SIGN-CHANGING BUBBLE TOWERS FOR ASYMPTOTICALLY
CRITICAL ELLIPTIC EQUATIONS ON RIEMANNIAN MANIFOLDS

ANGELA PISTOIA AND JEROME VETOIS

ABSTRACT. Given a smooth compact Riemannian n—manifold (M, g), we consider the equa-
tion Agu+ hu = |u|2*_2_‘S u, where h is a C'~function on M, the exponent 2* := 2n/ (n — 2)
is the critical Sobolev exponent, and ¢ is a small positive real parameter such that ¢ — 0. We
prove the existence of blowing-up families of sign-changing solutions which develop bubble
towers at some point where the function A is greater than the Yamabe potential 4&7__21) Scal,.

1. INTRODUCTION

We let (M, g) be a smooth compact Riemannian n—manifold. We consider the asymptotically
critical equation

Agu+hu=|u)* > u in M, (1.1)
where A, := —div, V is the Laplace-Beltrami operator, h is a C'~function on M, ¢ is a
2n

small positive real parameter such that € — 0, and 2* := =% is the critical exponent for the

embeddings of H? (M) into Lebesgue spaces. Here, H (M) is the Riemannian Sobolev space

defined as the completion of C* (M) for the norm [|uf, , = (||Vu|]§ + Hqu)l/2 We assume

that the operator A, + h is coercive in H? (M), i.e. the energy associated to the operator
controls the Hnorm.

We say that a family of solutions (u.). to equation (1.1) blows up if there exists a family
of points (&), in M such that |u. (§.)] — 400 as € — 0. In this paper, we are interested in
the question of existence of blowing-up families of sign-changing solutions to equation (1.1).
It is proved in Vétois [39] that families of solutions to equation (1.1), if bounded in H? (M),
do not blow up as € — 0 in case the manifold is conformally flat of dimension n > 7 and

h < a,Scal, in M, (1.2)

where oy, 1= (n—2)/(4(n—1)) and Scal, is the scalar curvature of the manifold. In The-
orem 1.1 below, we prove that in dimensions n > 4, if the reverse inequality (1.2) holds at
some point & of the manifold together with a nondegeneracy assumption at &, then there
exist blowing-up families of sign-changing solutions to equation (1.1).

Previous results of compactness and noncompactness have been established for positive
solutions to equation (1.1). Compactness of positive solutions has been proved to be true
by Druet [14] (see also Druet-Hebey—Vétois [15]) under the hypothesis (1.2) for a general
manifold of dimension n > 3. In case of the Yamabe potential h = «a,, Scal,, compactness
of positive solutions has been proved to be true in the aspherical conformally flat case, see
Schoen [36], and for a general aspherical manifold of dimension n < 24, see Khuri-Marques—
Schoen [22]. Previous contributions on this question in lower dimensions are by Li-Zhu [27]
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(n = 3), Druet [14] (n < 5), Marques [28] (n < 7), and Li-Zhang [24-26] (n < 11). The
condition n < 24 in the result by Khuri-Marques—Schoen [22] is sharp. Indeed, compactness
of positive solutions to the Yamabe equation has been proved not to hold in general in higher
dimensions by Brendle [4] (n > 52) and Brendle-Marques [5] (n > 25). We also refer to
Esposito-Pistoia—Vétois [16] for a recent result on the instability of positive solutions to the
Yamabe equation under perturbation of the potential.

When the reverse inequality (1.2) holds at some point &, of the manifold, it is proved in
Micheletti-Pistoia—Vétois [29] that equation (1.1) admits at least one blowing-up family of
positive solutions. This result is proved in [29] under the assumption that n > 6 together
with a nondegeneracy assumption at &. As a by-product of our paper, Theorem 1.1 below
extends the result in [29] to dimensions n = 4, 5. In dimension n = 3, compactness of positive
solutions to equation (1.1) is established under a more refined condition than (1.2) which
involves a mass term, see Li—Zhu [27]. In case where (M, g) is the standard sphere and h
is a constant greater than the Yamabe potential, we also refer to Chen—Wei-Yan [6] for an
existence result of positive blowing-up solutions with unbounded energy.

As for the blow-up of sign-changing solutions, an historical contribution is by Ding [13]
proving that on the standard sphere (S",std), the Yamabe equation Agqu + o, Scalgqu =
|u|2*_2u admits a blowing-up family of sign-changing solutions which are not conformally
equivalent to each others. In this case, we also refer to the recent work by del Pino—Musso—
Pacard-Pistoia [10,11] where the authors construct families of sign-changing solutions to the
Yamabe equation on (S™,std) which concentrate along some special submanifolds (see also
Guo-Li-Wei [21] for a similar result for Yamabe-type problems with polyharmonic operators).

The expression of the solutions we get in Theorem 1.1 below is said to be a bubble tower.
We call bubble a family of functions (Bs, ¢, ). defined by

[ be/m(n—2) T
Bs. . () = <5§+dg (x,§5)2> (1.3)

for all points x in M, where d, is the geodesic distance on M with respect to the metric g,
& € M, 6. >0, — 0ase — 0. In particular, in case (M, g) is the standard sphere, the
bubbles are the exact positive solutions to the Yamabe equation, see Lelong-Ferrand [23] and
Obata [31]. In the general case, it is well known since Struwe [37] that the blow-up of solutions
to equations like (1.1) is due to the presence of bubbles. The solutions we get in Theorem 1.1
below, see (1.5), consist in a finite sum of an arbitrary number & of bubbles, with alternating
signs, and a remainder R, — 0 in H? (M). The bubbles are all centered at the same points &..
Their weights 0, (t;) have different rates of convergence as ¢ — 0. Moreover, the alternating
signs in (1.5) make the solutions to be sign-changing when k > 2.

Given a C'-function ¢, we say that a critical point & of ¢ is C'-stable if there exists an
open neighborhood 2 of & such that for any point & in {2, there holds Vi (§) =0 < € = &
and such that deg (V (po1),¢~1(£2),0) # 0, where deg is the Brouwer degree and (¢, £2'),
2 C {2, is a given chart of M at the point &. This definition does not depend on the chart
(v, £2'). If  is a C?function, then any nondegenerate critical point of ¢ is C'-stable. We
state our result as follows.

Theorem 1.1. Let (M, g) be a smooth compact Riemannian manifold of dimension n > 4,
k > 1 be a natural number, & be a point in M, and h be a C'—function on M such that
the operator A, + h is coercive. Assume that & is a C'~stable critical point of the function
h — o, Scal, and that

h (50) > Scalg (60) . (14)



SIGN-CHANGING BUBBLE TOWERS 3

Then for e > 0 small, equation (1.1) admits a solution u. of the form

k
s =) (=17 B, e+ Re (1.5)

i=1

where By, 1,)¢. 15 as in (1.3), 6 (t;) := tjuee?, pe >0, pe — 0 if n =4, p. = 14fn > 5,

p; = %, t; >0,& — & in M, and R — 0 in Hf (M) as € — 0. The functions u. are

positive in case k = 1, sign-changing in case k > 2.

As discussed above, due to Vétois [39], under assumption of conformal flatness, we know
that blowing-up families of sign-changing solutions do not exist in dimensions n > 7 when
h < ay, Scaly,.

The proof of Theorem 1.1 relies on a Lyapunov—Schmidt reduction. Over the past two
decades, there has been intensive developments on Lyapunov—Schmidt reductions applied to
semilinear elliptic problems. A possible reference in book form on the topic is by Ambrosetti—
Malchiodi [1]. In addition to the above mentioned references in the geometric context, an early
reference for solutions to critical equations with a single peak is by Rey [33]. Concerning bubble
towers, without pretending to exhaustivity, previous constructions in the Euclidean space
are by Contreras—del Pino [7], del Pino-Dolbeault-Musso [8,9], del Pino-Musso—Pistoia [12],
Pistoia~Weth [32] in case of balls or symmetric domains, and Ge-Jing-Pacard [18], Ge-Jing—
Zhou [19], Ge-Musso—Pistoia [20], Musso—Pistoia [30] in case of a general domain.

The proof consists in reducing the problem to finding a C'-stable critical point of a function
J- posed on a (k X (n+ 1))-dimensional domain, k£ being the number of bubbles. To this aim,
we need to derive a C''-uniform expansion of the energy functional as ¢ — 0. Because of the
contributions in energy due to the interaction between the bubbles (and also even in case of
one bubble in dimensions n = 4,5), the approximation rate (see (2.15)) is not as small as the
one in Micheletti-Pistoia—Vétois [29] which treats the case of one bubble, and this does not
allow us to derive C'-estimates in the same way as in [29]. To overcome this issue, we exploit
the symmetry between the derivatives of the bubbles (1.3) with respect to the weights £, and
to the variable z, an idea which goes back to Rey [33], with the difficulty here that we have
to add a corrective term which is due to the derivatives of the geodesic distance.

Our construction fails in dimension n = 3 due to the presence of a mass term in the
asymptotic expansion of the reduced energy (see Li-Zhu [27]). Note that in case k = 1 (positive
blow-up with one peak), the result in Theorem 1.1 would not be true due to the compactness
result by Li-Zhu [27]. However, it is proved in the recent work by Robert—Vétois [34] that
blowing-up families of sign-changing solutions can still be constructed in dimension n = 3
in the form u. = uy — B: + R., where ug is a nondegenerate solution to equation (1.1) with
e =0, B. is a bubble, and R. — 0 in H? (M) as ¢ — 0. The construction in [34] holds more
generally in dimensions 3 < n < 6 for a general potential h and also in higher dimensions for
the geometric potential h = «,, Scal,.

A natural guess is that the method should also apply to prove the existence of bubble towers
with positive sign in the slightly supercritical case ¢ < 0. This problem is usually the dual
of the problem of sign-changing bubble towers in the slightly subcritical case e > 0 (see, for
instance, Musso—Pistoia [30]).

