
MULTIPLE SOLUTIONS FOR NONLINEAR ELLIPTIC EQUATIONS ON
COMPACT RIEMANNIAN MANIFOLDS

JÉRÔME VÉTOIS

Abstract. Let (M, g) be a smooth, compact Riemannian n-manifold, and h be a Hölder
continuous function on M . We prove the existence of multiple changing sign solutions for

equations like ∆gu + hu = |u|2
∗−2

u, where ∆g is the Laplace–Beltrami operator and the
exponent 2∗ = 2n/ (n− 2) is critical from the Sobolev viewpoint.

1. Introduction

1.1. Statement of the results

Let (M, g) be a smooth, compact Riemannian manifold of dimension n ≥ 3 and h be a
Hölder continuous function on M , namely a function which belongs to C0,θ (M) for some real
number θ in (0, 1). We consider equations like

∆gu+ hu = |u|2
∗−2 u , (1.1)

where ∆g = − divg∇ is the Laplace–Beltrami operator, and 2∗ = 2n/ (n− 2). If H2
1 (M)

stands for the Sobolev space of all functions in L2 (M) with one derivative in L2 (M), then
2∗ is the critical exponent for the embeddings of H2

1 (M) into Lebesgue spaces. We provide
H2

1 (M) with the scalar product

〈u, v〉H2
1 (M) =

∫
M

〈∇u,∇v〉g dvg + Λ

∫
M

uvdvg , (1.2)

where Λ is a positive constant to be chosen large later on. The Hölder continuity of h provides
the regularity of weak solutions of equation (1.1). In case there holds h ≡ n−2

4(n−1) Scalg, where

Scalg is the scalar curvature of the manifold (M, g), equation (1.1) is the intensively studied
Yamabe equation whose positive solutions u are such that the scalar curvature of the conformal
metric u2

∗−2g is constant (see Aubin [3], Schoen [49], Trudinger [58], and Yamabe [59]). In this
paper, we deal with multiplicity of solutions for equation (1.1) when the function h is locally
less than n−2

4(n−1) Scalg in Theorem 1.1, and globally less than n−2
4(n−1) Scalg in Theorems 1.2

and 1.3. We define the energy of a solution u of equation (1.1) to be the real number E (u)
given by

E (u) =

∫
M

|u|2
∗
dvg , (1.3)

where dvg is the volume element of the manifold (M, g). We say that an operator like ∆g + h
is coercive on H2

1 (M) if the energy associated to this operator controls the H2
1 -norm. We
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let D1,2 (Rn) be the homogeneous Sobolev space defined as the completion of the space of all
smooth functions on Rn with compact support with respect to the scalar product

〈u, v〉D1,2(Rn) =

∫
Rn
〈∇u,∇v〉 dx .

We let also Kn be the sharp constant for the embedding of D1,2 (Rn) into L2∗ (Rn), namely

Kn =

√
4

n (n− 2)ω
2/n
n

,

where ωn is the volume of the unit n-sphere. We associate each solution of equation (1.1) with
its opposite one, and call that a pair of solutions. We state our first result as follows.

Theorem 1.1. Let (M, g) be a smooth, compact Riemannian manifold of dimension n ≥ 4
and h be a Hölder continuous function on M such that the operator ∆g + h is coercive on
H2

1 (M). If there exists a point x0 in M such that h (x0) <
n−2

4(n−1) Scalg (x0), then equation

(1.1) admits at least (n+ 2) /2 pairs of nontrivial solutions with energy less than 2K−nn .

More precisely, we prove that either we do have infinitely many solutions of equation (1.1)
or the (n+ 2) /2 pairs of nontrivial solutions we get in Theorem 1.1 have distinct energies.
In the particular case where the manifold is locally conformally flat, n ≥ 7, and h is a C1-
function less than n−2

4(n−1) Scalg on the whole manifold, the above result can be improved. In

such a setting, we establish two results. We first consider families of equations like

∆gu+ hu = |u|pα−2 u , (1.4)

where (pα)α is a sequence in [2, 2∗] converging to 2∗. A sequence (uα)α is said to be a sequence
of solutions for the family (1.4) if for any α, uα is a solution of equation (1.4). First, we
prove a compactness result for the family of equations (1.4) similar to the one proved by
Devillanova–Solimini [17] in the case of smooth, bounded domains of the Euclidean space.
Our compactness result is as follows.

Theorem 1.2. Let (M, g) be a smooth, compact, locally conformally flat Riemannian manifold
of dimension n ≥ 7 and h be a C1-function on M . We let (pα)α be a sequence in [2, 2∗]
converging to 2∗, and we consider the family of equations (1.4). If there holds h < n−2

4(n−1) Scalg
in M , then any bounded sequence in H2

1 (M) of solutions for this family of equations remains
bounded in C0 (M).

An equivalent conclusion of Theorem 1.2 is that any bounded sequence in H2
1 (M) of solu-

tions for the family of equations (1.4) is compact in H2
1 (M). In particular, such a sequence

converges up to a subsequence in H2
1 (M) to a solution of the critical equation (1.1). This

easily follows from standard elliptic estimates (see, for instance, Gilbarg–Trudinger [28] Theo-
rem 9.11) and the compactness of the embedding of Hp

2 (M) into H2
1 (M) for all real numbers

p > 2n/ (n− 2). As a remark, note that pα → 2∗ is the only interesting difficult case for com-
pactness since the embeddings of H2

1 (M) into Lp(M) are compact for p < 2∗. Theorem 1.2 is
the key argument in the proof of our last result which states as follows.

Theorem 1.3. Let (M, g) be a smooth, compact, locally conformally flat Riemannian manifold
of dimension n ≥ 7 and h be a C1-function on M . If there holds h < n−2

4(n−1) Scalg in M , then

equation (1.1) admits infinitely many solutions with unbounded energies.
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There are several situations where we do know that the solutions we get in Theorems 1.1
and 1.3 truly change sign. Such changing sign solutions are referred to as nodal solutions. Let
us assume, for instance, that the Ricci curvature Ricg of the manifold (M, g) satisfies

Ricg ≥
4(n− 1)

n(n− 2)
λg (1.5)

for some positive real number λ, in the sense of bilinear forms, the inequality being strict
when the manifold is conformally diffeomorphic to the sphere. Then, as proved by Bidaut-
Véron–Véron [6], equation (1.1) with h ≡ λ has a unique positive solution, which turns out
to be u = λ(n−2)/4. In particular, in such a situation, all but one pairs of solutions we get in
Theorem 1.1 are nodal. Concerning Theorem 1.3, it has been proved by Druet [21] that there
is an a priori bound on the energy of positive solutions of equation (1.1) when h < n−2

4(n−1) Scalg
in M . More precisely, for any smooth, compact Riemannian manifold (M, g) of dimension
n ≥ 3, there exists a real number E0 such that if u is a positive solution of equation (1.1),
then E (u) ≤ E0 where E (u) is as in (1.3). In particular, as a direct consequence of the
existence of this a priori bound for positive solutions, Theorem 1.3 provides infinitely many
nodal solutions for equation (1.1). Summarizing, the following corollary holds true.

Corollary 1.4. Let (M, g) be a smooth, compact Riemannian manifold of dimension n and h
be a C1-function on M such that h < n−2

4(n−1)Scalg in M . If n ≥ 7 and the manifold is locally

conformally flat, then equation (1.1) admits infinitely many nodal solutions. If n ≥ 4, the
manifold is arbitrary, h ≡ λ for some λ > 0, and (1.5) holds true, the inequality being strict
when the manifold is conformally diffeomorphic to the sphere, then equation (1.1) admits at
least n/2 pairs of nodal solutions.

Compactness of positive solutions of equations like (1.1) have been intensively studied in
recent years. Possible references on this topic, in the case of manifolds, are Druet [21,22], Li–
Zhang [40–42], Li–Zhu [43], Marques [45], and Schoen [50–52]. A survey reference on the sub-
ject is Druet–Hebey [23]. We refer also to Hebey [31,32] for compactness of positive solutions
of critical elliptic systems in potential form and to Hebey–Robert–Wen [33] for compactness of
positive solutions of critical fourth order equations. Compactness of changing sign solutions of
equations like (1.1), in the case of smooth, bounded domains of the Euclidean space, have been
studied in Devillanova–Solimini [17]. We follow this reference by Devillanova–Solimini [17] in
several places in Section 3, as well as we follow the reference Clapp–Weth [15] in several places
in Section 2. Possible other references on the existence of multiple nodal solutions for equations
like (1.1) are Atkinson–Brezis–Peletier [2], Bahri–Lions [4], Capozzi–Fortunato–Palmieri [8],
Castro–Cossio–Neuberger [9], Cerami–Fortunato–Struwe [10], Cerami–Solimini–Struwe [11],
Devillanova–Solimini [18], Ding [19], Djadli–Jourdain [20], Fortunato–Jannelli, [26], Hebey–
Vaugon [34], Holcman [35], Jourdain [36], Solimini [53], Tarantello [57], and Zhang [60]. Need-
less to say, the above list does not pretend to exhaustivity. We refer also to the recent very nice
paper by Ammann–Humbert [1] where the question of the existence of at least one changing
sign solution to the Yamabe equation is addressed.

A final remark in this introduction concerns the condition h < n−2
4(n−1) Scalg in Theorem 1.2.

Let (Sn, std) be the unit n-sphere. There holds Scalstd ≡ n (n− 1), and the Yamabe equation
on the unit n-sphere reads as

∆stdu+
n (n− 2)

4
u = u2

∗−1. (1.6)
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For any β > 1 and any point x0 in Sn, we define the function uβ,x0 on Sn by

uβ,x0 (x) =

(
n (n− 2)

4

)n−2
4

( √
β2 − 1

β − cos (dstd (x0, x))

)n−2
2

.

All these functions are solutions of equation (1.6), and have the same energy, namely K−nn .
They are uniformly bounded in H2

1 (M) but there holds uβ,x0 (x0) → +∞ as β → 1+. In
particular, when dealing with the unit n-sphere and equation (1.6), for which h ≡ n−2

4(n−1) Scalstd,

there are no uniform bounds in C0 (M). More sophisticated examples can be found in Druet–
Hebey [23] for positive solutions of equations like (1.6), and in Ding [19] for changing sign
solutions of equations like (1.6). We lose Theorem 1.2 when we do not assume something like
h < n−2

4(n−1) Scalg.

1.2. Preliminary material

In the following, we let (M, g) be a smooth, compact Riemannian manifold of dimension
n ≥ 3 and h be a Hölder continuous function on M . We define the functional Ig by

Ig (u) =
1

2

∫
M

|∇u|2g dvg +
1

2

∫
M

hu2dvg −
1

2∗

∫
M

|u|2
∗
dvg .

Its critical points are the solutions of equation (1.1). Let us recall the basics about the
H2

1 -theory of blow-up that we need in the proof of Theorems 1.1, 1.2, and 1.3. A sequence
(uα)α in H2

1 (M) is said to be Palais–Smale for the functional Ig if the sequence (Ig (uα))α
is bounded and if there holds DIg (uα) → 0 in H2

1 (M)′ as α → +∞. If moreover Ig (uα)
converges to a real number c as α→ +∞, then the sequence (uα)α is said to be Palais–Smale
for the functional Ig at level c. In particular, bounded sequences in H2

1 (M) of solutions of
equation (1.1) are Palais–Smale for the functional Ig. The H2

1 -theory of blow-up deals with
the asymptotic behaviour in H2

1 (M) of Palais–Smale sequences for the functional Ig.

Let η be a smooth cutoff function such that 0 ≤ η ≤ 1 in Rn, η ≡ 1 in B0 (ig/3), and η ≡ 0
out of B0 (2ig/3), where ig is the injectivity radius of the manifold (M, g). Given a converging
sequence (xα)α of points in M , a sequence (µα)α of positive real numbers converging to 0, and
a function u in D1,2 (Rn), we shall call rescaling of u on M of centers (xα)α and weights (µα)α,
a sequence (%α (u))α of functions defined on M by

%α (u) (x) = µ
2−n
2

α ηα (x)u
(
µ−1α exp−1xα (x)

)
,

where ηα = η ◦ exp−1xα . One can easily see that (%α (u))α converges to 0 weakly in H2
1 (M),

strongly in L2 (M) but that the H2
1 -norm of the functions %α (u) converges to ‖u‖D1,2(Rn) as

α→ +∞. An important and usefull remark is that the H2
1 -range of interaction of a rescaling

is of the order of its weights, namely that there hold

lim
α→+∞

∫
Bxα (Rµα)

|∇%α (u)|2g dvg =

∫
B0(R)

|∇u|2 dx

and

lim sup
α→+∞

∫
M\Bxα (Rµα)

|∇%α (u)|2g dvg = εR

for all positive real numbers R, where εR → 0 as R→ +∞.

