
A PRIORI ESTIMATES AND APPLICATION TO THE
SYMMETRY OF SOLUTIONS FOR CRITICAL

p–LAPLACE EQUATIONS
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Abstract. We establish pointwise a priori estimates for solutions
in D1,p (Rn) of equations of type−∆pu = f (x, u), where p ∈ (1, n),

∆p := div
(
|∇u|p−2∇u

)
is the p–Laplace operator, and f is a

Caratheodory function with critical Sobolev growth. In the case
of positive solutions, our estimates allow us to extend previous
radial symmetry results. In particular, by combining our results
and a result of Damascelli–Ramaswamy [6], we are able to ex-
tend a recent result of Damascelli–Merchán–Montoro–Sciunzi [7]
on the symmetry of positive solutions in D1,p (Rn) of the equation
−∆pu = up

∗−1, where p∗ := np/ (n− p).

1. Introduction and main results

In this paper, we are interested in problems of the type{
−∆pu = f (x, u) in Rn,

u ∈ D1,p (Rn) ,
(1.1)

where p ∈ (1, n), ∆pu := div
(
|∇u|p−2∇u

)
, D1,p (Rn) is the completion

of C∞c (Rn) with respect to the norm ‖u‖D1,p(Rn) :=
(∫

Rn
|∇u|p dx

)1/p
,

and f : Rn × R→ R is a Caratheodory function such that

|f (x, s)| ≤ Λ |s|p
∗−1 for all s ∈ R and a.e. x ∈ Rn, (1.2)

for some real number Λ > 0, with p∗ := np/ (n− p).
Our main result is as follows.

Theorem 1.1. Let p ∈ (1, n), f : Rn × R → R be a Caratheodory
function such that (1.2) holds true and u be a solution of (1.1). Then
there exists a constant C0 = C0 (n, p,Λ, u) such that

|u (x)| ≤ C0

(
1 + |x|

n−p
p−1
)−1

and |∇u (x)| ≤ C0

(
1 + |x|

n−1
p−1
)−1

(1.3)

for all x ∈ Rn. If moreover u ≥ 0 in Rn and
∫
Rn f (x, u) dx > 0, then

we have
u (x) ≥ C1

(
1 + |x|

n−p
p−1
)−1

(1.4)

for all x ∈ Rn, for some constant C1 = C1 (n, p, λ,Λ, u) > 0, where λ
is a real number such that 0 < λ <

∫
Rn f (x, u) dx.
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The dependence on u of the constants C0 and C1 will be made more
precise in Remarks 4.1 and 4.3.

In the case of the Laplace operator (p = 2), the upper bound esti-
mates (1.3) have been established by Jannelli–Solimini [15] for non-

linearities of the form f (x, u) =
∑N

i=1 ai (x) |u|q
∗
i−2 u, where q∗i :=

2∗ (1− 1/qi), qi ∈ (n/2,∞], |ai (x)| = O
(
|x|−n/qi

)
for large |x|, and

ai belongs to the Marcinkiewicz space M qi (Rn) for all i = 1, . . . , N .
The case of unbounded domains Ω 6= Rn is also treated in [15].

Since the pioneer work of Gidas–Ni–Nirenberg [12] and later exten-
sions by Li [18] in case p = 2 and Damascelli–Ramaswamy [6] in case
1 < p < 2, decay estimates are known to be useful to derive radial
symmetry results for C1–solutions of problems of the type{ −∆pu = f (u) , u > 0 in Rn,

u (x) −→ 0 as |x| −→ 0 .
(1.5)

Here, we consider the following result of Damascelli–Ramaswamy [6]
and Li [18]: if 1 < p ≤ 2, f is a locally Lipschitz continuous function
in (0,∞) such that

f (v)− f (u)

v − u
≤ Λ max (uα, vα) ∀u, v such that 0 < u < v < s0 (1.6)

for some real numbers Λ, s0 > 0, and α > p− 2, and u is a C1–solution
of (1.5) such that

u (x) = O
(
|x|−m

)
and |∇u (x)| = O

(
|x|−m−1) (1.7)