Our paper is organized as follows. We describe the proof of Theorem 1.1 in Section 2. We
prove the asymptotic expansion of the energy in Section 3. We prove the first derivatives
estimates in Section 4 and the error estimates in Section 5.
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2. SCHEME OF THE PROOF OF THEOREM 1.1

First, we set some notations. Assuming that the operator A, 4 h is coercive, we can provide
the Sobolev space H} (M) with the scalar product (,-), defined by

(u,v), ::/ <Vu,Vv>gdvg+/ huvdv, , (2.1)
M M

where dv, is the volume element of the manifold. We let || - ||, be the norm induced by (:,-),.
Moreover, for any u in L7 (M), we denote the L%norm of u by |ull, := ([}, |u|qdvg)1/q. We
let §* : Ltz (M) — H? (M) be the adjoint operator to the embedding i : H? (M) — L* (M),
i.e. for any w in Lt (M), the function u = i* (w) in HE (M) is the unique solution to the
equation Aju + hu = w in M. Equation (1.1) rewrites

u=7"(f:(w), weH; (M), (2.2)

where f. (u) == |ul* "* “w in case k > 2 and f. (u) := v "'"° in case k = 1, where u; =
max (u,0) (since we intend to construct positive solutions in this case).

By compactness of M, we get that the injectivity radius 7, of the manifold is nonzero. We
let ry be a positive real number such that 7y < ¢;. We let x be a smooth cutoff function such
that 0 < x < 1in Ry, x = 11in [0,79/2], and x = 0 in [rg, +00). We let N be an open subset
of M on which there exists a smooth orthonormal frame with respect to the metric g. N is
to be fixed later on. Thanks to the frame on N, we identify the tangent space T: M with R"
for all points £ in N so that exp; is in fact the composition of the standard exponential map
with a linear isometry ¥, : R®™ — T M which is smooth with respect to . For any point £ in
N, any positive real number 0, and any point ¢ in R", we define our test function Ws, ¢ by

Wi (2) = x (dy (2,6)) 8 2 U (6 expg ! (z) — ) (2.3)

for all points x in M, where d, is the geodesic distance on M with respect to the metric g and

n—2

o n(n —2) oz
Uly) = (—1 n |y|2 ) (2.4)

for all points y in R"™. In particular, we get that Ws, ¢ (z) = x (dy (2, €)) Bse (x) for all points =
in M, where B¢ is as in (1.3). The function U is a solution to the equation Ag,qU = |U|2*_2 U
in R", where Aguq := — divg,q V is the Laplace operator with respect to the Euclidean metric.
Associated to this nonlinear equation is the linear equation Ag,qv = (2* — 1) U? %0 in R™.
By Bianchi-Egnell [3], any solution in D2 (R") of the equation Ag,qv = (2* — 1) U? %0 is a
linear combination of the functions

d 2-n _ 1 n—2 n+2 |y|2 —1
Vo (y) :== —(52 U(5 1y)) =-nst (n—-2)1 ——— (2.5)
dd S=1 2 (1 + |y|2) 2
and 50
n—2 n4+2 yl
Vily) = —5 () =07 (0 —2) T Y (2.6
b (L+1y[")*
for all points y in R" and all i = 1,...,n. For any ¢ = 0,...,n, any point £ in N, any positive
real number ¢, and any point ¢ in R", we define the function Z; 5, ¢ by
Zi e () = X (dy (2,€)) 6 7"V, (67 expy ! (2) — o) (2.7)

for all points x in M.



SIGN-CHANGING BUBBLE TOWERS 5

We fix a natural number k¥ > 2. For any point  in N, any § = (1,...,0;) in (R})* and

any o = (01,...,04_1) in (R")*7", letting o, = 0, we define the projections ITs,¢ and I3,
of the Sobolev space H? (M) onto the respective subspaces
Kso6 1= Span{Zos, 016, -+ Znbronés -+ s Z05k0nbs - -+ 2 Zndpont ) » (2.8)
K, ={0€ H (M); (¢, Zis,0,¢), =0 Vi=0,....,n Vj=1,... k}, (2.9)

where (-,-), is as in (2.1). We intend to construct solutions to equation (2.2) of the form
k .
ue = Towers, (1) 0. ¢ +&s.(10).00.6. » With Towers )06 = Y (=17 Wy, (1, )06 » (2.10)
j=1
where Wi, (t;.).0;..¢. 15 as 0 (2.3), @s.(t) 06 € Ky 1),0. 60 Pbcltaronee — 0 in HY (M), & —
o €N, te = (t1ey...,tge), tje = t; >0forall j=1,... k 0. :=(01¢,...,06-1¢), Ope =0,
oje—ojeR"forallj=1,...,k—1, and

n+4j—6
56 (te) = (51,5 (tl,a) ’62,5 (t2,€> yeoe 75k,5 (tk,s)) ) 6j,5 (tj,€> = ] eMe€ € 2n=2) (211)
for all j = 1,...,k. Here, g, := 1 if n > 5, and p. = 7' (¢) /y/ if n = 4, where ( :
(0,e74/2) — (0,e71/2), £ : p— —p?Inp. As is easily checked, if n = 4, then p. ~ /2/|In¢|

as € — 0. Since t;. — t; > 0, 0. — 0, and ||(1 = x (dy (-, &))) Bs,.(t,).. , — 0ase— 0 for
all j =1,...,k, we find

H JE tje Uaeff B‘Sj,s(tj)vfs h — O (212)
as € — 0. In particular (1.5) follows from (2.10) and (2.12).

Equation (2.2) rewrites as the couple of equations
15, (1),0,6 (ToWers, (1),0.6 + 5. (11,06 = 1* (f (Towers, (1,06 +5.00,0:¢))) =0, (2.13)
I3 4y .6 (Towers, (10,6 +0s.(1),0.6 — 1 (f= (Towers, 4,06 +05.(506))) = 0 (2.14)

where Towers_ () ¢ and . (t) are as in (2.10) and (2.11). The first step in the proof consists in
solving equation (2.14). This is done in Proposition 2.1 below. We skip the proof of this result
which is rather standard in the literature on Lyapunov—Schmidt reductions (see, for instance,
Musso—Pistoia [30]). The right-hand side in (2.15) is estimated in Section 5.

Proposition 2.1. For any compact subset A of (R%)* x (R x N, there exists a positive
constant Ca such that for e small, for any (t,0,€) in A, there exists a unique function ¢s_ () o¢
in Kzi(t),a,g which solves equation (2.14) and satisfies

|65.(0)06]],, < Cal|i* (f= (Towers.) o)) — Towers, (1) o[, - (2.15)

Moreover, ¢s.(1)0,¢ 15 continuously differentiable with respect to (t,o,§).

For ¢ small, we let J. be the functional in H? (M) defined by

1 1
= —/ |Vu|§dvg+—/ hu2dvg—/ F; (u) dv, , (2.16)
M

where F. (u) = [’ f- (s)ds. The critical points of J. are the solutions to equatlon (2.2). For
any point 5 in N, any t = (t1,...,t;) in (R})*, and 0 = (0y,...,04-1) in (R™)*!, we define
J- (t, o, f) J- (Towers, (1),0.¢ +Ps.(t),0,¢ ) + (2.17)

where Tower;, (;),,¢ 1s as in (2.10) and ®5.(1),0,¢ 18 given by Proposition 2.1. We solve equation
(2.13) in Proposition 2.2 below. Given some C'-functions ., we say that the estimate p. =
o (g) is C'—uniform if there hold both ¢, = 0(g) and V. = o () as € — 0.
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Proposition 2.2. Ifn >4, then

2
\75 (t,0'7 f) =C — CQEID[I,S — 63511'15 — C4€ + C5€t% (h (f) — h Scal (g))
k k-l t " -
1 2on
— cgE E Int; + cre 5 <jt_3) (1+ |oy] ) +o(e) (2.18)

as € — 0, C'uniformly with respect to (t,0,€) in compact subsets of (R%)* x (R™)F! % N,
where the ¢;’s are positive constants depending only on k and n, Scal, is the scalar curvature,
and p. is as in (2.11). Moreover, given a compact subset A of (R%)F x (R x N, for e
small, if (t.,0.,&) € A is a critical point of J-, then the function Towers_ () s ¢. +®s.(t.),0. ..
is a solution to equation (2.2).

The proof of the asymptotic expansion (2.18) is postponed to the next section. The fact
that critical points of 7. provide solutions to equation (2.2) is again rather standard (see
Musso—Pistoia [30]). We skip the proof of this part here. Now, we prove Theorem 1.1 by using
Propositions 2.1 and 2.2.

Proof of Theorem 1.1. We let G be the function defined in (R% )* x (R x M by

n—2

k k-1 n=2
n tir 2 2-n
g(t,a,f) :c5tf<h(§)—mSCal ))—Cﬁjzllnt]+07jzl(%> (1+|O'J|2) 2 ,
where ¢, ¢g, and ¢; are as in (2.18). We change variables by setting s = © (t), where

O (t) = (tl,t2 b t_k)

ty te)
We then get
-2
G (07 (s),0,€) =ess (h <£>—h8calg<5>)
k-1
_CGZ —74+1) lns]+c7z $;th 1+|U]|)
7=1

By assumption we get the existence of a C'-stable critical point & of the function h —
Ty Scaly satisfying h (&) > ”—2 Scal, (§). We then define sy := (so1,. .., Sox), Where

]CC6 (Z(k—j+1)cﬁ> -2 .
S01 = and sg ;= Vi=2,...,k.
o1 \/205(h (&) — 4(’; 21 Scal, (50)) 07 (n—2)c;

We claim that the point (07! (s0),0,&) is a C'-stable critical point of the function G. In
order to prove this claim, it suffices to prove that the point (sg,0,0) is a C'-stable critical
point of the function H defined by

H (S, g, y) = g (@71 (S> 0, epro y)

for all (s,o,y) in (R%)* x (R")"! x By (i,), where i, is the injectivity radius of the manifold.
We find

OH n—2 kcg

0_81 (5,0,y) = 2c55 <h (eXPgO y) - m Scal, (eXpﬁo y) > _ 3_1 :
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OH . C n—2 n4 2-n .
g(s,a,y):—(k—jJrl)S—éJr 5 crs;? (L+oja) 2 Vi=2,...k,
j j

n—2 _n .
Vo, H(s,0,y) =—(n—2)ers; iy (1+1oj*) 20; Vj=1,...,k—1,

-2
V,H (s, 0,y) = 053%Vy (h (expgo y) — h Scal, (expg0 y) )