We shall call bubble a rescaling on M of a nontrivial solution in D1,2 (Rn) of the equation

∆δu = |u|2
∗−2 u , (1.7)
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where δ is the Euclidean metric on Rn. Given a bubble (Bα)α, we define its energy E (Bα) by

E (Bα) =

∫
Rn
|u|2

∗
dx .

Nonnegative solutions in D1,2 (Rn) of equation (1.7) are all of the form

uµ,x0 (x) =

 µ

µ2 + |x−x0|2
n(n−2)

n−2
2

, (1.8)

where µ is a nonnegative real number and x0 is a point in the Euclidean space (see Caffarelli–
Gidas–Spruck [7] and Obata [47]). They are the extremal functions for the sharp Euclidean
Sobolev inequality, and one can easily compute∫

Rn
|uµ,x0|

2∗ dx =

∫
Rn
|∇uµ,x0|

2 dx = K−nn .

As for nodal solutions u of equation (1.7), there holds∫
Rn
|u|2

∗
dx =

∫
Rn
|∇u|2 dx > 2K−nn . (1.9)

In other words, the energy of a constant sign bubble is K−nn while the one of a nodal bubble
is greater than 2K−nn . In order to prove (1.9), we decompose the function u into its positive
part u+ = max (u, 0) and its negative part u− = max (−u, 0), and we write∫

Rn

∣∣∇u±∣∣2 dx =

∫
Rn
∆δuu

±dx =

∫
Rn
|u|2

∗−2 uu±dx =

∫
Rn

∣∣u±∣∣2∗ dx .
By taking into account that u± cannot be of the form (1.8), it follows that∫

Rn

∣∣∇u±∣∣2 dx > K−nn ,

and we sum to get (1.9).

We recall the following result proved by Struwe [56] for equation (1.7) in smooth, bounded
domains of the Euclidean space. We also refer to Druet–Hebey–Robert [24] for a complete
exposition in book form in the Riemannian case.

Lemma 1.5. Let (M, g) be a smooth, compact Riemannian manifold of dimension n ≥ 3
and h be a Hölder continuous function on M . For any Palais–Smale sequence (uα)α for the
functional Ig, there exist a solution u∞ of equation (1.1), a natural number k, and bubbles
(B1

α)α , . . . ,
(
Bk
α

)
α

such that up to a subsequence,

uα = u∞ +
k∑
i=1

Bi
α +Rα

for all α, where Rα → 0 in H2
1 (M) as α→ +∞ and moreover, there holds

Ig (uα) = Ig (u∞) +
1

n

k∑
i=1

E
(
Bi
α

)
+ o (1)

as α→ +∞.
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We prove Theorem 1.1 in Section 2 by using a negative gradient flow, the H2
1 -theory of blow-

up, and the relative equivariant Lusternik–Schnirelmann categories. We prove Theorems 1.2
and 1.3 in Section 3 thanks to a fine analysis of blow-up and topological arguments involving
the Krasnosel′skĭı genus.

2. Multiple solutions with bounded energies

We purpose to prove Theorem 1.1 in this section. We first set some notations. We let P be
the set of all nonnegative functions in H2

1 (M). Given a positive real number δ and a subset C
of H2

1 (M), we let Bδ (C) stand for the neighbourhood of C formed by all functions in H2
1 (M)

at a distance from C less than or equal to δ. Given a real number c, we set Icg = I−1g ((−∞, c]).

2.1. The negative gradient flow

In the following, we let (M, g) be a smooth, compact Riemannian manifold of dimension
n ≥ 3 and h be a continuous function on M . For the moment, we do not need to assume that
the operator ∆g + h is coercive on H2

1 (M) nor to restrict the dimension of M . We let ∇Ig
stand for the operator acting on H2

1 (M) satisfying

〈∇Ig (u) , v〉H2
1 (M) = DIg (u) .v

for all functions u and v in H2
1 (M), where 〈., .〉H2

1 (M) is as in (1.2). We also let ϕg stand for

the flow defined by 
∂ϕg
∂t

(t, u) = −∇Ig (ϕg (t, u)) if 0 ≤ t < T (u) ,

ϕg (0, u) = u ,

where for any function u in H2
1 (M), T (u) is the maximal existence time for the trajectory

t→ ϕg (t, u). As a remark, for any function u in H2
1 (M) and for any positive time t, we get

∂ (Ig ◦ ϕg)
∂t

(t, u) = −‖∇Ig (ϕg (t, u))‖2H2
1 (M) . (2.1)

A subset D of H2
1 (M) is said to be strictly positively invariant for the flow ϕg if for any u

in D and any time t in (0, T (u)), the function ϕg (t, u) belongs to the interior of D. As an
example, since by (2.1), the function Ig ◦ ϕg (·, u) is decreasing for all non-critical points u in
H2

1 (M), the set Icg is strictly positively invariant for the flow ϕg for all non-critical values c.

The following lemma provides some other examples of subsets of H2
1 (M) which are strictly

positively invariant for the flow ϕg and that we use in the proof of Theorem 1.1.

Lemma 2.1. Let (M, g) be a smooth, compact Riemannian manifold of dimension n ≥ 3 and
h be a continuous function on M . Let Λ be the positive constant appearing in the definition
of the scalar product (1.2). If Λ is large enough, then for small positive real numbers δ, the
sets Bδ (P) and Bδ (−P) are strictly positively invariant for the flow ϕg.

Proof. Since the operator ∇Ig is odd, it suffices to state the proof for the sets Bδ (P). We
write ∇Ig (u) = u − L1 (u) − L2 (u), where L1 (resp. L2) is the operator acting from L2 (M)
(resp. L2∗ (M)) into H2

1 (M) which satisfy for any function u in L2 (M) (resp. L2∗ (M)), the
equation

∆gL1 (u) + ΛL1 (u) = (Λ− h)u , (2.2)

resp. ∆gL2 (u) + ΛL2 (u) = |u|2
∗−2 u . (2.3)
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As a first step, we show that if Λ is large enough, then for small positive real numbers δ, there
exists a real number ν in (0, 1) such that for any function u in Bδ (P), there holds

d (L1 (u) + L2 (u) ,P) ≤ νd (u,P) , (2.4)

where d is the distance on the Sobolev space H2
1 (M). We begin with estimating d (L1 (u) ,P)

for all functions u in H2
1 (M). We assume that the constant Λ is greater than ‖h‖C0(M) so that

by the weak maximum principle, the operator L1 sends the set P into itself. By using (2.2)
and the coercivity of the operator ∆g + h, we get that if moreover Λ > 1, then

‖L1 (u)‖2H2
1 (M) =

∫
M

(Λ− h)uL1 (u) dvg

≤ 1

2

∫
M

(Λ− h)
(
u2 + L1 (u)2

)
dvg

≤ Λ− λ
2Λ

(
‖u‖2H2

1 (M) + ‖L1 (u)‖2H2
1 (M)

)
for some constant c > 0. It follows that

‖L1 (u)‖H2
1 (M) ≤

√
Λ− c
Λ + c

‖u‖H2
1 (M) . (2.5)

We let v be the orthogonal projection of u on the closed convex set P . By applying (2.5) to
the function u− v and since L1 is a linear operator, we get

d (L1 (u) ,P) ≤ ‖L1 (u)− L1 (v)‖H2
1 (M) ≤

√
Λ− c
Λ + c

d (u,P) . (2.6)

We then estimate d (L2 (u) ,P). By the weak maximum principle, the operator L2 also sends
the set P into itself. Multiplying (2.3) by the function −L2 (u)− and integrating by parts on
M yield ∥∥L2 (u)−

∥∥2
H2

1 (M)
= −

∫
M

|u|2
∗−2 uL2 (u)− dvg ≤

∫
M

∣∣u−∣∣2∗−2 u−L2 (u)− dvg .

By Hölder’s inequality, it follows that∥∥L2 (u)−
∥∥2
H2

1 (M)
≤
∥∥u−∥∥2∗−1

L2∗ (M)

∥∥L2 (u)−
∥∥
L2∗ (M)

. (2.7)

Note that there holds ∥∥u−∥∥
L2∗ (M)

= min
v∈P
‖u− v‖L2∗(M) .

By (2.7) and the continuity of the embedding of H2
1 (M) into L2∗ (M), it follows that there

exists a positive constant C independent of u such that there holds∥∥L2 (u)−
∥∥
H2

1 (M)
≤ Cd (u,P)2

∗−1 . (2.8)

Summing (2.6) with (2.8) yields

d (L1 (u) + L2 (u) ,P) ≤
√

Λ− c
Λ + c

d (u,P) + Cd (u,P)2
∗−1 .

It follows that for small positive real numbers δ, there exists ν in (0, 1) such that (2.4) is
satisfied for all functions u in Bδ (P). In particular, for any positive real number λ in (0, 1]
and any function u in Bδ (P), we get

d (u− λ∇Ig (u) ,P) ≤ d ((1− λ)u,P) + d (λ (L1 (u) + L2 (u)) ,P) < d (u,P) .
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It follows that there holds d (u− λ∇Ig (u) ,Bδ (P)) = 0 for all positive real numbers λ in (0, 1]
and all functions u in Bδ (P). Moreover, the set Bδ (P) is closed, convex, and its interior is
nonempty. Therefore, by Deimling [16, Theorem 5.2], Bδ (P) is positively invariant, that is
to say for any function u in Bδ (P), the trajectory t → ϕg (t, u) stays in the set Bδ (P) for
all positive times. It remains to exhibit a contradiction in case such a trajectory intersects
∂Bδ (P) for some time t0 > 0. In that case, by Mazur’s separation theorem (see, for instance,
Megginson [46]), there exists a continuous linear form ` on H2

1 (M) such that there holds
` (ϕg (t0, u)) < ` (interior (Bδ (P))), where interior (Bδ (P)) is the interior of the set Bδ (P). By
(2.4), the operator L1 + L2 sends the set Bδ (P) into its interior, thus we get

∂ (` ◦ ϕg)
∂t

(t0, u) = ` (L1 (ϕg (t0, u)) + L2 (ϕg (t0, u)))− ` (ϕg (t0, u)) > 0 .

It follows that for small ε > 0 there holds ` (ϕg (t0 − ε, u)) < ` (ϕg (t0, u)) and thus by conti-
nuity, ϕg (t0 − ε, u) does not belong to Bδ (P). This contradicts the positive invariance of the
set Bδ (P), and ends the proof of Lemma 2.1. �

Henceforth, we assume that Λ is large enough so that for δ small, the sets Bδ (P) and
Bδ (−P) are strictly positively invariant for the flow ϕg. We shall say that a subset D of
H2

1 (M) is symmetric if there holds D = −D. Another essential ingredient for the proof of
Theorem 1.1 is the following deformation lemma.

Lemma 2.2. Let (M, g) be a smooth, compact Riemannian manifold, h be a continuous func-
tion on M , and D be a symmetric, closed subset of H2

1 (M) strictly positively invariant for the
flow ϕg. Let c ∈ R, δ, ε ∈ R+, and a symmetric subset C of H2

1 (M) be such that for any u in
I−1g ([c− ε, c+ ε]) ∩ Bδ (C), there holds

‖∇Ig (u)‖H2
1 (M) ≥

2ε

δ
. (2.9)

Then there exists an odd, continuous map ν :
(
Ic+εg ∩ C

)
∪D → Ic−εg ∪D such that ν ≡ id in

the set D.

Proof. As a first step, we show that for any function u in Ic+εg ∩C, the trajectory t→ ϕg (t, u)

cannot stay in the set I−1g ((c− ε, c+ ε]) for all positive times, and thus belongs to Ic−εg for
large times since the function Ig ◦ϕg (·, u) is nonincreasing. We proceed by contradiction, and
assume that the function ϕg (t, u) belongs to the set I−1g ((c− ε, c+ ε]) for all positive times
t. As long as ϕg (t, u) belongs to Bδ (C), by assumption (2.9), there holds

‖ϕg (t, u)− u‖H2
1 (M) ≤

∫ t

0

∥∥∥∥∂ϕg∂t (t, u)

∥∥∥∥
H2

1 (M)

dt

≤ δ

2ε

∫ t

0

‖∇Ig (ϕg (t, u))‖2H2
1 (M) dt

= − δ

2ε

∫ t

0

∂ (Ig ◦ ϕg)
∂t

(t, u) dt

=
δ

2ε
(Ig (u)− Ig (ϕg (t, u))) . (2.10)

In particular, the trajectory stays in the ball Bδ (u). Moreover, the above computations yield

t ≤
(
δ

2ε

)2

(Ig (u)− Ig (ϕg (t, u))) ≤ δ2

2ε
.
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By the standard extension theorem for solutions of ordinary differential equations, it follows
that the trajectory cannot stay in the set Bδ (C) for all positive times t. We then let t0 be the
first positive time that the trajectory intersects ∂Bδ (C). By (2.10) with t = t0, we get

Ig (ϕg (t0, u)) ≤ Ig (u)− 2ε ≤ c− ε ,

and this leads to a contradiction. In particular, we have proved that for any function u
in Ic+εg ∩ C, the trajectory t → ϕg (t, u) belongs to Ic−εg for large times. By the positive

invariance of the set D, it follows that for any function u in
(
Ic+εg ∩ C

)
∪ D, there exists

a nonnegative time τ (u) from which the trajectory t → ϕg (t, u) belongs to Ic−εg ∪ D. The

function τ :
(
Ic+εg ∩ C

)
∪D → R+ is even. In order to get the continuity of τ , the only non-

obvious thing we have to prove is its upper continuity. Let u be a function in
(
Ic+εg ∩ C

)
∪D.