(and u (x) ≥ C |x|−m for large |x| when α < 0) (1.8)

for some real numbers C > 0 and m > p/ (α + 2− p), then u is radially
symmetric and strictly radially decreasing about some point x0 ∈ Rn,
i.e. there exists v ∈ C1 (0,∞) such that v′ (r) < 0 for all r > 0
and u (x) = v (|x− x0|) for all x ∈ Rn. We also mention that other
symmetry results for problems of type (1.5) have been established with-
out any decay assumption in the case where f is nonincreasing near
0 (see Gidas–Ni–Nirenberg [12], Li [18], and Li–Ni [19] in case p = 2,
Damascelli–Pacella–Ramaswamy [5], Damascelli–Ramaswamy [6], and
Serrin–Zou [26] in case p 6= 2).

In case α = p∗− 2, the conditions (1.7)–(1.8) follow from (1.3)–(1.4)
with m = (n− p) / (p− 1) (which is greater than p/ (α + 2− p) =
(n− p) /p). Consequently, by combining Theorem 1.1, the results of
Damascelli–Ramaswamy [6] and Li [18], and the regularity results that
are referred to in Lemma 2.1 below, we obtain the following corollary.

Corollary 1.2. Assume that 1 < p ≤ 2. Let f be a locally Lipschitz
continuous function in (0,∞) such that (1.2) and (1.6) hold true with
α = p∗ − 2. Then any nonnegative solution of (1.1) is radially sym-
metric and strictly radially decreasing about some point x0 ∈ Rn.
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Let us now comment on the positive solutions of the equation with
pure power nonlinearity, namely

−∆pu = up
∗−1, u > 0 in Rn. (1.9)

Guedda–Véron [14] proved that the only positive, radially symmetric
solutions of (1.9) are of the form

uµ,x0 (x) = (nµ)
n−p
p2

(
n− p
p− 1

) (n−p)(p−1)

p2
(
µ+ |x− x0|

p
p−1

) p−n
p

(1.10)

for all x ∈ Rn, for some real number µ > 0 and point x0 ∈ Rn. In
case p = 2, Caffarelli–Gidas–Spruck [2] (see also Chen–Li [3]) proved
that the functions (1.10) are the only positive solutions of (1.9). In
a recent paper, Damascelli–Merchán–Montoro–Sciunzi [7] proved that
any solution in D1,p (Rn) of (1.9) is radially symmetric provided that
2n/ (n+ 2) ≤ p < 2. The condition p ≥ 2n/ (n+ 2) corresponds to the
values of p for which the function s 7→ sp

∗−1 is Lipschitz continuous near
0. With the above Corollary 1.2, we extend the result of Damascelli–
Merchán–Montoro–Sciunzi [7] to the whole interval 1 < p < 2. By
combining the result of Guedda–Véron [14] and Corollary 1.2, we obtain
the following corollary.

Corollary 1.3. Assume that 1 < p < 2. Then the functions (1.10) are
the only positive solutions in D1,p (Rn) of (1.9).

As a motivation to our results, it is well known that the profile of
solutions of the equation

−∆pu = |u|p
∗−2 u in Rn (1.11)

plays a central role in the blow-up theories of critical equations. Possi-
ble references in book form on this subject and its applications in case
p = 2 are Druet–Hebey–Robert [9], Ghoussoub [11], and Struwe [28]. In
case p 6= 2, global compactness results in energy spaces in the spirit of
Struwe [27] have been established in different contexts by Alves [1] for
equations posed in the whole Rn, Saintier [23] in the case of a smooth,
compact manifold, and Mercuri–Willem [20] and Yan [34] in the case
of a smooth, bounded domain. In view of these results, it is likely that
the new information provided by Theorem 1.1 and Corollary 1.2 on the
solutions of (1.11) will lead to new existence and multiplicity results
as it is the case for p = 2.