One easily checks that there hold V,V,H (s0,0,0) = V,V H (50,0,0) =0, V,V,H (50,0,0) =
V,VoH (50,0,0) = 0, VsV, H (80,0,0) = V,VH (50,0,0) = 0, and that VZH (s, 0,0) and
V2H (s0,0,0) are nondegenerate. Moreover, by assumption, the point 0 is a C'-stable critical
point of the function y +— h (exp£0 y) — ﬁ Scal, (expg0 y), and thus of the function y —

H (s0,0,y). By standard properties of the Brouwer degree, see for instance [17], we then get
that the point (sg,0,0) is a C'-stable critical point of the function H. It follows that the point
(671 (s0),0,&) is a C'-stable critical point of the function G. Proposition 2.2 yields

V(e T (t.0,€) = G (t.0.€))| — 0

as ¢ — 0, uniformly with respect to (¢,0,£) in compact subsets of (R*)* x (R % Ny,
where J. is as in (2.17) and Ny is some open neighborhood of the point & on which there
exists a smooth orthonormal frame with respect to the metric g. By standard properties of
the Brouwer degree, we then get the existence of a family of critical points (t.,o.,&.) of J-
converging to (071 (sg),0,&) as € — 0. By Proposition 2.2, it follows that the function u.
defined in (2.10), with ¢s_(.)0. ¢ as in Proposition 2.1, is a solution to equation (2.2) for e
small. In particular, (1.5) follows from (2.12), Proposition 2.1, and Lemma 5.1. It remains to
prove that for € small, the function u. is positive in case k = 1, sign-changing in case k > 2.
The positivity of the function u. in case £k = 1 follows from the coercivity of the operator
A, + h and the fact that f.(u.) > 0 in this case. In case k > 2, we claim that for any
j=1,... k, given two real numbers a and b such that a < b, the function u. is negative (resp.
positive) at some point in the annulus A; . (a,b) := Be, (bu.cP) \Be, (ap-c?) if j is even (resp.
odd) for € small, where B (r) is the geodesic ball of center { and radius r with respect to
the metric g. In order to prove this claim, we proceed by contradiction and assume that wu. is
nonnegative (resp. nonpositive) everywhere in A;. (a,b). By straightforward computations, it
follows from (1.5) that R. > C (uce?)* ™/ (resp. R. < —C (1e?)*™"?) on A;. (a,b) for
some positive constant C independent of . In particular, we get R. 4 0 ase — 0in L? (M),
and thus in H? (M). There is a contradiction, and this proves our claim, namely that in case
k > 2, the function u. changes sign for € small. This ends the proof of Theorem 1.1. O

3. THE REDUCED ENERGY

This section is devoted to the proof of the asymptotic expansion (2.18) in Proposition 2.2.
We use the first derivatives estimates which are left to Section 4 and the error estimates which
are left to Section 5. We also repeatedly use in our estimates the easy fact that given a
compact subset A of (R%)* x (R")*™' x N, for ¢ small, there exists a positive constant C 4

such that for any (¢,0,&) in A, any point x in M, and any j =1,...,k — 1, there holds
1 _ 2
oL (0 (15)° + dy (2,)%) < 8 (85)° + Jexpg ' (x) = 6 (£) 03] < Ca (612 ()7 + dy (2,€)%) .

(3.1)
As a first step, we give the asymptotic expansion of J. (Towergs(t)@g) as ¢ — 0, where J. is as
in (2.16). We let K, be the sharp constant for the embedding of D'?(R") into L* (R™). As
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computed independently by Rodemich [35], Aubin [2], and Talenti [38], there holds

where w, is the volume of the unit n—sphere.

Lemma 3.1. Ifn > 4, then there holds

K" k k
J- (Towers(1),0¢) = ; (k: 3 (n—2)%eln . — 3 (n—2)(n+2k—4)elne — kB,e

) n— (n—2)° ¢
+ et <h (€) — "% Seal, (5)) - ey g
j=1

4(n—1)

w, k—1 t nT_Q 2—n

gnn—1 2+l 1 ANEE 3.3
+ u,Z(t (1+105") 7 +o(e) | (33)

as € — 0, C'—uniformly with respect to (t,0,€) in compact subsets of (R%)* x (R")* ' x N,
where Scal, is the scalar curvature, p. and o, (t) are as in (2.11), w, (resp. w,_1) is the
volume of the unit n—sphere (resp. (n — 1)-sphere), K, is as in (3.2), v, = 3 if n = 4,
=2 —=1)/((n=2)(n—4)) if n =5, and

=2 ot [T () (n—2)
B =12 3 (TL — 2)2 o /0 (1 n 7’)” dr + in (1 —nlny/n (n — 2)) . (34)

Proof of Lemma 3.1. All our estimates in this proof are uniform with respect to (¢,0,¢) in
compact subsets of (R% )" x (R™)" ! x N and with respect to e in (0, go) for some fixed positive
real number 5. We prove the C%—expansion of (3.3). The C'-expansions follow from similar
estimates for the derivatives with respect to ¢, o, and £. We get

k
1 2 1
J. (Tower(sg(t gg Z <§/M‘VW(;jﬂg(tj),oj,g|gdvg+§/MhW(SQjYS(tj)médvg

Jj=1

1 —€ l
_ 2*_5/ Wis(t)lf 5dvg—|—z J"" ( / <VW5 )05 g,VW(;lEtl 0l5> dUg

I#j

1 _
2/ hW5Js (tj).o5, §W5zs (t), o1 Edvg / WZJE tlj irj W5z,s(tz)7017§dvg))

_/ (F€ (Towerés(t)vo'vg) - : :F€ (W‘Sjve(tj)va'jﬂs)
M
- E : E : jH f6 W5 75) W(Sz,s(tl)ﬂz,&) dvgv (3'5)

J=1 1#j

where F; (u) is as in (2.16). We are led to estimate each term in (3.5). We use the techniques
developed by Aubin [2] in order to estimate the first terms in (3.5). By Cartan’s expansion of
the metric in geodesic normal coordinates, we get that for any «, 8 = 1,...,n, for y close to
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0, there hold

g° (expey) = 6% + 5”5Rﬁw ) vy + O (ly*) (3.6)
1
lexpz g ()] = 1= <R () y"y" + O (Iyf*) (3.7)

where the real numbers 6*° are the Kronecker symbols, the function ‘expz g| is the determi-

nant of the metric, the functions ¢g®# are the components of ¢!, the functions R}, are the
components of the Riemann curvature tensor, and the functions R, are the components of
the Ricci curvature tensor in geodesic normal coordinates. For any j = 1,..., k, using (3.6)
and (3.7) together with symmetry properties of the components of the Riemann curvature
tensor, we find

/ |VW5j,e(tj)70'j’§ ‘j dvg
M
n—2 n+2 %, .  rtl n—2_.
=n 2 (n — 2) 2 Wh—1 / —>n (1 _ RICg (f) . (Wg (Uj) ,Lffg (O'j)) 5j75 (t]’)Q
0

— i Scalg (6) 5j’5 (tj)2 7'2 + O (5]',6 (tj>3 7’3) )d?" + O (5]',5 (tj>n_2)

6n
-n n—2 . nt4j—6
=K, <1— = Xn Ricg (). (Y (0;), Pe (Uj))?f?&? n—2
— 9"7:;” Scal, (€) t?snﬁjf) +o0 <5n:€j‘;6> , (3.8)
2 26-7‘70(%) rn—1
AW2E (o cdvy=n"7T (n—2)"7 wn_hfé-gt-2/ Y
W ey =77 (0= 2)F (€556 [ T
2 nTn.j _ J ntdj—
X (140 (31 (17 1%)) dr +0 (3 (1)) = =K (§) £ 0 (=5557) (3.9)
1 (n(n—2))T > -y
TR /M W3 oo @oa = o — Wn-10j¢ (t;) 2

2552 (5;) rn-t 1.
« [ s (L § R (0 (5 (0) B (0) . (1)
0 (1+172) = 6

_ % Scalg (6) 5]-’5 (tj)z r2 + 0O ((5]',5 (tj)g 7'3) )dT +0 ((5]’75 (t]>n)

_ 2 (1+

47 — 6 -2 2
5 ntd €1H€+ 5lnt—|— Fn
n

4 2 —o°

X n+4j— X n+4j—

_—G(n—Q) SCal (5) e n—2 —€R1C9(§>.(W§(O’j),'pg(0'j)) e n—2 )4_0(5)7 (310)

-2
eln p. +

where Scal, is the scalar curvature, Ric, is the Ricci curvature, ¥ is as in Section 2, w,, (resp.
Wn—1) is the volume of the unit n—sphere (resp. (n — 1)-sphere), K, is as in (3.2), 3, is as in
(3.4), and
6 ifn=4, 3 ifn=4,
0, =< n+2 Yn = 2(n—1)

it n >
n_a Hn=5 (n—2)(n—4)

(3.11)

ifn>5,
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0 ifn=4, 2j—1 ifn=4, -
X”‘_{l ifn>5, W"’j’—{l itn>5. (3.12)

For any [ > j, using (3.1), we find

n—2 T

0 e (T "z 5j,g((]ij) rdr _n=6(;_
/ hW5j,e(tj)vﬂj,éwéz,s(tz)m,édvg =0 - <l>";6 / n—z | — O <€l =0 1)>'
M dje (tj) = Jo (1+72) 2
(3.13)

For any [ > 7, changing variables, we find

/M <VW6j,s(tj)70'j7§7 VW5z,s(tl)70l7§>g dvg

— ' (=) (51,5 (tl)>; / UMY+ 414 001)), (3.14)

Gjc (t5) ly + o4]"

where the function U is as in (2.4). Similarly, for any [ # j, we find

2*—1—¢
/];4 W5 (tj),Uj,fwél,e(tl):Ul :Edvg

(n(n—2)7 <‘5l’€ “l))nf/R U dy(1+o0(1)) ifj<l,

(

05, (£5) n |y+a-\”_2
= o)) 2 5] tj n=2 ’ (3.15)
— 1 ; . 2 .
Ll ))n;g (5“ <;)) / Uy)* Hdy(1+o(1) ifj>1,
| (14 aul*) te (t !
as € — 0. Regarding the last integral in (3.15), we find
* n+2 oo nild n— n+42
R™ o (14722

Moreover, since the function y — ((n — 2)w,_1) " |y 4+ o;/° " is the Green’s function for the

