MULTIPLE SOLUTIONS FOR NONLINEAR ELLIPTIC EQUATIONS ON
COMPACT RIEMANNIAN MANIFOLDS

JEROME VETOIS

ABSTRACT. Let (M,g) be a smooth, compact Riemannian n-manifold, and h be a Holder
continuous function on M. We prove the existence of multiple changing sign solutions for

equations like Aju + hu = |u|2*72 u, where A, is the Laplace-Beltrami operator and the
exponent 2* = 2n/ (n — 2) is critical from the Sobolev viewpoint.

1. INTRODUCTION

1.1. Statement of the results

Let (M, g) be a smooth, compact Riemannian manifold of dimension n > 3 and h be a
Hélder continuous function on M, namely a function which belongs to C%? (M) for some real
number ¢ in (0,1). We consider equations like

Agu+ hu = |u|* " u, (1.1)

where A, = —div, V is the Laplace-Beltrami operator, and 2* = 2n/(n —2). If Hf (M)
stands for the Sobolev space of all functions in L? (M) with one derivative in L? (M), then
2* is the critical exponent for the embeddings of H? (M) into Lebesgue spaces. We provide
H? (M) with the scalar product

(u, V) g2y = /M (Vu, Vv, dv, —|—/1/Muvdvg, (1.2)

where A is a positive constant to be chosen large later on. The Hélder continuity of A provides
the regularity of weak solutions of equation (1.1). In case there holds h = 4(7;—_721) Scal,, where

Scal, is the scalar curvature of the manifold (M, g), equation (1.1) is the intensively studied
Yamabe equation whose positive solutions u are such that the scalar curvature of the conformal
metric u? ~2g is constant (see Aubin [3], Schoen [49], Trudinger [58], and Yamabe [59]). In this
paper, we deal with multiplicity of solutions for equation (1.1) when the function A is locally
less than At(’;‘l—’_zl)Scalg in Theorem 1.1, and globally less than 4(7;’_21) Scal, in Theorems 1.2
and 1.3. We define the energy of a solution u of equation (1.1) to be the real number E (u)
given by

E(u) = /M lul* dv, (1.3)

where dv, is the volume element of the manifold (M, g). We say that an operator like A, + h
is coercive on H? (M) if the energy associated to this operator controls the H?-norm. We
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let D2 (R™) be the homogeneous Sobolev space defined as the completion of the space of all
smooth functions on R"™ with compact support with respect to the scalar product

<u,v>D1,2(Rn)=/ (Vu, Vo) dx .

We let also K, be the sharp constant for the embedding of D2 (R") into L*" (R"), namely

4
Kn =y [ —————m>
n(n—2)w"

where w;, is the volume of the unit n-sphere. We associate each solution of equation (1.1) with
its opposite one, and call that a pair of solutions. We state our first result as follows.

Theorem 1.1. Let (M, g) be a smooth, compact Riemannian manifold of dimension n > 4
and h be a Holder continuous function on M such that the operator A, + h is coercive on
HZ (M). If there exists a point xo in M such that h(zy) < 4(7;’1—:21) Scal, (o), then equation
(1.1) admits at least (n + 2) /2 pairs of nontrivial solutions with energy less than 2K, ™.

More precisely, we prove that either we do have infinitely many solutions of equation (1.1)
or the (n 4+ 2) /2 pairs of nontrivial solutions we get in Theorem 1.1 have distinct energies.
In the particular case where the manifold is locally conformally flat, n > 7, and h is a C'-

n—2

function less than oD Scal, on the whole manifold, the above result can be improved. In

such a setting, we establish two results. We first consider families of equations like
Agu+ hu = |uP* " u, (1.4)

where (p,), is a sequence in [2, 2*] converging to 2*. A sequence (u,),, is said to be a sequence
of solutions for the family (1.4) if for any «, u, is a solution of equation (1.4). First, we
prove a compactness result for the family of equations (1.4) similar to the one proved by
Devillanova—Solimini [17] in the case of smooth, bounded domains of the Euclidean space.
Our compactness result is as follows.

Theorem 1.2. Let (M, g) be a smooth, compact, locally conformally flat Riemannian manifold
of dimension n > 7 and h be a C'-function on M. We let (p,), be a sequence in [2,2*]
n—2

converging to 2%, and we consider the family of equations (1.4). If there holds h < D Scal,

in M, then any bounded sequence in H? (M) of solutions for this family of equations remains
bounded in C° (M).

An equivalent conclusion of Theorem 1.2 is that any bounded sequence in H? (M) of solu-
tions for the family of equations (1.4) is compact in H? (M). In particular, such a sequence
converges up to a subsequence in H? (M) to a solution of the critical equation (1.1). This
easily follows from standard elliptic estimates (see, for instance, Gilbarg—Trudinger [28] Theo-
rem 9.11) and the compactness of the embedding of HY (M) into H? (M) for all real numbers
p>2n/(n—2). As a remark, note that p, — 2* is the only interesting difficult case for com-
pactness since the embeddings of HZ(M) into LP(M) are compact for p < 2*. Theorem 1.2 is
the key argument in the proof of our last result which states as follows.

Theorem 1.3. Let (M, g) be a smooth, compact, locally conformally flat Riemannian manifold
of dimension n > 7 and h be a C*-function on M. If there holds h < 4(’;—__21) Scal, in M, then

equation (1.1) admits infinitely many solutions with unbounded energies.
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There are several situations where we do know that the solutions we get in Theorems 1.1
and 1.3 truly change sign. Such changing sign solutions are referred to as nodal solutions. Let
us assume, for instance, that the Ricci curvature Ric, of the manifold (M, g) satisfies

4(n—1)

o An—1)
Ricy = n(n — 2)

g (1.5)
for some positive real number A, in the sense of bilinear forms, the inequality being strict
when the manifold is conformally diffeomorphic to the sphere. Then, as proved by Bidaut-
Véron—Véron [6], equation (1.1) with A~ = X has a unique positive solution, which turns out
to be u = A(®*=2/%_ In particular, in such a situation, all but one pairs of solutions we get in
Theorem 1.1 are nodal. Concerning Theorem 1.3, it has been proved by Druet [21] that there
is an a priori bound on the energy of positive solutions of equation (1.1) when h < 4(’;—__21) Scal,

in M. More precisely, for any smooth, compact Riemannian manifold (M, g) of dimension
n > 3, there exists a real number Ej such that if u is a positive solution of equation (1.1),
then F (u) < E; where E (u) is as in (1.3). In particular, as a direct consequence of the
existence of this a priori bound for positive solutions, Theorem 1.3 provides infinitely many
nodal solutions for equation (1.1). Summarizing, the following corollary holds true.

Corollary 1.4. Let (M, g) be a smooth, compact Riemannian manifold of dimension n and h
be a C'-function on M such that h < ﬁScalQ m M. If n > 7 and the manifold is locally

conformally flat, then equation (1.1) admits infinitely many nodal solutions. If n > 4, the
manifold is arbitrary, h = X for some A > 0, and (1.5) holds true, the inequality being strict
when the manifold is conformally diffeomorphic to the sphere, then equation (1.1) admits at
least n/2 pairs of nodal solutions.

Compactness of positive solutions of equations like (1.1) have been intensively studied in
recent years. Possible references on this topic, in the case of manifolds, are Druet [21,22], Li—
Zhang [40-42], Li—Zhu [43], Marques [45], and Schoen [50-52]. A survey reference on the sub-
ject is Druet—Hebey [23]. We refer also to Hebey [31,32] for compactness of positive solutions
of critical elliptic systems in potential form and to Hebey—Robert—Wen [33] for compactness of
positive solutions of critical fourth order equations. Compactness of changing sign solutions of
equations like (1.1), in the case of smooth, bounded domains of the Euclidean space, have been
studied in Devillanova—Solimini [17]. We follow this reference by Devillanova—Solimini [17] in
several places in Section 3, as well as we follow the reference Clapp—Weth [15] in several places
in Section 2. Possible other references on the existence of multiple nodal solutions for equations
like (1.1) are Atkinson-Brezis—Peletier [2], Bahri-Lions [4], Capozzi-Fortunato—Palmieri [§],
Castro—Cossio-Neuberger [9], Cerami-Fortunato—Struwe [10], Cerami-Solimini-Struwe [11],
Devillanova—Solimini [18], Ding [19], Djadli-Jourdain [20], Fortunato—Jannelli, [26], Hebey—
Vaugon [34], Holcman [35], Jourdain [36], Solimini [53], Tarantello [57], and Zhang [60]. Need-
less to say, the above list does not pretend to exhaustivity. We refer also to the recent very nice
paper by Ammann—Humbert [1] where the question of the existence of at least one changing
sign solution to the Yamabe equation is addressed.

A final remark in this introduction concerns the condition h < ﬁ Scaly in Theorem 1.2.
Let (S™,std) be the unit n-sphere. There holds Scalgq = n (n — 1), and the Yamabe equation
on the unit n-sphere reads as

- 2 *
Agequt + Mu =¥ L (1.6)
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For any $ > 1 and any point z, in S", we define the function ug,, on S* by

n—2

Upyag () = (M>42 < VA1 )2

4 B — cos (dgstq (xg, x))

All these functions are solutions of equation (1.6), and have the same energy, namely K.
They are uniformly bounded in H? (M) but there holds ug s, (rg) — +00 as ﬁ —> 17, In
particular, when dealing with the unit n-sphere and equation (1.6), for which h = 4(— Scalgq,

there are no uniform bounds in C° (M). More sophisticated examples can be found in Druet—
Hebey [23] for positive solutions of equations like (1.6), and in Ding [19] for changing sign
solutions of equations like (1.6). We lose Theorem 1.2 when we do not assume something like
h < 5 D | Scal

1.2. Preliminary material

In the following, we let (M, g) be a smooth, compact Riemannian manifold of dimension
n > 3 and h be a Holder continuous function on M. We define the functional I, by

1 1
I, (u) = §/M|Vu|3dvg+§/Mhu2dvg

Its critical points are the solutions of equation (1.1). Let us recall the basics about the
H?-theory of blow-up that we need in the proof of Theorems 1.1, 1.2, and 1.3. A sequence
(ua), in Hi (M) is said to be Palais-Smale for the functional I, if the sequence (I, (u,)),
is bounded and if there holds DI, (u,) — 0 in H?(M)" as a — +oo. If moreover I, (u,)
converges to a real number ¢ as v — +o00, then the sequence (u,), is said to be Palais-Smale
for the functional I, at level ¢. In particular, bounded sequences in H} (M) of solutions of
equation (1.1) are Palais-Smale for the functional I,. The H7-theory of blow-up deals with
the asymptotic behaviour in H{ (M) of Palais-Smale sequences for the functional I,,.

