pdvg(z) = 0 (u2) ifn>5.
Bz (ra)

Moreover, given ¢ € {1, e ,p}, integrating by parts,

[yl ¥ ()i = Bal) @) duy (o)
Bxa (Ta)

= O </ |((ua)z - BocAi) (33)‘ dg(xa,:c)z |v ((ua)i - BaAi) (33)‘ ng@))
OBz, (Ta)

+0 ( [ e ()~ B <w>2do—g<x>>
OBz (Ta)

O Ue )i — Bal\;) (x 2dvgx
+ (LMM(( ) ) (@) ())
+ / By (T 2% ((ta): — Bahi) (2) (Ag (ta)i — Bahs)) (2)dvy(z) |
B, (Ta)
and we get by Lemma 3.4 that
[ dfaa? |9 ()i = Bai) ()] dy (o)
Bey (ra)

-/ ) () = Ba) () (8 (ua)s = Bad) @)y (o) (4.5

+ 0 (ug_Qri_") +0 (/ [(ua)i — BaAi\2 dvg> .
Bog (Ta)
We have that

o 1 .
/ Bidvg = 64wsp? In Ta +o0 (,ui In ) ifn =4, and
Bag (Ta) Mo Jz

(o3

/ Bidv, = (/ u%dx) ui—&-o(ui) ifn>5,
Baog (ra)

T o

(4.9)
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where ug is as in (3.68). Moreover,

/ [(t0); — Bl duoy = 0 (42)
B (/»Loz)

T o

by Lemma 3.2, while if S, is as in Lemma 3.5, we can write that

e [ S2dvy = O (4 r4) 4o (2)
Bz, (1a)\Bzg (Ha)

By (3.22),

pa g =0 (p2)

if n > 5. By Lemma 3.5 and (4.9)—(4.12) we then get that

1
/ |(ua)i—BaAi\2dvg :o<,uiln) ifn=4, and
Bag (ra) M

[

/ |(ua)i—BaAi\2dvg :o(ui) ifn>5,
By (ra)
and coming back to (4.8) we get that

/B dy (o 2)? |V ()i — Baky) (2)]? duy ()

T (Ta)

:/B ( )dg(iva,x)Q((Ua)i—BaAi) () (Ay ()i — Baly)) (z)dvy(z)

1
+0<,uiln) ifn =4, and
I

(03

:/B ( )dg(xayx)Q((ua)i_BaAi) () (Ay (Ua)i — Bals)) (z)dvy(z)

—|—0(u§) ifn>5.

25

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

Thanks to the equations (3.1) satisfied by the U, ’s, and thanks to the expression

of A, in geodesic polar coordinates,

/B ( )dg(:vmx)2((ua)i—3a/\i) (@) (Ag ((ta)i = Bali) (2)) dvg(z)

=0 (/ Ay, )7 |((a)i = Badsi) (2)] x U ()~ dvg($)>
B, (roz)

+0 / dy(wa, 1) [((ua)i — Badi) ()| Ba(ﬂﬁ)z*_ldvg(x))
Bma (Tw)

+0 < [ dulaa ()~ Bak) @) % o) dvg<x>>
By (ra)
o <

/ dy (2, 2)° |((ua)i — Badi) ()] x [VBa(z)] dvg(ﬂﬁ)) :
Buo(ra)

(4.15)
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By Lemmas 3.2, 3.4, and 3.5, letting F, = [Uy|> ~! + B2 !, we can write that

/ " dy (T, 2)* [((ua)i — Bali) ()] Fa(w)dvg(2)

9(Ta, ©)? [((ua)i = Bali) (2)] Ful@)dvy(z)
m(ua (4.16)

/ dg(2a,2)* |((ua)i = Baly) ()| Fa(z)dvg(x)

B, "‘a)\Bza ILa
=o(ua) +o(pa?ra™") -

+

In a similar way, by Lemmas 3.4 and 3.5,

/ dy(wa, 2)* [((ta)i — Badi) (2)] X [Ua ()| dvg(2)

By, (Ta)
/ (o )2 [((t0)i — Bas) (2)] X [Un()]| dug ()

m(ua (4.17)
/ (70 2)? [((t10)i — Bas) ()] X o ()] dog(2)

Bz (Ta)\ Bz (a)

O( )_i_o(n2in)7
and since
VBa(@)| < Cpa? dy(aa,a)' " ,

we also have that

/ dy(za,2)* [((ua)i — Badi) (2)| x |VBa(z)| dvg()
B, (Ta)

(4.18)
—0(u2) + 0 (i)
Plugging (4.15)—(4.18) into (4.14), we get that
[ el 9 () = B @ o)
=0 (;@*%3{”) +o (ui In 1> ifn=4, and (4.19)

=0 (,uﬁ‘%"i‘") +o (ui) ifn>5.

Noting that

Ay (s )|V B () Pduv, () = O<ualn1) itn—1,

[}

/Bza (T'a)

dg(xa,w)2|VBa(x)|2dvg(x) =0 (,ui) ifn>5,

By (a)
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and since

/ dy(a,2)*|VBa ()| X |V (Us — Bad)(z)||dvg ()
Bxa (Ta)

To, 1) a:chg;U
§</Bxa<m>dg( 0 2)2|V Bo(2)2d <>)

X </ dg(xavx)QHV(ua - BaA)(x)zdvg(x)> s
Bma (Ta)

we get (4.3) by plugging (4.19) into (4.6). This ends the proof of Lemma 4.1. O

1
2

Another lemma we need for the proof of Lemma 4.3 is as follows.

Lemma 4.2. Let (M, g) be a smooth compact Riemannian manifold of dimension
n>3,p>1 be an integer, (Ao)a be a sequence in C* (M, M3 (R)), and (Us)o be a
sequence of nonnegative solutions of (3.1) such that (3.2) and (3.3) hold true. Let
(Za)a and (pa)a be such that (3.5) and (3.7) hold true. Let Ra o be given by

RQ,a - / <AQUQ,XQ(VUQ)>devg
By, (Ta)

n—2 .
+ / (AgdivgXa) [Ua|*dvg (4.20)
An B, (ra)
n—2
2n

where Uy = ((Ua)1,-- -, (Ua)p), (- )re is the scalar product in RP, X,(VlUy); =
(Xa,V(ua)i), and X4 is as in (4.1). Then

Roo =0 (Hara) ifn=3,

/ (divg Xn) (Aaldo, Unyirdsy |
By (re)

o 1 )
Roa = C(4)LaA(z0)p? In ;— +o (,ui In H) ifn=4, (4.21)