Euclidean Laplace operator at the point —o;, and since the function U is a solution to the
equation AgualU = |U|2*_2 U in R", we get

VU ~ 1 Uy)”
_/ VU@ y+o5) / (v) —dy = wa U (—0;) . (3.17)
no |yt n =2 Jpn |y + 0yl

By (3.2) and (3.14)—(3.17), we get

/]M <VW5],E(t])a0—])£7 VW&l,s(tl)yol7£>g dvg = /Jw W;:Ei(tl];fa']’£W6l,5(tl)7al7£dvg (1 + Y (1))
/ n—2
2" 1 KT t\ 2 , e
sl (1) T e o) i<t
nwy, (14 |o;]7) 2 J

2"y KT £\ z e
e (i) e (1+o0(1) ifj>1,
( nwy, (1+ |oyf?) 2

t
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as ¢ — 0. Finally, using the same procedure as in Musso—Pistoia [30] (see also Ge-Musso—
Pistoia [20]) which consists in estimating the integral on different annuli, we get

k
/ <FE (Tower(;s(t),g,g) - Z F; (W5 )0 5)
M P
- Z S (=0 f (Wa,t).0y.) W) a) dvg =o(e). (3.19)
J=1 1#j
(3.3) follows from (3.8)—(3.13), (3.18), and (3.19). O

It follows from Proposition 2.1 that for ¢ small, for any (¢,0,&) in (R%)* x (R ' x N,
there holds

n k
DJ. (Towers, (5,0, +%s. (t),0.6) = Z Z Nijoe (0.6 (Zisy e(t).0060 (3.20)

i=0 j=1

for some real numbers A; ;5. (1), Where 0. (t) is as in (2.11). We estimate the real numbers
Aijs.(t),0¢ in Lemma 3.2 below.

Lemma 3.2. If n > 4, then for any compact subset A of (R%)* x (RM™! % N, there exists
a positive constant Ca such that for e small, for any (t,0,&) in A, and any i =0,...,n and
7 =1,...,k, there holds

‘)\i,j,ég(t),o'7§| S CA€7 (321)
where N; j5.1),0¢ 95 as in (3.20) and d. (t) is as in (2.11).

Proof. All our estimates in this proof are uniform with respect to (¢, ,&) in compact subsets
of (R )* x (R™)*~' x N and with respect to & in (0,&y) for some fixed positive real number
€9. Forany i,0l=0,...,nand j,m=1,...,k, we find

2
<Zi75j,s(tj)7o'j7§7 Zl757n,£(t7n)70'7n7£>h — ||v‘/;||2 6lléjm (322)

as € — 0, where the functions V; are as in (2.5)—(2.6) and the real numbers §; and d,,,, are the
Kronecker symbols. By (3.20) and (3.22), for any i =0,...,nand j =1,...,k, we get

DJ. (Towerg 0),0.6 TPs.(t) o—g) Zzéga( £5),05,¢

= Nijo. 0o IVVill3 + 0 (Z > \Al,m,@(t),a,d) (3.23)

=0 m=1

as € — 0. On the other hand, since the function ¢s, ()¢ belongs to K 5 (1),060 W€ get
DJ. (Towers, (1,6 +s.(t)0.6) -Ziss;(t)),75.¢
= ( Towers (.0 =" (= (Towers.(n.0e)) + Zis i),
(17 (Zisy e = (<1770 (FL (Towers. ) Zisy.tre)  Oa.t00e),
= [ (F: (Towere o cc-+05.0.0e) = 1o (Towers .0

— f (TOWGI'(;E J£> (b(;e )Zi,éj,g(tj),oj,fdvg . (3.24)
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We are led to estimate each terms in (3.24). By Lemma 4.1, we get

<Tower58(t),g,g —i* (fz—: (TOW@TE (t),o )) Zo 53'5(15')0]' >h

d
= (=1)" 1tJ%J (Towers, (1),0,¢ ) Zaﬂ J. (Towers, ) 0.¢) (3.25)

and

d

dO‘ji

<Tower5a(t),a,§ —* (fg (Towerge(t),gjg)) Zis: o(t;)0; §>h 1)j_1 J. (Tower(;a(t),a,g) (3.26)

for all i = 1,...,n. By Cauchy—Schwarz inequality and Lemmas 3.1, 4.1, 5.1, it follows from
(3.25) and (3.26) that

<Tower55(t),g,5 S~ (fs (Tower(;g(t),o,g)) ,Zi,(;j,s(tj),gj,ah =0 (e) (3.27)

for all = 0,...,n. By Cauchy—Schwarz inequality, Proposition 2.1, and Lemma 5.1, we get
<Zi,aj,5(tj),aj,s — (=17 (L (Towers, 4),0,6) Zis,c(0001.6) » D50 > =o(e) (3.28)
ase — 0, forall = 0,...,n. As is easily checked, there exists a positive real number C such

that for £ small, there holds

0] (|u|2*—3—€ + |v|2*—3—6) ifn =45,
[fi(u+v) = fLw)]<C (3.29)

min <|u|2*_3_5 lv|, |v|2*_2_8> if n > 6,

for all real numbers v and v. In case n = 4,5, by the Mean Value Theorem, (3.29), Holder’s
inequality, Proposition 2.1, and Lemma 5.1, we get

/ (fa (TOWGI'(; t),0,8 +¢5 ) - fa (Tower5a(t),o,£) f (TOWGI'(; cr£> ¢6 ) ,05,¢(t5),05 {dvg
M

= O < Hgbéf(t%a’éH;*—a ||Zi’§j,€(tj)7‘7j7£H2*fs (HTOWGI'é‘ 05”; :jis _l_ quéi(t)ﬁ'nyz::ziE> > =0 (5)
(3.30)
as € — 0. Now, we assume that n > 6. For any j = 1,...,k, we define the annulus

Aae = Be (Ve o010 0)) \Be (Vo )0 (o)) (33D

where 0o ¢ (to) := r3 /01 (t1), ;¢ (t;) is as in (2.11) for all j = 1,..., k, dgs1.c (trr1) := 0, and
B () is the geodesic ball of center £ and radius r with respect to the metric g. By the Mean
Value Theorem, (3.29), and Holder’s inequality, we get that for any [ # j, there holds

/ (f- (Towers,(1),0.¢ +®s.(t),06) — fo (Towers_(s).0.¢)
Alse(1).6
- fgl (TOWerég(t),a,g) ¢5g(t),0,§)Zi75j,a(tj)vo'j,5dvg
S (X

For any [ # j, a rough estimate gives

Zi»‘sj,e(tj):o'jvg]‘Al,SE(t),g

2*_a) . (3.32)

=0 (Ve). (3.33)

Zi,5j,s(tj)70j 7§1Al,55(t),£ e e




SIGN-CHANGING BUBBLE TOWERS 13

By (3.32), (3.33), Proposition 2.1, and Lemma 5.1, we get
/ (fs (Tower5s(t),0,£ +¢6s(t),o,£) — [ (Tower55(t),o,§)
M\A; 5.1

— f (TOWGI“(;6 gf) ¢55(t) Jg)Ziﬁjyg(tj)’Uﬁfdvg =0 (é‘) (334)
as ¢ — 0. Moreover, we get

/ (fo (Towers, (1).0.6 +s.(0)06) — fo (Towers, ().
Ajse(t)6
— fL (Towers, (5),0.6) 5. (t).0,6) Zissy o (t),05,6 A0,
< / | (f (Towers_(1),0.¢ +®s. (1),06) — f= (Towers_ (1))
5,50 (8),6
- ff:{ (W(Sj&(tj)vaj 75) ¢5s(t)707§) ZZ 57 € 07 53 ‘dvg
+/A } (fé (Towerég(t)vavg) - fé (W(Sj,a(tj)vo—jvg)) ¢65(t)vavgzivdj,a(tj)ﬂj75 dUg : (335)

3,62 (t),€

By (3.29) and Holder’s inequality, we get
/ (f2 (Towers.1).0.e +0s.(1),0.¢) — [ (Towers, (1) o.¢)
Ajise (1),
— [L (Towers, (t),0.) Gs.(t),0,6) Ziss; - (t;),05,6 Vg

W2 =3~
_O<H¢5 £),0,& || 9 E(ZH 5, € W§Lstl crz{Zzzs e(t )O'Jf]-A](SE(t).g 2% e

l;ﬁj 2¥—1—¢

o Nsiondlr ). 339
2¥—2—¢

2% —3—
+HW 3.6 218,.t).0,.6

Jet)ojé v

For any [ # 7, we find

Hn 5\ if n =6,
2*—3—¢
HW(S] e(tj).05 EWtsla(tz Ul§Zz 8j,6(t5),05, 5114] Se ()6 23*165 62(n 2) > 77 (337)
2% —3—
H 6j,€(tj)fyj,§Zi75g‘,a(t1),tfj,€ 2% _e =0(1 (3.38)
2¥ _1—¢

By (3.36), (3.37), (3.38), Proposition 2.1, and Lemma 5.1, we get
[ (Towers e +05.01m6) — f (Towers, )
IRNOX:

— fL(ToWers_ (1),0.¢) Gs. (1,06 ) Zis, o (t;),05,60g = 0 (€) (3.39)
as ¢ — 0. By (3.23)-(3.28), (3.30), (3.34), (3.39), forany i = 0,...,nand j = 1,..., k, we get

n k
Aijst)oe = O (e) +o (Z > ‘)‘l,m,(sg(t),a,g‘) (3.40)

=0 m=1
as € — 0. We then get (3.21). This ends the proof of Lemma 3.2. O

In Lemma 3.3 below, we show that the first order terms in the asymptotic expansion of
J- (t,0,€) defined in (2.17) are the same as for J. (Towers_() »¢). This result, together with
Lemma 3.1, concludes the proof of the asymptotic expansion (2.18).
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Lemma 3.3. Ifn > 4, then there holds
T- (t,0,&) = J. (Towers,_(1),0¢) + 0 (€) (3.41)
as € = 0, C'~uniformly with respect to (t,0,€) in compact subsets of (R% ) x (R”)k*1 x N.

All our estimates in the proofs below are uniform with respect to (¢, o, ) in compact subsets
of (R%)* x (R™)*~! x N and with respect to & in (0, g¢) for some fixed positive real number .