Let 1 be a smooth cutoff function such that 0 <7 <1in R"*, n=11n By (i,/3), and n =0
out of By (2i,/3), where i, is the injectivity radius of the manifold (M, g). Given a converging
sequence (z,),, of points in M, a sequence (), of positive real numbers converging to 0, and
a function w in D'? (R™), we shall call rescaling of u on M of centers (z,), and weights (1),
a sequence (g, (u)), of functions defined on M by

2*
dvg .

0o (1) (2) = fta” 7o () (1o exp,! (),

where 7, = noexp,!. One can easily see that (o, (u)), converges to 0 weakly in H} (M),
strongly in L? (M) but that the H-norm of the functions g, (u) converges to [[ul| pi2(gny as

a — +00. An important and usefull remark is that the HZ-range of interaction of a rescaling
is of the order of its weights, namely that there hold

lim |V 04 (u)|§ dv, = / V| dz
@700 Brg (Rpta) Bo(R)
and

lim sup/ |V 04 (u)|3 dv, =cp
M\Bgq (Rpta)

a——+00

for all positive real numbers R, where eg — 0 as R — +o0.
We shall call bubble a rescaling on M of a nontrivial solution in D'? (R") of the equation

Asu = |u* u, (1.7)
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where 0 is the Euclidean metric on R”. Given a bubble (B, ), we define its energy E (B,) by

E(B,) = / ul* d .

Nonnegative solutions in D'? (R™) of equation (1.7) are all of the form

n;Q
i
Upyzy (T) = —— : (1.8)
H +n(n—2)

where p is a nonnegative real number and xq is a point in the Euclidean space (see Caffarelli—
Gidas—Spruck [7] and Obata [47]). They are the extremal functions for the sharp Euclidean
Sobolev inequality, and one can easily compute

/ L / Yty P = K7
n n

As for nodal solutions u of equation (1.7), there holds

/ ul* dx:/ \Vul? de > 2K (1.9)

In other words, the energy of a constant sign bubble is /K™ while the one of a nodal bubble
is greater than 2K, ™. In order to prove (1.9), we decompose the function u into its positive
part uT = max (u, 0) and its negative part u~ = max (—u,0), and we write

/ }Vuifd:v:/ A(suuidx:/ |u|2*2uuid:p:/ |ui Tz
R’VL n n n

By taking into account that u® cannot be of the form (1.8), it follows that

/ ‘Vui|2dx > K",
R’VL

and we sum to get (1.9).

We recall the following result proved by Struwe [56] for equation (1.7) in smooth, bounded
domains of the Euclidean space. We also refer to Druet—Hebey—Robert [24] for a complete
exposition in book form in the Riemannian case.

Lemma 1.5. Let (M,g) be a smooth, compact Riemannian manifold of dimension n > 3
and h be a Hélder continuous function on M. For any Palais-Smale sequence (uy), for the
functional 1,, there exist a solution us of equation (1.1), a natural number k, and bubbles
(BY)ys-- - (Bﬁ)a such that up to a subsequence,

k
ua:uoo—FZBé—i—Ra
i=1

for all o, where R, — 0 in H (M) as o — 400 and moreover, there holds

I, (ua) = I (us) + % Z E(B.)+o(1)

=1

as o — +00.
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We prove Theorem 1.1 in Section 2 by using a negative gradient flow, the H2-theory of blow-
up, and the relative equivariant Lusternik—Schnirelmann categories. We prove Theorems 1.2
and 1.3 in Section 3 thanks to a fine analysis of blow-up and topological arguments involving
the Krasnosel’skil genus.

2. MULTIPLE SOLUTIONS WITH BOUNDED ENERGIES

We purpose to prove Theorem 1.1 in this section. We first set some notations. We let P be
the set of all nonnegative functions in H7 (M). Given a positive real number § and a subset C

of HE (M), we let B;s (C) stand for the neighbourhood of C' formed by all functions in Hf (M)
at a distance from C'less than or equal to . Given a real number ¢, we set I; = I;l ((—o0, c]).

2.1. The negative gradient flow

In the following, we let (M, g) be a smooth, compact Riemannian manifold of dimension
n > 3 and h be a continuous function on M. For the moment, we do not need to assume that
the operator A, + h is coercive on H7 (M) nor to restrict the dimension of M. We let VI,
stand for the operator acting on H? (M) satisfying

(VI (u) 7U>H12(M) = DI (u) v

for all functions u and v in H? (M), where (., .>H12(M) is as in (1.2). We also let ¢, stand for
the flow defined by

99,
ot
Pg (O,U) =u,

where for any function u in H? (M), T (u) is the maximal existence time for the trajectory
t — @y (t,u). As a remark, for any function v in H? (M) and for any positive time ¢, we get

O 220D (1 ) = 191, iy (1 ) - 2.)

A subset D of H? (M) is said to be strictly positively invariant for the flow ¢, if for any u
in D and any time ¢ in (0,7 (u)), the function ¢, (¢,u) belongs to the interior of D. As an
example, since by (2.1), the function I, o ¢, (-, u) is decreasing for all non-critical points u in
H? (M), the set I is strictly positively invariant for the flow ¢, for all non-critical values c.
The following lemma provides some other examples of subsets of HZ (M) which are strictly
positively invariant for the flow ¢, and that we use in the proof of Theorem 1.1.

(t,u) ==V, (py(t,u)) if0<t<T(u),

Lemma 2.1. Let (M, g) be a smooth, compact Riemannian manifold of dimension n > 3 and
h be a continuous function on M. Let A be the positive constant appearing in the definition
of the scalar product (1.2). If A is large enough, then for small positive real numbers ¢, the
sets Bs (P) and Bs (—P) are strictly positively invariant for the flow p,.

Proof. Since the operator VI, is odd, it suffices to state the proof for the sets Bs(P). We
write VI, (u) = u — Ly (u) — Ly (u), where L; (resp. L) is the operator acting from L? (M)
(resp. L* (M)) into H? (M) which satisfy for any function u in L? (M) (resp. L? (M)), the
equation

AgLy (w) + ALy (u) = (A= h)u, (2.2)

resp. AgLy (u) + ALy (u) = |ul* *u. (2.3)
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As a first step, we show that if A is large enough, then for small positive real numbers d, there
exists a real number v in (0, 1) such that for any function u in Bs (P), there holds

d(Ly (u)+ Ly (u),P) <vd(u,P), (2.4)

where d is the distance on the Sobolev space H? (M). We begin with estimating d (L, (u), P)
for all functions u in H{ (M). We assume that the constant A is greater than ||| 5o (v SO that
by the weak maximum principle, the operator L; sends the set P into itself. By using (2.2)
and the coercivity of the operator A, 4 h, we get that if moreover A > 1, then

L1 () 2z ar) = /M (A = h)uLy (u) du,
< = /M (A —R) (u® + Ly (u)?) do,

—_

— 2
A=A
< 5 llian + 15 @zan )

for some constant ¢ > 0. It follows that

A —
Ix @z any <\ 352 ° Jlu ull 2 ar - (2.5)

We let v be the orthogonal projection of u on the closed convex set P. By applying (2.5) to
the function u — v and since L; is a linear operator, we get

AL (), P) < L1 (o) = Ly 0 gy < 4 el (0,P). (26)

We then estimate d (Lo (u) ,P). By the weak maximum principle, the operator Ly also sends
the set P into itself. Multiplying (2.3) by the function —Ls (u)~ and integrating by parts on
M vyield

| L2 (u)7||125,12 / lul* " uLy (u)” dv, < / ‘u"Q*_Q u” Ly (u)” dv, .
By Holder’s inequality, it follows that
HL2 (“)_Hi{f(M) < H“_ 12 1M) HL2 HL?*(M)' (2.7)

Note that there holds

HU_HL2*(M) = 1;2171)1 = vl 2= any -
By (2.7) and the continuity of the embedding of H? (M) into L? (M), it follows that there
exists a positive constant C' independent of u such that there holds

L2 (@) [| 2 0p) < Cdl (w0, PY* (2.8)

Summing (2.6) with (2.8) yields

d(Ly (u) + Ly (u) ,P) < 4/ ﬁ—__i_zd(u, P) 4+ Cd (u, P)> .

It follows that for small positive real numbers §, there exists v in (0,1) such that (2.4) is
satisfied for all functions u in Bs (P). In particular, for any positive real number A in (0, 1]
and any function u in Bs (P), we get

d(u— AV (u),P) <d(1 =Nu,P)+dA(L (u) + La (w)),P) <d(u,P).
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It follows that there holds d (u — AV, (u), Bs (P)) = 0 for all positive real numbers A in (0, 1]
and all functions u in Bs (P). Moreover, the set B (P) is closed, convex, and its interior is
nonempty. Therefore, by Deimling [16, Theorem 5.2], Bs (P) is positively invariant, that is
to say for any function u in Bs (P), the trajectory ¢t — ¢, (t,u) stays in the set Bs (P) for
all positive times. It remains to exhibit a contradiction in case such a trajectory intersects
0B;s (P) for some time ¢, > 0. In that case, by Mazur’s separation theorem (see, for instance,
Megginson [46]), there exists a continuous linear form ¢ on H? (M) such that there holds
U (g (to,u)) < £ (interior (Bs (P))), where interior (Bs (P)) is the interior of the set Bs (P). By
(2.4), the operator L; + Ly sends the set Bs (P) into its interior, thus we get

0 (580;09) (to,u) =€ (L1 (pg (to, 1)) + Lo (¢, (to,u))) — (@4 (to,u)) > 0.

It follows that for small ¢ > 0 there holds ¢ (¢, (to — €, u)) < (g, (to,u)) and thus by conti-

nuity, ¢, (to — ¢, u) does not belong to B (P). This contradicts the positive invariance of the
set Bs (P), and ends the proof of Lemma 2.1. O

Henceforth, we assume that A is large enough so that for § small, the sets Bs (P) and
Bs (—P) are strictly positively invariant for the flow ¢,. We shall say that a subset D of
H? (M) is symmetric if there holds D = —D. Another essential ingredient for the proof of
Theorem 1.1 is the following deformation lemma.

Lemma 2.2. Let (M, g) be a smooth, compact Riemannian manifold, h be a continuous func-
tion on M, and D be a symmetric, closed subset of H? (M) strictly positively invariant for the
flow ¢,. Let c € R, 6, € RT, and a symmetric subset C' of HE (M) be such that for any u in
I7 ([c —e,c+¢€]) N Bs (C), there holds

g

2
91, (@ lgsany = 29)

Then there exists an odd, continuous map v : ([gCJre N C) UD — I;7°UD such that v =id in
the set D.