Roa =C(n)Lan(zo)pl +0(u2) ifn>5,

where

n—2
= (A(x)A, N)pp — ——
Laa(z) = (A@)A, A)r T 1)59(3«") :

to 1S as in (3.6), To is as in (3.21), A is as in Lemma 3.2, C(4) = —64ws,
C(n) = — [gn ujdz when n >5, ug is as in (3.68), and xo — xo as o — +00.
Proof of Lemma 4.2. By the expression of X,

[ Xa(z)] = O (dy(za,2)) ,

divgXs(z) =n+ 0 (dg(xa,x)Q) , and (4.22)

A, (divgXo) (2) = —=5,(xa) + O (dy(a, ) -

Assume first that n = 3. By (4.22),

/ (Aalh, Xo (VU)o
Be.(r)

=0 </ Ua ()] x ||vua(x)||dg($a=x)dvg($)>
By (ra)
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and by Lemma 3.4 we get that

/ (Aah, Xo (VU)o
T (ra)

(4.23)
< Cua/ dg(xa,x)_2dvg(a:) < Cugry -
zq (Ta)
Similarly, it follows from (4.22) and Lemma 3.4 that
/ (Aydivy X)) [Ua|?dv,| < Clgre and that
welre) (4.24)

< Clara -

/ (divy Xo) (Aalhos Un Yo,
o (ra)

It follows from (4.23) and (4.24) that (4.21) holds true when n = 3. From now on
we assume that n > 4. We write that

Au(z) = Aa(z4) + O (dg(xa,x)) .

Then, by (4.22),
/ (Aallo Xo(VUo)) i,
o (r
Uey iXa Vua jd’Ug
= 3 a5 va) [ (na)iXa(Vth) (4.25)
( : dg(2a, )’ |Ua(z)| x IIVUa(x)Hdvg(ﬂf)) :

By the Cauchy-Schwarz inequality,

/ dyg(2a, )*|Ua(z)| X [[Vla(z)|dvg ()
By, (Ta)

1
2

< ( /| o d.q(xa,x)ua(xn?dvg(x)) (4.26)

X (/ dg(évmx)?’IIVUa(fE)IFdUg(x))
By (Ta)
By Lemmas 3.2 and 3.4,

SIS

dy (2o 2) [Uo (2) *dvg ()

\

Ta(ra)
o(Ta, 2)[Ua (2)[*dvg (z)
/ m(ua ! (4.27)
+f iy (s ) o) Py )
B, T(")\B‘L(‘z Na

=0 (pe) + 0 (ua™ra™) -
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Independently, thanks to the equations (3.1) satisfied by the U, ’s, integrating by
parts,

/ 2190, @) Py )
~0 ( [ el |v<ua>i<:c>|dag<x>>
OBy, (Ta)

o(Ta, )| (ua )i ()] *doyg (Jﬂ) (4.28)

aBIa ’l“,l)

3 2%
+o</m(m) (e ) [Uan ()| dvg(ac)>
( / |ua<x>|2dvg<x>>
xa(“x)

foralli=1,...,p. By Lemma 3.4,

+0

/83 ( )dg(xavx)glua(fv)l x |[VUo(2)||dog(2) = O (ug~?ra™") , and

(4.29)
[ dy(ea ) thala) Py (a) = O (i)
OBy, (Ta)
By Lemmas 3.2 and 3.4,
[ s tha@ duy(a)
za (Ta)
= dy(ta, ) Ua(2)[*" dvg(2)
/ ralia) ! (4.30)
+/ s 2)" o () iy (0
ea (Ta)\Bag (a)
— o) +0 () |
In particular, we get from (4.25)—(4.30) that
/ (Aallos Xo (Vo) ),
2o (Ta)
) (4.31)
= Y ) [ ()i Xa(Tla)yduy + 0 (42) + O (3 i) |
i,j=1 Baog (ra)
Integrating by parts, by (4.22) and (4.27),
p
> A [ ()i Xa(Veh)sdy
ig=1 Bag (Ta)
(4.32)

) _g 2 A%(%)/BM(M(UQ)Z(UQ) jdvg + 0 () + O (e ~*ra™") -

,j=1
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By (4.22) and (4.27) we also have that

[ v Xe)) ey

(4.33)
_ nSg(Ia)/ |u |2dvg+0(,ua)+o( n—2 i n) ,
n—1 2o (Ta)
and that
/ (divg Xo) (Al UnYsn i,
BIQ(TQ)
P (4.34)
=n Z A%(ma)/ (Ua)i(ta)jdvg +0(pa) + O (un~ Zpd= ")
ij=1 Bao (ra)
By (4.31)—(4.34),
p
S A [ (i),
inj=1 Bag (ra) (4.35)
n—2
+7Sxa/ Uy Pdvg 40 (u2) + O (un=2rt=m) .
4(n _ 1) g( ) BTQ(TQ) | ‘ g ( ) ( )
Let S, be as in Lemma 3.5. We can write that
n—2
Ha® 27"/ Budvg = O (u2~?ra™™) , and
alre) (4.36)

a” Ty
B,
*/ BaSadu, = 0 (u2) + O (u- 24 |
Ta Tn)

By (4.9) and (4.13), and by Lemma 3.5, we get (4.21) from (4.35) and (4.36). This
ends the proof of Lemma 4.2. O

Now, at this point, we can state the main result of this section. This is the
subject of the following lemma. We assume (0.2) in the lemma.
Lemma 4.3. Let (M, g) be a smooth compact Riemannian manifold of dimension
n >3, p>1bean integer, (Aa)a be a sequence in C* (M, M5(R)), and (Us)a be
a sequence of nonnegative solutions of (3.1) such that (0.2), (3.2), and (3.3) hold
true. Let (xq)a and (pa)a be such that (3.5) and (3.7) hold true. Assume ro — 0
as o — +00, where 1y, is as in (3.21). Then po, = O (ro) and

(n(n —2))"%" A
|z[n—2

in CZ, (Bo(2)\{0}) as o — +oo, where iy is as in (3.6), A is as in Lemma 3.2,

and H is a harmonic function in Bo(2) which satisfies that (A, H(0))re < 0 with

equality if and only if H(0) = 0. Moreover, assuming n > 4, it is necessarily the
case that ro, — 0 as a« — +0o0.