The paper is organized as follows. Section 2 is concerned with global
boundedness results. The key result in this section is a global bound
in weak Lebesgue spaces which we obtain by arguments of measure
theory. In Section 3, we establish a preliminary decay estimate which
is not sharp but which turns out to be a crucial ingredient in what
follows. To prove this estimate, we exploit the scaling law of the
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equation, and we apply a doubling property from Poláčik–Quittner–
Souplet [22]. In Section 4, we conclude the proof of Theorem 1.1. The
proof of the upper bound estimates (1.3) follows from the results of
Sections 2 and 3 together with Harnack-type inequalities of Serrin [25]
and Trudinger [30]. The proof of the lower bound estimate (1.4) re-
lies on a Harnack inequality on annuli, which is inspired from similar
results used in Friedman–Véron [10] and Véron [33] for the study of
singular solutions of p–Laplace equations in pointed domains.

Note. Since this paper was written, the result of Corollary 1.3 has been
extended to all p ∈ (1, n) by Sciunzi [24]. The proof in [24] is based
on the moving plane method. It uses the estimates of Theorem 1.1
together with a sharp lower bound estimate for the norm of the gradient
of the solutions.

Acknowledgments. The author wishes to express his gratitude to
Emmanuel Hebey for helpful comments on the manuscript.

2. Global boundedness results

The first result of this section refers to some known regularity results
for critical equations.

Lemma 2.1. Let f : Rn×R→ R be a Caratheodory function such that
(1.2) holds true. Then any solution of (1.1) belongs to W 1,∞ (Rn) ∩
C1,θ

loc (Rn) for some θ ∈ (0, 1).

Proof of Lemma 2.1. A straightforward adaptation of Peral [21, Theo-
rem E.0.20] (which in turn is adapted from Trudinger [31, Theorem 3])
yields that for any solution u of (1.1), there exist constants C,R > 0
and β > 1 such that ‖u‖Lβp∗ (B(x,R)) ≤ C for all x ∈ Rn, where B (x,R)
is the Euclidean ball of center x and radius R. We then obtain a global
L∞–bound by applying Serrin [25, Theorem 1].

Once we have the L∞–boundedness of the solutions, the results of
DiBenedetto [8] and Tolksdorf [29] provide global L∞–bounds and local
Hölder regularity for the derivatives. �

The next result is concerned with the boundedness of solutions of
(1.1) in weak Lebesgue spaces. For any s ∈ (0,∞) and any domain
Ω ⊂ Rn, we define Ls,∞ (Ω) as the set of all measurable functions
u : Ω→ R such that

‖u‖Ls,∞(Ω) := sup
h>0

(
h ·meas ({|u| > h})1/s ) <∞ ,

where meas ({|u| > h}) is the measure of the set {x ∈ Ω : |u (x)| > h}.
The map ‖·‖Ls,∞(Ω) defines a quasi-norm on Ls,∞ (Ω) (see for instance

Grafakos [13]).

Our result is as follows.



A PRIORI ESTIMATES FOR CRITICAL p–LAPLACE EQUATIONS 5

Lemma 2.2. Let f : Rn×R→ R be a Caratheodory function such that
(1.2) holds true. Then any solution of (1.1) belongs to Lp∗−1,∞ (Rn),
where p∗ := p (n− 1) / (n− p). Hence, by interpolation (see for in-
stance Grafakos [13, Proposition 1.1.14]), since by Lemma 2.1 any so-
lution of (1.1) belongs to L∞ (Rn), we obtain that the solutions belong
to Ls (Rn) for all s ∈ (p∗ − 1,∞].

Proof of Lemma 2.2. We let u be a nontrivial solution of (1.1). For
any h > 0, by testing (1.1) with Th (u) := sgn (u) ·min (|u| , h), where
sgn (u) denotes the sign of u, we obtain∫
|u|≤h
|∇u|p dx =

∫
|u|≤h

f (x, u) · u dx+ h

∫
|u|>h

f (x, u) · sgn (u) dx .