Proof. As a first step, we show that for any function u in I;™* N C, the trajectory t — g (£, u)
cannot stay in the set I, ' ((¢ — ¢, ¢+ ¢]) for all positive times, and thus belongs to I7~* for
large times since the function I, 0 ¢, (-, u) is nonincreasing. We proceed by contradiction, and
assume that the function ¢, (t,u) belongs to the set I;' ((¢c — &, ¢+ €]) for all positive times
t. As long as ¢, (t,u) belongs to Bs (C'), by assumption (2.9), there holds

t
Dy
w800 = ull gy < [ || ()
0

dt
ot

HE (M)

5 [t 9
< o [ 191, oy ) i
5[0, o)
2¢ Jy ot

_ % (I, (u) = I, (¢, (£, ). (2.10)

In particular, the trajectory stays in the ball Bs (u). Moreover, the above computations yield

(t,u)dt

0= (5) Uy =D <

2e €
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By the standard extension theorem for solutions of ordinary differential equations, it follows
that the trajectory cannot stay in the set Bs (C') for all positive times t. We then let ¢y be the
first positive time that the trajectory intersects 0Bs (C'). By (2.10) with ¢ = ¢, we get

Iy (g (to,u)) < Iy (u) —2e <c—e,

and this leads to a contradiction. In particular, we have proved that for any function u
in I N O, the trajectory ¢t — g (t,u) belongs to [~ for large times. By the positive
invariance of the set D, it follows that for any function u in (]5+E N C) U D, there exists
a nonnegative time 7 (u) from which the trajectory ¢t — g (¢, u) belongs to I;7° U D. The
function 7 : (Ig”e N C’) UD — R, is even. In order to get the continuity of 7, the only non-
obvious thing we have to prove is its upper continuity. Let u be a function in ([ ;*a N C’) ub.
In case @, (7 (u), u) belongs to the boundary of the set D, the upper continuity of the function
7 at u follows from the strict positive invariance of D. In case I, (¢, (7 (u),u)) = ¢ — €, by
(2.10) with t = 7 (u), we get that the function ¢, (7 (u),u) belongs to the set Bs; (C) and
assumption (2.9) together with (2.1) then leads to the upper continuity of the function 7 at
u. Now that we have proved the continuity of 7, we get the expected odd, continuous map
v: (I NC)UD — IS= U D by setting v (u) = @4 (7 (u) , u). O

2.2. Proof of Theorem 1.1

In the following, we let (M, g) be a smooth, compact Riemannian manifold of dimension
n >4 and h be a Holder continuous function on M such that the operator A, 4 h is coercive
on H? (M). We use the same notations as in the previous section. We assume that A is large
enough and that J is small enough so that the sets Bs (P) and Bs (—P) are strictly positively
invariant for the flow ¢,.

We introduce the notion of relative equivariant Lusternik—Schnirelmann category. Let A
and D be two symmetric, closed subsets of a Banach space F such that D is included in A.
The equivariant Lusternik—Schnirelmann category of A relatively to D, denoted ~p (A), is
the smallest natural number k£ such that there exist symmetric, open subsets Uy, ..., U, of E
which cover A and such that D C Uy and odd, continuous maps y; : U; — {—1,1},i=1,... k
and xo : Uy — D such that yo = id in the set D. If no such natural number exist, then we
set vp (A) = +oo. If D is empty, then the equivariant Lusternik—Schnirelmann category of
A relatively to D is called the Krasnosel'skii genus of A, and it is denoted v (A). As is easily
seen, the Krasnosel’skil genus of a symmetric, closed subset A of E can also be defined as the
smallest natural number k such that there exists an odd, continuous map y : A — R*\ {0}.
We now state some properties that we repeatedly use in the proof of Theorem 1.1. We let
A, B, and D be three symmetric, closed subsets of E. A first easy estimate states that if
D is included in A N B and if there exists an odd, continuous map v : A — B such that
v =id in the set D, then there holds yp (A) < vp (B). In particular, this estimate is satisfied
when D C A C B. Another easy property states that if D is included in A, then there holds
vp (AU B) < vp (A) + v (B). We refer to Bartsch-Clapp [5] and Clapp—Puppe [13,14] for
more material about the relative equivariant Lusternik—Schnirelmann category.

We set Ds = Bs (P U (—P)). For any real number ¢, we let K. be the set of all critical
points of the functional I, at level c. One can easily check that there holds U.<qK. = {0}. By
Lemma 2.1 and by (2.1), it follows that the set I 8UD5 is strictly positively invariant for the flow

©g. As an easy consequence of this strict positive invariance, there holds Y19UDs (Ig U D5) = 0.
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We then define
cpg = inf {c > 0; vroup, (.7; U Da) > 5}

for all natural numbers 3 > 1 with the convention that inf() = +oo. A preliminary remark
is that the sequence (cg) g I8 nondecreasing. We now claim that for any 8 > 1, if ¢z is finite,

then there exists a Palais-Smale sequence (u((f ))a for the functional I, at level cz with the

additional property that the function u{’ belongs to H? (M) \Ds)s for all a. It suffices to
prove that

Ve >0 Ju e Ig‘1 ([csg —e,cs+e]) NHE(M)\Ds)o s.t. |V, (u)||H%(M) < %
By contradiction, if (2.11) is false, then there exists a positive real number gy such that for
any function w in I, ([cg — €0, ¢s + €0]) N H (M) \Ds 2, there holds ||V, (u)||H12(M) > 4eo /0.
We clearly get Bjj2(H} (M)\D;s) C Hi (M)\Dsjs. Letting C = Hf (M)\Ds, D = I UD;
and applying Lemma 2.2 with §/2 instead of § give an odd, continuous map

v (I N HE (M)\Ds) UISUD; — I, U I U Ds

(2.11)

such that v = id in the set I0UD;. Since Ig° " UIY = [;nax(cﬂ_go’o) and (I, °NH2 (M) \Ds)U

Ig UDs = I,° oy Ds, by the above listed properties of the relative equivariant Lusternik—
Schnirelmann category, it follows that

max

V19U, <I§E+€o U D5> < Y10UDs <[g (es—20,0) U D5> .
Whenever cg is equal to 0 or not, this contradicts the definition of cg. This proves the above
claim, namely that if cg is finite, then there exists a Palais-Smale sequence (ugﬁ ))a for the
functional I, at level cg such that the function u? belongs to HE (M) \Ds)s for all a. By
Lemma 1.5, since there holds d(u'”), P U (=P)) > 6/2 for all a and since 0 is the only critical
point of the functional I, at level 0, we get that cs cannot be equal to 0. We also get that

in case 0 < ¢z < K, "/n, there exists a subsequence of (u&ﬁ ))a converging to a nontrivial
nodal critical point of the functional /,. Similarly, in case K, "/n < ¢z < 2K, "/n, there is at
most one constant sign bubble in the decomposition of the sequence (u&ﬁ ))a, thus either cs or

cg — K" /n is a critical level of the functional I,.

Aiming to prove Theorem 1.1, we shall state four preliminary steps. The first one states as
follows.

Step 2.3. If there exists B such that cg = cgy1 < 2K,™/n, then the functional I, has infinitely
many critical points at level cg.

Proof. We proceed by contradiction, and assume that the set K. is finite. When K, is not
empty, there holds v(K,) = 1 and there exists a small positive real number # such that there
holds v(Bag (K.,)) = v(K,) = 1. We first consider the case ¢s < K,;™/n. In that case, by the
above discussion, the set K., is not empty, and Palais-Smale sequences for the functional I,
at level ¢z are compact in Hf (M). In particular, there exists a real number ¢ in (0, cg) such

that for any function u in I;* ([es — €, ¢5 + €]) \By (K., ), there holds
2e
e

12, @l geary > 7
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Applying Lemma 2.2 with C = HZ (M) \Bas (KCB) and D = Ig U Ds then yields an odd,

Cp—¢€

continuous map v : Iy? =\ By (Kcﬁ) UI)UDs — I, " UD;s such that v = id in the set I) UDs;.
By the definition of cs and by the properties of the relative equivariant Lusternik—Schnirelmann
category, it follows that

B +1 < voup, <I§B+E U D(S)
< g, (1577 \Bog (Key) U IS U D5 ) + 17 (Bao (K-,))

< g, (177U Ds) +7 (B (K.,))
< B+ Y (820 (ch)) :

This is in contradition with (B (K.,)) = 1. We now consider the case ¢z > K" /n. We set

Us = Bay Koy + o)

where
Py = {(numg) oexpgol; O<pu<6 and x€ M}7

where 7 is a smooth cutoff function as in Section 1.2 and where the functions u, are as in
(1.8). We claim that if € is small enough, then the sets Uy and —U, are disjoint. In order
to prove this claim, we proceed by contradiction, and assume that there exist sequences of
functions ug, u in K, -, and B, B} in P/, such that there holds

(uh+ By) — (u2 = B2) — 0 (2.12)

in H (M) as @ — +oo. Passing if necessary to a subsequence, (B}), and (B2), are two
positive bubbles. By taking into account that bubbles converge weakly to 0 and that sequences
in K,_y-n, are compact in H? (M) since by assumption there holds c¢s — K, "/n < K" /n,
it follows that up to a subsequence, (u}), and (u2), converge to the same limit in H? (M).
This leads to a contradiction since by (2.12), the bubbles (BY), and (B2), would converge
up to a subsequence to 0 in H? (M). We assumed here that the set K., i;nm 1s nOt empty
but the proof goes similarly otherwise. The above claim is proved, and we may now assume
that ¢ is small enough so that the sets Byg(K.,), Uy and —Uy are mutually disjoint. For any
positive real number ¢’, we adopt here the convention that By (K.,) = () when the set K., is
empty, and we set

Z@/ = BQ/(KCB) U UQ//Q U (—UQI/Q) .

We proceed in the same way as in the first case. Since Palais—Smale sequences for the functional
I, at level cg have at most one constant sign bubble in their decomposition, there exists a real

number ¢ in (0, cg) such that for any function u in I;* ([cs — €, ¢s + €]) \ Zp, there holds

2
IV, ()l =
Applying Lemma 2.2 with C'= H} (M) \Zy and D = I} U D; then yields an odd, continuous

map v : I§B+€\Zgg Ulg UDs — ];st UDs such that v = id in the set Ig UDs. By the definition
of cs and by the properties of the relative equivariant Lusternik-Schnirelmann category, it
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follows that
B+ 1 < yroup, (I§B+E U Dé)
—
< Y19uD, <—7ch "\ Zag U IS U D(S) + 7 (Z2)

< V19uDs <Igcﬁ_€ U D(S) + 7 (Z2)

< B4 (Za) -
Whenever the set K., is empty or not, there holds 7y (Z2) = 1, and the contradiction follows.
This ends the proof of Step 2.3. U

We introduce the Nehari manifold A of the functional I, defined by
N ={ue H} (M)\{0}; DI, (u).u=0}
and the radial projection ¢ : HZ (M) \{0} — N defined by

n—2

) n-2
o(w) = Jas [ Vul dvg;th hu*dv, \ * "
Joy lul™ dug
For any function « in A/, there holds
I, (0(u)) = max I, (tu). (2.13)

>0

We also clearly get that o (tu) = o(u) for all positive real numbers ¢ and all functions u in
H? (M)\{0} and that ¢ (u) = u for all functions u in /. Moreover, by the coercivity of the
operator A, + h on Hf (M) and by the continuity of the embedding of H? (M) into L* (M),
there exists a positive constant Fj such that for any function u in N, there holds

/M jul* dv, > Ey . (2.14)

The second step in the proof of Theorem 1.1 is as follows. An example of positive real
numbers ji. which satisfy & = O(¢) as € — 0is g = e~ for some 6 > 2.