Proof of Lemma 4.3. Let R > 6 be such that Rr, < 6p, for a > 1. We assume
first that ro, — 0 as @ — 4o00. Then we set, for z € By(3),

Wao(z) = 7’372#}[%1/{& (expma (ra:z:)) ,
Ja(z) = (eXp;a g) (rqz) , and
Ay(z) = A, (exp,. (ra)) .

n

ra_2ui_%?/{a (exp%(rax)) — + H(z) (4.37)
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Since 7o, — 0 as a — +00, we have that g, — £ in C?_(R™) as o — +o0, where £
is the Euclidean metric. Thanks to Lemma 3.4 we also have that

Walo)] < C o (439
in Bo(5)\{0}. By (3.1),
Mgt 2 Y Ay = (B2 ) WP P @a)

in By(£), for all i, where W, = ((wa)1,--.,(wa)p) and A, = (/I%)” Thanks
to (3.22) and by standard elliptic theory, we then deduce that, after passing to a
subsequence,

W, —- W (4.40)
in C2, (Bo(£)\{0}) as @ — +oo, where W satisfies

AW =0 (4.41)
in Bo(%)\{0}. Moreover, thanks to (4.38), we know that

W)l < Claf™" (4.42)
in Bo(£)\{0}. Thus we can write that
A
x

where A € R? has nonnegative components and H satisfies AH = 0 in Bo(g). In
order to see that A = (n(n — 2))(7172)/2 A, it is sufficient to integrate (4.39) in By(1)
to get that

7/ O Wadoyg,
0Bo(1)
) (4.44)
— (,ua) / |Wa\2*_2Wadvga —ri/ AaWadvga .
Ta Bo(1) Bo(1)

By (4.38),

[ Walasy, <c (4.45)

Bo(1)

Pa

and by changing x into £2z, we can write that

/ |Wa|2*_2WadUga = riu;z/ |Z/~[a|2*_21/~{adv§a )
Bo(1) Bo (1)

where U, and Jo are as in (3.67). By Lemmas 3.2 and 3.4, we then get that
2
lim (“a> / Wal? =2 Wadv,,
a— 400 Ta Bo(l)

= </ ug*—ldx> A (4.46)

n—2

= (n— 2w (n(n —2))"T A,
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where ug is as in (3.68). Noting that by (4.40) and (4.43),
lim O Wado,, = —(n — 2w, 1A, (4.47)
a=+ JaBy(1)
we get that
A=(nn—2)7 A (4.48)

thanks to (4.45)—(4.47) by passing into the limit in (4.44) as o — +o00. Now we
prove that (A, H(0)) < 0 and that ro, — 0 if n > 4. For that purpose, we let X,
be the vector field given by (4.1) and we apply the Pohozaev identity in Druet and
Hebey [19] to U, in B,_(r,). We get that

—2
/ (Ao, Xo(VU))dvg + = / (A divyXo) [Ua|2dv,
By (ra) An I, (ra)

-9
i / (divyXe) (Aalla, Us)dvg
2n B, (ra)

= Ql,a + Q2,a + Q?),a )

where

" (4.49)

n—2

Qra — / (divg Xa) (Oolho, Un)dor,
2n JoB,, (ra)

1
_/ (Xa(u)|VZ/{a|2 - <Xa(vua),ayua>> do,
OBuy (ra) \2

P 1 #
Q2,0 = — Z/ <VX0¢ T (divg Xa) g) (VUa); 5 (VU);) dvg
i=1 Bza (ch)

n—2 2*
Q3.0 = / Xo (V) [Ua|” do
2n Ja,, (ra) I
n—2

4n

/ (8, (divgX o)) Ua|* doy
OBz, (Ta)

and v is the unit outward normal derivative to B,_(r,). We have that
[ Xa(@)] = O (dy(za,2)) and [V (divgXa) (2)] = O (dg(2a, 7)) -
It follows that
Q3.0 =0 (pard") + 0 (e ™2ra™") - (4.50)
By Lemmas 4.1 and 4.2, by (4.49) and (4.50), we can write that
Qo =0 (12r3%) + 0 (para) ifn=3,

Q1o =€) (A6 N = 5,00 ) 210 2

(o3

1
+o (ui In M) +o (Mirgz) ifn=4, (4.51)

[e3

n—2

Q1. =C(n) <<A(xO)A,A>Rp — 4(nl)sg(a:o)> 75

—|—0(/Ji) +0(ug_2ra2 —n) ifn>5,
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where the constants C'(4) and C(n) are as in Lemma 4.2. We wrote here that
2
n,,—n n [ Ha n n
HaTq _:u’oz -2 i <> (Ma 2703 ) .
Ta
By Lemma 3.4, (4.22), and the expression of ()1 o, we have that
Thanks to (0.2), this clearly 1mphes that r, — 0 as @« — 400 if n > 4. Now,

assuming that r, — 0 as a — +00, it is easily checked thanks to (4.40), (4.42), and
(4.43), that

nn—2 n — 2)" ~
Qo == (TG e RO o) ws)
Coming back to (4.51), it follows from (4.52) that
nn—Q(n _ 2)n
2
nn—Z(n _ 2)17,

wn_1 (A, H(0))g» =0 ifn =3,

wn,l([\,H(O))Rp = —C4(x0) hm r21n To jtp= 4, (4.53)
2 a—+o0 s
nn—Z(n — 2)n A 4—n rne 2

5 wn—1 (A, H(0))ge = —C(z0) hrf (e "ri=?) ifn>5,

where
n—2

Cn(l'()) == C(TL) (<A({L‘0)A,A>Rp - 4(’”1)5’9(1'0)) s

and C(n) is as in Lemma 4.2. Since C),(zg) > 0 by (0.2), we get with (4.48) and
(4.53) that
(A, H(0))re <0 (4.54)

in all dimensions. In what follows we still assume that r, — 0 as o — +o00. We
multiply line ¢ of the system (3.1) by (uq); and integrate over B, (r,). We obtain
that

Ugy (uq)q) dvg + / Uy ) pdv
/BWQ)( ) (A, \ Z o Al (g
- / Ual?* =2 (1) (1)l -

By (ra)

Inverting ¢ and j and substracting one to the other, we get that

f s () = ) (3 ) )i

- Z/ r ) jk (ua)jA?k)(Ua)kd’Ug .