(2.1)
It follows from (1.2) and (2.1)that∫

|u|≤h
|∇u|p dx ≤ Λ

(∫
|u|≤h
|u|p

∗
dx+ h

∫
|u|>h
|u|p

∗−1 dx

)
. (2.2)

We then write∫
|u|≤h
|u|p

∗
dx =

∫
Rn
|Th (u)|p

∗
dx− hp∗ meas ({|u| > h}) (2.3)

and∫
|u|>h
|u|p

∗−1 dx = (p∗ − 1)

∫ ∞
0

sp
∗−2 meas ({|u| > max (s, h)}) ds

= hp
∗−1 meas ({|u| > h}) + (p∗ − 1)

∫ ∞
h

sp
∗−2 meas ({|u| > s}) ds .

(2.4)

It follows from (2.2)–(2.4) that∫
|u|≤h
|∇u|p dx ≤ Λ

(∫
Rn
|Th (u)|p

∗
dx

+ (p∗ − 1)h

∫ ∞
h

sp
∗−2 meas ({|u| > s}) ds

)
. (2.5)

Sobolev inequality gives∫
Rn
|Th (u)|p

∗
dx ≤ K

(∫
|u|≤h
|∇u|p dx

) n
n−p

(2.6)

for some constant K = K (n, p). By (2.3), (2.5), (2.6), and since∫
Rn |Th (u)|p

∗
dx = o (1) as h→ 0, we obtain

hp
∗

meas ({|u| > h}) ≤
∫
Rn
|Th (u)|p

∗
dx

≤ C

(
h

∫ ∞
h

sp
∗−2 meas ({|u| > s}) ds

) n
n−p

(2.7)
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for small h, for some constant C = C (n, p,Λ). We then define

G (h) :=

(∫ ∞
h

g (s) ds

) −p
n−p

, where g (s) := sp
∗−2 meas ({|u| > s}) .

Since the function t 7→ t−p/(n−p) is locally Lipschitz in (0,∞) and∫∞
h
g (s) ds > 0 for all h < ‖u‖L∞(Rn), we get that G is locally ab-

solutely continuous in
(
0, ‖u‖L∞(Rn)

)
with derivative

G′ (h) =
p

n− p

(∫ ∞
h

g (s) ds

) −n
n−p

g (h) (2.8)

for a.e. h ∈
(
0, ‖u‖L∞(Rn)

)
(see for instance Leoni [17, Theorem 3.68]).

By (2.7) and (2.8), we obtain

G′ (h) ≤ C · p

n− p
· h

2p−n
n−p (2.9)

for small h. Integrating (2.9) gives

G (h)−G (0) ≤ C · h
p

n−p (2.10)

for small h, where G (0) := limh→0G (h). On the other hand, by (2.4)
and dominated convergence, we have

(p∗ − 1)hG (h)
p−n
p ≤ h

∫
|u|>h
|u|p

∗−1 dx = o (1) (2.11)

as h → 0. It follows from (2.10) and (2.11) that G (0) > 0, i.e.∫∞
0
g (s) ds < ∞. By (2.7) and since p∗ − n

n−p = p∗ − 1 and G is

nonincreasing, we then get

hp∗−1 meas ({|u| > h}) ≤ C ·G (h)−n/p ≤ C ·G (0)−n/p

for small h, and hence we obtain ‖u‖Lp∗−1,∞(Rn) <∞. �

By (1.2) and a weak version of Kato’s inequality [16] (see Cuesta Leon
[4, Proposition 3.2]), we obtain

−∆p |u| ≤ |f (x, u)| ≤ Λ |u|p
∗−1 in Rn, (2.12)

where the inequality is in the sense that∫
Rn
|∇ |u||p−2∇ |u| · ∇ϕdx ≤ Λ

∫
Rn
|u|p

∗−1 ϕdx

for all nonnegative, smooth functions ϕ with compact support in Rn.