Step 2.4. For any point x in M and any real number € in (0,4y), let ¢ (z,¢) be the function
defined on M by

n(e'dy (z,y))

n—2
(e +dy (2,9)") 7
where d is the geodesic distance on M with respect to the metric g, where 1 s a smooth cutoff
function on R such that n = 1 in [=1/2,1/2] and n = 0 out of [—1,1], and where pi. is a
positive real number. In case n = 4, if there holds ,uf =0(e) as e — 0, then

1, K!
Iy (0 (6 (r,))) = TR+
as € — 0, uniformly with respect to x. In case n > 4, if there holds . = O(£%) as e — 0 for

some 6 > 22—:3, then

(0 (ZL', 6) (y) =

(Scaly (x) — 6h (x)) fe In g + 0 (p1e In g ) (2.15)

Iy (00 (2.2)) = 1" = oSl () - S @ tou) (210)

as € — 0, uniformly with respect to x.
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Proof. We proceed as in Aubin [3] but with the tricky difference here that the supports of the
functions 1 (z, ) have diameters of the order of ¢ instead of 1. For any point x in M and for
positive real numbers r close to 0, there holds

1 1
_ do =1— — Scal 240 (r!

where |g| is the determinant of the components of the metric g in geodesic normal coordinates.
By standard properties of the exponential map, the remainder O(r*) can be made uniform

with respect to z. We set [ = 0+°O (14 r) P ridr for all positive real numbers p and ¢ such
that p — ¢ > 1. In case n = 4, if there holds uf = O(e) as € — 0, then we compute

1
/ V) (z, z—:)|§dvg = 2wsp " (IZ + oY Scaly (z) pe In p1. + 0 (pe In pe))
M

and
2 w3
/ h (x,e)” dv, = —7h () Inpe + o (Inp.)
M

as ¢ — 0, uniformly with respect to z. In case n > 4, if there holds p. = O(e?) as ¢ — 0 for

some # > 22=2 then we compute
n—4?

(n— 2)2 /2 1om n -+ 2
A4|v¢ (I,é‘)i dUg = —w”_l‘[n/zlubi /2 1— mscalg ($) /L5+O<,LL€)
e 2(n—2)(n—1)
2 n— n— n —n —n
/M h (x,e)” dv, = W= 1) Wt I2h (2) 122 + o (12 /2)

as € — 0, uniformly with respect to x. In both cases, we also compute

* Wn—1 n/2-1 —n 1
/];4¢ (.T,€)2 dUg = Tln/2 1,LLE /2 <1 — m Scalg (Z‘) e +O(,u5))

as € — 0, uniformly with respect to x. By noting that there hold

n_—2]n/2 _q/2-1 . Yn
n " " 2n—1w, 4
and 22
2 *
(n - 2) wn—llg/2 - K;2 - 2wn—llg/2 )
2 2n

and by writing

2 2 n/2

Vi (z, dvg 2 P (x,e)” du,

I (0 (b () = = (IM' e ) ,
" (Ju ¥ (2,2)" dvy)

we then get (2.15) and (2.16). 0

We let 2 be as in Theorem 1.1, namely such that h (z¢) < 4(’;—__21) Scaly (xg). The next step
in the proof of Theorem 1.1 states as follows.

Step 2.5. There exists an odd, continuous map ® : R""? — H? (M) such that
2
(1) Ig 0P < _ann’
n
(i) lm I 0P (y) = —o0.

ly|—-+o0
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Proof. By Step 2.4, there exist ¢ in (0,4,) and r¢ in (0,4,/3) such that for any real number ¢
in (0, 9] and any point x in By, (2r¢), there holds

(0 () < ~ K" (2.17)

where the functions ¢ (z,¢) are as in Step 2.4. We then claim that there exist a real number
g1 in (0,e0) and a smooth cutoff function v such that v = 1 in B,, (1), v = 0 out of By, (£¢),
and such that there holds

(e (1= 0) ¥ (@,20)) < =K, (2.18)

for all points = in the ball B,, (2ry). In order to prove this claim, by standard properties of
the capacities of balls, we first note that

inf / [Vulgdvg | —0 219
UGHE,EO < BID(SO)\BIO(E) ! ’

as € — 0, where H. ., is the set of all functions v in Hf (M) such that u = 1 in B,, (¢) and
u = 0 out of By, (g9). We refer to Grigor'yan [29] for more details about (2.19). Moreover, the
Poincaré inequality holds in H. ., (see, for instance, Hebey [30]). In other words, there exists a
positive constant C' such that for any function u in H. ., there holds [[u|[ 2y < C'|[Vull 12y
The existence of a real number £; and a smooth cutoff function v such that v = 1 in B,, (1),
v = 0 out of By, (g0), and such that (2.18) holds true for all points z in the ball B, (r¢)
then follows from (2.17) and (2.19) by an easy density argument and by the continuity of the
functionals in /,. Without loss of generality, we may assume that r( is small enough so that
there exists a constant Cy > 1 such that there holds

|z — y| < Cody (exp,, (z) , expy, (¥)) (2.20)

for all points x and y in the ball By (rg). We may assume moreover that £ is small enough
so that 2Cyeqg < 9. For any natural number £ > 0, we let B* be the unit ball and S¥ be the
unit sphere in R¥'. We define two maps @;, P, : B» — A by

oW (ne)) i<y
o (z1(y),e(y))) otherwise,

Py (y) =

and
0((1 =) ¥ (22 (y) . €0)) if |y < %

o (¥ (z3(y),0)) otherwise,
where € (y) = 2 (g9 — €1) |y| + 261 — o and where

1
1 (y) = expy, (_20050 (2 - \y_|) ?J) , T2 (y) = exp,, (4Cocoy) , 13 (y) = exp,, (20050%> :

In particular, for any point y such that 1/2 < |y| < 1, the real number ¢ (y) belongs to [e1, £

Dy (y) =

and the point z; (y) belongs to the ball B, (2ry) for i = 1,2,3. For any point y such that
ly| = 1/2, there hold z; (y) = z¢ and € (y) = &;. It follows that the map &, is continuous.
Similarly, for any point y such that |y| = 1/2, there hold 5 (y) = x5 (y) and v = 0 in B, (¢0)
since dg (o, x2 (y)) = 2Cheg > € (y) + 0. It follows that the map @, is continuous. We then
show that for any point y in B", there holds

Supp @1 (y) N Supp P, (y) = 0. (2.21)
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If ly| < 1/2, then Supp @, (y) = By, (€1) and Supp Ps (y) C Bayy) (€0)\Bq, (€1), and thus
(2.21) holds true. If |y| > 1/2, then Supp @1 (y) = By, () (€ (y)) and Supp P2 (y) = Bayy) (€0)
while by (2.20), we get d, (21 (y),x3 (y)) > 4eo |y|, and it follows that here again (2.21) holds
true. As a last remark on the maps @; and @, there holds @; (y) = @5 (—y) for all points y
in S"~!. We now define the map @, : S* — N by

D1 (Y1, Yn) if Ynt1 >0

P ey Un =
0 (Y1s- - Ynt1) {@2(—y1,...,—yn) otherwise.

It is easily checked that @ is also continuous. We then introduce the map @ : (S” x (—1,1))U
(B! x {—1,1}) — H? (M) \ {0} defined by

(L +8)Po(y) = (1 —1)Po (—y) ify € 8",

y .
D (y,t) = 2|yl o (m) + (1= [y]) 2 (¢ (Yo, €0)) ift=1,

2l (—f;—|) (= ) o (os20)) ifE = —1,

where yy = exp,, (2rofp) for some point 6 in S*. By noting that for any point y in B, the
supports of the functions @, (y) and @, (y) are included in the ball B, (2Cye¢ + €9), and since
dg (%0, Yo) = 219 > 2Cpeg + 2¢¢, we get

Supp ¢ (¢ (3o, €0)) N Supp @1 (y) = 0 (2.22)
and

Supp ¢ (¢ (3o, €0)) N Supp P, (y) = 0. (2.23)
By (2.21), (2.22), and (2.23), the supports of the functions @, (y), @2 (y) and o (¢ (yo,€0)) are
mutually disjoint for all points y in B”, thus & takes its values in H2 (M)\{0}. It is easily
checked that @ is odd and continuous. By taking into account that the domain of definition
of the map P is precisely the boundary of the set B"™! x (—1,1), we may define the radial
extension of & as the map & : R™2 — H2 (M) \{0} given by & (ty) = t® (y) for all positive real
numbers ¢ and for all points y in 9 (B"™ x (—1,1)). The map @ is then odd and continuous.
By (2.13), (2.21), (2.22), and (2.23), property (i) follows from (2.17) and (2.18). By (2.14),
we get

I _
max /, (tu) — —oo

as t — +oo. By (2.21) and (2.22), and (2.23), we then also get property (ii). This ends the
proof of Step 2.5. O

The last ingredient we need in the proof of Theorem 1.1 is as follows.
Step 2.6. There holds c,1 < 2K, ™/n.