Integrating by parts, this leads to

/a (10)i00 (105 — (t10) ;00 (t00):) iy

B, (Toz)

- / ((t0)iA%, — (10); A%) (t0)edv,

k=1 Bea (o)
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Thanks to (4.40) and (4.43), since H is harmonic in Bg(r) with » > 1, it is easily
checked that

/ (10)i00 (1a); — (t10) ;00 (t00):) dory
9Bz, (Ta)

= po tr " ( / (Wid, W, — W;0,W;) do + 0(1)> (4.55)
dBy(1)

= (0 = 2)wn1 (AH500) = AH:(0)) +o(1)) 2027
Suppose first that n = 3. Then, by Lemma 3.4,

/ ()i (t10) vy = O (et -
B (TW)

Suppose now that n > 4. By Lemma 3.5, by (4.9), and by (4.13), with similar
computations to those developed in the proof of Lemma 4.1, we have that

/ (110 (1)l
B, (ra)

1
= / B2dv, | (AiA; +0(1)) + o (,ui In )
B, (ra) ’ Mo

o 1
= (64wzA;A; + o(1))p2 In ;— +o <ui In ,u)

[0

if n = 4, while

[ (i),
By, (Ta)

= </ Bid@g) (ALA] +O(1)) —|—o('ua) + O( n—2 i n)
Baog (Ta)

— ((/n ugdx) A+ 0(1)> 75

if n > 5, where ug is as in (3.68). In particular, we get that

Z/m (ra) Jk ( 0‘) Aj k) (ua)kd’l}g

=0 (ptare) ifn=3,

, (4.56)
= 64(4)3 (Ajk(xo)AlAk — Aik(xo)AjAk + 0(1))/143 In f ifn=4 s

= (A]k(xO)AlAk? — Aik(l‘o)AjAk + 0(1))/,Li/ U(Q)dib ifn>5.

n

Assuming that (A, H(0))ge = 0, we get from (4.53) that

lim 7" 1n——01fn-4 and
a=+oo T g
hrf pimnen=2 — 0 ifn = 4.

Coming back to (4.55) and (4.56) we get that
AiH;(0) = A;Hi(0)



BOUNDED STABILITY FOR SYSTEMS 35

for all 4,5 € {1,...,p}. Multiplying by A; and summing over ¢, we then deduce
that

H;(0) = (A, H(0))A,;
which proves that H(0) = 0 if (A,H(0))rr = 0. At this point it remains to prove
that p, = O (r,). We still assume that r, — 0 as @« — 400 and we proceed by

contradiction so that we also assume that
T
— =0 (4.57)
Pa

as @ — 0o. Then (4.43) holds true in By(R) for all R. Since H is harmonic we then

get from (4.43) that
(n(n—2)"% 1

A+ Hdo
Rn—2 |0Bo(R)| Jap,(r)

=S A+ H(0)

1
Wdo
~ [0Bo(R)]| 9Bo(R)
and hence, since W > 0, and since |A| = 1, we get that

n—2

% + (A, H(0))re > 0. (4.58)

Passing into the limit in (4.58) as R — 400 we get that (A, H(0))rr > 0. By
(4.54) we also have that (A, H(0))r» < 0. It follows that (A, H(0)> » = 0. Hence,
H(0) = 0. However, since 7, < po by (4.57), we get with (3.24) that there holds
((r("_m/zga(r))/(l) = 0, where

1
o e — Wisd
o) = s [ s
n(n—2 =
02 A+ )

Hence,
H(0)]s; = (n(n—2))"% |Als

and since H(0) = 0, we get a contradiction with the fact that |A| = 1. In particular,
(4.57) is false, and thus, po, = O (r4). This ends the proof of the lemma. O

5. CONSTRUCTION OF A PARAMETRIX FOR Ay + A WHEN n = 3

Let (M,g) be a smooth compact Riemannian manifold of dimension n = 3,
p > 1 be an integer, and A be a map in C! (M, My (R)) We prove the existence of
a parametrix for multi-valued Schrodinger operators like A; + A and get a positive
mass theorem for such parametrix from the positive mass theorem of Schoen and
Yau [37] (see also Witten [43]). We assume here that

Ay + Ais coercive and — A is cooperative (5.1)

and we also assume that s
A< 204, (5.2)
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in the sense of bilinear forms. Let n € C*°(M x M), 0 < n < 1, be such that
n(z,y) = 1if dy(x,y) < 6 and n(z,y) = 0 if dy(z,y) > 26, where 6 > 0 is small.
For x # y we define
n(z,y)

wadg(,y)
where wy is the volume of the unit 2-sphere. The result we prove in this section
is as follows. We refer to the end of the section for a remark on how to get the
Green’s matrix from Proposition 5.1.

H(z,y) = (5.3)

Proposition 5.1. Let (M, g) be a smooth compact Riemannian 3-manifold, p > 1
be an integer, and A : M — M5(R) be a C'-map satisfying (5.1). Let A >0 be a
nonnegative vector in RP. There exists G : M x M\D — RP, G > 0, such that for
anyxr € M, and anyi=1,...,p,
P
Ay(Ga)i+ > Ay(Ga)y = Aid, (5.4)
j=1
where D is the diagonal in M x M, G,(y) = G(z,y), G = (G1,...,Gp), 0 is the
Dirac mass at x, and G can be written as

G(z,y) = H(z,y)A + R(x,y) (5.5)

for all z,y € M x M\D, where R : M x M — RP is continuous in M x M.
Moreover, there exists C > 0 such that R(x,x) > CA for all x € M if we also
assume that A satisfies (5.2). In particular, R(x,x); > 0 for at least one i if A £ 0
and (5.1)—(5.2) hold true.

Proof of Proposition 5.1. (i) First we construct G such that (5.4) holds true. We
have that, see, for instance, Aubin [4, 5],

C
AgyH(z,y)| + [H(z,y)| < 5.6
1B 0)| + )] < s (56)
and
Ag,y,dist.H(xv y) =0z + Ang(Qj, y) (57)

in the sense of distributions, where J, is the Dirac mass at z. We define the maps
I'y,T'y: M x M — RP by

F1(ﬂc,y)i (Ag,yH( ) A H ac Y ZA

Jj=1

E@w%=—/IN%dAmH%wMM@ (5.8)
M

—}j&] ) [ Ti) e o)
for all (z,y) € M x M\D and alli=1,...,p. By Giraud’s lemma and (5.6), I'y is

continuous in M x M. Given x € M, we let S, : M — RP be the solution of the
linear system

Ay(Sz)i + Z Aij(S2); = T2z)i (5.9)
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foralli=1,...,p, where I's ,(-) = I's(z, -). The existence of S, easily follows from
the variational theory and the coercivity of Ay + A. In particular, S, € H 2.4 for
all . We define G : M x M\D — RP by

Glay) = Hz A + [ Hz )i oy () + Swp) . (510
where S(z,y) = S;(y). By Giraud’s lemma and (5.6),
(x,y) — H(z,y)T1(z, 2)dvg(2) (5.11)