In case ϕg (τ (u) , u) belongs to the boundary of the set D, the upper continuity of the function
τ at u follows from the strict positive invariance of D. In case Ig (ϕg (τ (u) , u)) = c − ε, by
(2.10) with t = τ (u), we get that the function ϕg (τ (u) , u) belongs to the set Bδ (C) and
assumption (2.9) together with (2.1) then leads to the upper continuity of the function τ at
u. Now that we have proved the continuity of τ , we get the expected odd, continuous map
ν :
(
Ic+εg ∩ C

)
∪D → Ic−εg ∪D by setting ν (u) = ϕg (τ (u) , u). �

2.2. Proof of Theorem 1.1

In the following, we let (M, g) be a smooth, compact Riemannian manifold of dimension
n ≥ 4 and h be a Hölder continuous function on M such that the operator ∆g + h is coercive
on H2

1 (M). We use the same notations as in the previous section. We assume that Λ is large
enough and that δ is small enough so that the sets Bδ (P) and Bδ (−P) are strictly positively
invariant for the flow ϕg.

We introduce the notion of relative equivariant Lusternik–Schnirelmann category. Let A
and D be two symmetric, closed subsets of a Banach space E such that D is included in A.
The equivariant Lusternik–Schnirelmann category of A relatively to D, denoted γD (A), is
the smallest natural number k such that there exist symmetric, open subsets U0, . . . , Uk of E
which cover A and such that D ⊂ U0 and odd, continuous maps χi : Ui → {−1, 1}, i = 1, . . . , k
and χ0 : U0 → D such that χ0 ≡ id in the set D. If no such natural number exist, then we
set γD (A) = +∞. If D is empty, then the equivariant Lusternik–Schnirelmann category of
A relatively to D is called the Krasnosel′skĭı genus of A, and it is denoted γ (A). As is easily
seen, the Krasnosel′skĭı genus of a symmetric, closed subset A of E can also be defined as the
smallest natural number k such that there exists an odd, continuous map χ : A→ Rk+1\ {0}.
We now state some properties that we repeatedly use in the proof of Theorem 1.1. We let
A, B, and D be three symmetric, closed subsets of E. A first easy estimate states that if
D is included in A ∩ B and if there exists an odd, continuous map ν : A → B such that
ν ≡ id in the set D, then there holds γD (A) ≤ γD (B). In particular, this estimate is satisfied
when D ⊂ A ⊂ B. Another easy property states that if D is included in A, then there holds
γD (A ∪B) ≤ γD (A) + γ (B). We refer to Bartsch–Clapp [5] and Clapp–Puppe [13, 14] for
more material about the relative equivariant Lusternik–Schnirelmann category.

We set Dδ = Bδ (P ∪ (−P)). For any real number c, we let Kc be the set of all critical
points of the functional Ig at level c. One can easily check that there holds ∪c≤0Kc = {0}. By
Lemma 2.1 and by (2.1), it follows that the set I0g∪Dδ is strictly positively invariant for the flow

ϕg. As an easy consequence of this strict positive invariance, there holds γI0g∪Dδ
(
I0g ∪ Dδ

)
= 0.
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We then define

cβ = inf
{
c > 0; γI0g∪Dδ

(
Icg ∪ Dδ

)
≥ β

}
for all natural numbers β ≥ 1 with the convention that inf ∅ = +∞. A preliminary remark
is that the sequence (cβ)β is nondecreasing. We now claim that for any β ≥ 1, if cβ is finite,

then there exists a Palais–Smale sequence (u
(β)
α )α for the functional Ig at level cβ with the

additional property that the function u
(β)
α belongs to H2

1 (M) \Dδ/2 for all α. It suffices to
prove that

∀ε > 0 ∃u ∈ I−1g ([cβ − ε , cβ + ε]) ∩H2
1 (M) \Dδ/2 s.t. ‖∇Ig (u)‖H2

1 (M) <
4ε

δ
(2.11)

By contradiction, if (2.11) is false, then there exists a positive real number ε0 such that for

any function u in I−1g ([cβ − ε0, cβ + ε0])∩H2
1 (M) \Dδ/2, there holds ‖∇Ig (u)‖H2

1 (M) ≥ 4ε0/δ.

We clearly get Bδ/2(H2
1 (M) \Dδ) ⊂ H2

1 (M) \Dδ/2. Letting C = H2
1 (M) \Dδ, D = I0g ∪ Dδ

and applying Lemma 2.2 with δ/2 instead of δ give an odd, continuous map

ν : (I
cβ+ε0
g ∩H2

1 (M) \Dδ) ∪ I0g ∪ Dδ → I
cβ−ε0
g ∪ I0g ∪ Dδ

such that ν ≡ id in the set I0g∪Dδ. Since I
cβ−ε0
g ∪I0g = I

max(cβ−ε0,0)
g and (I

cβ+ε0
g ∩H2

1 (M) \Dδ)∪
I0g ∪ Dδ = I

cβ+ε0
g ∪ Dδ, by the above listed properties of the relative equivariant Lusternik–

Schnirelmann category, it follows that

γI0g∪Dδ

(
I
cβ+ε0
g ∪ Dδ

)
≤ γI0g∪Dδ

(
I
max(cβ−ε0,0)
g ∪ Dδ

)
.

Whenever cβ is equal to 0 or not, this contradicts the definition of cβ. This proves the above

claim, namely that if cβ is finite, then there exists a Palais–Smale sequence (u
(β)
α )α for the

functional Ig at level cβ such that the function u
(β)
α belongs to H2

1 (M) \Dδ/2 for all α. By

Lemma 1.5, since there holds d(u
(β)
α ,P ∪ (−P)) ≥ δ/2 for all α and since 0 is the only critical

point of the functional Ig at level 0, we get that cβ cannot be equal to 0. We also get that

in case 0 < cβ ≤ K−nn /n, there exists a subsequence of (u
(β)
α )α converging to a nontrivial

nodal critical point of the functional Ig. Similarly, in case K−nn /n < cβ < 2K−nn /n, there is at

most one constant sign bubble in the decomposition of the sequence (u
(β)
α )α, thus either cβ or

cβ −K−nn /n is a critical level of the functional Ig.

Aiming to prove Theorem 1.1, we shall state four preliminary steps. The first one states as
follows.

Step 2.3. If there exists β such that cβ = cβ+1 < 2K−nn /n, then the functional Ig has infinitely
many critical points at level cβ.

Proof. We proceed by contradiction, and assume that the set Kcβ is finite. When Kcβ is not
empty, there holds γ(Kcβ) = 1 and there exists a small positive real number θ such that there

holds γ(B2θ
(
Kcβ

)
) = γ(Kcβ) = 1. We first consider the case cβ ≤ K−nn /n. In that case, by the

above discussion, the set Kcβ is not empty, and Palais–Smale sequences for the functional Ig
at level cβ are compact in H2

1 (M). In particular, there exists a real number ε in (0, cβ) such

that for any function u in I−1g ([cβ − ε, cβ + ε]) \Bθ
(
Kcβ

)
, there holds

‖∇Ig (u)‖H2
1 (M) ≥

2ε

θ
.
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Applying Lemma 2.2 with C = H2
1 (M) \B2θ

(
Kcβ

)
and D = I0g ∪ Dδ then yields an odd,

continuous map ν : I
cβ+ε
g \B2θ

(
Kcβ

)
∪ I0g ∪Dδ → I

cβ−ε
g ∪Dδ such that ν ≡ id in the set I0g ∪Dδ.

By the definition of cβ and by the properties of the relative equivariant Lusternik–Schnirelmann
category, it follows that

β + 1 ≤ γI0g∪Dδ

(
I
cβ+ε
g ∪ Dδ

)
≤ γI0g∪Dδ

(
I
cβ+ε
g \B2θ

(
Kcβ

)
∪ I0g ∪ Dδ

)
+ γ

(
B2θ
(
Kcβ

))
≤ γI0g∪Dδ

(
I
cβ−ε
g ∪ Dδ

)
+ γ

(
B2θ
(
Kcβ

))
< β + γ

(
B2θ
(
Kcβ

))
.

This is in contradition with γ(B2θ
(
Kcβ

)
) = 1. We now consider the case cβ > K−nn /n. We set

Uθ = B2θ
(
Kcβ−K−nn /n + Pθ

)
,

where

Pθ =
{

(ηuµ,0) ◦ exp−1x0 ; 0 < µ ≤ θ and x0 ∈M
}
,

where η is a smooth cutoff function as in Section 1.2 and where the functions uµ,0 are as in
(1.8). We claim that if θ is small enough, then the sets Uθ and −Uθ are disjoint. In order
to prove this claim, we proceed by contradiction, and assume that there exist sequences of
functions u1α, u2α in Kcβ−K−nn /n and B1

α, B2
α in P1/α such that there holds(

u1α +B1
α

)
−
(
u2α −B2

α

)
−→ 0 (2.12)

in H2
1 (M) as α → +∞. Passing if necessary to a subsequence, (B1

α)α and (B2
α)α are two

positive bubbles. By taking into account that bubbles converge weakly to 0 and that sequences
in Kcβ−K−nn /n are compact in H2

1 (M) since by assumption there holds cβ −K−nn /n < K−nn /n,

it follows that up to a subsequence, (u1α)α and (u2α)α converge to the same limit in H2
1 (M).

This leads to a contradiction since by (2.12), the bubbles (B1
α)α and (B2

α)α would converge
up to a subsequence to 0 in H2

1 (M). We assumed here that the set Kcβ−K−nn /n is not empty

but the proof goes similarly otherwise. The above claim is proved, and we may now assume
that θ is small enough so that the sets B2θ(Kcβ), Uθ and −Uθ are mutually disjoint. For any
positive real number θ′, we adopt here the convention that Bθ′(Kcβ) = ∅ when the set Kcβ is
empty, and we set

Zθ′ = Bθ′(Kcβ) ∪ Uθ′/2 ∪ (−Uθ′/2) .

We proceed in the same way as in the first case. Since Palais–Smale sequences for the functional
Ig at level cβ have at most one constant sign bubble in their decomposition, there exists a real

number ε in (0, cβ) such that for any function u in I−1g ([cβ − ε, cβ + ε]) \Zθ, there holds

‖∇Ig (u)‖H2
1 (M) ≥

2ε

θ
.

Applying Lemma 2.2 with C = H2
1 (M) \Z2θ and D = I0g ∪Dδ then yields an odd, continuous

map ν : I
cβ+ε
g \Z2θ∪ I0g ∪Dδ → I

cβ−ε
g ∪Dδ such that ν ≡ id in the set I0g ∪Dδ. By the definition

of cβ and by the properties of the relative equivariant Lusternik–Schnirelmann category, it
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follows that

β + 1 ≤ γI0g∪Dδ

(
I
cβ+ε
g ∪ Dδ

)
≤ γI0g∪Dδ

(
I
cβ+ε
g \Z2θ ∪ I0g ∪ Dδ

)
+ γ (Z2θ)

≤ γI0g∪Dδ

(
I
cβ−ε
g ∪ Dδ

)
+ γ (Z2θ)

< β + γ (Z2θ) .

Whenever the set Kcβ is empty or not, there holds γ (Z2θ) = 1, and the contradiction follows.
This ends the proof of Step 2.3. �

We introduce the Nehari manifold N of the functional Ig defined by

N =
{
u ∈ H2

1 (M) \ {0} ; DIg (u) .u = 0
}

and the radial projection % : H2
1 (M) \{0} → N defined by

% (u) =

(∫
M
|∇u|2 dvg +

∫
M
hu2dvg∫

M
|u|2∗ dvg

)n−2
4

u .

For any function u in N , there holds

Ig (% (u)) = max
t≥0

Ig (tu) . (2.13)

We also clearly get that % (tu) = % (u) for all positive real numbers t and all functions u in
H2

1 (M) \{0} and that % (u) = u for all functions u in N . Moreover, by the coercivity of the
operator ∆g + h on H2

1 (M) and by the continuity of the embedding of H2
1 (M) into L2∗ (M),

there exists a positive constant E0 such that for any function u in N , there holds∫
M

|u|2
∗
dvg ≥ E0 . (2.14)

The second step in the proof of Theorem 1.1 is as follows. An example of positive real
numbers µε which satisfy µε

2

ε = O(ε) as ε→ 0 is µε = e−ε
−θ

for some θ > 2.