Proof. We set
k = yrgun, (1,0 UD;)

where @ is the map we get in Step 2.5. We may assume that k is finite. We purpose to prove
that k is greater than or equal to n+ 1. Step 2.6 then obviously follows from Step 2.5. By the
definition of k, there exist k + 1 symmetric, open subsets Uy, ..., Uy of H? (M) which cover
ISUP(I"OQ)UD(; and such that ([g U Ds) C Up and k+1 odd, continuous maps x; : U; — {—1,1},
i=1,...,kand xo : Uy = Iy UD; such that xo = id in the set I) UDs. Up to a restriction of
Uy, by using Dugundji’s extension of Tietze’s theorem (see Dugundji [25]), we may extend the
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map Yo into an odd, continuous map still denoted yq, defined from the whole Sobolev space
H? (M) into itself. We show that there exists an odd, continuous map xz41 : NNDs — {—1,1}.
We let £ be the set of all functions in the Nehari manifold A/ whose positive and negative
parts also belong to A'. For any functions u and v in P with disjoint support, the function
o(u) — o (v) belongs to the set £. The distance between € and P U (—P) is positive. Indeed,
by the continuity of the embedding of HZ (M) into L*" (M), we get that there exists a positive
constant C' such that for any w in £ and v in P, there holds

1/2*
lu £ 0ll 2y = Cllu £ 0]l e agy = C [[0| or 4y 2 CE”,

where Fj is as in (2.14). Decreasing ¢ if necessary, we may now assume that the sets £ and D;
are disjoint. In the same way as in Castro—Cossio-Neuberger [9, Lemma 2.5], we get that the
set N\ consists in two connected components, namely {u € N; v >0 or DI, (u").u* < 0}
and its symmetric. Therefore, the set N' N D;s also consists in two connected components. It
follows that there exists an odd, continuous map 1 : N NDs — {—1,1}. We let O be the
inverse image by the map xo o ® of the connected component of H? (M) \N which contains 0.
By Step 2.5 (ii), O is a symmetric, bounded, open neighbourhood of 0. The boundary of O is
covered by the sets 00 N @~ (U;), 1 = 0,..., k. Taking a partition of unity consisting of even
functions {m, ..., T} subordinated to this covering, we define the map x : 00 — R¥*! by

k
X () =70 () Xes10 X0 0 P (¥) enn + YT () Xi 0 D (y) e,
=1

where e; is the i-th vector in the canonical basis of R¥*!. This map is odd, continuous, and
nowhere vanishing. By the Borsuk-Ulam theorem (see, for instance, Kavian [37]), it follows
that k + 1 is greater than or equal to n + 2, and this ends the proof of Step 2.6. U

We let ¢y stand for the minimum of the functional /, on its Nehari manifold. As a preliminary
remark on ¢y, by Step 2.4, we get ¢y < K, "/n. By reasoning as in Aubin [3], we then get that
cp is reached for a positive solution of equation (1.1). Moreover, ¢y can only be reached for
constant sign solutions. Indeed, if ¢y was reached for a nodal solution wu, then it is easily seen
that the function |u| would also be a solution of equation (1.1), and this would contradict the
maximum principle.

We now prove Theorem 1.1 by using the above preliminary steps.

Proof of Theorem 1.1. By Steps 2.3 and 2.6, we may assume that the sequence (cy,. .., Cyq1)
is increasing and strictly bounded from above by 2K, ™/n. We let k be the greater index such
that ¢, < K;". If k> 1, then for § =1,...,k, cs is a critical level of the functional I, for a
nontrivial nodal solution of equation (1.1). In particular, we get ¢; > ¢o. It follows that there
exist at least k + 1 distinct critical levels of the functional I, less than or equal to K" /n.
Moreover, for 8 =k+1,...,n+ 1, either ¢z or ¢ — K" /n is a critical level of the functional
I,, thus we also get the existence of n + 1 — k distinct critical levels of I, in (0,2K,"/n).
We finally conclude that there exist at least M—”H_k) = ”T“ distinct critical levels of the
functional [, in (0,2K,™/n). O

As a remark, the above proof yields the more precise following result. Namely that if we
denote by p the number of pairs of positive solutions of equation (1.1) with energy less than
2K, ™ and by ¢; (resp. ¢2) the number of pairs of nontrivial nodal solutions of equation (1.1)
with energy less than or equal to K" (resp. greater than or equal to K, ™), then there holds
P+ 2q1 + g2 > n+ 2. In particular, if there does not exist any nontrivial nodal solution of
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equation (1.1) with energy less than or equal to K", then there exist at least n + 2 pairs of
nontrivial solutions of equation (1.1) with energy less than 2K ".

As another remark, by slightly modifying the asymptotic expansions in (2.15) and (2.16),

we could also have included the case of the geometric equation
n — 2 2*_2
m Scalg u = |U| u

when n > 6 and the manifold (M, g) is non-locally conformally flat.

Agu +

3. THE CASE OF LOCALLY CONFORMALLY FLAT MANIFOLDS OF HIGH DIMENSION

We prove Theorems 1.2 and 1.3 in this section. We start with the proof of Theorem 1.2.
For this purpose, we let (p,), be a sequence in [2,2*] such that p, — 2* as o — 400, h be an
Holder continuous function on M, and we consider the family of equations

Agu A+ hu = [uf"* " u. (3.1)
A preliminary result we easily get by following the lines in Solimini [55] and Devillanova—

Solimini [17] is Lemma 3.1 below. We refer also to Robert [48] and Struwe [56] for related
references.

Lemma 3.1. Let (M,g) be a smooth, compact Riemannian manifold of dimension n > 3
and h be a Holder continuous function on M.For any bounded sequence (uy,), in HE (M) of
solutions for the family of equations (3.1), there exist a solution u, of equation (1.1), a natural
number k, bubbles (B}),,..., (Bfl)a, and real numbers ay,...,ay greater than or equal to 1
such that up to a subsequence,

k
Ug = Uoo T ZaiBé + R,
i=1

for all o, where R, — 0 in H? (M) as a — +00.

Moreover, together with Lemma 3.1, we can also assume that there holds

: JIod, (xt),2d 2

u—?—l—”—?—l—g(Fa—jJ—)—i-oo (3.2)

Moo Ha Mo M

as a — +oo, for all distinet i, j = 1,...,k, where (2%), and (i), stand for the centers and
the weights of the bubble (B.),, in Lemma 3.1.

We prove integral estimates in what follows, then we prove local estimates, and at last we
prove Theorems 1.2 and 1.3.

3.1. Integral estimates

In the following, we let (M, g) be a smooth, compact Riemannian manifold of dimension
n > 3 and h be a Holder continuous function on M. For the moment, we do not need to
assume that (M, g) is locally conformally flat nor to restrict neither the dimension of M, nor
the regularity of h. We let (u,), be a bounded sequence in H? (M) of solutions for the family
of equations (3.1), and we assume that (u,), blows up as o — +00, that is to say the natural
number % in Lemma 3.1 is not zero. For i = 1,...,k, we let (%), and (u’), be the centers
and the weights of the bubble (BY), in Lemma 3.1. Renumbering and passing if necessary to
a subsequence, we may assume that

1 i
= max
Ha 1o Hea
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for all . Then, we let y, stand for u} and z, stand for x! for all a.
For any real number p; and p, such that 1 < p, < 2* < p; and for any positive real number
o, we define the norm .| on L> (M) by

P1,p2,0
||U1||Lp1(M) < C, and ||u2||LP2(M) < Co.n/Q*_n/pz}.

[l .o

We now fix a positive real number a. For any o and any positive real number ¢, we define
the function u;, on M by
u;, = /2 +ul. (3.3)

2
UaAgUa e? |V, (TAVATN

VETE (24w T el

It follows that there exists two constants A and B such that for any « and ¢, there holds
Agul, + au, < Alug|” T+ B. (3.4)

We even get that for any real number A > 1, there exists B > 0 such that (3.4) holds true for
all a and e. For « fixed, there holds uf, — |u,| in C° (M) as e — 0.

We then compute

g __
Agug, =

For the sake of completeness, we also prove the following result. Namely that for any p > 1,
if a function v in HY (M) and a function f in L? (M) satisfy the equation Ajv +av = f, then
there exists a positive constant C' independent of v and f such that there holds

loll g ary < C M zoary - (3.5)
By standard elliptic theory (see, for instance, Gilbarg-Trudinger [28, Theorem 9.11]), we get
lollagan < € (1o + 1ol ) - (3.6)

Therefore, it suffices to prove that there holds [[v][ 1,y < ClIf | 1o(ar)- We proceed by contra-
diction, and assume that there exists a sequence (vq),, in Hy (M) such that |[va ||, = 1 for
all a and [[Agva + avall o) = 0 as @ = +00. By (3.6), the sequence (v,), is bounded in
HY (M). By the compactness of the embedding of HE (M) into HY (M), it follows that (v,),
converges up to a subsequence in H} (M) to a function v.,. Passing to the limit as o — +00
yields [[veo|[ 1o(pry = 1 and Agves + aves = 0, but this last equation implies that v = 0 since a
is positive, and the contradiction follows. This proves that there exists a positive constant C'
such that (3.5) holds true for all functions v in HY (M) and all functions f in LP (M) which
satisfy the equation Ajv + av = f.

We purpose to prove the following integral estimates.

Lemma 3.2. Let (M, g) be a smooth, compact Riemannian manifold of dimension n > 3,
h be a Holder continuous function on M, and (u,), be a bounded sequence in H? (M) of
solutions for the family of equations (3.1). Let p1 and ps be two real numbers such that
2%/2 < py < 2* < py. If the sequence (u,), blows up as a — 400, then up to a subsequence,
there holds

ltally o = O (1) (3.7)
as o — —+00.

In the sequel, p (n) denotes nﬁg.*z* in case n > 7 and 400 in case n < 7. Aiming to prove

Lemma 3.2, we shall state two preliminary steps. The first one is as follows.
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Step 3.3. (3.7) holds true in case p; < p(n) and py > max(#gj;*, 2).

Proof. We fix a constant C' > 1. For any «, there exist two functions v}, and u? in L> (M)
such that there holds |u,| < ul + v and such that

”uiHLm(M) <C ||ua||p1,p2,u;1 (3.8)
and
HuiHLm(M) < c Hua‘“pl D2.0a Mg/pQ n/2 <3'9)

We let G be the Green’s function of the operator A, + a. This function is positive. By (3.4),
letting € — 0, we get

[ug ()| < / G(x A]uoé|2 - +B> dv,
for all points z in M and all a. Writing |ua]® " = |tua|* % |ua| and decomposing the functions
U, as in Lemma 3.1 yield
Ul < A (vh + 02 + w, ~|—B/ G (-, y) dvg (y), (3.10)

where A’ > A does not depend on « and where

/g ) ool = e dv

Z 2*_2/ G (x ‘B’ 2_2 g | dug
/g )1 Ral® 2 o du,

We are led to estimate the norm |[.[[, b 1 of the terms in the right hand side of (3.10). We
first consider the functions w,. We let w} and w? be two functions in H? (M) which satisfy

the equations
ST (3.11)

a

Ayl + awl = |R,

and

Agw? + aw? = |Ro|” 2l . (3.12)
By standard elliptic regularity, we get that the functions w} and w? belong to HY (M) for all
real numbers p > 1 and then to L> (M). We write

Agwe + awy, = |Ral* 72 Jua| < (4, + a) (w) +w?).