Proof of the C%—part of (3.41). We get

J- (t,0,€) — Je (Towers, (),,¢) = (Towers, 10, =i (f (Towers,4)c¢)) » 6. (0).06),,
+ §||¢56(t)7‘775||h_ /M (F. (Towers. (1,06 +s.(1),0,6) — Fr (Towers. ), 0¢)
— fo (Towers, (1) 0.6) Gs.(1).06)dvg - (3:42)
By CauchySchwarz inequality, Proposition 2.1, and Lemma 5.1,
(Towers, 1,0 —i* (f- (Towers.(1)o¢)) s Po()0)y, + % 165.0.0ell, = 0 (€) (3.43)

as ¢ — 0. Now, we estimate the last term in (3.42). By the Mean Value Theorem, Holder’s
inequality, Proposition 2.1, and Lemma 5.1, we get

/ (F (Tower5 1,06 TP (¢ ) — F. (Towerzge(t)@g) — f- (Towergs(t)ﬁ,g) Qﬁgg(t),o’g) dv,
M

2 2% —2—¢ 2% —2—¢
=0 (H¢55(t) o e (HTOW@l"ég(t),a,g oo T H¢5 e )) =o(e) (3.44)
as € — 0. The Cpart of (3.41) follows from (3.42), (3.43), and (3.44). O

Proof of the C'~part of (3.41) with respect to t and o. We let o stand either for ¢; or o;; for
somei=1,...,nand j =1,...,k By Lemma 4.1, we get

d
d_ TOWGI'§ (t) cr§ Z Z Vlt 0 z 05,e(t5),05,€ ( ) (345)

0 =0 j=1

where the functions Zis, ()0, are as in (2.7) and the real numbers v;,,,, are uniformly

bounded with respect to (¢,0) in compact subsets of (R*)* x (R™)*'. By (3.45) and since
the function ¢s_ ()¢ belongs to K, (t(t) ocr W get

d
(\75 (t,0,8) — (Tower(; (t),0 )) =DJ. (Tower(; 1), TPs. t)ag) (d_g(’bas(t)’g’f)

n

K
Z Vit;o; ( 1y <ZZ 5ityose — (1) 0 (fL (Towers, (1).06) Zis; -(t;)056) » D6 (t) >h

- / (fe (Towers. (1) o.¢ +¢s.(1).0c) — f (Towers, 1) o)
M

- fé (Towerds(t)vo-vé‘) qb(ss (t),O’,f) Ziv(sj,E(tj)ao—j7§dUg) ° (346)



SIGN-CHANGING BUBBLE TOWERS 15
By (3.20), we get

n k
d
DJ. (Tower(gs(t%a’é +¢5€(t)7075) . ( >

Z)\ZJ(S(t 0£< 1,05,¢(t; UJEa ¢5 > )
=0 j=1 h

(3.47)
where the functions Z;s, . (,)0,¢ are as in (2.7) and the real numbers \;;s.(1)0¢ are as in

A7 ,7 6(t , , ]
(3.20). Since the function ¢s, (1), belongs to K(i(t)@é, differentiating <Zl 510(t)),05:6> Db 05>h
with respect to o, we get

d d
<Zi,5j,g(tj),aj,5, d_g¢6g(t),a,§>h =— <d—QZ¢,5j,5(t]-),aj,g7 ¢5g(t),a,§>h : (3.48)
By (3.47), (3.48), and Cauchy—Schwarz inequality, we get

d
'DJa (Towers. (t),0,6 +®s.(),0,¢) - (d_qb&(t),o,g) ‘

<ZZ|MJE os!H ung(t)on‘ |65 (t).0¢ ], - (3.49)
=0 j=1
For any i =0,...,nand j=1,...,k, we find
d
—Zis;4.056|| =O(1). 3.50
HdQ et (1) (3.50)
By

(3.49), (3.50), Proposition 2.1, and Lemmas 3.2 and 5.1, we get

d
DJ (TOWGI“(;E t),0,8 —Hﬁ(ss(t)gg) (d_g¢6g(t)’a’§) = 0(8) (3.51)

as € — 0. The C'-part of (3.41) with respect to ¢ and o follows from (3.28), (3.30), (3.34)
(3.39), (3.46), and (3.51).

U
Proof of the C*—part of (3.41) with respect to . For any i = 1,...,n, by (3.20), we get
J- (t,0,expey
dy; € ( 3 ) 0
n k d
- Z Z Al J0e (t ’05< L3j,e(t)05.& 5 dy (TOWGI'(;E( t), 0,€XPe Y +¢55 aexpg y> > ’ (352)
=0 j=1 ¢ y=0/ h

where the functions Zi s, ()0, are as in (2.7) and the real numbers A;  5.(1).0.¢ are as in (3.20).
For any ¢ = 1,.

M, l =0,...,n, and j = ,k, by Lemma 4.1 and Cauchy—Schwarz
inequality, we get

y:cxpg1 T > ‘

< Z ||Zl75j’e(tj)ﬂj=th (H%ﬁm,e(tm)vamé”h + ||%5m,e(tm)70m,€Hh) =0 (\/E) , (3.53)
m=1

d
’ <Zl,5j,g(tj),aj k3 @ Towers, (+),o,exp, y

(2

+ 7 Towers, (1),0. (expE y)

k
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where the functions 7; 5, . (tn),0m,¢ are as in Lemma 4.1. Since the function @5, (¢) ¢.exp ey belongs
to K-
s

< (1).0expe differentiating <Zl75jys(tj)7gj7exp§y, ¢5a(t),0,exp§y>h = 0 with respect to y;, we get

d
y= 7

Proceeding as in the proof of Lemma 4.1, we find

d

dy; Zlﬁj,a (t5),05,6xPe Y

5 ¢5s(t)70'7§> . (354)

d
21,6, 2(8),05:6 0 7 P (1),0ex
< 7,15 )05 dyz‘ Pe Y N

y=0

d
+ =215, .(t)),05.¢ (€XPe Y
T ag B ¢ (expey)

= 0(1). (3.55)
h

y:expg Ly

By (3.54), (3.55), Proposition 2.1, Lemma 5.1, and Cauchy—Schwarz inequality, we get

d
> - < d_yZlv6j,s(tj)7Uj 3 (eng y) ’ ¢6E(t)7g’§>
y=0/ h v

d
‘ <Zl,5j75 (t5),05,6> d_y¢55(t),a,exp£ y

? y:expg1 T h

d

dyl Zlyéj,s (tj)vgj »€XPe Y

d

< + d—%Zl,aj,E(tj),oj,g (eng ?/)

[ds.0).0el,, = 0 (1) . (3.56)
h

y=0 y:expg T

Since there holds Z; 5, (t,),0;6 = 0 in M\ B¢ (19), where the real number ry is as in Section 2,
integrating by parts, we get

d
< dy.Zl:CSj,s(tj)’ffj,E (eng y)

7

, P5.(1) ,0,§>
y:expg1 T h

d
+ <Zz,5j,5(t]-),gj,g, d—y¢55(t),g,g (eXPg y)

d
+ —(Zis e
y:expgl z >h /';0(7‘0) dya ( l’(sj,g(tj), I3 (eng y))

d d ( . .
i (Onnns (ex0e) - (5 (enen) /essia )] ) )

%

d
+ / . Zis, ()05 (€XDe ) Ps.0),0¢ (€xDe Y) m (h (expe y) ‘GXPZ g (y)\) dy =0, (3.57)
Bo(ro

where the function |exp§ g‘ is the determinant of the metric and the functions ¢ are the

components of g~! in geodesic normal coordinates. By (3.57), Proposition 2.1, Lemma 5.1,
and Cauchy—Schwarz inequality, we get
y:expg T y:expglx >h

=0 (||Zz,aj,s(tj>,aj,sH1,2 \\Cbae(t),avé\\l,z) =o(1). (3.58)
By (3.52), (3.53), (3.56), (3.58), and Lemma 3.2, we get

n ok
- _ Z Z ALjbe ()0,

y=0 =1 j=1

d
s G500 ) Zi6ye4y)0560 T Do ()0 (€XDe Y)
h dy;

d
< dy Zl,(;j’a(tj),(fj,f (expf y)

)

:75 (t7 g, eXp§ y)

dy;

d
<Zlvfsj’5(tj)7aj,§, @ (TOWGI‘(;E(t)pé (eng y) + ¢68(t),a,§ (eng y)) ) > 4+ 0 (8) (359)
? y:expg z/ h

as ¢ — 0. From now on, we fix a real number r; such that ry < r < 44, where 7 is as in
Section 2 and 44 is the injectivity radius of the manifold. We let 1 be a smooth cutoff function
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such that 0 <n < 1in R", n =1 1in By (ry), and n = 0 in M\ By (r1). By (3.20), (3.59), and
since there holds Zj 5, (1;),0;,,c =0 in M\Bg (o) for all [ =0,...,nand j =1,...,n, we get

d d
d \76 (t7 g, expg y) + DJ& (Tower(ig (t),0,€ +¢55(t)7a,§) . < d
Yi y=0

Towers, (1),0.¢ (eng y)

( y:expg g

yexp_1$) =o(e) (3.60)

y:expg ! 1’)

dv,

y:expg1 T

d
+n (engl x) d_y¢5a(t),a,§ (expg ?J)

as € — 0. Integrating by parts, we get
DJ. (Towers, (1,6 +®s.(t).0:¢)

d
. (77 (expg1 :E) 0y

(Towers, (1),0. (exXDey) + bs.(1).0.¢ (XD )

)

d

- /M (Vés.0.06, V1 (expe (1)), d_yi%a(t),a,& (expe y)

1 d
-3 / . (Towers, (1),0.¢ (€xPe y) + Ps.(1).0.6 (exPe ) )
d

X & (Towers, (1),0.¢ (eXPe ) + . (t),0¢ (€xPe y)) dy;

2 di (h (expe y) 1 (y) \/[expi g (y)\) dy

d
+ / F. (Towers, (1),0.¢ (exPe y) + Ps.0),0 (exDe ¥)) an, <n (v) \/}eszg(y)ldy> : (3.61)

where F. (u) is as in (2.16), the function }expg g| is the determinant of the metric, and the
functions ¢g*# are the components of g~! in geodesic normal coordinates. We are led to
estimates each term in (3.61). First, by Proposition 2.1 and Lemma 5.1, we get

d
9 dy;