Step 2.4. For any point x in M and any real number ε in (0, ig), let ψ (x, ε) be the function
defined on M by

ψ (x, ε) (y) =
η (ε−1dg (x, y))(
µε + dg (x, y)2

)n−2
2

where dg is the geodesic distance on M with respect to the metric g, where η is a smooth cutoff
function on R such that η ≡ 1 in [−1/2, 1/2] and η ≡ 0 out of [−1, 1], and where µε is a

positive real number. In case n = 4, if there holds µε
2

ε = O(ε) as ε→ 0, then

Ig (% (ψ (x, ε))) =
1

4
K−44 +

K−44

16
(Scalg (x)− 6h (x))µε lnµε + o (µε lnµε) (2.15)

as ε → 0, uniformly with respect to x. In case n > 4, if there holds µε = O(εθ) as ε → 0 for
some θ > 2n−2

n−4 , then

Ig (% (ψ (x, ε))) =
1

n
K−nn −

K−nn
2n (n− 4)

(Scalg (x)− 4 (n− 1)

n− 2
h (x))µε + o (µε) (2.16)

as ε→ 0, uniformly with respect to x.
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Proof. We proceed as in Aubin [3] but with the tricky difference here that the supports of the
functions ψ (x, ε) have diameters of the order of ε instead of 1. For any point x in M and for
positive real numbers r close to 0, there holds

1

ωn−1rn−1

∫
∂Bx(r)

√
|g|dσ = 1− 1

6n
Scalg (x) r2 + O

(
r4
)
,

where |g| is the determinant of the components of the metric g in geodesic normal coordinates.
By standard properties of the exponential map, the remainder O(r4) can be made uniform

with respect to x. We set Iqp =
∫ +∞
0

(1 + r)−p rqdr for all positive real numbers p and q such

that p− q > 1. In case n = 4, if there holds µε
2

ε = O(ε) as ε→ 0, then we compute∫
M

|∇ψ (x, ε)|2g dvg = 2ω3µ
−1
ε

(
I24 +

1

24
Scalg (x)µε lnµε + o (µε lnµε)

)
and ∫

M

hψ (x, ε)2 dvg = −ω3

2
h (x) lnµε + o (lnµε)

as ε → 0, uniformly with respect to x. In case n > 4, if there holds µε = O(εθ) as ε → 0 for
some θ > 2n−2

n−4 , then we compute∫
M

|∇ψ (x, ε)|2g dvg =
(n− 2)2

2
ωn−1I

n/2
n µ1−n/2

ε

(
1− n+ 2

6n (n− 4)
Scalg (x)µε + o (µε)

)
and ∫

M

hψ (x, ε)2 dvg =
2 (n− 2) (n− 1)

n (n− 4)
ωn−1I

n/2
n h (x)µ2−n/2

ε + o
(
µ2−n/2
ε

)
as ε→ 0, uniformly with respect to x. In both cases, we also compute∫

M

ψ (x, ε)2
∗
dvg =

ωn−1
2

In/2−1n µ−n/2ε

(
1− 1

6 (n− 2)
Scalg (x)µε + o (µε)

)
as ε→ 0, uniformly with respect to x. By noting that there hold

n− 2

n
In/2n = In/2−1n =

ωn
2n−1ωn−1

and
(n− 2)2

2
ωn−1I

n/2
n = K−2n

(
n− 2

2n
ωn−1I

n/2
n

)2/2∗

,

and by writing

Ig (% (ψ (x, ε))) =
1

n

(∫
M
|∇ψ (x, ε)|2g dvg +

∫
M
hψ (x, ε)2 dvg(∫

M
ψ (x, ε)2

∗
dvg
)2/2∗

)n/2

,

we then get (2.15) and (2.16). �

We let x0 be as in Theorem 1.1, namely such that h (x0) <
n−2

4(n−1) Scalg (x0). The next step

in the proof of Theorem 1.1 states as follows.

Step 2.5. There exists an odd, continuous map Φ : Rn+2 → H2
1 (M) such that

(i) Ig ◦ Φ <
2

n
K−nn ,

(ii) lim
|y|→+∞

Ig ◦ Φ (y) = −∞ .
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Proof. By Step 2.4, there exist ε0 in (0, ig) and r0 in (0, ig/3) such that for any real number ε

in (0, ε0] and any point x in Bx0 (2r0), there holds

Ig (% (ψ (x, ε))) <
1

n
K−nn , (2.17)

where the functions ψ (x, ε) are as in Step 2.4. We then claim that there exist a real number
ε1 in (0, ε0) and a smooth cutoff function v such that v ≡ 1 in Bx0 (ε1), v ≡ 0 out of Bx0 (ε0),
and such that there holds

Ig (% ((1− v)ψ (x, ε0))) <
1

n
K−nn (2.18)

for all points x in the ball Bx0 (2r0). In order to prove this claim, by standard properties of
the capacities of balls, we first note that

inf
u∈Hε,ε0

(∫
Bx0 (ε0)\Bx0 (ε)

|∇u|2g dvg

)
−→ 0 (2.19)

as ε → 0, where Hε,ε0 is the set of all functions u in H2
1 (M) such that u ≡ 1 in Bx0 (ε) and

u ≡ 0 out of Bx0 (ε0). We refer to Grigor′yan [29] for more details about (2.19). Moreover, the
Poincaré inequality holds in Hε,ε0 (see, for instance, Hebey [30]). In other words, there exists a
positive constant C such that for any function u inHε,ε0 , there holds ‖u‖L2(M) ≤ C ‖∇u‖L2(M).

The existence of a real number ε1 and a smooth cutoff function v such that v ≡ 1 in Bx0 (ε1),

v ≡ 0 out of Bx0 (ε0), and such that (2.18) holds true for all points x in the ball Bx0 (r0)
then follows from (2.17) and (2.19) by an easy density argument and by the continuity of the
functionals in Ig. Without loss of generality, we may assume that r0 is small enough so that
there exists a constant C0 > 1 such that there holds

|x− y| ≤ C0dg
(
expx0 (x) , expx0 (y)

)
(2.20)

for all points x and y in the ball B0 (r0). We may assume moreover that ε0 is small enough
so that 2C0ε0 < r0. For any natural number k > 0, we let Bk be the unit ball and Sk be the
unit sphere in Rk+1. We define two maps Φ1, Φ2 : Bn → N by

Φ1 (y) =

 % (ψ (x0, ε1)) if |y| ≤ 1

2
% (ψ (x1 (y) , ε (y))) otherwise,

and

Φ2 (y) =

 % ((1− v)ψ (x2 (y) , ε0)) if |y| ≤ 1

2
% (ψ (x3 (y) , ε0)) otherwise,

where ε (y) = 2 (ε0 − ε1) |y|+ 2ε1 − ε0 and where

x1 (y) = expx0

(
−2C0ε0

(
2− 1

|y|

)
y

)
, x2 (y) = expx0 (4C0ε0y) , x3 (y) = expx0

(
2C0ε0

y

|y|

)
.

In particular, for any point y such that 1/2 ≤ |y| ≤ 1, the real number ε (y) belongs to [ε1, ε0]

and the point xi (y) belongs to the ball Bx0 (2r0) for i = 1, 2, 3. For any point y such that
|y| = 1/2, there hold x1 (y) = x0 and ε (y) = ε1. It follows that the map Φ1 is continuous.
Similarly, for any point y such that |y| = 1/2, there hold x2 (y) = x3 (y) and v ≡ 0 in Bx2(y) (ε0)
since dg (x0, x2 (y)) = 2C0ε0 > ε (y) + ε0. It follows that the map Φ2 is continuous. We then

show that for any point y in Bn, there holds

SuppΦ1 (y) ∩ SuppΦ2 (y) = ∅ . (2.21)
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If |y| ≤ 1/2, then SuppΦ1 (y) = Bx0 (ε1) and SuppΦ2 (y) ⊂ Bx2(y) (ε0)\Bx0 (ε1), and thus

(2.21) holds true. If |y| ≥ 1/2, then SuppΦ1 (y) = Bx1(y) (ε (y)) and SuppΦ2 (y) = Bx3(y) (ε0)
while by (2.20), we get dg (x1 (y) , x3 (y)) ≥ 4ε0 |y|, and it follows that here again (2.21) holds
true. As a last remark on the maps Φ1 and Φ2, there holds Φ1 (y) = Φ2 (−y) for all points y
in Sn−1. We now define the map Φ0 : Sn → N by

Φ0 (y1, . . . , yn+1) =

{
Φ1 (y1, . . . , yn) if yn+1 ≥ 0

Φ2 (−y1, . . . ,−yn) otherwise.

It is easily checked that Φ0 is also continuous. We then introduce the map Φ̃ : (Sn × (−1, 1))∪
(Bn+1 × {−1, 1})→ H2

1 (M) \ {0} defined by

Φ̃ (y, t) =



(1 + t)Φ0 (y)− (1− t)Φ0 (−y) if y ∈ Sn ,

2 |y|Φ0

(
y

|y|

)
+ (1− |y|) % (ψ (y0, ε0)) if t = 1 ,

− 2 |y|Φ0

(
− y

|y|

)
− (1− |y|) % (ψ (y0, ε0)) if t = −1 ,

where y0 = expx0 (2r0θ0) for some point θ0 in Sn. By noting that for any point y in Bn, the
supports of the functions Φ1 (y) and Φ2 (y) are included in the ball Bx0 (2C0ε0 + ε0), and since
dg (x0, y0) = 2r0 > 2C0ε0 + 2ε0, we get

Supp % (ψ (y0, ε0)) ∩ SuppΦ1 (y) = ∅ (2.22)

and
Supp % (ψ (y0, ε0)) ∩ SuppΦ2 (y) = ∅ . (2.23)

By (2.21), (2.22), and (2.23), the supports of the functions Φ1 (y), Φ2 (y) and % (ψ (y0, ε0)) are

mutually disjoint for all points y in Bn, thus Φ̃ takes its values in H2
1 (M) \{0}. It is easily

checked that Φ̃ is odd and continuous. By taking into account that the domain of definition

of the map Φ̃ is precisely the boundary of the set Bn+1 × (−1, 1), we may define the radial

extension of Φ̃ as the map Φ : Rn+2 → H2
1 (M) \{0} given by Φ (ty) = tΦ̃ (y) for all positive real

numbers t and for all points y in ∂ (Bn+1 × (−1, 1)). The map Φ is then odd and continuous.
By (2.13), (2.21), (2.22), and (2.23), property (i) follows from (2.17) and (2.18). By (2.14),
we get

max
u∈N

Ig (tu)→ −∞

as t → +∞. By (2.21) and (2.22), and (2.23), we then also get property (ii). This ends the
proof of Step 2.5. �

The last ingredient we need in the proof of Theorem 1.1 is as follows.

Step 2.6. There holds cn+1 < 2K−nn /n.

Proof. We set

k = γI0g∪Dδ
(
Isup(Ig◦Φ)g ∪ Dδ

)
,

where Φ is the map we get in Step 2.5. We may assume that k is finite. We purpose to prove
that k is greater than or equal to n+ 1. Step 2.6 then obviously follows from Step 2.5. By the
definition of k, there exist k + 1 symmetric, open subsets U0, . . . , Uk of H2

1 (M) which cover

I
sup(Ig◦Φ)
g ∪Dδ and such that

(
I0g ∪ Dδ

)
⊂ U0 and k+1 odd, continuous maps χi : Ui → {−1, 1},

i = 1, . . . , k and χ0 : U0 → I0g ∪Dδ such that χ0 ≡ id in the set I0g ∪Dδ. Up to a restriction of
U0, by using Dugundji’s extension of Tietze’s theorem (see Dugundji [25]), we may extend the
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map χ0 into an odd, continuous map still denoted χ0, defined from the whole Sobolev space
H2

1 (M) into itself. We show that there exists an odd, continuous map χk+1 : N∩Dδ → {−1, 1}.
We let E be the set of all functions in the Nehari manifold N whose positive and negative
parts also belong to N . For any functions u and v in P with disjoint support, the function
% (u)− % (v) belongs to the set E . The distance between E and P ∪ (−P) is positive. Indeed,
by the continuity of the embedding of H2

1 (M) into L2∗ (M), we get that there exists a positive
constant C such that for any u in E and v in P , there holds

‖u± v‖H2
1 (M) ≥ C ‖u± v‖L2∗ (M) ≥ C

∥∥u±∥∥
L2∗ (M)

≥ CE
1/2∗

0 ,

where E0 is as in (2.14). Decreasing δ if necessary, we may now assume that the sets E and Dδ
are disjoint. In the same way as in Castro–Cossio–Neuberger [9, Lemma 2.5], we get that the
set N\E consists in two connected components, namely {u ∈ N ; u ≥ 0 or DIg (u+) .u+ < 0}
and its symmetric. Therefore, the set N ∩ Dδ also consists in two connected components. It
follows that there exists an odd, continuous map χk+1 : N ∩ Dδ → {−1, 1}. We let O be the
inverse image by the map χ0 ◦Φ of the connected component of H2

1 (M) \N which contains 0.
By Step 2.5 (ii), O is a symmetric, bounded, open neighbourhood of 0. The boundary of O is
covered by the sets ∂O ∩ Φ−1 (Ui), i = 0, . . . , k. Taking a partition of unity consisting of even
functions {π0, . . . , πk} subordinated to this covering, we define the map χ : ∂O → Rk+1 by

χ (y) = π0 (y)χk+1 ◦ χ0 ◦ Φ (y) ek+1 +
k∑
i=1

πi (y)χi ◦ Φ (y) ei ,

where ei is the i-th vector in the canonical basis of Rk+1. This map is odd, continuous, and
nowhere vanishing. By the Borsuk–Ulam theorem (see, for instance, Kavian [37]), it follows
that k + 1 is greater than or equal to n+ 2, and this ends the proof of Step 2.6. �

We let c0 stand for the minimum of the functional Ig on its Nehari manifold. As a preliminary
remark on c0, by Step 2.4, we get c0 < K−nn /n. By reasoning as in Aubin [3], we then get that
c0 is reached for a positive solution of equation (1.1). Moreover, c0 can only be reached for
constant sign solutions. Indeed, if c0 was reached for a nodal solution u, then it is easily seen
that the function |u| would also be a solution of equation (1.1), and this would contradict the
maximum principle.