By the maximum principle, it follows that w, < w! + w? Moreover for both i = 1,2, if we

assume that p; > 2*/2, then the continuity of the embedding of Hy?/ ") (Ar) into LPi (M)
and elliptic theory as in (3.5) for equations (3.11) and (3.12) y1eld

ot = O () =0 ([0

H,y

) (3.13)

L™F2Pi (M)
as o — +o0o. Holder’s inequality gives
2% _9 l 2%—2 i _ i
H‘R | o | w5 () < [Rallz2 HuaHLPi(M) =0 <H“aHLm(M)> (3.14)

as a — +o00. By (3.8), (3.9), (3.13), and (3.14), we get

[l izt = © (ol ) (3.15)
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as a — +0o. We now consider the functions v} and v2. They satisfy the equations

2*—2

Al + av) = Jus| [t

and
k

Al +av? =" a7 |Bi|" 7 fual -
i=1
Here again, the Sobolev embeddings and elliptic theory yield

HU;HLm(M) =0 (H’uoo npy ) (3.16)

L7F201 (M)

2% -2
U

and
k

2*_2 | i |27 —2
E a; |Ba‘ Ug

i=1

v =0 (3.17)

o
Il Lr2 (M) npy

[, nt2pg (M)
as @ — +o0o. On the one hand, if we assume that p; < p(n), then H? (M) embeds into

Lrpr/(n2p1) (M) and thus the sequence (uy), remains bounded in L™1/("+2P1) (M), By (3.16),
it follows that

s

=0 (1) (3.18)

1

lzor
as @ — +00. On the other hand, assuming py >
in order to get

~ +2 5 allows us to apply Holder’s inequality

2 —2 2*—2 2*—2

“BZ Uq, LWT%Q (M) S HBQHLq(2*72)(M) ”uOéHLQ*(M) S C HB;HLqQ*fz)(M) (319)
for all  and for ¢ = 1,...,k, where ¢ is such that é + QL = %pim and where C' is a positive

constant independent of o and ¢ which existence is ensured by the boundedness of the sequence
(ua),, in HE (M) and the continuity of the embedding of Hf (M) into L* (M). Fori=1,...,k
and for any real number ¢ in (0,4,/3), one can easily check

i |(2°=2)q q
17 a0 =0 (02)") 520

as a — 4o00. By taking into account that our assumption p, >
another easy computation yields

TR
B_i (9)

e

W implies that ¢ > n/4,

as @ — 400, and thus summing (3.20) with (3.21) gives
/ B duy = O (i) ") (3.22)
M

as a — +o0o. We note that for any a, there holds (p?,)"/P2~"/2" < uz/p2_n/2* since [i, is the
largest weight of the bubbles (BY),,. .., (B(’;)a and since p; < 2*. By (3.17), (3.19), and
(3.22), it follows that

2 n n/2*
02l oo ary = O (u/>7) (3.23)
as a — +o0. By (3.18) and (3.23), we get
[va + 02, et = O (1) (3.24)
as a — +oc. Finally, by (3.10), (3.15), and (3.24), we get that there holds |[uq|[,, ,, ,-1 = O (1)

as @ — +o0o. This ends the proof of Step 3.3. U
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The second step in the proof of Lemma 3.2 states as follows.
Step 3.4. If (3.7) holds true for some py <n(2* —1)/2 and py > 2* — 1, then

el 1), o) izt = O (1) (3.25)

as o — +o0o, where f (p) = m

Proof. Let p; and py satisfy 2 — 1 < py < 2* < p; < n (2" —1) /2. We fix a constant C' > 1.
For any «, there exist two functions ul and u? in L°° (M) such that |u,| < ul + u2 and such
that there hold

||u111HLP1(M) <C Huale,pQ,ugl (3.26)
and
2] oo 2y < C Ntallyy g st /7272 (3.27)
We let v} and v2 be two functions in H? (M) which satisfy the equations
Ayt +avl =27 72A (ui)Tk_1 + B (3.28)
and
A2+ avd =27 24 (u2)P 7 (3.29)

where A and B are as in (3.4). By standard elliptic regularity, we get that the functions v}
and v2 belong to HY (M) for all real numbers p > 1 and then to L™ (M). By (3.4), letting
e — 0, we also get

Ay ug| + alus| < (4y+a) (v1+112)
By the maximum principle, it follows that |us| < vl + v2. Moreover, for both i = 1 2 since
we assumed that 2* —1 < p; < n (2" — 1) /2, the continuity of the embedding of Hgl b (M)
into L/®) (M) and elliptic theory as in (3.5) give

el = O (Il ey ) =© (1Aset+ant o, )
as o — +oo. By (3.26) and (3.28), it follows that
1 _ 27 -1 2% —1

103 oy = O (lebl gy + 1) = O (luallZ ) v + 1) (3.30)
as @ — +o00. Analogously, by (3.27) and (3.29), we get

2 2r-1 2*—1 n —n/2*

12 st oy = © (12 5ty ) = © (luall? ) oo i/ 7070027 (3.31)

If we assume that (3.7) holds true for our fixed p; and py, then (3.25) finally follows from
(3.30) and (3.31). 0

We prove Lemma 3.2 by induction, by using the initialization Step 3.3 and the bootstrap
Step 3.4.

Proof of Lemma 3.2. We define f : (0,n (2" —1) /2) — (0,+00) by f(p) = ;555 This

function is increasing, and realizes a bijection from (0,7 (2* — 1) /2) onto (0,+00). We let
¢ = f" (ps) for i = 1,2 and for all 5. By noting that there holds f (p) > 2*/2 for all real
numbers p > 2* — 1 and since f(2*) = 2*, we get that there holds 2* — 1 < ¢ < 2* < g5 <
n(2*—1)/2 for all B > 1. It is easily seen that the sequence (gj)s is decreasing while the
sequence (q3)s is increasing. Since there holds f(qjs,,) = g5 for i = 1,2 and for all 3, it follows
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that both sequences converge to 2*. By Step 3.3, for £ large enough so that qé < p(n) and

q3 > max(1 there holds

+22*= 2)

=0(1)
as o — +o0o. We finally get (3.7) by  iterations of Step 3.4. O

HUO‘Hq a3 ot

3.2. Local estimates

In the following, we let (M, g) be a smooth, compact Riemannian manifold of dimension
n > 3 and h be a Holder continuous function on M. Here again, we do not need to assume
that (M, g) is locally conformally flat nor to restrict neither the dimension of M, nor the
regularity of h. As in the previous section, we let (u,), be a bounded sequence in H} (M) of
solutions for the family of equations (3 1), and we assume that (u,), blows up as o — +o0.
Fori=1,...,k, welet (2%), and (i), be the centers and the weights of the bubble (B.),,
in Lemma 3.1, and we assume that

1
= max .
Ho = 1<i<k ,ua

Then, for any «, we let p, stand for pl, z, stand for !, and for any positive real number a
and b such that a < b, we define the open annulus

A%t ={x € M; ay/ite < dy (7,74) < b\/lia},

where d, is the geodesic distance on M with respect to the metric g.

In what follows, we repeatedly have to estimate the functions ¢, defined on M x [0,1,) by

1
_1/ |ug|dog ifr >0
ba (z,7) =< T JoB,(r)
W1 |ta ()] ifr=20

for all o, where do, is the volume element on 0B, (r) induced by the metric g. We also
introduce the functions ¢, defined on M x [0,14,) by

1
— / u,do, ifr>0
% (z,r) =< T JoaB,(r)
Wp—1us, () ifr=20

for all & and e, where the functions uS, are as in (3.3). It is easily checked that the functions
¢ and ¢F, are continuous. For any point = in M, there exists a smooth function [, defined
around x such that for any function u in C* (M) and for any  in (0,4,), there holds

0 1 1 ou 1

= d = — —d — Ludog 3.32

or <T”‘1 /83$(T) ! Ug) rr-t /dBw ov 79 T rrt /BB;,;(T) Prudas ( )
9

where - is the normal derivative with respect to the outward unit normal vector v. As is
well known (see, for instance, Chavel [12]), there exists a positive constant I" such that there
holds |8, (y)| < I'd, (z,y) for all points x and y in M which satisty d, (x,y) < i,. For any «,
e, x, and r, by (3.32) with u = «&, it follows that

a¢€ 1 2% _1
o > A oV dv, — Br — Iréf (x,
o (x,r) > = /Bz(r) [t Uy r rof, (z,r)

2*—1

dvy, — B.r — I'rp (z,7) (3.33)

1
2 _A —1 / |Ua
" By(r)
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where A and B are two positive constants which do not depend on o and ¢ and where
B.=B+e¢el.

We purpose to prove the following local estimates.

Lemma 3.5. Let (M, g) be a smooth, compact Riemannian manifold of dimensionn > 3, h be
a Holder continuous function on M, and (u,),, be a bounded sequence in H? (M) of solutions
for the family of equations (3.1). If the sequence (uy),, blows up as o — 400, then there exists
a real number ¢ > 2 such that up to a subsequence, there holds

(i) HuaHCO(Ag*Q,&FQ) =0(1),

. o, n2
(ii) /Agl@“ Vg, dvg = O (ua )

as o — +00.

In order to prove Lemma 3.5, for any «, we consider the £+ 1 mutually disjoint open annuli
A8=48iHd = 1k + 1. For «a large, they are nonempty, thus at least one of them does
not contain any center of the k bubbles (B.),, ¢ = 1,...,k. It follows that there exists a
real number ¢ > 4 such that up to a subsequence, for any «, the points z’, ¢ = 1,...,k do

not belong to the annulus A5 *¢**. The first step in the proof of Lemma 3.5 consists of the
following weaker estimate.

Step 3.6. As a — 400, there holds

2-n
HU’QHCO(A(‘;‘_&C‘F«%) = O (ﬂo/l > .

Proof. We proceed by contradiction, and assume that there exists a sequence of points y°
in Ac-3<+3 guch that there holds pud >/ *jus (y°)| — +oo as a — +oo. For any a, we
set 70 = |uq (y5) |72, and we show that there exists a point y, in By (2r9) such that
there hold |uq (Ya) | > |ua (¥2) | and |ua (y) | < 2|uq (yo) | for all points y in By, (r4), where
To = |Ua (Ya) |72/~ If the point y2 does not satisfy this condition, then there exists a point
yh in By (rd) such that there holds |uq (y3)| > 2Jua (y3) |- We may iterate this argument
as long as we do not find a point in By (2r%) which satisfies the above conditions. We then
get a sequence of points 7 in By (2r3) such that there holds |us (y2) | > 2|uq (y27") | for all
B. Indeed, for any natural number 3, the point y° is chosen in the ball Byg_l(rg_l), thus we
compute

B-1 B—1
dy (v, 90) <Y 1k < <Z 2‘"22’“> 0 <20
k=0 k=0

If we never find a satisfying point by this way, then there holds |u,, (yg) | = 400 as f — o0
which contradicts the continuity of u,. This proves the existence of a point y, in By (2r})
such that there hold |uq (ya) | > |ua (v2) | and |uq (y) | < 2|ug (ya) | for all y in By, (r,), where
Ta = |ta (o) |7#=2). We then let @, be the function defined on By (iy/74) by
n—2
Ue (T) =70’ Uq 0 xXp, (TaT).