Our last result in this section is as follows.

Lemma 2.3. For any real number Λ > 0 and any nonnegative, non-
trivial solution v ∈ D1,p (Rn) of the inequality −∆pv ≤ Λvp

∗−1 in Rn,
we have ‖v‖Lp∗ (Rn) ≥ κ0 for some constant κ0 = κ0 (n, p,Λ) > 0.
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Proof. By applying Sobolev inequality and testing −∆pv ≤ Λvp
∗−1

with the function v, we obtain∫
Rn
vp
∗
dx ≤ K

(∫
Rn
|∇v|p dx

) n
n−p

≤ K

(
Λ

∫
Rn
vp
∗
dx

) n
n−p

(2.13)

for some constant K = K (n, p). The result then follows immediately
from (2.13). �

3. A preliminary decay estimate

The following result provides a decay estimate which is not sharp
but which will serve as a preliminary step in the proof of Theorem 1.1.

Lemma 3.1. Let κ0 be as in Lemma 2.3, f : Rn × R → R be a
Caratheodory function such that (1.2) holds true, and u be a solution
of (1.1). For any κ > 0, we define

rκ (u) := inf
({
r > 0 : ‖u‖Lp∗ (Rn\B(0,r)) < κ

})
,

where B (0, r) is the Euclidean ball of center 0 and radius r. Then
for any κ ∈ (0, κ0) and r > rκ (u), there exists a constant K0 =
K0

(
n, p,Λ, κ, r, rκ (u) , ‖u‖Lp∗ (Rn)

)
such that

|u (x)| ≤ K0 |x|
p−n
p for all x ∈ Rn\B (0, r) . (3.1)

The proof of Lemma 3.1 relies on scaling arguments and the following
doubling property from Poláčik–Quittner–Souplet [22].

Lemma 3.2. Let (X, dist) be a complete metric space, D and Σ be two
subsets of X such that D 6= ∅, D ⊂ Σ, and Σ is closed. Let M be a
nonnegative function on D which is bounded on compact subsets of D.
Then for any point x0 in D and any positive real number α0 such that

dist (x0,Σ\D)M(x0) > 2α0 ,

there exists a point y0 in D such that

dist (y0,Σ\D)M (y0) > 2α0 , M (x0) ≤M (y0) , (3.2)

and

M (y) ≤ 2M (y0) for all y ∈ D ∩BX (y0, α0/M (y0)), (3.3)

where BX (y0, α0/M (y0)) is the ball of center y0 and radius α0/M (y0)
with respect to the distance dist. In the case where X = Rn, dist is
the Euclidean distance, D is open, and Σ = D, it follows from the first
inequality in (3.2) that BX (y0, α0/M (y0)) ⊂ D, and hence (3.3) holds

true for all y ∈ BX (y0, α0/M (y0)).

We refer to [22] for the proof of Lemma 3.2. Now we prove Lemma 3.1.
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Proof of Lemma 3.1. We fix Λ > 0, κ ∈ (0, κ0), κ′ > κ0, r > 0, and
r′ ∈ (0, r). As is easily seen, in order to prove Lemma 3.1, it is sufficient
to prove that there exists a constant K1 = K1 (n, p,Λ, κ, κ′, r, r′) such
that for any solution u of (1.1) such that rκ (u) ≤ r′ and ‖u‖Lp∗ (Rn) ≤ κ′,
we have

dist (x,B (0, r′′)) |u (x)|
p

n−p ≤ K1 for all x ∈ Rn\B (0, r) , (3.4)

where r′′ := (r + r′) /2 and dist is the Euclidean distance function.
We prove (3.4) by contradiction. Suppose that for any α ∈ N, there

exists a Caratheodory function fα : Rn × R→ R such that (1.2) holds
true, a solution uα of (1.1) with f = fα such that rκ (uα) ≤ r′ and
‖uα‖Lp∗ (Rn) ≤ κ′, and a point xα ∈ Rn\B (0, r) such that

dist (xα, B (0, r′′)) |uα (xα)|
p

n−p > 2α . (3.5)