We now prove Theorem 1.1 by using the above preliminary steps.

Proof of Theorem 1.1. By Steps 2.3 and 2.6, we may assume that the sequence (c1, . . . , cn+1)
is increasing and strictly bounded from above by 2K−nn /n. We let k be the greater index such
that ck ≤ K−nn . If k ≥ 1, then for β = 1, . . . , k, cβ is a critical level of the functional Ig for a
nontrivial nodal solution of equation (1.1). In particular, we get c1 > c0. It follows that there
exist at least k + 1 distinct critical levels of the functional Ig less than or equal to K−nn /n.
Moreover, for β = k+ 1, . . . , n+ 1, either cβ or cβ −K−nn /n is a critical level of the functional
Ig, thus we also get the existence of n + 1 − k distinct critical levels of Ig in (0, 2K−nn /n).

We finally conclude that there exist at least (k+1)+(n+1−k)
2

= n+2
2

distinct critical levels of the
functional Ig in (0, 2K−nn /n). �

As a remark, the above proof yields the more precise following result. Namely that if we
denote by p the number of pairs of positive solutions of equation (1.1) with energy less than
2K−nn and by q1 (resp. q2) the number of pairs of nontrivial nodal solutions of equation (1.1)
with energy less than or equal to K−nn (resp. greater than or equal to K−nn ), then there holds
p + 2q1 + q2 ≥ n + 2. In particular, if there does not exist any nontrivial nodal solution of
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equation (1.1) with energy less than or equal to K−nn , then there exist at least n + 2 pairs of
nontrivial solutions of equation (1.1) with energy less than 2K−nn .

As another remark, by slightly modifying the asymptotic expansions in (2.15) and (2.16),
we could also have included the case of the geometric equation

∆gu+
n− 2

4 (n− 1)
Scalg u = |u|2

∗−2 u

when n ≥ 6 and the manifold (M, g) is non-locally conformally flat.

3. The case of locally conformally flat manifolds of high dimension

We prove Theorems 1.2 and 1.3 in this section. We start with the proof of Theorem 1.2.
For this purpose, we let (pα)α be a sequence in [2, 2∗] such that pα → 2∗ as α→ +∞, h be an
Hölder continuous function on M , and we consider the family of equations

∆gu+ hu = |u|pα−2 u . (3.1)

A preliminary result we easily get by following the lines in Solimini [55] and Devillanova–
Solimini [17] is Lemma 3.1 below. We refer also to Robert [48] and Struwe [56] for related
references.

Lemma 3.1. Let (M, g) be a smooth, compact Riemannian manifold of dimension n ≥ 3
and h be a Hölder continuous function on M .For any bounded sequence (uα)α in H2

1 (M) of
solutions for the family of equations (3.1), there exist a solution u∞ of equation (1.1), a natural
number k, bubbles (B1

α)α , . . . ,
(
Bk
α

)
α
, and real numbers a1, . . . , ak greater than or equal to 1

such that up to a subsequence,

uα = u∞ +
k∑
i=1

aiB
i
α +Rα

for all α, where Rα → 0 in H2
1 (M) as α→ +∞.

Moreover, together with Lemma 3.1, we can also assume that there holds

µiα
µjα

+
µjα
µiα

+
dg (xiα, x

j
α)

2

µiαµ
j
α

−→ +∞ (3.2)

as α → +∞, for all distinct i, j = 1, . . . , k, where (xiα)α and (µiα)α stand for the centers and
the weights of the bubble (Bi

α)α in Lemma 3.1.

We prove integral estimates in what follows, then we prove local estimates, and at last we
prove Theorems 1.2 and 1.3.

3.1. Integral estimates

In the following, we let (M, g) be a smooth, compact Riemannian manifold of dimension
n ≥ 3 and h be a Hölder continuous function on M . For the moment, we do not need to
assume that (M, g) is locally conformally flat nor to restrict neither the dimension of M , nor
the regularity of h. We let (uα)α be a bounded sequence in H2

1 (M) of solutions for the family
of equations (3.1), and we assume that (uα)α blows up as α→ +∞, that is to say the natural
number k in Lemma 3.1 is not zero. For i = 1, . . . , k, we let (xiα)α and (µiα)α be the centers
and the weights of the bubble (Bi

α)α in Lemma 3.1. Renumbering and passing if necessary to
a subsequence, we may assume that

µ1
α = max

1≤i≤k
µiα
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for all α. Then, we let µα stand for µ1
α and xα stand for x1α for all α.

For any real number p1 and p2 such that 1 ≤ p2 < 2∗ < p1 and for any positive real number
σ, we define the norm ‖.‖p1,p2,σ on L∞ (M) by

‖u‖p1,p2,σ = inf {C > 0; ∃u1, u2 ∈ L∞ (M) s.t. |u| ≤ u1 + u2 ,

‖u1‖Lp1 (M) ≤ C , and ‖u2‖Lp2 (M) ≤ Cσn/2
∗−n/p2}.

We now fix a positive real number a. For any α and any positive real number ε, we define
the function uεα on M by

uεα =
√
ε2 + u2α . (3.3)

We then compute

∆gu
ε
α =

uα∆guα√
ε2 + u2α

− ε2 |∇uα|2

(ε2 + u2α)3/2
≤ uα∆guα√

ε2 + u2α
.

It follows that there exists two constants A and B such that for any α and ε, there holds

∆gu
ε
α + auεα ≤ A |uα|2

∗−1 +B . (3.4)

We even get that for any real number A > 1, there exists B > 0 such that (3.4) holds true for
all α and ε. For α fixed, there holds uεα → |uα| in C0 (M) as ε→ 0.

For the sake of completeness, we also prove the following result. Namely that for any p > 1,
if a function v in Hp

2 (M) and a function f in Lp (M) satisfy the equation ∆gv+ av = f , then
there exists a positive constant C independent of v and f such that there holds

‖v‖Hp
2 (M) ≤ C ‖f‖Lp(M) . (3.5)

By standard elliptic theory (see, for instance, Gilbarg–Trudinger [28, Theorem 9.11]), we get

‖v‖Hp
2 (M) ≤ C

(
‖f‖Lp(M) + ‖v‖Lp(M)

)
. (3.6)

Therefore, it suffices to prove that there holds ‖v‖Lp(M) ≤ C ‖f‖Lp(M). We proceed by contra-

diction, and assume that there exists a sequence (vα)α in Hp
2 (M) such that ‖vα‖Lp(M) = 1 for

all α and ‖∆gvα + avα‖Lp(M) → 0 as α → +∞. By (3.6), the sequence (vα)α is bounded in

Hp
2 (M). By the compactness of the embedding of Hp

2 (M) into Hp
1 (M), it follows that (vα)α

converges up to a subsequence in Hp
1 (M) to a function v∞. Passing to the limit as α→ +∞

yields ‖v∞‖Lp(M) = 1 and ∆gv∞+ av∞ = 0, but this last equation implies that v∞ = 0 since a
is positive, and the contradiction follows. This proves that there exists a positive constant C
such that (3.5) holds true for all functions v in Hp

2 (M) and all functions f in Lp (M) which
satisfy the equation ∆gv + av = f .

We purpose to prove the following integral estimates.

Lemma 3.2. Let (M, g) be a smooth, compact Riemannian manifold of dimension n ≥ 3,
h be a Hölder continuous function on M , and (uα)α be a bounded sequence in H2

1 (M) of
solutions for the family of equations (3.1). Let p1 and p2 be two real numbers such that
2∗/2 < p2 < 2∗ < p1. If the sequence (uα)α blows up as α → +∞, then up to a subsequence,
there holds

‖uα‖p1,p2,µ−1
α

= O (1) (3.7)

as α→ +∞.

In the sequel, p (n) denotes n2∗

n−2.2∗ in case n ≥ 7 and +∞ in case n < 7. Aiming to prove
Lemma 3.2, we shall state two preliminary steps. The first one is as follows.
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Step 3.3. (3.7) holds true in case p1 < p (n) and p2 > max( n2∗

n+2.2∗
, 2
∗

2
).

Proof. We fix a constant C > 1. For any α, there exist two functions u1α and u2α in L∞ (M)
such that there holds |uα| ≤ u1α + u2α and such that∥∥u1α∥∥Lp1 (M)

≤ C ‖uα‖p1,p2,µ−1
α

(3.8)

and ∥∥u2α∥∥Lp2 (M)
≤ C ‖uα‖p1,p2,µ−1

α
µn/p2−n/2

∗

α . (3.9)

We let G be the Green’s function of the operator ∆g + a. This function is positive. By (3.4),
letting ε→ 0, we get

|uα (x)| ≤
∫
M

G (x, .)
(
A |uα|2

∗−1 +B
)
dvg

for all points x in M and all α. Writing |uα|2
∗−1 = |uα|2

∗−2 |uα| and decomposing the functions
uα as in Lemma 3.1 yield

|uα| ≤ A′
(
v1α + v2α + wα

)
+B

∫
M

G (·, y) dvg (y) , (3.10)

where A′ > A does not depend on α and where

v1α (x) =

∫
M

G (x, .) |u∞|2
∗−2 |uα| dvg ,

v2α (x) =
k∑
i=1

a2
∗−2
i

∫
M

G (x, .)
∣∣Bi

α

∣∣2∗−2 |uα| dvg ,
wα (x) =

∫
M

G (x, .) |Rα|2
∗−2 |uα| dvg .

We are led to estimate the norm ‖.‖p1,p2,µ−1
α

of the terms in the right hand side of (3.10). We

first consider the functions wα. We let w1
α and w2

α be two functions in H2
1 (M) which satisfy

the equations

∆gw
1
α + aw1

α = |Rα|2
∗−2 u1α (3.11)

and
∆gw

2
α + aw2

α = |Rα|2
∗−2 u2α . (3.12)

By standard elliptic regularity, we get that the functions w1
α and w2

α belong to Hp
2 (M) for all

real numbers p ≥ 1 and then to L∞ (M). We write

∆gwα + awα = |Rα|2
∗−2 |uα| ≤ (∆g + a)

(
w1
α + w2

α

)
.