By our primary assumption, r0 is asymptotically negligible compared to ,/jiq as a — +0o0,

and thus so do r,. For any real number € in (0,1) and for « large enough so that 2r% < ¢,
the point y, belongs to the annulus AS 3¢t Hence, r, remains asymptotically negligible
compared to the distance between the points y, and !, as @ — +oo. By decomposing the
functions u, as in Lemma 3.1, we can deduce that the sequence (4,), converges weakly to 0
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in D%? (R™). It follows that (%), converges up to a subsequence to 0 in Li . (R™). We now
estimate the L'-norm of the functions w, over small balls centered at 0 in order to exhibit
a contradiction. We note that there exists a positive constant C' such that for any o and
for small positive real numbers r, if do and do,, denotes the volume elements on 0By (r)
respectively induced by the Euclidean metric and the metric g, = exp,’ g then there holds

do > Cdoy,,. For any real number r and for « large, it follows that
n—2
/ [tia| do > Cra® ™" b0 (Yo, Tal) - (3.34)
OBy (r)

We are led to estimate the functions ¢, (ya,.). For any ¢ > 0 and any real number r in (0,7,),
by (3.33), we get

9%

o (Yors ) g1 Voly (By, (1))

rnfl

> — (Ao (9o) ™" + Be+ 2 [t (32)]) 7

v

—2¥714 |Uq, (ya)

- (Ba + 20 |ua (ya)D r

where A’ is a constant independent of « and e. Integrating on (0,r) and letting ¢ — 0 yield

1 x_
Ba (s ) = ot e (9e)| = 5 (A e (9a) P+ B +20 e () ) (3.35)
For any real number r in (0, 1), by (3.34) and (3.35), we get

~ C nt2
/ |ua‘ do > Cwn—ﬂ"n_l - = (A/ + Bry? + 2FT3> Pl
dBy(r) 2

For small positive real numbers 7, by integrating on (0,7) we get that the L'-norm of the
functions u,, over the ball By (r) is bounded from below by a positive constant independent of
a, and thus does not converge up to a subsequence to 0 as &« — +o00. This contradiction ends
the proof of Step 3.6. O

The second step in the proof of Lemma 3.5 states as follows.

Step 3.7. As a — +oo, there holds
/Acg’c+3 |ua| dvy = O (u2/?). (3.36)

Proof. By the continuity of the embedding of H7 (M) into L' (M), the sequence (u,), remains
bounded in L' (M), and thus there holds

/ (U | dvg < C
Baa (2ig/3)\Bua (ig/3)

for all a, where C' is a positive constant independent of c. It follows that there exists (r,), in
ig/3,2i4/3] such that the sequence (¢q (Za,74)), is bounded. For any « and any real number
rin (0,7,), integrating (3.33) on [r,r,] and letting ¢ — 0 yield

re r o A 21
€ 2 ¢a(Ta,7) <€ 2 ha(Ta,Ta) + e 2 U6 dvy + Bs | ds.
T Bza(s)

Sn—l

It follows that ,
v 1 .
Pa (Ta,7) < C1 + 02/ - / [ — (3.37)
r s" Bz, (s)

where C and Cs are two positive constants independent of o and r. We are then led to
estimate fo ) N dv, for all @ and all 7. Applying Lemma 3.2 with p; = n (2* — 1) and
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p2 = 2* — 1 yields that for any «, there exist two functions u! and w2 in L (M) such that
there hold ua| < up + g, [[upllpes—v oy < C and [[ud ]| 21y < Cpp/ @072 where €
is a positive constant independent of o. By these three estimates and by Holder’s inequality,

we get
/ |ua]2*_1 dv, < 9% 2 (/ ‘ué‘?*l dv, +/ |ui 21 dvg)
Bza (7’) Bza (T) Bza (7‘)

n—2

< CyVoly (By, (M) 7Y™ + Copa® | (3.38)

where C and Cy are two positive constants independent of o and r. Bishop’s inequality (see,
for instance, Chavel [12]) provides a positive constant C' independent of a and r such that
there holds Vol, (B, (r)) < Cr™. By (3.38), it follows that

. n-2
/ |ua|2 -1 dv, < Cyr™ '+ Copa®
B-Ta (T)
where (] and C are two positive constants independent of « and r. Plugging into (3.37) gives

n—2
gba (ZE(X,T) Sol+02 (\/T/:L_a) )

where € and C5 are two positive constants independent of a and r. Finally, multiplying by

r"~! and integrating on [(c — 3) \/fa, (¢ + 3) \/Hia| yield (3.36). O

We prove the first estimate in Lemma 3.5 by using Steps 3.6 and 3.7.

Proof of Lemma 3.5 (i). We fix a sequence of points y,, in the annulus A% 22 and we purpose
to prove that up to a subsequence, |u, (yo)| is bounded from above by a positive constant
independent of y,. We first consider the case where there holds ¢q (Ya,7) > G (Ya,0) /2 up
to a subsequence for all @ and all real numbers r in [0, \/E) In that case, by multiplying
by r"~!, by integrating on [(c— 3) /lha, (€ + 3) \/,u_a}, and by using Step 3.7, we get that
up to a subsequence, |u, (Yo)| is bounded from above by a positive constant independent
of y,. Passing if necessary to a subsequence, we may assume from now on that for any «,
there holds |uq (ya)] > 1 and there exists a real number 7, in [0, //ia) such that there holds
ba YarTa) < G (Yo, 0) /2. For any «, we let rl be a real number where the function ¢, (Y, -)
attains its maximum on [0,7,]. For any € and any real number 7 in (0,7,], by (3.33) and by
writing [uq|” ' < Jual® 2 |ual|, we get

9%,
or

(Yo, 1) = = [[ta

>~ (1

Since we assumed that |u, (yo)| > 1 and thus that ¢, (Ya,75) > w,_1, Step 3.6 gives a positive
constant C' independent of y, and ¢ such that for any real number r in (0, r,], there holds

0c, O
5 () 2 = () 7

We then set
ra =max {r € [ry,7a]; ¢a War7) = ba (Yar7a) /2} -
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2
TarTa

] and letting € — 0 yield

C
300 (0072) < o0 () (12 = (02)°) € T (veort) (2= 1),

and thus one can easily compute

el < O ((2)" (1)) (3.39)

On the one hand, mtegratmg on [rl

On the other hand, we get

/ o] dvy = / L (o) dr > )l ()" = (P1)"). (3.40)
Bya(ri)\BUa(Ta) T}v

By (3.39), (3.40), and Step 3.7, here again, we get that |u, (y,)| is bounded from above by a
positive constant independent of y,. This ends the proof of property (i). O

We prove the second estimate in Lemma 3.5 by using the first one.

Proof of Lemma 3.5 (ii). We let ¢ be a smooth cutoff function on the Euclidean space such
that ¢ = 1 in the annulus {x € R"; c— 1< |z| <c+ 1} and ¢ = 0 out of the annulus
{r € R"; ¢—2 < |z| < c+2}. For any o, we set the function ¢, = ¢ (dy (za,.) /\/Fa). Mul-
tiplying the equation Agju, + b = |uql” “~2 4, by the function Yalle and integrating by parts
on M yield

1
/ Do |Vua|§ dv, + 5/ u Aypadvu, + / hoauido, = / Do [ual" du, .
M M M M

By (i), it follows that there exist two constants C and C5 such that there holds
[ Vel oy < (G ol Aypal o) Voly (4572%) (3.41)
Ag—l,c 1

for all . One can easily check that there holds || Agpalco(rsy = O(pyt) as a — +oo. Moreover,

we get Vol, (A 2¢T2) = O(ui/?) as o — +oo by Bishop’s inequality. Finally, property (i)
follows from (3.41). O

3.3. Proof of Theorem 1.2

In the following, we let (M, g) be a smooth, compact Riemannian manifold of dimension
n > 7 and h be a C*-function on M such that there holds h < 4(7;—__21) Scal, in M. The proof of
Theorem 1.2 is based on conformal invariance of the conformal Laplacian and on the Euclidean
Pohozaev identity. Given a smooth, bounded domain (2 in the Euclidean space, the Euclidean

Pohozaev identity states

/(x, Vu) A(;udx—l—ﬁ/uAgudx
2 2" Ja

ou 1 9 n ou
== Vu) —d = Vul”d — — —do (3.42
| @vGear@ s [ @ vilio@ -5 [ ugtis (4
for all smooth functions u on £2, where do is the Euclidean volume element on 962 and 9/9v is
the normal derivative with respect to the outward unit normal vector v. We easily get (3.42)
by integrating by parts the first term in the left hand side.

We proceed by contradiction, and let (u,), be a bounded sequence in Hi (M) of solutions
for the family of equations (3.1) which does not remain bounded in C° (M). Tt is easily seen
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that the sequence (u,),, cannot be compact in H7 (M), and thus blows up as & — +00. As in
the previous sections, for ¢ = 1,..., k, we let (2), and (y5), be the centers and the weights
of the bubble (B!),, in Lemma 3.1, and we assume

1 i
= max [, .
Mo o Ha

Then, for any a, we let u, stand for p! and z, stand for z}.

Since g is locally conformally flat, there exists a conformal metric g to g which is flat around
the geometrical blow-up point z, limit of the centers (z,),. We set g = ©? ~2g, where ¢ is
smooth and positive and u, = u,/¢ for all a. By conformal invariance of the conformal
Laplacian (see, for instance, Lee—Parker [39]), u,, satisfies the equation

Al + hitg = "2 [P T, (3.43)

for all o, where
~ n—2 n—2

1
- "% Seali+——— (h— ——Z _Seal, | .
h =1 S(:ag+(p%_2 <h =1 Sca g)

In particular, around the point z, the flatness of g implies that Scal; = 0, and thus h is
negative. We let ¢ be the real number we get in Lemma 3.5. It follows from the second
assertion of this lemma that there exists a sequence (), in (¢ — 1,¢+ 1) such that, up to a
subsequence, there holds
n—3
/ Vg [2dog = O (uaT) (3.44)
OBazq (Ta\/;Ta)

as o — +o00, where doy is the volume element on 085, (rm/ua) induced by the metric g.
For o large, g is flat in the ball B,, ((¢+ 1) \/fa). In particular, the Euclidean Pohozaev

identity (3.42) holds for the function i, = 4 o exp,_ and the domain B, = By (rm /ua). By
integrating by parts the first term in the left hand side of (3.42) and by using (3.43), we get

* 2* - *
/ (2, Viig) Asiigda = —E/ e ™ o™ dv — pa/ (2, Vo) ghe ™ i [ do
Ba Pa Ba Pa Ba

) 1 ) 1 *
+ 2 / heti2dz + = / <x Vha>aidx+ = ) P (P do ()
2 Js., 2 /B, Pa JoB,

1 N
! / (2,0) B [t dor (2)
2 OBa

where ¢, = poexp, , ho = ho exp,_, do is the Euclidean volume element on 0B, and v is
the outward unit normal vector to 0B,. Plugging into the Euclidean Pohozaev identity gives

1 1 . 2% — Dq o .
0(og) [t o T [ v g do - [ haidds
B(X (64 «@ (%
7 ) 1 —2*—1 |~ |P 1 7 n2
— = <x, Vha> usdr = — (x,v) phe |t |["* do () — = (x,v) hyu, do (z)
Ba Do JoB. 2 Jop.