(g"‘ﬁ (expey) 1 (y) \/|expi g (y)|> dy

1
-5 / (Towers,(1),0.6 (€XDey) + bs.(1).0.6 (XD Y))

/M (Vs ()06, V1 (expg ' (2)))  ——s.(t).0¢ (exD¢ 1)

v, = O (Vs .0el2)

=o(e) (3.62)

as ¢ — 0. By Cartan’s expansion of the metric in geodesic normal coordinates, we get that
for any o, 8 = 1,...,n, for y close to 0, there hold

1 1
g°" (expey) = 0°7 + 20 RL (€ y"y” + S0V, () vy v + O (lul),  (363)
1 1
v/ ]expig (y)] =1 - ol (O Y'Y = 5 Ruwe (O 'y +0 (Iy") . (3.64)

where the real numbers §%° are the Kronecker symbols, the functions R} 5, are the components
of the Riemann curvature tensor, the functions R, are the components of the Ricci curvature
tensor in geodesic normal coordinates. By (3.63) and (3.64), we get

d
/R" dya (Towers.().0.¢ (XD y) + do.(t.0e (exPe ¥))

d d
X — (Towergs(t)ﬂ,g (eng y) + ¢6g(t),07§ (eXpE y))

o i (gaﬁ (expey) 0 (y) \eszg(y)\) dy
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d d
@ (Wéj,e(tj),aj,g (exp§ y)) % (W%,e(tj):ajvf (expé y))

. (gaﬁ (expe y) \exng(y)\) dy
k
+0 (Z / ’VW(;JE(t UJ5| |VW5letl 015| d .1' f)dvg>

J=1 1#j

k
+O<Z/ VW, . (t).05.6] |V 601,06, o ( xg)dvg>+o(/ \wgst)c,g\ dvg> (3.65)

d
dy;

(gaﬁ (expe y) leXng(y)\) 5 (7R, () + 07 R (€) = 677 Ry (9)) v

1
9 ( 575}%%# v (5) + 26’Y[BR371 v (g) + 25W6szfyl/z (f) - 25&BRiM7V (5) - 5aﬂRNV,i (f) )yuyu

+0(ly’). (3.66)

H

Moreover, it follows from the second Bianchi estimate that

a4 Scaly (exp; y) (3.67)

20" Ry, (§) = m

y=0

Using (3.66) and (3.67) together with symmetry properties of the components of the Riemann
curvature tensor, we find

d d
/ g (W5j,s(tj)70ja€ (epr y)) d_yﬁ (de,g(tj),aj,g (epr y)) dy; (gaﬁ (epr y) ’expz g <y)‘) dy

4 2 %jj‘fotj n+1
_ Lm0, / . (— (4 (n—2) Ricy (€) . (¥ (07) , W (e:)) 65 (1)

12 14 7r2)
+(n—2) (2 (VRicy (expey) - (% (o) W (e))],_q -0 )
(expes) - (e (05) Fe o) o 1)
o (expey) . 8je (t)° 12+ 0 (8, (1)° ) )dr +0 (8- )%

n—2 n+4j—6

T 12n K" (4 Ricy (§) . (Ye (0)) , Ve (1)) tjpee 202

+ Xn (2 <VRicg (exp£ y) NACHN'Z (ei))‘y:o , 0j>

2 n+4;—6
. -2
t] E n
y=0

2 n+4j;6 n+4_j;6
tie - )—l—o(s " ), (3.68)

(expey) - (¢ (o) , ¥ (o))

29n7rn,j d
n—2 dy;

g (expey)

y=0
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where Scal, is the scalar curvature, Ric, is the Ricci curvature, ¥ is as in Section 2, w,,_; is the
volume of the unit (n — 1)-sphere, K, is as in (3.2), 0,, x», and 7, ; are as in (3.11)—(3.12).
For any [ > j, using (3.1), we find

(51’5 (tl)nT_z 5j,:(()tj) rdr
y VWi, o016l y [V Wor e, dg (,8) dvg = O | = ; 142

Oje (t5) 2 L+72) 2
~0 (;Lgel‘%”%) . (3.69)
For any 7 = 1,...,k, by Cauchy—Schwarz inequality, we get
[ 19Ws el [ 9500l (. sy < (W, 0,) ) [ 90l -
(3.70)

Using (3.1), we find

rQ
2 2 2 05.e(t5) Tn+1d7’ n+4j—6
VWs. 0.6l dg(x,6) dv, = O | d;c (¢ / —— | =0(eg =2 ). (3.71
/M‘ 8j.e(t;5), 3,5’9 g( 5) g (J, (]) o (1+r2)n—1> < ) ( )
By (3.70), (3.71), Proposition 2.1, and Lemma 5.1, we get
/|VW5 U]§| Vst Ug\gdg (z,€) dv, = o (g) and/ |V¢5E(t)707§‘jdvg:o(€) (3.72)
M

as ¢ — 0. By (3.65), (3.68), (3.69), and (3.72), we get

d
/Rn dye (Towers.(1).0.¢ (exPey) + ds.(t).0e (XD ¥))

‘ d
X dyg (Towers. (1).0¢ (€XPey) + P ()06 (€XDe ¥)) ” (Qaﬁ (expe ) 1 () 1/]expi g (y)|> "
nt4j—6
B 12n ( ZRICg (e (o)), (e;)) tje 2D

F (2 <v Ricg (expe y) . (Pe (01) , e (ei))‘yzo : 01>

(expey) - (¥ (01) , ¥ (1)) . tfe) +o(e)

(3.73)

9 20, d
) tie + 3y, g (exp5 y)
y= 1

n —

as € — 0, where 0,, and x,, are as in (3.11)-(3.12). By (3.64), we get

d
/ (Towers, (1) 0.¢ (expgy)was(t),a,s (expsy))zd—y_ (h (expe ) 1 (y) lexng(w!) dy
/ W2 (1)0evg + O <Z/ W3 1).0,.¢8a (2, §)dvg>
y=0 j=1
(ZZ/ W, et).05.6War ). 54%) +0 (Z/ W, (t).05.6Ps.t osd%>

J=1 1#j

O( [ vy (3.74)
M

d
= d_yih (exp£ y)
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and
2 255 1) rn—1
9 . n—2 B n—2 ‘ N2 e (tj ) ) 2 2
/MW%,a(tj),Uj,édvg =n 2 (n—2) % wy10;(t)) /0 (1 +7ﬂ2)nf2 (1+O (5178 (t;)"r )) dr
n— 27 i Yn o nt4i—6 n+4j—6
+0 (8- (£)"2) :T’ﬂKn e —|—0<5 = ) (3.75)

for all j = 1,..., k, where w,_; is the volume of the unit (n — 1)-sphere, K,, is as in (3.2), v,
and 7, ; are as in (3.11)—(3.12). For any j = 1,...,k, using (3.1), we find

0
555 rdr
Wi 0o ey (T, dv:OdEt-g’/J’]—
/M 0j,e(t5),05.€ g( 6) g (77 (]) 0 (1+r2>n2)
0(2 )  ifn=4,

_ ) o(c"T |n¢|) ifn=5
- ( : (3.76)

3(n+4j—6

0 (s o )) ifn > 6.

For any [ > 7, we find

-2 7

S ()T [Tt rdr _n6i_
/ Wojc(t:),05.6Wae(t).16d0g = O L>ne/ T | =0 <5l = 1))-
M 0je (t5) 2 Jo (1472) 2

(3.77)
For any j = 1,..., k, by Cauchy-Schwarz inequality, (3.1), Proposition 2.1, and Lemma 5.1,
we get

/M W5, ot),05.6P5:(1)0.£dVg = O (HW5j,s(tj):Ujfo2 ||¢5a(t)»0,§}|2)

= 0 (8 (1) UL moross,ce, ||, [|05.01.0¢],) (3.78)
Moreover, by Proposition 2.1 and Lemma 5.1, we get
/M !%s(t),a,dzdvg =o(e) (3.79)

as € — 0. By (3.74)—(3.79), we get

d
/ (Towers, )0 (XPe ¥) + Go.0.0¢ (XD y))? @ (h (expey) n (y) \/|expi g (y)|) dy

2V oy d
= K g, (h (expgy))

- t?’c+o(s) (3.80)

y=0

as € — 0, where 7, is as in (3.11). Using (3.64) and letting A;s_ ) be as in (3.31) for all
J=1,...k we get

‘ / (Fa (Towers, (1),0.¢ (eng Y) + 5. ()06 (eXPg y))

k
1 *_g d
~ 5 2 Whms (exbey)’ )@ ("fz () y/lexpz g (y>\> dy'

e
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2% —¢

F. (Towers, )06 +1 (eXPg ' #) $s.01.06) = 5725, 100076

dg (z,€) dv,

k
i—1 Ajse (1),

j
1 / 9* 1 .
T o W5, Zoneda (@, €)dvg) - / ¢2 o dv,. (3.81)
2* — ¢ ; Aot Le(t),o0,€ 2% _ o VB (ro) (t),0.¢

By the Mean Value Theorem, for any j =1,...,k, we get

/Aj,és(t),é

21— 72—
=0 (Z/A W‘Sjﬂs(tj)zj 5W5l€ (t),01 gd z § dvg + Z/ 515 Z )01, E (37 6) dvg
125 7 Adse(b),¢

145 Y Ajse(t).6

1 2% —¢

-1
Fa (Tower(;s(t)’gvf +n (eng x) ¢6E(t)7‘775> o 2* — € (Sj’s(tj),(fj,f

dy (z,€) dv,

+ /A W2 152 bntmedy (2.€) dvg + / gbg:(timgdvg). (3.82)

3,52 (£),€ Ajse(t),¢

For any j = 1,...,k, using (3.64) and (3.67) together with symmetry properties of the com-
ponents of the Riemann curvature tensor, we find

1 . d
2*_5/71 W52 (t5) Uj{d_ |eXp§g(y)|dy

_(n (n_Q)) T Wn— 1 ) / Jf(t) rnl
12(2 —¢) (1122

x (4Ricg (€) - (T (07) e (e0) b (85) + ( (VRicy (expy) - (% (o) % (e))],_q -0 )