M

is continuous in M x M. Let ¢ € C*(M), z € M, and i € {1,...,p}. Thanks to
(5.7)-(5.9) we get that

/M G(x,y)iDge(y)dvg(y) + Z /M Aij(y)G(z,y)j0(y)dvog(y) = (x)Aq

where G is as in (5.10). This proves (5.4).
(ii) We prove (5.5) and that G > 0. Let z,2’ € M. By (5.9),

P
Ay ((82)i = (Sur)i) + Y Aiy ((So); = (Sar)j) = (o) — P2 - (5.12)
j=1
Mutiplying (5.12) by (S.); — (Su)s, integrating over M, and summing over i, it
follows that

[V =P+ [ A~ 80,8 S0y
M M
< ||F2,w - F2@“HL2 ||5x - Sx’“co

and by the coercivity of Ay, + A we get that ||S; —Sur|[;2 < C[T20 — T2 2-
Then, by standard elliptic theory, we obtain that

ISz — Surllco < C T2 —Toarl /2 - (5.13)

In a similar way, we get by (5.9) that [|Sy|lz2 < C||T'2.¢/lco < C" and then, by
standard elliptic theory, we can write that ||S,;||o: < C. Writing that

S@y) =Syl < [S@y) =Syl + IS, y) - S(a,y)l
< ISe = Serllgo + 1VSerll o dg(y,9/)

we get from (5.13), the above estimate on S,, and the continuity of I's, that S
is continuous in M x M. Together with (5.10), and the above remark that the
map in (5.11) is continuous, this proves (5.5). Now we prove that G > 0. Given
u: M — R a continuous function, we let u™ = max(u,0) and v~ = min(u,0) so
that u = u™ +u~. By (5.5), there exists § > 0 such that for any i, if A; > 0 then
(Gy); has its support in M\B,(d). On the other hand, if A; = 0 then, by (5.4),
(5.5), standard elliptic theory, and the Sobolev embedding theorem, we can write
that Ay(G,); € L7 for all ¢ < 3, then that (G,); € H*? for all such ¢, and at last
that (G,); € H"* for all 5. In both cases we can multiply (5.4) by (G,);, integrate
over M, sum over ¢, and get that

/ ’VG;’zdvg—i—/ A(G;,G;)dv9+/ A(GE,Gy)dvg=0. (5.14)
M M M
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Noting that for any u,v € C° u=v™ + uTv™ < 0 in M, it follows from the fact
that —A is cooperative that [,, A(G,G;)dv, > 0. Coming back to (5.14), we
get that G, = 0 for all x, and thus that G > 0.

(iii) We prove the last part of the proposition that there exists C' > 0 such that

R(x,x) > CA for all x € M if we also assume that A satisfies (5.2). By (5.2), and
since A, 4 A is coercive, the Schrodinger operators Ay + A;; and Ay + % are also
coercive. We let G; be the Green’s function of Ay + Aj; and G4 be the Green’s
function of A, + %. By (5.4), for any x € M and any i € {1,...,p},

JAi
since G > 0 and —A is cooperative. By (5.5), (G); — (éz)wAl is continuous in M.
Then, by the maximum principle, we get with (5.15) that

G; > éiAi (5.16)

for all i. By (5.2), given ¢ € {1,...,p}, and x € M, there exists h; > 0 smooth and
such that

S
h; < (89 — Au‘) (Gg)z (5.17)
in M. By the coercivity of A, + A;; there exists 6; € C?, §; > 0, such that

Noting that by (5.17) and (5.18),
Ag ((éz)w - (Gg):v - 97,) + Aii ((éz>z - (Gg)z - ez) Z 0 )
and that (é,)g; — (Ggy)y — 0; is continuous in M, we get that

for all ¢ and all z. Combining (5.16) and (5.19) it follows from the positive mass
theorem of Schoen and Yau [37, 38, 39] that there exists C' > 0 such that R(z,z) >
CA for all x € M. This ends the proof of Proposition 5.1. O

Fix x € M. As a remark there holds that there exists C > 0 such that
dg(z,y) [VR.(y)| < C (5.20)

for all y € M\{z}, where R,(y) = R(z,y). By (5.4) and (5.6) we get that there
exists C' > 0 such that dy(z,y) |AgR.(y)| < C for all y € M\{z}. In order to get
(5.20) it suffices to prove that for any sequence (yq)q in M\{z} such that y, — «
as o — +00,

dg(2,Ya) [VRa(ya)| = O(1) - (5.21)

Let sq = dg(z,yq) and set Ro(y) = Ry (exp,(say)). Let also g, be given by
9o (y) = (expk g) (say), and o be such that y, = exp,(sa¥a). We can write that

1Ay . Ra(y)| < Csqaly|~* while R, is bounded and g, — £ as o — 400 in CL . (R?)
since s, — 0 as @ — 4o00. Moreover || = 1 for all a. Let yo be such that
Jo — Yo as o — +o00. Since |yg| = 1, we can write by the above estimates and

standard elliptic theory that R, is bounded in the C'-topology in the Euclidean
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ball of center yo and radius 1/4. This proves (5.21) and thus (5.20). It also follows
from the proof that

p VR =o(1 5.22
So max | [VR.(y)] = o(1) (522

for all sequences (s4)o of positive real numbers such that s, — 0 as a — +o0.
Indeed, there holds that Ay R, — 0 uniformly in compact subsets of R*\{0} as
a — +o00. Hence R, — R in C}_(R3\{0}), where R is a bounded harmonic map
in R3\{0}. By Liouville’s theorem we get that R is constant and (5.22) follows.

Given j € {1,...,p}, let A; € RP be defined by (A;); = d;; for all i =1,...,p,
where the d;;’s are the Kronecker symbols. Also let G; be the parametrix given by
Proposition 5.1 when A = A; and G = (G;j);,; be the matrix given by G;; = (G;);
foralli,j=1,...,p. Then

2003 /M Gia(, ) fn()dvg (z) + Z: Ay () /M G, y) fal@)dvg () = fi(y)

for all f € C°(M,RP), alli € {1,...,p}, and all y € M. In other words, G is the
Green’s matrix of Ay + A.