By the maximum principle, it follows that wα ≤ w1
α + w2

α. Moreover, for both i = 1, 2, if we

assume that pi > 2∗/2, then the continuity of the embedding of H
npi/(n+2pi)
2 (M) into Lpi (M)

and elliptic theory as in (3.5) for equations (3.11) and (3.12) yield∥∥wiα∥∥Lpi (M)
= O

(∥∥wiα∥∥
H

npi
n+2pi
2 (M)

)
= O

(∥∥∥|Rα|2
∗−2 uiα

∥∥∥
L

npi
n+2pi (M)

)
(3.13)

as α→ +∞. Hölder’s inequality gives∥∥∥|Rα|2
∗−2 uiα

∥∥∥
L

npi
n+2pi (M)

≤ ‖Rα‖2
∗−2
L2∗ (M)

∥∥uiα∥∥Lpi (M)
= o

(∥∥uiα∥∥Lpi (M)

)
(3.14)

as α→ +∞. By (3.8), (3.9), (3.13), and (3.14), we get

‖wα‖p1,p2,µ−1
α

= o
(
‖uα‖p1,p2,µ−1

α

)
(3.15)
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as α→ +∞. We now consider the functions v1α and v2α. They satisfy the equations

∆gv
1
α + av1α = |u∞|2

∗−2 |uα|
and

∆gv
2
α + av2α =

k∑
i=1

a2
∗−2
i

∣∣Bi
α

∣∣2∗−2 |uα| .
Here again, the Sobolev embeddings and elliptic theory yield∥∥v1α∥∥Lp1 (M)

= O

(∥∥∥|u∞|2∗−2 uα∥∥∥
L

np1
n+2p1 (M)

)
(3.16)

and ∥∥v2α∥∥Lp2 (M)
= O

∥∥∥∥∥
k∑
i=1

a2
∗−2
i

∣∣Bi
α

∣∣2∗−2 uα
∥∥∥∥∥
L

np2
n+2p2 (M)

 (3.17)

as α → +∞. On the one hand, if we assume that p1 < p (n), then H2
1 (M) embeds into

Lnp1/(n+2p1) (M), and thus the sequence (uα)α remains bounded in Lnp1/(n+2p1) (M). By (3.16),
it follows that ∥∥v1α∥∥Lp1 (M)

= O (1) (3.18)

as α→ +∞. On the other hand, assuming p2 >
n2∗

n+2.2∗
allows us to apply Hölder’s inequality

in order to get∥∥∥∣∣Bi
α

∣∣2∗−2 uα∥∥∥
L

np2
n+2p2 (M)

≤
∥∥Bi

α

∥∥2∗−2
Lq(2

∗−2)(M)
‖uα‖L2∗ (M) ≤ C

∥∥Bi
α

∥∥2∗−2
Lq(2

∗−2)(M)
(3.19)

for all α and for i = 1, . . . , k, where q is such that 1
q

+ 1
2∗

= n+2p2
np2

and where C is a positive

constant independent of α and i which existence is ensured by the boundedness of the sequence
(uα)α in H2

1 (M) and the continuity of the embedding of H2
1 (M) into L2∗ (M). For i = 1, . . . , k

and for any real number δ in (0, ig/3), one can easily check∫
M\B

xiα
(δ)

∣∣Bi
α

∣∣(2∗−2)q dvg = O
((
µiα
)2q)

(3.20)

as α → +∞. By taking into account that our assumption p2 >
n2∗

n+2.2∗
implies that q > n/4,

another easy computation yields∫
B
xiα

(δ)

∣∣Bi
α

∣∣(2∗−2)q dvg = O
((
µiα
)qn/p2−qn/2∗) (3.21)

as α→ +∞, and thus summing (3.20) with (3.21) gives∫
M

∣∣Bi
α

∣∣(2∗−2)q dvg = O
((
µiα
)qn/p2−qn/2∗) (3.22)

as α → +∞. We note that for any α, there holds (µiα)n/p2−n/2
∗ ≤ µ

n/p2−n/2∗
α since µα is the

largest weight of the bubbles (B1
α)α , . . . ,

(
Bk
α

)
α

and since p2 < 2∗. By (3.17), (3.19), and
(3.22), it follows that ∥∥v2α∥∥Lp2 (M)

= O
(
µn/p2−n/2

∗

α

)
(3.23)

as α→ +∞. By (3.18) and (3.23), we get∥∥v1α + v2α
∥∥
p1,p2,µ

−1
α

= O (1) (3.24)

as α→ +∞. Finally, by (3.10), (3.15), and (3.24), we get that there holds ‖uα‖p1,p2,µ−1
α

= O (1)
as α→ +∞. This ends the proof of Step 3.3. �
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The second step in the proof of Lemma 3.2 states as follows.

Step 3.4. If (3.7) holds true for some p1 < n (2∗ − 1) /2 and p2 > 2∗ − 1, then

‖uα‖f(p1),f(p2),µ−1
α

= O (1) (3.25)

as α→ +∞, where f (p) = np
n(2∗−1)−2p .

Proof. Let p1 and p2 satisfy 2∗ − 1 < p2 < 2∗ < p1 < n (2∗ − 1) /2. We fix a constant C > 1.
For any α, there exist two functions u1α and u2α in L∞ (M) such that |uα| ≤ u1α + u2α and such
that there hold ∥∥u1α∥∥Lp1 (M)

≤ C ‖uα‖p1,p2,µ−1
α

(3.26)

and ∥∥u2α∥∥Lp2 (M)
≤ C ‖uα‖p1,p2,µ−1

α
µn/p2−n/2

∗

α . (3.27)

We let v1α and v2α be two functions in H2
1 (M) which satisfy the equations

∆gv
1
α + av1α = 22∗−2A

(
u1α
)2∗−1

+B (3.28)

and

∆gv
2
α + av2α = 22∗−2A

(
u2α
)2∗−1

. (3.29)

where A and B are as in (3.4). By standard elliptic regularity, we get that the functions v1α
and v2α belong to Hp

2 (M) for all real numbers p ≥ 1 and then to L∞ (M). By (3.4), letting
ε→ 0, we also get

∆g |uα|+ a |uα| ≤ (∆g + a)
(
v1α + v2α

)
.

By the maximum principle, it follows that |uα| ≤ v1α + v2α. Moreover, for both i = 1, 2, since

we assumed that 2∗−1 < pi < n (2∗ − 1) /2, the continuity of the embedding of H
pi/(2

∗−1)
2 (M)

into Lf(pi) (M) and elliptic theory as in (3.5) give∥∥viα∥∥Lf(pi)(M)
= O

(∥∥viα∥∥
H

pi
(2∗−1)
2 (M)

)
= O

(∥∥∆gv
i
α + aviα

∥∥
L

pi
(2∗−1) (M)

)
as α→ +∞. By (3.26) and (3.28), it follows that∥∥v1α∥∥Lf(p1)(M)

= O
(∥∥u1α∥∥2∗−1Lp1 (M)

+ 1
)

= O
(
‖uα‖2

∗−1
p1,p2,µ

−1
α

+ 1
)

(3.30)

as α→ +∞. Analogously, by (3.27) and (3.29), we get∥∥v2α∥∥Lf(p1)(M)
= O

(∥∥u2α∥∥2∗−1Lp2 (M)

)
= O

(
‖uα‖2

∗−1
p1,p2,µ

−1
α
µn/f(p2)−n/2

∗

α

)
. (3.31)

If we assume that (3.7) holds true for our fixed p1 and p2, then (3.25) finally follows from
(3.30) and (3.31). �

We prove Lemma 3.2 by induction, by using the initialization Step 3.3 and the bootstrap
Step 3.4.

Proof of Lemma 3.2. We define f : (0, n (2∗ − 1) /2) → (0,+∞) by f (p) = np
n(2∗−1)−2p . This

function is increasing, and realizes a bijection from (0, n (2∗ − 1) /2) onto (0,+∞). We let
qiβ = f−β (pi) for i = 1, 2 and for all β. By noting that there holds f (p) > 2∗/2 for all real

numbers p > 2∗ − 1 and since f (2∗) = 2∗, we get that there holds 2∗ − 1 < q2β < 2∗ < q1β <

n (2∗ − 1) /2 for all β ≥ 1. It is easily seen that the sequence (q1β)β is decreasing while the

sequence (q2β)β is increasing. Since there holds f(qiβ+1) = qiβ for i = 1, 2 and for all β, it follows
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that both sequences converge to 2∗. By Step 3.3, for β large enough so that q1β < p (n) and

q2β > max( n2∗

n+2.2∗
, 2
∗

2
), there holds

‖uα‖q1β ,q2β ,µ−1
α

= O (1)

as α→ +∞. We finally get (3.7) by β iterations of Step 3.4. �

3.2. Local estimates

In the following, we let (M, g) be a smooth, compact Riemannian manifold of dimension
n ≥ 3 and h be a Hölder continuous function on M . Here again, we do not need to assume
that (M, g) is locally conformally flat nor to restrict neither the dimension of M , nor the
regularity of h. As in the previous section, we let (uα)α be a bounded sequence in H2

1 (M) of
solutions for the family of equations (3.1), and we assume that (uα)α blows up as α → +∞.
For i = 1, . . . , k, we let (xiα)α and (µiα)α be the centers and the weights of the bubble (Bi

α)α
in Lemma 3.1, and we assume that

µ1
α = max

1≤i≤k
µiα .

Then, for any α, we let µα stand for µ1
α, xα stand for x1α, and for any positive real number a

and b such that a < b, we define the open annulus

Aa,bα = {x ∈M ; a
√
µα < dg (x, xα) < b

√
µα} ,

where dg is the geodesic distance on M with respect to the metric g.

In what follows, we repeatedly have to estimate the functions φα defined on M × [0, ig) by

φα (x, r) =


1

rn−1

∫
∂Bx(r)

|uα| dσg if r > 0

ωn−1 |uα (x)| if r = 0

for all α, where dσg is the volume element on ∂Bx (r) induced by the metric g. We also
introduce the functions φεα defined on M × [0, ig) by

φεα (x, r) =


1

rn−1

∫
∂Bx(r)

uεαdσg if r > 0

ωn−1u
ε
α (x) if r = 0

for all α and ε, where the functions uεα are as in (3.3). It is easily checked that the functions
φα and φεα are continuous. For any point x in M , there exists a smooth function βx defined
around x such that for any function u in C1 (M) and for any r in (0, ig), there holds

∂

∂r

(
1

rn−1

∫
∂Bx(r)

udσg

)
=

1

rn−1

∫
∂Bx(r)

∂u

∂ν
dσg +

1

rn−1

∫
∂Bx(r)

βxudσg , (3.32)

where ∂
∂ν

is the normal derivative with respect to the outward unit normal vector ν. As is
well known (see, for instance, Chavel [12]), there exists a positive constant Γ such that there
holds |βx (y)| ≤ Γdg (x, y) for all points x and y in M which satisfy dg (x, y) < ig. For any α,
ε, x, and r, by (3.32) with u = uεα, it follows that

∂φεα
∂r

(x, r) ≥ −A 1

rn−1

∫
Bx(r)

|uα|2
∗−1 dvg −Br − Γrφεα (x, r)

≥ −A 1

rn−1

∫
Bx(r)

|uα|2
∗−1 dvg −Bεr − Γrφα (x, r) , (3.33)
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where A and B are two positive constants which do not depend on α and ε and where
Bε = B + εΓ .

We purpose to prove the following local estimates.

Lemma 3.5. Let (M, g) be a smooth, compact Riemannian manifold of dimension n ≥ 3, h be
a Hölder continuous function on M , and (uα)α be a bounded sequence in H2

1 (M) of solutions
for the family of equations (3.1). If the sequence (uα)α blows up as α→ +∞, then there exists
a real number c > 2 such that up to a subsequence, there holds

(i) ‖uα‖C0(Ac−2,c+2
α ) = O (1) ,

(ii)

∫
Ac−1,c+1
α

|∇uα|2g dvg = O
(
µ
n−2
2

α

)
as α→ +∞.

In order to prove Lemma 3.5, for any α, we consider the k+1 mutually disjoint open annuli
A8i−4,8i+4
α , i = 1, . . . , k + 1. For α large, they are nonempty, thus at least one of them does

not contain any center of the k bubbles (Bi
α)α, i = 1, . . . , k. It follows that there exists a

real number c > 4 such that up to a subsequence, for any α, the points xiα, i = 1, . . . , k do
not belong to the annulus Ac−4,c+4

α . The first step in the proof of Lemma 3.5 consists of the
following weaker estimate.

Step 3.6. As α→ +∞, there holds

‖uα‖C0(Ac−3,c+3
α ) = O

(
µ

2−n
4

α

)
.

Proof. We proceed by contradiction, and assume that there exists a sequence of points y0α
in Ac−3,c+3

α such that there holds µ
(n−2)/4
α |uα (y0α) | → +∞ as α → +∞. For any α, we

set r0α = |uα (y0α) |−2/(n−2), and we show that there exists a point yα in By0α
(2r0α) such that

there hold |uα (yα) | ≥ |uα (y0α) | and |uα (y) | ≤ 2|uα (yα) | for all points y in Byα (rα), where
rα = |uα (yα) |−2/(n−2). If the point y0α does not satisfy this condition, then there exists a point
y1α in By0α

(r0α) such that there holds |uα (y1α) | > 2|uα (y0α) |. We may iterate this argument
as long as we do not find a point in By0α

(2r0α) which satisfies the above conditions. We then

get a sequence of points yβα in By0α
(2r0α) such that there holds |uα

(
yβα
)
| > 2|uα

(
yβ−1α

)
| for all

β. Indeed, for any natural number β, the point yβα is chosen in the ball Byβ−1
α

(rβ−1α ), thus we
compute

dg
(
yβα, y

0
α

)
≤

β−1∑
k=0

rkα ≤

(
β−1∑
k=0

2−
n−2
2
k

)
r0α ≤ 2r0α .

If we never find a satisfying point by this way, then there holds |uα
(
yβα
)
| → +∞ as β → +∞

which contradicts the continuity of uα. This proves the existence of a point yα in By0α
(2r0α)

such that there hold |uα (yα) | ≥ |uα (y0α) | and |uα (y) | ≤ 2|uα (yα) | for all y in Byα (rα), where
rα = |uα (yα) |−2/(n−2). We then let ũα be the function defined on B0 (ig/rα) by

ũα (x) = r
n−2
2

α uα ◦ expyα (rαx) .