+ diyl Ric, (expg y) (P (05) , ¥ (o))

+% dy; g(expgy) y:O(s]a(t]) +O((5 ( ) ))dr—{—O(é ( )n)
n—2 n+4j—6

= "o K (4Rng (&) - (We (07) , Ve () tjpee 02

T (2 (VRic, (expey) - (% (o) % (e2))],_y )

2 d
+ — d — Scal, (eXpé y)

d .
+ o Ric, (expey) . (Y (05) , ¥ (0;))
i y=0

+o(e). (3.83)
For any [ # j, using (3.1), we find

/J\/[VVQ*_(z‘,l)\E W515 (t),01.¢ g (2,€) dvg
( n=2 ro
e (t) 2 /%,s(ta’) r2dr o
) Y fj<l
<5j (t % 0 (1+T2)"sz(2*7176) 1 7 )
(
(

)
)

; t‘)ngQ 52(t) r"ldr

, Jn_4/]’aj e if 5> 1,
t)= Jo (1+72)"7 @717
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0 (Ma5l_%j+72&__62)> ifj <1,

 ndy, ae (3.84)
O (usaj’?g”ﬁ) if > 1,
v/ %i—1,e(tj—1)9;,(t;) p
* 61,6(t) rdr
W22y (2,€) dvy = O | 6. ( tl/
0.6 (t1),0 g £ S - P
/Aj,ég(t),.f Le(ti lf \/6J (tél Eg(t+ll) (tj4+1) (1 + 7“2) 3 (2%—¢)
O (peems” = ) i<,
- (3.85)

O (/’L 82(7;’L+21>j_2777’2l_2&t82)> lf] > l
For any 7 = 1,...,k, by Holder’s inequality and Sobolev’s inequality, we get

/MWC?;E s £ Do (t),06dg (2,6) dvg = O (HWQJE@1 ey (7, )‘ e H%E(t),o,sﬂh)- (3.86)

Using (3.1), we find

2% _g 3*75 % Tn—l—}-f%dr
W c(t5),054 5 (513 §)2—1 sdz;g—O (5 (J)z—ka -
M 6,(t5),05, 0 (1 + 7"2) 5

-0 ( e %) (3.87)
By (3.86), (3.87), Proposition 2.1, and Lemma 5.1, we get
[ W sty iy =00 awd [ 0 =0l (89)

as € — 0. By (3.81)—(3.88), we get

d
/ F. (Towers. 1), (eXPe ) + 511,06 (XD ¥)) ™ (77 (v) !eszg(y)l) dy
= K ( ZRlcg (W (o)) W (€) tye 0D

+ X (2 (VRic, (expey) . (W (1) e ()], -1

d — Scal, (exp£ y)

L4 Ric, (expe y) - (¥ (01) , ¥ (01)) n—2 dy;

dy; N

y=0

_O)tfe) +0(g)

(3.89)
as € — 0, where y, is as in (3.12). By (3.61), (3.73), (3.80), and (3.89), we get

y:expg ! :c)

+o(e) (3.90)

y=0

DJ. (Towefss@)m +s. (t),a,s)

d
(e ) - (Towens .0 (x0c) + G010 (e )

n 1 dy; \4

d(n—2

m Scal, (exp§ y) —h (exp5 y) )
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as € — 0, where K, is as in (3.2) and 7, is as in (3.11). By (3.60), (3.62), and (3.90), we get
that (3.41) is C'-uniform with respect to &. O

4. FIRST DERIVATIVES ESTIMATES
In Lemma 4.1 below, we give pointwise estimates for the first derivatives of the functions

Wéj,s (tj)vo.jvg'

Lemma 4.1. Let A be a compact subset of (R%)* x (R™*"' x N. Fore small, for any (t,0,€)
in A, foranyi=1,....nand j=1,...,k, and for any point x in M, there hold

d 1 -
%W%,a(tj)ﬂjvﬁ . (20753',5(%)703‘:5 + Z sz‘Zz‘,dj,E(tj),o—j,g), (4.1)
J J

i=1
d
da‘,W%,s(tj),ojvé = Ziﬁj,s(tj)ﬂj»ﬁ ) (4.2)
ji
d 1
™ 81,0 (t),05,expe Y - = —515 (tj)Zi,gj,E(tj),aj,g + Viis; ()56 5 (4.3)
d 1
Ws 0 L AT s ot 4.4
d?/i Paelts) ot (exp£ y) y:expglx (Sj,a (tj) ielti) s ($) - ! Pielti) ot ( )

where 0. (t) is as in (2.11), the functions Zis, (1;).0,¢ are as in (2.7), and the functions
Visje ()06 AN Vis; (t)),0;.¢ are such that

: Slsy

H")/Zyéj,E(t])7U]a£Hh S CAS ) (4.5)
n—2 445

H’iiﬁj,e(tj)v%éHh < Cape® € K Ga (4.6)

for some positive constant C4 independent of €, t, o, and &.

Proof. We get (4.1) and (4.2) by straightforward computations. We prove (4.3) and (4.5).
All our estimates in this proof are uniform with respect to (¢,0,§) in compact subsets of
(R)F x (R™)*™' x N and with respect to ¢ in (0, ) for some fixed positive real number &.
For y close to 0, we identify Teyp, ,M with R™ thanks to a local orthonormal frame, parallel
at & Forany j=1,...,k, we get

<1n % (dgexpg y (:E, expy y)))

d
W (t).0s o = W5 (110,
dyl 5J7€(tj)7 Jo pgy ('Z') y:() 6],5(t])7 ]»5 (x) dyl

n—2 n+2 n

y=0

ni (n—2)1 d
- 5 (tj) Z Zj75j,s(tj)70'j»§ €9 d_yz (eng,exp5 y (z) )j

1€ j=1

Regarding the first term in the right-hand side of (4.7), we find

= O ([|YWs, .(t)).05 e LBero)\Be(ro/2) ||

d
HWéj,s(tj)vajvg @ <1n X (dgeXP§ Y (m’ eng y)))

y=0{1 9

+ W5, .(t).05. €1 Be (ro)\Be(roy2) ||, ) = O (5j,e (fj)nT_z) . (4.8)
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Regarding the second term in the right-hand side of (4.7), we claim that for any i, = 1,...,n,
for y close to 0, there holds

d —1 2

d_yi(eXPs,expgy (expen) ), o —di; + O (Inl°) , (4.9)
where the real numbers ¢;; are the Kronecker symbols. We prove this claim. For any j =
1,...,n, for y,n close to 0, we define

Eie(n,y) = (e><;pe_xlp25 , €XDg¢ n)j )

Clearly, &; ¢ (n,y) is smooth with respect to &, , and y. In order to prove the Taylor expansion
(4.9), we compute the first and second order derivatives of &;¢ (1, y) with respect to n and y.
Since the frame is parallel at £, we get &;¢ (0,y) = —y;. Differentiating this equation gives

0&;¢ D¢
= (0,0) = —4;; and 25 (0,0) =0 4.10
Y (0.0) 7 By, 0.0 (4.10)
for all 7,7,k =1,...,n. We also remark that ;¢ (1,0) = n;, and thus we get
0&;¢ D*Ej¢
= (0,0) = d6;; and 22 (0,0) =0 4.11
on; 0.0)=6; an OO (0.0) (4.1

for all 4,5,k = 1,...,n. As a third equation, we find &;¢(n,n7) = 0. Differentiating this
equation and using (4.10) and (4.11), we find

D*E; ¢ 1 < D?E; ¢ 0%E;
£(0,0) = —= 2L (0,0) + —25 0,0):0 4.12
oo "0 = "2 \ Gy 0 T Gy, OO (412
for all i, j,k =1,...,n. (4.9) follows from (4.10) and (4.12). By (4.7), (4.8), and (4.9), we get
d n"i (n— 2)%r2 n-2
Ws. (6100 ox Zis: o :0(5,5 t;)"2
dyz 6],6@])7 j€XPe Y =0 5j,€ (t]) 5], (t]) Kl 3 s J ( ])
+ 5]}5 (tj)il ||dgg (:L‘7 5)2 VZj:(Sj,s(tj)»Uj7£||2 + 53}5 (tj)il Hdgg ("L‘a 5) Zjﬁj,s(tj)ﬂjy&”Q ) (413)
We find
2
/M dge (7, 38 ’VZj’(;j’s(tj)ﬁgjf‘gg dvg, = O (6 (tj)4) 7 (4.14)
[ o 08 Zis oyt = O (5 1)). (4.15)

(4.3) and (4.5) follow from (4.13), (4.14), and (4.15). Now, we prove (4.4) and (4.6). For any
J=1,...k, we get

d d 1

LWy s —Ws o 1 e Zis e e()

By, e (OPe) T ) Gy (W] =5y Fitnettns ()
(4.16)

We find

d
W5, )05 €9 dy; (Inx (Jyl)) =0 ( ||vw(gj,s@j)v“j»&1B§(”'O)\B€(7"0/2) HQ
! y=01l1 2

+[Wset).01 6L BetronBeros2) |5 ) = O <5j,s (tj)%> . (4.17)
Finally, (4.4) and (4.6) follow from (4.16) and (4.17). O
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5. ERROR ESTIMATES
This section is devoted to the error estimates. We state our estimates as follows.