6. PROOF OF THE THEOREM

We prove our theorem in what follows. Let (M, g) be a smooth compact Rie-
mannian manifold of dimension n > 3, p > 1 be an integer, (A, ) be a sequence
in C* (M, M3(R)), and (Ua)a be a sequence nonnegative solutions of (3.1) such
that (0.2), (3.2), and (3.3) hold true. As a preliminary remark we claim that there
exists C' > 0 such that for any « the following holds true. Namely that there exist
N, € N* and N, critical points of |Uy|, denoted by (z1,4,%2,0,--.,TN,,a), such
that

dy (t10:270) 7 WUal(zia)| > 1 (6.1)
for all i,5 € {1,..., Ny}, i # j, and
71,52
(_{ninN dg (xla,x)> Uy (z)] < C (6.2)

for all z € M and all «. We prove (6.1) and (6.2). Clearly |U,|s satisfies the
maximum principle since, summing the equations in (3.1),

Ag|u04|2 +p||Aoz||oo‘uo¢|E > 0 5

where |U,|s is given by (3.4). Hence, [U,|s > 0 and we also get that |U,| > 0 in
M. In particular, we can use Lemma 1.1 of Druet and Hebey [18] and we get the
existence of N, € N* and of (21,4, 22,4, ---, TN, o) & family of critical points of |U,|
such that (6.1) holds true for all i,5 € {1,..., N}, i # j, and

n—2

(i_min d, (xi,a,x)> AGIES! (6.3)

=1,....Ng

for all critical points of |Uy|. We claim now that there exists C' > 0 such that (6.2)
holds true for all x € M and all a. We proceed by contradiction and assume that

n—2
2

(A_lminN dg (Zia, :va)> |Up(z4)| — 400 (6.4)
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as a — 400, where
n-2

( min dg(xi,mxa)) Ua(z0)]

=1,...,N,

s (6.5)

2

= sup ( min_ d, (a:i7a,x)) [Us ()] -
M i=1,...,Nq

We set |Un(Ta)| = u};%. Thanks to (6.4) and (6.5), since M is compact so that
the distance between two points in M is always bounded, p, — 0 as @ — 40c0. We
let S, be the above set of critical points x; o of |Uy|. By (6.4),

dg (@a,8a) _, 4 (6.6)
Ho
as a — 4o0o. We set, for x € Q, = By (;%)7 where 0 < § < %ig is fixed,
Va() = pa® Us(exp,. (o)),
ga(z) = (exp}, g) (Hat) , and
Ay(z) = A, (exp,, (Ha®)) -

We have that g, — £ in CZZOC (R™) as o — +00, where ¢ is the Euclidean metric,
since fio — 0 as & — +o00. Thanks to (3.1),

p
Ag, (Wa)i+ 2 Y A% (va); = Val* ~*(va): (6.7)
j=1

in Q,, for all i, where Vo = ((va)1,-- -, (Va)p), and A, = (fl%)” We have that
[Va(0)] = 1 and also that, thanks to (6.5) and (6.6), for any R > 0,

limsup sup |[Vo|=1. (6.8)
a—+00 Bo(R)

Indeed, for any = € B, (Ria), for any i =1,..., N,,
dg(Tia,x) > dg(Tia,Ta)— Rpta
dg(Ta,Sa) — Rita

R
dg(Za,Sa) (1 - dg(xa,Sa)) .

By standard elliptic theory we then get by (6.7) that, after passing to a subsequence,
Vo —U (6.9)

\%

v

in C. (R™) as & — 400, where U has nonnegative components and satisfies

AU = [U]* U
in R™ with |[U| < |U(0)| = 1. It follows from Proposition 1.1 that

u= (141 Ty
B n(n —2)

for some A € RP with nonnegative components such that |A| = 1. In particular,
|U| has a strict local maximum at 0 which proves that || has a local maximum,
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and hence a critical point, y, with dg (a,Ya) = 0(la) and u&"_g)/2|ua(ya)| —1

as o — +oo. This clearly violates (6.3) thanks to (6.6) since for any i =1,..., N,,

dg(xi,onl‘a) - dg(xomyoz)
dg(Za,Sa) + 0(pa)
Rofia + 0(pia)

Ruope (14 0(1))

where R, — +00 as @« — +00 by (6.6). Thus we have contradicted (6.4). This
concludes the proof of (6.1) and (6.2).

dg ('ri,a? ya)

AVARAVARLV]

Now we consider the family (z1,4,...,2ZN, o) given by (6.1) and (6.2) and we
define d, by
do = 1Sir£1}2Na dg (ZiarTja) - (6.10)

If N, =1, we set d, = iz’g, where 44 is the injectivity radius of (M, g). We claim
that

da 70 (6.11)

as @ — +00. In order to prove this claim, we proceed by contradiction. Assuming
on the contrary that d, — 0 as a — +o00, we see that N, > 2 for « large, and we
can thus assume that the concentration points are ordered in such a way that

da = dg (ml,aal‘&a) S dg <x17aax3,a) S o S dg (-rl,ou mNu,a) . (612)

We set, for z € By(dd, '), 0 < § < i, fixed,

Uy (z) = da? Uy (eXpm,a(dax)) ,
Ay(z) = A, (expml’a(dam)) , and
Jo(z) = (exp;:lya g) (daz) .

It is clear that g, — & in C7 (R™) as a — +oo0 since d,, — 0 as @ — +oco. Thanks
to (3.1) we have that

p
AV R (da)i + di ZA%(ﬂa)j = ‘Ua|2 72(710)1‘ (6.13)
Jj=1

in Bo(ddt), for all i, where Uy = ((fia)1, - -, (a)p), and Aq = (A); ;. For any
R >0, we also let 1 < Ng o < N, be such that

dg(®1,0,%ia) < Rdy for 1 <i < Ng, , and

dg (21,0, Tia) > Rdy for Npo+1 <3< N, .
Such a Np o does exist thanks to (6.12). We also have that Ng o > 2 forall R > 1
and that (Ng,q)a is uniformly bounded for all R > 0 thanks to (6.10). Indeed,

suppose there are ko points x; o, ¢ = 1,..., kq, such that dg(z1,q,%ia) < Rd, for
alli=1,...,k,. By (6.10),

d,, do\
By, . <2> N By, <2> =0
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for all ¢ # j. Then,

k
3R o do
Vol, (Bm (Qda>) > ;Volg (Bm <2>)

and we get an upper bound for k, depending only on R. In the sequel, we set
j;i,a = d;l exp;l,a (xi,a)

for all 1 <4 < N, such that dy(z1,0,%ia) < %z’g. Thanks to (6.2), for any R > 1,
there exists Cr > 0 such that

sup .| < Cr . (6.14)
Bo(R\U2 Ba, (%)