By (3.5) and Lemma 3.2, and since B (0, r′′) ⊂ B (0, r), we get that
there exists a point yα ∈ Rn\B (0, r′′) such that

dist (yα, B (0, r′′)) |uα (yα)|
p

n−p > 2α , |uα (xα)| ≤ |uα (yα)| , (3.6)

and

|uα (y)| ≤ 2
n−p
p |uα (yα)| for all y ∈ B

(
yα, α |uα (yα)|

−p
n−p
)
. (3.7)

For any α and y ∈ Rn, we define

ũα (y) := µα · uα
(
µ

p
n−p
α · y + yα

)
, (3.8)

where µα := |uα (yα)|−1. By (1.1), we obtain

−∆pũα = µp
∗−1
α · fα

(
µ

p
n−p
α · y + yα, µ

−1
α · ũα

)
in Rn. (3.9)

It follows from (1.2) that∣∣µp∗−1
α · fα

(
µ

p
n−p
α · y + yα, µ

−1
α · ũα

)∣∣ ≤ Λ |ũα|p
∗−1 in Rn. (3.10)

Moreover, by (3.7) and (3.8), we obtain

|ũα (0)| = 1 and |ũα (y)| ≤ 2
n−p
p for all y ∈ B (0, α) . (3.11)

By DiBenedetto [8] and Tolksdorf [29], it follows from (3.10) and (3.11)
that there exists a constant C > 0 and a real number θ ∈ (0, 1) such
that for point x ∈ Rn, we have

‖ũα‖C1,θ(B(x,1)) ≤ C (3.12)

for large α. By compactness of C1,θ(B (x, 1)) ↪→ C1(B (x, 1)), it follows
from (3.12) that (ũα)α converges up to a subsequence in C1

loc (Rn) to
some function ũ∞. By (3.11), we obtain |ũ∞ (0)| = 1. Moreover, by
applying the inequality (2.12), we obtain∫

Rn
|∇ |ũα||p dx =

∫
Rn
|∇ |uα||p dx ≤ Λ

∫
Rn
|uα|p

∗
dx ≤ Λ (κ′)

p∗
,
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and hence |ũ∞| ∈ D1,p (Rn). By observing that the inequality (2.12) is
invariant by the change of scale (3.8), we then get that |ũ∞| is a weak
solution of

−∆p |ũ∞| ≤ Λ |ũ∞|p
∗−1 in Rn. (3.13)

On the other hand, for any R > 0, we have

‖ũα‖Lp∗ (B(0,R)) = ‖uα‖
Lp∗ (B(yα,Rµ

p
n−p
α ))

. (3.14)

By (3.6) and since rκ (uα) < r′′, we get

B
(
yα, Rµ

p
n−p
α

)
∩B (0, rκ (uα)) = ∅ (3.15)

for large α. By (3.14), (3.15), and by definition of rκ (uα), we obtain

‖ũα‖Lp∗ (B(0,R)) ≤ κ (3.16)

for large α. Passing to the limit into (3.16) as α → ∞ and then as
R→∞ yields

‖ũ∞‖Lp∗ (Rn) ≤ κ . (3.17)

Since κ < κ0, by Lemma 2.3, (3.13), and (3.17), we get that ũ∞ ≡ 0,
which is in contradiction with |ũ∞ (0)| = 1. This ends the proof of
Lemma 3.1. �

4. Proof of Theorem 1.1

We can now prove Theorem 1.1 by applying Lemmas 2.2, 3.1, and
Harnack-type inequalities of Serrin [25] and Trudinger [30].