Dy 1 > n Ditg
+ z,Vi,) —do (x ——/ x,v) |Vi,| do (x —|——/ Uog——do . (3.45
| @i Geio@ -5 [ @ovitare e g [ 6 St @
We first give a lower bound of the left hand side of (3.45). As a remark, there exists a
positive constant ¢y such that for any «, there holds h, < —¢¢ in B,. For « large, we get
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<z, Vhy >< —h, and < z, Vi, >> — (n/2%) ¢, for all points = in B,. It follows that

1 A 1 1 i
— —sup ha/ widr <n (_ — _*) / oo 1 g 1P dy
2 Ba pa 2 Ba
2

Ba
i « ~ 7 A 1 7 ~
+ b / (2, Vo) @22 g P> do — / hot2dx — —/ <3c, Vha> a2d .
pa o Ba 2 Ba

Then, we are concerned with estimating the right hand side of (3.45). For any point x in 08,,
by the Cauchy-Schwarz inequality, we get

X X Dl
[z, )| < (c+1) Ve, |[{(2,Vi)| < (c+1)y/ia|Via|, and < |V -
By (3.45), it follows that
1 ~ 1 . 1 ~
- —supha/ W2de < 5 ,/—Ma/ oo L |G 1P o C+ Via [ b W2do
2 Ba Ba Pa 0Ba

3 1
REIGER)) qa/ |Vﬁa|2da+—*/ g | [Vita|do . (3.46)
2 OBa 2" Jos,
Lemma 3.5 (i) gives
Vi [ il do + S v [
0Bao

as o — +o0o. By Holder’s inequality, Lemma 3.5 ( and (3 44), we also get

/ lila| | Vit do < \// u2d0\// V> do = O (ua_2> (3.48)
oB dBq

as a — +o0. By (3.44), (3.46), (3.47), and (3.48), we finally get

— sup iza/ w2dr =0 (u?) (3.49)
Ba

Ba

1 N
c~|— e

i2do =0 (;é ) (3.47)

as a — +o0. It remains to estimate [, 42dz from below. Since the ball By (j,) is included
in B, for « large, it suffices to estimate [ Bo(a) @2dx. By decomposing the functions u, as in
Lemma 3.1 and by (3.2), one can easily check that up to a subsequence, there holds

/ aidr > Cu2 (3.50)
Bo(pa)

for all o, where C' is a positive constant independent of a. By (3.49) and (3.50), it follows
that up to a subsequence, there holds

—suph =0 (,u(: 6)

as a — +00. Since n > 7, passing to the limit as « — +o0o yields that ﬁ(f) cannot be
negative. This contradiction ends the proof of Theorem 1.2.

3.4. Proof of Theorem 1.3

In the following, we let (M, g) be a smooth, compact Riemannian manifold of dimension

n > 7 and h be a C'-function on M such that there holds h < 4(7;—__21) Scal, in M. We let
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(pa), be a sequence in (2,2*) converging to 2*, and we purpose to deduce Theorem 1.3 from
Theorem 1.2. For any a, we define the functional I on H{ (M) by

1 1 1
I3 (u) = —/ |Vu|§ dv, + —/ hu’dv, — —/ lul"* dvy .
2 Jm 2 Jm Pa JMm

Its critical points are the solutions of the equation
Agu+ hu = [ul"* " u.

Another way of regarding the solutions of this equation is to say that up to a renormalization,
they are the critical points of the functional ;' on the constraint

H={ueH (M); F(u)=1},
where F is the functional defined on H? (M) by

F(u):/M]VuEdvg—l—/Mhquvg.

More precisely, the critical points of the functional I on the constraint H at level ¢, are
solutions of the equation

2
Pa (1 - 2001)
In order to use later on the min-max principle, we need to check that for « fixed, the

functional Ij* satisfies the Palais-Smale condition on the constraint H at any critical level c,,
namely that for any sequence (u5,ug)ﬂ in H x R, if there hold I{ (ug) — ¢, and DI (ug) —

Agu+ hu = luP* % . (3.51)

psDF (ug) — 0in H? (M) as 8 — +oo, then (ug, p5)5 converges up to a subsequence in
H x R. We set a sequence (ug, pg) g in H xR satisfying the above conditions. We first note

that there holds .
/M lug|" dv, = pq (5 — I (u5))

for all 3. It follows that the sequence (ug), is bounded in LP> (M) and thus in L?*(M). By
the very definition of the set H, the sequence (ug), remains bounded in H? (M). On the
one hand, evaluating the functional DI (ug) — pgDF (ug) at the function ug for all 3 and
passing to the limit as  — +oo yield that the sequence of real numbers (yuz) 5 converges to
(1+ pa (ca — 1/2)) /2. On the other hand, since Hf (M) is reflexive and by the compactness
of the embeddings of H? (M) into LP> (M) and into L? (M), we may assume that there exists
a function u in H} (M) such that up to a subsequence, (ug) 5 converges to u weakly in H 2(M)

and strongly in LP> (M) and in L? (M). We clearly get that u is a solution of equation (3.51).
For any function ¢ in H? (M), we then get

(1=20) [ (¥ (w5 =), V), dvy = (Ielan)

as f — +o0. By taking ¢ = ug —u, it follows that (ug), converges up to a subsequence to the

function w in Hf (M). This proves that the functional I{ satisfies the Palais-Smale condition
on the constraint H at any critical level c,,.

We let (Ag) 8 be the sequence of eigenvalues of the Laplace-Beltrami operator A, and for
any 3, we let ¢g be an eigenfunction corresponding to A\g and I's be the set of all symmetric,
compact subsets of H whose Krasnosel’skil genus is greater than or equal to 3. For [ large
enough so that h > —M\g, one can easily check with the Borsuk-Ulam theorem (see, for
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instance, Kavian [37]) that the set H N Span (¢g, ..., ¢25-1) belongs to I's and thus that the
set I is not empty. We then define

B) — j «
o= Juf ey )

for all o and similarly

csg = inf max/, (u).
B Aers ueA g ()

For 3 large, we claim that all these lower bounds are finite. We prove this claim for cz. We let

&, be the eigenspace associated with Ay for all natural numbers &, and we set Sg = @f:o Ek.
We fix a natural number 3 such that h > —Ag,41. If § > dim (Sg,), then the intersection of
any set A in I's with the orthogonal complement of Sg, is not empty. If not the case, then the
projection of A onto &g, would be an odd, continuous map with nonzero values in a vector
space of dimension less than 3, and this would contradict the definition of the Krasnosel’skii
genus. It follows from this remark that it suffices to prove that the functional /, is bounded
from below on the intersection G of the set ‘H with the orthogonal complement of Sg,. For any
function » in G, by the min-max characterization of the eigenvalues of the Laplace—Beltrami
operator A, there holds

/M (Agor1 + h)u’dv, < 1.

Thanks to our choice of 3y, we get that the set G is bounded in L? (M). By the very definition
of H, the set G remains bounded in H? (M) and thus in L? (M). This proves that the
functional I, is bounded from below on the set G, and as already said, it follows that cg is
finite. A similar argument gives that the lower bounds ¢ are also finite.

By the properties of the Krasnosel’skil genus, one can easily check that we are under the
conditions of the min-max principle for ¢!’ (see, for instance, Kavian [37]). In particular, P
is a critical level of the functional I* on the constraint H. Therefore, we get a critical level

&P of the functional I o by setting

_2
Pa—2

a6 (l N i) 2
2 Pa Pa (1 _ ZCgﬁ))

_ 1 2 ¥
P\ 21— 205) '

The proof of Theorem 1.3 consists of three steps. The first one is as follows.

Similarly, we set

Step 3.8. There holds Fo cg as a — +oo for all [5.

)

Proof. Tt comes to the same thing to prove that there holds P - cg as a — +00. We begin

with estimating the upper limit of ) as o — +oo. For any set A in I, since the functionals
I3 are equicontinuous, there holds

«
wexty 1) = e ()

as a = +oo. It follows that

lim sup ¢¥) < max I, (u),
a—+00 ueA
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and since this is satisfied for all sets A in Iz, we get

lim sup ¢ < ¢g. (3.52)

a——+00

It remains to estimate the lower limit of ¢ as o — +o0. For any «, by taking into account
that there holds P« /p, — t¥ /2* < 1/p, — 1/2* for all nonnegative real numbers ¢, we get

I, < I7 + (]9% - %) Vol, (M) .
It follows that
cg < lolérilglof o (3.53)
By (3.52) and (3.53), we get that there holds P cg as o — +00. d

The next step in the proof of Theorem 1.3 states as follows. We prove it by using Step 3.8
and Theorem 1.2.

Step 3.9. ¢z is a critical level of the functional I, for all 3.

Proof. For any «, we let ) be a critical point of the functional ;' at level

Y is a solution of equation (1.1). We then write

[T iy = [T oy [ (4 @) oy,

where A is as in (1.2). By Holder’s inequality, it follows

2
Hﬁ&B)H;%(M) = /M (G dvg + (A = hll ogay Volg(M)5e (/M el dvg) ‘°
2

= 2o 200 4 1A = Bl Voly (M) 5 (2 )™
By Step 3.8, the right hand side in this equation is converging as o — +o00. It follows that
the sequence (ﬂ((f ", is bounded in H2 (M). By Theorem 1.2, we get that (ﬁ((f ) converges up
to a subsequence in Hf (M) to a critical point ug of the functional I,. Finally, it follows from

Step 3.8 that the level of ug is ¢z. This ends the proof of Step 3.9. O

E{aﬁ ) The function

The third and last step in the proof of Theorem 1.3 is as follows.
Step 3.10. There holds cg — +00 as f — +oo.

Proof. We proceed by contradiction, and assume that the sequence of real numbers (¢3) 5 is

bounded. By Step 3.8, we may construct an increasing sequence of natural numbers (ag) 5 such

that there holds |E§f? —¢g| < 1 for all § and thus such that the sequence of real numbers (Effﬂ)) P

is bounded. By Ghoussoub [27, Corollary 10.5] (see also Bahri-Lions [4], Lazer—Solimini [38]

and Solimini [54]), for any 3, we may select a critical point ug of the functional I,;” on the

constraint H at level c&i) whose augmented Morse index is greater than or equal to az. Here,

the augmented Morse index of ug as a critical point of the functional I;” turns out to be the
number of nonpositive eigenvalues, this time counted as many times as their multiplicity, of
the linearized operator Ay + (h — (pa, — 1) |ug|™* ~?). The same computations as in Step 3.9
yield that the sequence (ug), is bounded in H 2(M) and thus in L? (M). It follows that the

functions (h — (pa, — 1) lug|P*~?) are bounded in L™? (M). With Lieb-type [44] arguments,
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we then get that the augmented Morse indices of the critical points ug is bounded. This
contradiction ends the proof of Step 3.10. O

By Steps 3.9 and 3.10, we get a sequence of solutions for the equation
Agu+ hu = |ul* " u.

These solutions have unbounded energies. Up to a subsequence, we may assume that their
energies are increasing. This ends the proof of Theorem 1.3.
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