By our primary assumption, r0α is asymptotically negligible compared to
√
µα as α → +∞,

and thus so do rα. For any real number ε in (0, 1) and for α large enough so that 2r0α ≤ ε,
the point yα belongs to the annulus Ac−3−ε,c+3+ε

α . Hence, rα remains asymptotically negligible
compared to the distance between the points yα and xiα as α → +∞. By decomposing the
functions uα as in Lemma 3.1, we can deduce that the sequence (ũα)α converges weakly to 0
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in D1,2 (Rn). It follows that (ũα)α converges up to a subsequence to 0 in L1
loc (Rn). We now

estimate the L1-norm of the functions ũα over small balls centered at 0 in order to exhibit
a contradiction. We note that there exists a positive constant C such that for any α and
for small positive real numbers r, if dσ and dσgα denotes the volume elements on ∂B0 (r)
respectively induced by the Euclidean metric and the metric gα = exp ∗yα g then there holds
dσ ≥ Cdσgα . For any real number r and for α large, it follows that∫

∂B0(r)

|ũα| dσ ≥ Cr
n−2
2

α rn−1φα (yα, rαr) . (3.34)

We are led to estimate the functions φα (yα, .). For any ε > 0 and any real number r in (0, rα),
by (3.33), we get

∂φεα
∂r

(yα, r) ≥ −22∗−1A |uα (yα)|2
∗−1 Volg (Byα (r))

rn−1
− (Bε + 2Γ |uα (yα)|) r

≥ −
(
A′ |uα (yα)|2

∗−1 +Bε + 2Γ |uα (yα)|
)
r ,

where A′ is a constant independent of α and ε. Integrating on (0, r) and letting ε→ 0 yield

φα (yα, r) ≥ ωn−1 |uα (yα)| − 1

2

(
A′ |uα (yα)|2

∗−1 +B + 2Γ |uα (yα)|
)
r2. (3.35)

For any real number r in (0, 1), by (3.34) and (3.35), we get∫
∂B0(r)

|ũα| dσ ≥ Cωn−1r
n−1 − C

2

(
A′ +Br

n+2
2

α + 2Γr2α

)
rn+1.

For small positive real numbers r, by integrating on (0, r) we get that the L1-norm of the
functions ũα over the ball B0 (r) is bounded from below by a positive constant independent of
α, and thus does not converge up to a subsequence to 0 as α→ +∞. This contradiction ends
the proof of Step 3.6. �

The second step in the proof of Lemma 3.5 states as follows.

Step 3.7. As α→ +∞, there holds∫
Ac−3,c+3
α

|uα| dvg = O
(
µn/2α

)
. (3.36)

Proof. By the continuity of the embedding of H2
1 (M) into L1 (M), the sequence (uα)α remains

bounded in L1 (M), and thus there holds∫
Bxα (2ig/3)\Bxα (ig/3)

|uα| dvg ≤ C

for all α, where C is a positive constant independent of α. It follows that there exists (rα)α in
[ig/3, 2ig/3] such that the sequence (φα (xα, rα))α is bounded. For any α and any real number
r in (0, rα), integrating (3.33) on [r, rα] and letting ε→ 0 yield

eΓ
r2

2 φα (xα, r) ≤ eΓ
r2α
2 φα (xα, rα) +

∫ rα

r

eΓ
s2

2

(
A

sn−1

∫
Bxα (s)

|uα|2
∗−1 dvg +Bs

)
ds.

It follows that

φα (xα, r) ≤ C1 + C2

∫ ig

r

1

sn−1

∫
Bxα (s)

|uα|2
∗−1 dvgds , (3.37)

where C1 and C2 are two positive constants independent of α and r. We are then led to
estimate

∫
Bxα (r)

|uα|2
∗−1 dvg for all α and all r. Applying Lemma 3.2 with p1 = n (2∗ − 1) and
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p2 = 2∗ − 1 yields that for any α, there exist two functions u1α and u2α in L∞ (M) such that

there hold |uα| ≤ u1α + u2α, ‖u1α‖Ln(2∗−1)(M) ≤ C and ‖u2α‖L2∗−1(M) ≤ Cµ
n/(2∗−1)−n/2∗
α , where C

is a positive constant independent of α. By these three estimates and by Hölder’s inequality,
we get ∫

Bxα (r)

|uα|2
∗−1 dvg ≤ 22∗−2

(∫
Bxα (r)

∣∣u1α∣∣2∗−1 dvg +

∫
Bxα (r)

∣∣u2α∣∣2∗−1 dvg)
≤ C1 Volg (Bxα (r))1−1/n + C2µ

n−2
2

α , (3.38)

where C1 and C2 are two positive constants independent of α and r. Bishop’s inequality (see,
for instance, Chavel [12]) provides a positive constant C independent of α and r such that
there holds Volg (Bxα (r)) ≤ Crn. By (3.38), it follows that∫

Bxα (r)

|uα|2
∗−1 dvg ≤ C1r

n−1 + C2µ
n−2
2

α ,

where C1 and C2 are two positive constants independent of α and r. Plugging into (3.37) gives

φα (xα, r) ≤ C1 + C2

(√
µα

r

)n−2
,

where C1 and C2 are two positive constants independent of α and r. Finally, multiplying by
rn−1 and integrating on

[
(c− 3)

√
µα, (c+ 3)

√
µα
]

yield (3.36). �

We prove the first estimate in Lemma 3.5 by using Steps 3.6 and 3.7.

Proof of Lemma 3.5 (i). We fix a sequence of points yα in the annulus Ac−2,c+2
α , and we purpose

to prove that up to a subsequence, |uα (yα)| is bounded from above by a positive constant
independent of yα. We first consider the case where there holds φα (yα, r) > φα (yα, 0) /2 up
to a subsequence for all α and all real numbers r in

[
0,
√
µα
)
. In that case, by multiplying

by rn−1, by integrating on
[
(c− 3)

√
µα, (c+ 3)

√
µα
]
, and by using Step 3.7, we get that

up to a subsequence, |uα (yα)| is bounded from above by a positive constant independent
of yα. Passing if necessary to a subsequence, we may assume from now on that for any α,
there holds |uα (yα)| ≥ 1 and there exists a real number rα in

[
0,
√
µα
)

such that there holds
φα (yα, rα) ≤ φα (yα, 0) /2. For any α, we let r1α be a real number where the function φα (yα, .)
attains its maximum on [0, rα]. For any ε and any real number r in (0, rα], by (3.33) and by

writing |uα|2
∗−1 ≤ |uα|2

∗−2 |uα|, we get

∂φεα
∂r

(yα, r) ≥ −‖uα‖2
∗−2
C0(Ac−3,c+3

α )
A

rn−1

∫ r

0

sn−1φα (yα, s) ds−Br − Γrφα (yα, r)

≥ −
((
‖uα‖2

∗−2
C0(Ac−3,c+3

α )
A

n
+ Γ

)
φα
(
yα, r

1
α

)
+B

)
r .

Since we assumed that |uα (yα)| ≥ 1 and thus that φα (yα, r
1
α) ≥ ωn−1, Step 3.6 gives a positive

constant C independent of yα and ε such that for any real number r in (0, rα], there holds

∂φεα
∂r

(yα, r) ≥ −
C

µα
φα
(
yα, r

1
α

)
r .

We then set

r2α = max
{
r ∈

[
r1α, rα

]
; φα (yα, r) ≥ φα

(
yα, r

1
α

)
/2
}
.
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On the one hand, integrating on [r1α, r
2
α] and letting ε→ 0 yield

1

2
φα
(
yα, r

1
α

)
≤ C

2µα
φα
(
yα, r

1
α

) ((
r2α
)2 − (r1α)2) ≤ C

√
µα
φα
(
yα, r

1
α

) (
r2α − r1α

)
,

and thus one can easily compute

µn/2α ≤ (2C)n
((
r2α
)n − (r1α)n) . (3.39)

On the other hand, we get∫
Byα (r

2
α)\Byα (r1α)

|uα| dvg =

∫ r2α

r1α

rn−1φα (yα, r) dr ≥
ωn−1
2n
|uα (yα)|

((
r2α
)n − (r1α)n) . (3.40)

By (3.39), (3.40), and Step 3.7, here again, we get that |uα (yα)| is bounded from above by a
positive constant independent of yα. This ends the proof of property (i). �

We prove the second estimate in Lemma 3.5 by using the first one.

Proof of Lemma 3.5 (ii). We let ζ be a smooth cutoff function on the Euclidean space such
that ζ ≡ 1 in the annulus {x ∈ Rn; c− 1 < |x| < c+ 1} and ζ ≡ 0 out of the annulus
{x ∈ Rn; c− 2 < |x| < c+ 2}. For any α, we set the function ϕα = ζ

(
dg (xα, .) /

√
µα
)
. Mul-

tiplying the equation ∆guα+huα = |uα|pα−2 uα by the function ϕαuα and integrating by parts
on M yield∫

M

ϕα |∇uα|2g dvg +
1

2

∫
M

u2α∆gϕαdvg +

∫
M

hϕαu
2
αdvg =

∫
M

ϕα |uα|pα dvg .

By (i), it follows that there exist two constants C1 and C2 such that there holds∫
Ac−1,c+1
α

|∇uα|2g dvg ≤
(
C1 + C2 ‖∆gϕα‖C0(M)

)
Volg

(
Ac−2,c+2
α

)
(3.41)

for all α. One can easily check that there holds ‖∆gϕα‖C0(M) = O(µ−1α ) as α→ +∞. Moreover,

we get Volg (Ac−2,c+2
α ) = O(µ

n/2
α ) as α → +∞ by Bishop’s inequality. Finally, property (ii)

follows from (3.41). �

3.3. Proof of Theorem 1.2

In the following, we let (M, g) be a smooth, compact Riemannian manifold of dimension
n ≥ 7 and h be a C1-function on M such that there holds h < n−2

4(n−1) Scalg in M . The proof of

Theorem 1.2 is based on conformal invariance of the conformal Laplacian and on the Euclidean
Pohožaev identity. Given a smooth, bounded domain Ω in the Euclidean space, the Euclidean
Pohožaev identity states∫

Ω

〈x,∇u〉∆δudx+
n

2∗

∫
Ω

u∆δudx

= −
∫
∂Ω

〈x,∇u〉 ∂u
∂ν
dσ (x) +

1

2

∫
∂Ω

〈x, ν〉 |∇u|2 dσ (x)− n

2∗

∫
∂Ω

u
∂u

∂ν
dσ (3.42)

for all smooth functions u on Ω, where dσ is the Euclidean volume element on ∂Ω and ∂/∂ν is
the normal derivative with respect to the outward unit normal vector ν. We easily get (3.42)
by integrating by parts the first term in the left hand side.

We proceed by contradiction, and let (uα)α be a bounded sequence in H2
1 (M) of solutions

for the family of equations (3.1) which does not remain bounded in C0 (M). It is easily seen
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that the sequence (uα)α cannot be compact in H2
1 (M), and thus blows up as α→ +∞. As in

the previous sections, for i = 1, . . . , k, we let (xiα)α and (µiα)α be the centers and the weights
of the bubble (Bi

α)α in Lemma 3.1, and we assume

µ1
α = max

1≤i≤k
µiα .

Then, for any α, we let µα stand for µ1
α and xα stand for x1α.

Since g is locally conformally flat, there exists a conformal metric g̃ to g which is flat around
the geometrical blow-up point x̃, limit of the centers (xα)α. We set g̃ = ϕ2∗−2g, where ϕ is
smooth and positive and ũα = uα/ϕ for all α. By conformal invariance of the conformal
Laplacian (see, for instance, Lee–Parker [39]), ũα satisfies the equation

∆g̃ũα + h̃ũα = ϕpα−2
∗ |ũα|pα−2 ũα (3.43)

for all α, where

h̃ =
n− 2

4 (n− 1)
Scalg̃ +

1

ϕ2∗−2

(
h− n− 2

4 (n− 1)
Scalg

)
.

In particular, around the point x̃, the flatness of g̃ implies that Scalg̃ ≡ 0, and thus h̃ is
negative. We let c be the real number we get in Lemma 3.5. It follows from the second
assertion of this lemma that there exists a sequence (rα)α in (c− 1, c+ 1) such that, up to a
subsequence, there holds ∫

∂Bxα(rα√µα)
|∇uα|2g̃ dσg̃ = O

(
µ
n−3
2

α

)
(3.44)

as α → +∞, where dσg̃ is the volume element on ∂Bxα

(
rα
√
µα
)

induced by the metric g̃.