Mimicking the proof of Lemma 3.1, one easily gets that, for any R > 1, there exists
Dpg > 1 such that

vuaH <D U.| < D% inf |U, 6.15
N  $up o] < Df it (U] (6.15)

where

Nar,a 1
Qr.a = Bo(R) \ g Bs, ., (R) .
Assume first that, for some R > 0, there exists 1 < ¢ < Ng , such that
Ua(Zia)l =0(1) . (6.16)
Since (3.5) is satisfied by the sequences z, = ;o and p, = %da, it follows from
Lemma 3.2 that (3.7) cannot hold and thus that (|iy|)q is uniformly bounded in

B;, . (2). In particular, by standard elliptic theory, and thanks to (6.13), Un)q is
uniformly bounded in C* (Bj, . (3)). Since, by (6.1), we have that

n—2

T 2
|Zi,al

‘Z/A[a(i'i,aﬂ Z 1 )

we get the existence of some §; > 0 such that

] 2 Sl "% > S RE
in Bz, ,(6;). Assume now that, for some R > 0, there exists 1 < i < Np, such
that
Un(2i.0)] — +00 (6.17)
as a — +o00. Since (3.5) and (3.7) are satisfied by the sequences z, = z;, and

Po = %dq, it follows from Lemma 4.3 that the sequence ([Ua(#5.0)] X [Ua|)e is
uniformly bounded in .

0
3)
for some 6; > 0. Thus, using (6.15), we can deduce that these two situations are
mutually exclusive in the sense that either (6.16) holds true for all ¢ or (6.17) holds

true for all 7. Now we split the conclusion of the proof into two cases.

Qa = Bii,u (Si)\Bii,a (

In the first case we assume that there exist R > 0 and 1 < ¢ < Ny, such that
U (Z.0)| = O(1). Then, thanks to the above discussion, we get that

[Ua(5.0) = O(1)
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for all 1 < j < Ng,, and all R > 0. Now, as above, we get that (|ty|) is uniformly
bounded in C’lloc(]R”). Thus, by standard elliptic theory, there exists a subsequence
of (Uy)a which converges in C}L_(R™) to some U solution of

AU = U* U
in R™. Still thanks to the above discussion, we know that &/ #Z 0 and has nonnegative

components. Moreover, |U| possesses at least two critical points, namely 0 and &,
the limit of #5 . This is absurd thanks to the classification of Proposition 1.1.

In the second case we assume that there exist R > 0 and 1 <+¢ < Np , such that
U (Z45,0)] — 400 as & — 400. Then, thanks to the above discussion,

(U (5,0)| = +o00
as a — +o00, for all 1 < j < Np, and all R > 0. By (6.13) we have that
P
. 1

Ag (Ba)i + 2 A% (00); = —————|Val> "2(00)s ,
! ; T (o) -2

where Vo = [Ua(0)|Us and Vo = ((9a)1,-- -, (9a)p). Applying Lemma 4.3 and
standard elliptic theory, and thanks to (6.15) and to the above discussion, one
easily checks that, after passing to a subsequence,

‘Z/A{Oc (0) |Ha -G

(R™\{&;}icr) as o — 400, where

I:{l,..., lim lim NRa}
R— 400 a—+00

in C1

loc

and, for any R > 0,

in By(R), where 2 < Ngr < Nyp is such that |50NR| < R and |§c]\~,R+1| > R, and
where Nog o — Nag as a — +o00. In this expression, the ]\i’s are nonzero vectors

with nonnegative components and Hp is a harmonic function in By(R). We have
that

N N A
HRI (x) - HRz(x) = Z %n—Q
£ |z — ;]
’L:NR1+1
for all 0 < Ry < Ry. We can write that
. A
C@) = i + X ()

in By (%) where, for any R > 1,
NR A R
i=2 ¢

Let G = (Gu,...,Gp), X = (X1,...,X,), and Ay = ((A))1,...,(A1),). We have
that G; > 0 fo f rall 1 < ¢ < p. Hence, by the maximum principle, we get that
X;(0) > —(Ay);R*™" for all R > 1, so that X;(0) >0 for all 1 <i < p. By Lemma
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4.3 we now have that (A1, X(0))g» < 0 with equality if and only if X (0) = 0. Since
all the components of X (0) and of A; are nonnegative, we are actually in the case
of equality so that X(0) = 0. Let i be such that (A3); > 0. By the maximum
principle,
< (M) (A2);
Xi 0) > (A i — .
( ) el ( 2) Rn—2 (R— 1)n—2

Choosing R > 1 sufficiently large we get that X;(0) > 0 and this is in contradiction
with X (0) = 0.

By the above discussion we get that (6.11) holds true. Clearly, this implies that
(N4)o is uniformly bounded. Now we let (z4)a be a sequence of maximal points
of |U,|. Thanks to (3.3) and to (6.11), we clearly have that (3.5) and (3.7) hold
for the sequences (z4)q and p, = 0 for some 6 > 0 fixed. This clearly contradicts
Lemma 4.3 in dimensions n > 4 and thus concludes the proof of the theorem in
dimensions n > 4.

Suppose now that n = 3. In addition to (0.2), (3.2), and (3.3) we assume that
Ay + A is coercive and that —A is cooperative. Up to a subsequence, since (Ng)q
is bounded, there holds that N, = N for all a. Let

;= lm ;4 (6.18)

a— 400

for all i = 1,...,N. Let also y; o be given by (3.6) with z; o instead of z,. By
the above discussion, p; o — 0 for all ¢ = 1,..., N. Up to a subsequence we can
assume that j11 o = max; p1; o for all a. Still up to a subsequence we define p; > 0
by

i = al_i)r_ir_loo Zi—’a . (6.19)

By Lemma 3.4, there exist C,§ > 0 such that

Ua ()] < Cpi2dy(wi.0,2) 7 (6.20)

i,00

in By, ,(20) for all i. By (6.20) and Harnack’s inequality we thus get that

Us| < Cpi’? (6.21)

1,

in M\ Uf\il By, . (9). Let U, be given by U, = ul_’i/QZ/la. Then
P ~ *
Ag(Ta)i+ ) A (@) (ia); = i oftal® (@) (6.22)
j=1

for all 4, where the (7, );’s are the components of U,,. By (6.21), (6.22), and standard
elliptic theory, we then get that, up to a subsequence,

wi Py — 2 (6.23)

in C} . (M\S) as @ — +00, where S is the finite set consisting of the z;’s defined

in (6.18). Let ® € C>(M,RP) be given. By (3.1),

/M Un, (A, @ + AD)) dv, = /M Uo|* Ue, @) dvg + 0 (/M |Z/{a|dvg> . (6.24)
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For any R > 0,