Proof of (1.3). We let u be a solution of (1.1). We let κ and r be as
in Lemma 3.1. For any R > 0 and y ∈ Rn, we define

uR (y) := R
n−p
p−1 · u

(
R · y

)
. (4.1)

By (1.1), we obtain

−∆puR = Rn · f
(
R · y,R

p−n
p−1 · uR

)
in Rn. (4.2)

It follows from (1.2) that∣∣Rn · f
(
R · y,R

p−n
p−1 · uR

)∣∣ ≤ Λ ·R
−p
p−1 · |uR|p

∗−1 in Rn. (4.3)

Moreover, similarly to (2.12), it follows from (4.2) and (4.3) that |uR|
is a weak solution of

−∆p |uR| ≤ Λ ·R
−p
p−1 · |uR|p

∗−1 in Rn. (4.4)

By writing |uR|p
∗−1 = |uR|p

∗−p · |uR|p−1 and applying Lemma 3.1, we
obtain

R
−p
p−1 · |uR|p

∗−1 ≤ Kp∗−p
0 |uR|p−1 in Rn\B (0, 1) (4.5)

provided that R ≥ r. It follows from (4.4), (4.5), and Trudinger [30,
Theorem 1.3] that for any ε > 0, we have

‖uR‖L∞(B(0,2)\B(0,4)) ≤ cε ‖uR‖Lp−1+ε(B(0,5)\B(0,1)) . (4.6)
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for some constant cε = c (n, p,Λ, K0, ε). We fix ε0 = ε0 (n, p) such that
0 < ε0 < p∗− p, where p∗ is as in Lemma 2.2. By a generalized version
of Hölder’s inequality (see for instance Grafakos [13, Exercise 1.1.11]),
we obtain that there exists a constant c0 = c0 (n, p) such that

‖uR‖Lp−1+ε0 (B(0,5)\B(0,1)) ≤ c0 ‖uR‖Lp∗−1,∞(B(0,5)\B(0,1)) . (4.7)

By observing that the quasi-norm ‖·‖Lp∗−1,∞(Rn) is left invariant by the

change of scale (4.1), we deduce from (4.6), (4.7), and Lemma 2.2 that

‖uR‖L∞(B(0,2)\B(0,4)) ≤ c1 (4.8)

for some constant c1 = c1

(
n, p,Λ, K0, ‖u‖Lp∗−1,∞(Rn)

)
. By (4.2)–(4.5),

(4.8), and the estimates of DiBenedetto [8] and Tolksdorf [29], we get

‖∇uR‖L∞(B(0,5/2)\B(0,7/2)) ≤ c2 . (4.9)

for some constant c2 = c2

(
n, p,Λ, K0, ‖u‖Lp∗−1,∞(Rn)

)
. Finally, for any

x ∈ Rn\B (0, 3r), by applying (4.8) and (4.9) with R = |x| /3, we
obtain

|u (x)| ≤ c3 |x|
p−n
p−1 and |∇u (x)| ≤ c3 |x|

1−n
p−1 (4.10)

for some constant c3 = c3

(
n, p,Λ, K0, ‖u‖Lp∗−1,∞(Rn)

)
. Since on the

other hand u and∇u are uniformly bounded in B (0, 3r), we can deduce
(1.3) from (4.10). �

Remark 4.1. As one can see from the above proof, the constant C0 in
(1.3) depends on n, p, Λ, κ, r, rκ (u), ‖u‖Lp∗−1,∞(Rn), ‖u‖Lp∗ (Rn), and

‖u‖W 1,∞(B(0,3r)).

In order to prove the lower bound estimate (1.4), we need the fol-
lowing Harnack inequality on annuli. This result is inspired from
Friedman–Véron [10] and Véron [33] where similar results are used
for the study of singular solutions of p–Laplace equations in pointed
domains.