Lemma 5.1. For any compact subset A of (R% ) x (R™*'x N, there exists a positive constant
C4 such that for e small, for any (t,0,€) in A, and for any j = 1,... k, there hold

7" (fE (Tower(;s(t)ﬁé)) — TOWGFJE(t),a,th

:u(s\/g if n =4,
<C el ifn=>5, -
=74 clne| ifn=6, (5.1)

n+2 3
62(n72) an 2 7’
1
H(_DJ 4 (fé (Tower(se(t),mf) ZO,5j,s(tj)70j7§) - Zovfsj,s(tj)ﬁ'jath

pe/e  ifn=4andj =1,
<C, el z:fn =5 andj =1, | (5:2)
ellnel ifn=6or(n=4,5and j > 2),
e D ifn>7,
H(_1>j_1 i (fé (Towertse(t),mﬁ) Zi"sj,a(tj)fojvﬁ) - Zi?‘sj,s(tj)’o'j’g
ellne| ifn=4,5,6,
<Oy {

‘ h

n+2 . (53)
g2n=2)  4fn > 7,
foralli=1,...,n, where p. and d. (t) are as in (2.11).
Proof. All our estimates in this proof are uniform with respect to (¢, 0,&) in compact subsets

of (R%)* x (R")* ! x N and with respect to ¢ in (0,eo) for some fixed positive real number
go. First, we prove (5.1). By continuity of i*, we get

7" (f‘E (Towerge(t)@g)) Towers, ; 05||h
=0 (”f6 (Tower(;g(t)yavg) — A, Towers, (4),0.6 —h Tower(gs(t)vgéHLn> .

n+2

It follows that

7" (f5 (Towerge(t)vavg)) — Towers, (4,0 7§||h

o

By similar computations as in Musso—Pistoia [30] and Ge-Musso—Pistoia [20], we get
O(¢) if n=4,5,

2n

k
f- (Towen; Z 1)/~ 1f5 Wi, aj,g)

7=1 n+2

k
+ Z Hff (Wfsj,e(tj)ﬂj’&) A W5 3):05:6 hW%g(%%ﬂjéH% ) (5.4)
i=1

k N
f- (Tower5 ), ,g Z J ! fs W5 7%5) -7 0 (5 |1ns|3> if n =0, (5.5)
= e ) (52&t22>> ifn>7.
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In order to estimate the second term in (5.4), we denote x¢ (x) := x (d, (x,€)) and us o ¢ (z) ==
577" u (67! expg1 (z) — o) for all points z in M and all functions u : R" — R. Since U is a
solution to the equation Ag,qU = |U|* U in R, we get

Hfa (W6J <( 0]75) o AQW&j,E(tj)vUj’f hW5 UJ7£H 2”2
*—1—e 2*—1—e 2*—1
< HXﬁ (UJj,s(tj)an»ﬁ N U5j,s(tj)70'j7€)
—2
+ HX& <5j75 (t]) (AEUCIU)(Sij(tj),Ujf - AgUaj,E(tj)vo-j7£>

+ 2 H<VX§, VU(;JE

X" =X Us

e (t),

2n
n+2

- ||U5 D05 E gX§H 2

2n_
n+2

+ Hhngfsge t; )U],gH 277. . 5 6)

n

We are led to estimate each terms in (5.6). We find
2n
2" —1—e (772*—1—¢ 2" -1 n+2

/M Xe (Uéj,a(tj)ﬁj{ N U5]-,€(t]-),aj,g) dvg

~r0 .1 2 2n_
20 [5:E rH ([lng| 4+ In (1 + 7)) 2 dr 2n 2n
=0 | entz — =0 <5n+2 Ine n+2> , 5.7

( /(; (1 +7=2) |1’l | ( )

2n "0 n—1 ]
2 —1-e 21 nt2 B et r"Tdr p_nlrHi=0)
/]\4 ‘(Xf XE) U‘Sj,S(tj)»O'jvf dUg =0 </ o (1 + 7,2)” =0 (Mse 2n=2) ) ) (58)

26j’5(tj)

T0
2n 4n 5j,a(tj) TnildT
2 _ 2
" dvg =0 <5j,6 (ﬁj)wr2 (1 )n(n72)
0 n+2
= (L+72)7F

77‘("’7722) n(n+4j—6)
=0 M6n+ e 2(n+2) ) (59)

/ ‘Uéj,a(tj)vo-jnggXS
M

2n —T0_ n— 1+
ni2 2n 506 7 iz dr
dvg =0 <5j,s (tj)n+2 / n(n_2)
ma (1+72) e
M n(n+4;j—6)
=0 "2 g2ty . (5.10)

? 1 o
0xa0zg Foéﬁ Oz ) )

where the functions ¢®? are the components of g~' and the functions Flg are the Christoffel
symbols of the metric g, using (3.1) together with Cartan’s expansion of the metric, we find

/]\J ‘<VX57 VU(Sj»E(tj)vgj7§>g

Using the fact that, in geodesic normal coordinates, there holds A, = —g®” (

4 2(25-1) .
pie 3 ) if n =4,

5(4j—1) )
g 14 ) if n =25,

(
(
<€% |In 5\) if n =06,
(

2n(n+4j—6) )

(5.11)

g (n42)(n-2) ifn>"17.
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It remains to estimate the last term in (5.6). We find

( 4 2(25-1)
O (uée 3 ) ifn=4
5(45—1)
0 (a 4 ) ifn =5
= . (5.12)
O (57 |1n5|> ifn==6
2n(n+4;5—6)
O (5 (n+2><"—2>> ifn>"7
(
For any j =1,...,k, by (5.6)—(5.12), we get,
Hff (Wéj,s(tj)za'jvg) o AgW‘;j,S(tj hW6 UJ 5”27"2
O(,ue\/g) ifn:4andj:1,
-{o (s%> ifn=>5andj=1, (5.13)

O (e|lne|) ifn>6o0r (n=4,5and j > 2).

Finally, (5.1) follows from (5.4), (5.5), and (5.13). Now, we prove (5.2) and (5.3). By continuity
of i*, we get
,

=0 (H(—l)j_l fé (TOWerge(t),a,g) Zib;.0(t),05:€ AN B1oe(6)s0 1,6 — hZ; Sye(t),05

i1
H (_1)j ? (f;;Z (Tower(;E(t)’ozg) Ziﬂfsj,s(tj)ﬂj:f) - Zi,éj,«f(t]')vo'j’g

) (5.14)

n+2

It follows that

,

i—1
=0 ( H ((_1)J fé (Tower(;s(t)p’é) - fa/ (W5j,e(fj)70j7é)> Ziﬁj,a(tj):ajf

—
H(—l)] 0 (fL (Towers, (t)..6) Zis,o(t,),056) — Zidye(ty)sor

2n
n+2

+ Hfsl (W‘Sj,e(tj)vgjvf) Ziﬁj,e(tj)ﬂj —DgZ; 05.e(t5),05,€ hZzé (t),05 g” 2 > (5.15)

Similar computations as in Musso—Pistoia [30] and Ge-Musso—Pistoia [20] give

| (177 12 (Towers. ) = 12 (W, c006) ) Zidtrone]|
n+2
O (e) if n =4,5,
_J O <€ ]1n€\§> if n =6, (5.16)

0 (52%3) ifn>T.
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Since V; is a solution to the equation Ag,qV; = (2* — 1) U* 72V} in R", we get
Hfs/ (Wﬁj,s(t]‘)ﬂj E) Zi 05,6 (t5),05,6 AgZiﬁj,a(tj),oj,é - hZi,cS]-,E(tj),aj,g||n%b2
‘X2 o (Ui_(?;)ea]& Ui‘(f )m,f) Vidje(t)os

+(2 1) |(F T - x) UE

5 (s Vit )01,

<(2"=1-¢)

n+2

n+2

-2
+ HXE (53‘,5 (tj) (AEuolV;)éj,E(tj),oj,g - Agviﬁj,s(tj)wv&)

+ ||‘/Z§]€ t])UpngXﬁ” 2n

2n_
nt2

+ 2 H Vxe, VVis; (1)) + HthV 5 (t),05, EH 20 (5.17)

2
with the same notations as in (5.6) and Vis, _¢,).0,c = (Vi)s ] g(tj - Since [V (y)] < 22U (y),

IVVo (y)] < 252 |VU (y)], and |V2V; (y)| < C (1 + y| ) ? for all points y in R™, by (5.7)-
(5.12) and (5.17), we get

e (Wase.006) Zogscttinione = DoZosseone = 120wyl 2
O (pve) ifn=4andj=1,
{0 (53> ifn=>5andj=1, (5.18)
O(el|lne|) if n>6o0r (n=4,5and j > 2).

For any i =1,...,n, we find
_2n_
2 —1—¢ (772*—2—¢ 2" —2 nt2
/M Xe < 8j,e(t5),05.6 U5j,s(tj),<fj,£> Vidjeti) s dvg

_T0 o qp2m 2\\ i
0[5 ntz (|1 In (1 "2 2n_ n
=0 <€n2+2 / R - (| n€| il Ii(§1+4_)|_/r )) r> =0 <En2+2 ’1n6|n2+2> ’ (519)
0 (14 r2) nt2

2n _ T n—1+
2" —1- 2% — nt2 - 5. T o dr
/ ‘<X§ - X{) U]E(t]) 01,5‘/1 5] E(t]) (7375 dvg - O (/ W
M W (]_ + r ) n+2

nn+4) oy (n44)(n+4j—6)
:O Mg n+2 € 2(n+2)(n—2) , (520)

70 7‘L—1-|— 2n
2n_ 4n SN T n+2 (r
. +2 — . .
/ “/175j,s(tj)7‘7ja§A9X§‘ " dug =0 (5;,5 (tj)+ )
M

o N
e (L4 12)

i n2(7L+4j 6)
-0 (Mn+282(n+2)(n 2))7 (5.21)
e 2n_ gggw r"tdr
/ ‘<VX£7 VVZ,EJ,E(t])7U]1£>g dvg = O 5]"5 (t]>n+2 - .2
M sty (L4 12)75
n? 20,
=0 <M”+25%) (522)
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Similarly to (5.11), we find

2n
nt2
/ ‘Xé ]5 j (AEUCIV) (tj)ﬁ'j,f - Ag‘/;vtsj,s(tj)p'j:g) dvg
0 1+ _ .
an [T " n+2dr 2(n=2)  op(n+45—6)
=0 [ dc (1) / e :O<Ms"+2 6“*2“5”)- (5.23)
0 (14 72) 2

Moreover, we find

—T0__ 14 2n
n_ an [0 w2 dr
/ [PXEVigett)01.8] ™2 dvg = O | 85 (1) 72 / (14 72y
.y 0 (14 r2)n+e

n 2(n=2) 2n(n+4j
=0 (i (1)) =0 () s
Foranyi=1,...,nand j =1,...,k, by (5.17) and (5.19)—(5.24), we get
Hf Wd] 6(t J],f) Z ( )Ug,f AgZi,é‘j,e(tj),O'j, th§ O‘wa 2n — O ( |1n€| ) (525)

Finally, (5.2) and (5.3) follow from (5.15), (5.16), (5.18), and (5.25). This ends the proof of
Lemma 5.1. U
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