/|u| (Up, @) dvy = Z<

/ ua|4uadvg>
B-’l“ (Rl"i,a)

- h (6.25)
+o0 / |Ua|5dvg> +/ Un|* Un, @) dvy .
(Z lla(RF‘L o) M\vazl Bwiya(RNi,a)
By Lemma 3.2,
) N
lim  lim p; Y2 D(x; ,/ U, 4Z/ladv
R—+400 a—+00 H1a ; < ( ) By, , (Rpi,a) | | J
’ (6.26)
= waZul/z (Ai, ®(x7))
where the A;’s are vectors in Sﬁ_l given by (3.15), and
i Z/ |Z/la|5dvg <C (6.27)
o (Biti,a)

for some C' > 0 independent of @ and R. By (6.20) and (6.21) we can also write
that

Uy |* Uy, ) dvy =0 6.28
g

. . 1/2
lim lim py )
R—+o00 aa——+00 ’ M\ vazl Bzi . (Rpti.o)

and that
[ e, =0 (412 . (6.29)
M

Plugging (6.25)—(6.29) into (6.24) it follows that
u;}f/ (Un, (Ag® + A®)) dvy = /3w Z,f/? A, ®(2:)) +0(1) . (6.30)
M
Since ® € C°°(M,RP) is arbitrary, it follows from (6.23) and (6.30) that
N
NgZ+AZ = V3w S p?Ai6,, . (6.31)

i=1

Since A, + A is coercive, by Proposition 5.1 and (6.31), there holds that
N
Z(x) = V3w > p/? (H(wi, ) A + Ri(w, 7)) (6.32)
i=1

where H is as in (5.3), and R, is a continuous function in M x M such that
Ri(x;,x;) > CA; for some C > 0. Let ¢ = 1,..., N be arbitrary and X, be
the vector field given by X, = Vf,, where fo(z) = idy(z;z)?. We apply the
Pohozaev identity in Druet and Hebey [19] to U, in By, () for r > 0 small. We
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get that

1
/ (Aalo, Xoo(VUL))dvy + — / (A, div, X o) |Us|*dv,
Ba, . (r) 12 /5., .0

%o

! (6.33)
+z / (divy Xa) (Aalho, Un)dvy = Q1o + Qo + Qs
Bzi,a(r)
where X, (VU,) is as in Lemma 4.2,
1
Qo = f/ (divgXa) (Olha,Ua)dog
6 JoB,, ()
1
_/' (4mmovmﬁ-wxdvmma¢@0d%,
9B, . (r) \2
p 1 #
Q== [ (e favXa)s) (V). (V) )y
j=1 2 a0 \T
1 2+ 1 . 2
Qo = 5[ K@)l doy -5 (0, (div, X)) Wl doy
6 9B, (1) ’ 12 9B, () - 4
and v is the unit outward normal derivative to B, (7). By (6.23),
QEIJI:OO .ul_é[ (Ql,a =+ QS,a)
1
= f/ (divyX) (0, Z, Z)do,
6 Jon.,
1 (6.34)
_ / (2X(y)|V22 —(X(VZ), ayz>> do,
0B, (r)
1
-5 (0, (divg X)) |Z|* doy
12 Jog, ()

where X = Vf and f(z) = 3d4(x;, z)?. We have that
divyX =3+ O (dy(z;,2)%) and |VdivyX|= O (dy(;,))

while, by (6.20), there also holds that |Z| < Cdy(z;,#)~" in a neighbourhood of
x;. From (5.20) we have in addition that dg(z;, 2)|VR;(z)| < C for all  # z;. It
follows that

lim / (8, (divg X)) |Z|* doy, = 0 (6.35)
=098, (r)
and that
1 1
! / (div, X) (9,2, Z)do, — / (0,2, 2)do, +o(1)  (6.36)
6 Jon,, () 2 Jon,, ()

as r — 0. We choose § > 0 in the definition of 7 in (5.3) such that dg4(z;,zx) > 40
for all j,k =1,..., N such that x; # x;. Since the parametrix in Proposition 5.1
are nonnegative, it follows from our choice of § that R;(z;,z;) > 0 for all j # i. In
a neighbourhood of z; we get from (6.32) that

N
Z(z) = \/§d9(mi7m)_1ug/2Ai + V3w Zu;/QRj(xj,x) . (6.37)
j=1



BOUNDED STABILITY FOR SYSTEMS 47

By (5.22) and (6.37) we compute

%/ a(r )<auz,z>dag N / (1) (;X(V”vzz B <X(VZ)’8”Z>> s

(6.38)
3w
= < V%Zu” Rj(wj, >> +o(1).
Combining (6.36) and (6.38) it follows that
1/ (divygX) (0,2, Z)doy
6 Jon,, ()
1
- XVVZQ—XVZ,@Z)dJ
/w) (3x0Iv2P - (x(72),0.2) ) do, 6.39)
3wz [ 172
:—2< Al,;R l‘], )>+0( )

Noting that
1, ..
(VXQ)MU ~3 (divgXa) gy = O (dg(x@a, 17)2)
for all ¢ and all p, v, we can write with Lemma 3.4 that |Q2,o| < Cpq or. It follows

that
lim lim gy 1tQ24=0. (6.40)

r—0 a—-+oco

Still by Lemma 3.4, we also have that

r—0 a—+oo

lim lim gy, / (Aala, X0 (VUL ))dvg =0,
Ba; o (1)

lim lim p a/ o (A,divy Xo) |Us|?dv, =0, and (6.41)
By, (7

r—0 a—+oo

r—0 a—-4oo

lim lim g a/ (divyXo) (AaUo, Ua)dvg =0 .
BIL- o (r)

Multiplying (6. 33) by p1 a, passing to the limit as o — 400, and then as r — 0,
we get with (6.34), (6.3 ) (6.39), (6.40), and (6.41), that

< 1/2/\1,2#1/2 x],x1)> =0 (6.42)

for all i. We fix i = 1. Then p; = 1. As already mentioned, according to our choice
of § in the definition of 7 in (5.3), we get that R;(x;,21) > 0 for all j # 1. By
Proposition 5.1 we also have that Rq(z1,21) > CAy for some C' > 0. Since the
A;’s are nonnegative vectors, it follows that

<A17WQ ZMJ LCJ,1'1)> Z <A1,R1($17l’1)> Z C|A1|2 (643)

and we get a contradiction by combining (6.42) and (6.43) since the A;’s are nonzero
vectors. This concludes the proof of the theorem when n = 3.
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