Lemma 4.2. Let f : Rn × R → R be a Caratheodory function such
that (1.2) holds true, u be a nonnegative solution of (1.1), κ and r be
as in Lemma 3.1, and K0 be the constant given by Lemma 3.1. Then
there exists a constant c4 = c4 (n, p,Λ, K0) such that

sup
2R<|x|<5R

(u (x)) ≤ c4 · inf
2R<|x|<5R

(u (x)) (4.11)

for all R ≥ r.

Proof of Lemma 4.2. For any R > 0, we define uR as in (4.1). By (4.2),
(4.3), (4.5), and Serrin [25, Theorem 5], we obtain that there exists a
constant c = c (n, p,Λ, K0) such that

sup
z∈B(y,1/3)

(uR (z)) ≤ c · inf
z∈B(y,1/3)

(uR (z)) (4.12)
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for all points y in the annulus A := B (0, 5) \B (0, 2). Moreover, we
can join every two points in A by 17 connected balls of radius 1/3 and
centers in A. Hence (4.11) follows from (4.12) with c4 := c17. �

We can now prove (1.4) by applying Lemma 4.2.

Proof of (1.4). We let u be a nonnegative solution of (1.1) such that∫
Rn f (x, u) dx > 0. In particular, in view of (1.2), we have u 6≡ 0, and

hence u > 0 in Rn by the strong maximum principle of Vázquez [32].
By Lemma 4.2, we then get that in order to prove (1.4), it is sufficient
to obtain a lower bound estimate of ‖u‖L∞(B(0,5R)\B(0,2R)) for large R.

By (4.2), (4.3), (4.5), and Serrin [25, Theorem 1], we obtain

‖∇uR‖Lp(B(0,4)\B(0,3)) ≤ c5 ‖uR‖Lp(B(0,5)\B(0,2))

≤ c′5 ‖uR‖L∞(B(0,5)\B(0,2)) (4.13)

for some constants c5 and c′5 depending only on n, p, Λ, and K0, where
uR is as in (4.1). By changing the scale of (4.13), we then get

‖∇u‖Lp(B(0,4R)\B(0,3R)) ≤ c′5R
n−p
p ‖u‖L∞(B(0,5R)\B(0,2R)) . (4.14)

Next, we claim that if
∫
Rn f (x, u) dx > λ for some real number λ > 0,

then we have

‖∇u‖Lp(B(0,4R)\B(0,3R)) ≥ c6R
p−n
p(p−1) (4.15)

for large R, for some constant c6 = c6 (n, p, λ) > 0. For any x ∈ Rn

and R > 0, we define χR (x) := χ (|x| /R), where χ ∈ C1 (0,∞) is a
cutoff function such that χ ≡ 1 on [0, 3], χ ≡ 0 on [4,∞), 0 ≤ η ≤ 1
and |η′| ≤ 2 on (3, 4). By testing (1.1) with χR and applying Hölder’s
inequality, we obtain∫

Rn
f (x, u)χR dx =

∫
Rn
|∇u|p−2∇u · ∇χR dx

≤ ‖∇u‖p−1
Lp(supp(∇χR)) · ‖∇χR‖Lp(supp(∇χR)) , (4.16)

where supp (χR) denotes the support of χR. It follows from (4.16) and
the definition of χR that∫

Rn
f (x, u)χR dx ≤ CR

n−p
p ‖∇u‖p−1

Lp(B(0,4R)\B(0,3R)) (4.17)

for some constant C = C (n, p) > 0. Then (4.15) follows from (4.17)

with c6 := (λ/C)
1
p−1

Finally, we deduce (1.4) from (4.11), (4.14), and (4.15). �

Remark 4.3. As one can see from the above proof, the constant C1 in
(1.4) depends on n, p, λ, Λ, κ, r, rκ (u), ‖u‖Lp∗ (Rn), and a lower bound

for u on the ball B (0, 2 max (r, Rλ,f (u))), where

Rλ,f (u) := inf
({
R > 0 :

∫
Rn
f (x, u)χR′dx > λ , ∀R′ > R

})
.
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