For α large, g̃ is flat in the ball Bxα

(
(c+ 1)

√
µα
)
. In particular, the Euclidean Pohožaev

identity (3.42) holds for the function ûα = ũα ◦ expxα and the domain Bα = B0

(
rα
√
µα
)
. By

integrating by parts the first term in the left hand side of (3.42) and by using (3.43), we get∫
Bα
〈x,∇ûα〉∆δûαdx = − n

pα

∫
Bα
ϕpα−2

∗

α |ûα|pα dx−
2∗ − pα
pα

∫
Bα
〈x,∇ϕα〉ϕpα−2

∗−1
α |ûα|pα dx

+
n

2

∫
Bα
ĥαû

2
αdx+

1

2

∫
Bα

〈
x,∇ĥα

〉
û2αdx+

1

pα

∫
∂Bα
〈x, ν〉ϕpα−2∗α |ûα|pα dσ (x)

− 1

2

∫
∂Bα
〈x, ν〉 ĥα |ûα|2 dσ (x) ,

where ϕα = ϕ ◦ expxα , ĥα = h̃ ◦ expxα , dσ is the Euclidean volume element on ∂Bα and ν is
the outward unit normal vector to ∂Bα. Plugging into the Euclidean Pohožaev identity gives

n

(
1

pα
− 1

2∗

)∫
Bα
ϕpα−2

∗−1
α |ûα|pα dx+

2∗ − pα
pα

∫
Bα
〈x,∇ϕα〉ϕpα−2

∗−1
α |ûα|pα dx−

∫
Bα
ĥαû

2
αdx

− 1

2

∫
Bα

〈
x,∇ĥα

〉
û2αdx =

1

pα

∫
∂Bα
〈x, ν〉ϕpα−2∗−1α |ûα|pα dσ (x)− 1

2

∫
∂Bα
〈x, ν〉 ĥαû2αdσ (x)

+

∫
∂Bα
〈x,∇ûα〉

∂ûα
∂ν

dσ (x)− 1

2

∫
∂Bα
〈x, ν〉 |∇ûα|2 dσ (x) +

n

2∗

∫
∂Bα

ûα
∂ûα
∂ν

dσ . (3.45)

We first give a lower bound of the left hand side of (3.45). As a remark, there exists a

positive constant ε0 such that for any α, there holds ĥα < −ε0 in Bα. For α large, we get
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< x,∇ĥα >≤ −ĥα and < x,∇ϕα >≥ − (n/2∗)ϕα for all points x in Bα. It follows that

− 1

2
sup
Bα

ĥα

∫
Bα
û2αdx ≤ n

(
1

pα
− 1

2∗

)∫
Bα
ϕpα−2

∗−1
α |ûα|pα dx

+
2∗ − pα
pα

∫
Bα
〈x,∇ϕα〉ϕpα−2

∗−1
α |ûα|pα dx−

∫
Bα
ĥαû

2
αdx−

1

2

∫
Bα

〈
x,∇ĥα

〉
û2αdx .

Then, we are concerned with estimating the right hand side of (3.45). For any point x in ∂Bα,
by the Cauchy-Schwarz inequality, we get

|〈x, ν〉| ≤ (c+ 1)
√
µα , |〈x,∇ûα〉| ≤ (c+ 1)

√
µα |∇ûα| , and

∣∣∣∣∂ûα∂ν
∣∣∣∣ ≤ |∇ûα| .

By (3.45), it follows that

− 1

2
sup
Bα

ĥα

∫
Bα
û2αdx ≤

c+ 1

pα

√
µα

∫
∂Bα

ϕpα−2
∗−1

α |ûα|pα dσ +
c+ 1

2

√
µα

∫
∂Bα

∣∣∣ĥα∣∣∣ û2αdσ
+

3 (c+ 1)

2

√
µα

∫
∂Bα
|∇ûα|2 dσ +

n

2∗

∫
∂Bα
|ûα| |∇ûα| dσ . (3.46)

Lemma 3.5 (i) gives

√
µα

∫
∂Bα

ϕpα−2
∗−1

α |ûα|pα dσ +
c+ 1

2

√
µα

∫
∂Bα

∣∣∣ĥα∣∣∣ û2αdσ = O
(
µ
n
2
α

)
(3.47)

as α→ +∞. By Hölder’s inequality, Lemma 3.5 (i), and (3.44), we also get∫
∂Bα
|ûα| |∇ûα| dσ ≤

√∫
∂Bα

û2αdσ

√∫
∂Bα
|∇ûα|2 dσ = O

(
µ
n−2
2

α

)
(3.48)

as α→ +∞. By (3.44), (3.46), (3.47), and (3.48), we finally get

− sup
Bα

ĥα

∫
Bα
û2αdx = O

(
µ
n−2
2

α

)
(3.49)

as α → +∞. It remains to estimate
∫
Bα û

2
αdx from below. Since the ball B0 (µα) is included

in Bα for α large, it suffices to estimate
∫
B0(µα)

û2αdx. By decomposing the functions uα as in

Lemma 3.1 and by (3.2), one can easily check that up to a subsequence, there holds∫
B0(µα)

û2αdx ≥ Cµ2
α (3.50)

for all α, where C is a positive constant independent of α. By (3.49) and (3.50), it follows
that up to a subsequence, there holds

− sup
Bα

ĥα = O
(
µ
n−6
2

α

)
as α → +∞. Since n ≥ 7, passing to the limit as α → +∞ yields that h̃ (x̃) cannot be
negative. This contradiction ends the proof of Theorem 1.2.

3.4. Proof of Theorem 1.3

In the following, we let (M, g) be a smooth, compact Riemannian manifold of dimension
n ≥ 7 and h be a C1-function on M such that there holds h < n−2

4(n−1) Scalg in M . We let
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(pα)α be a sequence in (2, 2∗) converging to 2∗, and we purpose to deduce Theorem 1.3 from
Theorem 1.2. For any α, we define the functional Iαg on H2

1 (M) by

Iαg (u) =
1

2

∫
M

|∇u|2g dvg +
1

2

∫
M

hu2dvg −
1

pα

∫
M

|u|pα dvg .

Its critical points are the solutions of the equation

∆gu+ hu = |u|pα−2 u .
Another way of regarding the solutions of this equation is to say that up to a renormalization,
they are the critical points of the functional Iαg on the constraint

H =
{
u ∈ H2

1 (M) ; F (u) = 1
}
,

where F is the functional defined on H2
1 (M) by

F (u) =

∫
M

|∇u|2g dvg +

∫
M

hu2dvg .

More precisely, the critical points of the functional Iαg on the constraint H at level cα are
solutions of the equation

∆gu+ hu =
2

pα (1− 2cα)
|u|pα−2 u . (3.51)

In order to use later on the min-max principle, we need to check that for α fixed, the
functional Iαg satisfies the Palais–Smale condition on the constraint H at any critical level cα,
namely that for any sequence (uβ, µβ)β in H× R, if there hold Iαg (uβ)→ cα and DIαg (uβ)−
µβDF (uβ) → 0 in H2

1 (M)′ as β → +∞, then (uβ, µβ)β converges up to a subsequence in

H × R. We set a sequence (uβ, µβ)β in H × R satisfying the above conditions. We first note
that there holds ∫

M

|uβ|pα dvg = pα

(
1

2
− Iαg (uβ)

)
for all β. It follows that the sequence (uβ)β is bounded in Lpα (M) and thus in L2 (M). By

the very definition of the set H, the sequence (uβ)β remains bounded in H2
1 (M). On the

one hand, evaluating the functional DIαg (uβ) − µβDF (uβ) at the function uβ for all β and
passing to the limit as β → +∞ yield that the sequence of real numbers (µβ)β converges to

(1 + pα (cα − 1/2)) /2. On the other hand, since H2
1 (M) is reflexive and by the compactness

of the embeddings of H2
1 (M) into Lpα (M) and into L2 (M), we may assume that there exists

a function u in H2
1 (M) such that up to a subsequence, (uβ)β converges to u weakly in H2

1 (M)

and strongly in Lpα (M) and in L2 (M). We clearly get that u is a solution of equation (3.51).
For any function ϕ in H2

1 (M), we then get

(1− 2µβ)

∫
M

〈∇ (uβ − u) ,∇ϕ〉g dvg = o
(
‖ϕ‖H2

1 (M)

)
as β → +∞. By taking ϕ = uβ−u, it follows that (uβ)β converges up to a subsequence to the

function u in H2
1 (M). This proves that the functional Iαg satisfies the Palais–Smale condition

on the constraint H at any critical level cα.

We let (λβ)β be the sequence of eigenvalues of the Laplace–Beltrami operator ∆g and for
any β, we let φβ be an eigenfunction corresponding to λβ and Γβ be the set of all symmetric,
compact subsets of H whose Krasnosel′skĭı genus is greater than or equal to β. For β large
enough so that h > −λβ, one can easily check with the Borsuk–Ulam theorem (see, for
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instance, Kavian [37]) that the set H ∩ Span (φβ, . . . , φ2β−1) belongs to Γβ and thus that the
set Γβ is not empty. We then define

c(β)α = inf
A∈Γβ

max
u∈A

Iαg (u)

for all α and similarly

cβ = inf
A∈Γβ

max
u∈A

Ig (u) .

For β large, we claim that all these lower bounds are finite. We prove this claim for cβ. We let

Ek be the eigenspace associated with λk for all natural numbers k, and we set Sβ =
⊕β

k=0 Ek.
We fix a natural number β0 such that h > −λβ0+1. If β > dim (Sβ0), then the intersection of
any set A in Γβ with the orthogonal complement of Sβ0 is not empty. If not the case, then the
projection of A onto Sβ0 would be an odd, continuous map with nonzero values in a vector
space of dimension less than β, and this would contradict the definition of the Krasnosel′skĭı
genus. It follows from this remark that it suffices to prove that the functional Ig is bounded
from below on the intersection G of the set H with the orthogonal complement of Sβ0 . For any
function u in G, by the min-max characterization of the eigenvalues of the Laplace–Beltrami
operator ∆g, there holds ∫

M

(λβ0+1 + h)u2dvg ≤ 1 .

Thanks to our choice of β0, we get that the set G is bounded in L2 (M). By the very definition
of H, the set G remains bounded in H2

1 (M) and thus in L2∗ (M). This proves that the
functional Ig is bounded from below on the set G, and as already said, it follows that cβ is
finite. A similar argument gives that the lower bounds cβα are also finite.

By the properties of the Krasnosel′skĭı genus, one can easily check that we are under the

conditions of the min-max principle for c
(β)
α (see, for instance, Kavian [37]). In particular, c

(β)
α

is a critical level of the functional Iαg on the constraint H. Therefore, we get a critical level

c̃
(β)
α of the functional Iαg by setting

c̃(β)α =

(
1

2
− 1

pα

) 2

pα

(
1− 2c

(β)
α

)
 2

pα−2

.

Similarly, we set

c̃β =
1

n

(
2

2∗ (1− 2cβ)

) 2
2∗−2

.

The proof of Theorem 1.3 consists of three steps. The first one is as follows.

Step 3.8. There holds c̃
(β)
α → c̃β as α→ +∞ for all β.

Proof. It comes to the same thing to prove that there holds c
(β)
α → cβ as α→ +∞. We begin

with estimating the upper limit of c
(β)
α as α→ +∞. For any set A in Γβ, since the functionals

Iαg are equicontinuous, there holds

max
u∈A

Iαg (u)→ max
u∈A

Ig (u)

as α→ +∞. It follows that

lim sup
α→+∞

c(β)α ≤ max
u∈A

Ig (u) ,
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and since this is satisfied for all sets A in Γβ, we get

lim sup
α→+∞

c(β)α ≤ cβ . (3.52)

It remains to estimate the lower limit of c
(β)
α as α→ +∞. For any α, by taking into account

that there holds tpα/pα − t2
∗
/2∗ ≤ 1/pα − 1/2∗ for all nonnegative real numbers t, we get

Ig ≤ Iαg +

(
1

pα
− 1

2∗

)
Volg (M) .

It follows that
cβ ≤ lim inf

α→+∞
c(β)α . (3.53)

By (3.52) and (3.53), we get that there holds c
(β)
α → cβ as α→ +∞. �

The next step in the proof of Theorem 1.3 states as follows. We prove it by using Step 3.8
and Theorem 1.2.

Step 3.9. c̃β is a critical level of the functional Ig for all β.

Proof. For any α, we let ũ
(β)
α be a critical point of the functional Iαg at level c̃

(β)
α . The function

ũ
(β)
α is a solution of equation (1.1). We then write∥∥ũ(β)α

∥∥2
H2

1 (M)
=

∫
M

∣∣ũ(β)α

∣∣pα dvg +

∫
M

(Λ− h)
(
ũ(β)α

)2
dvg ,

where Λ is as in (1.2). By Hölder’s inequality, it follows∥∥ũ(β)α

∥∥2
H2

1 (M)
≤
∫
M

∣∣ũ(β)α

∣∣pα dvg + ‖Λ− h‖C0(M) Volg(M)
pα−2
pα

(∫
M

∣∣ũ(β)α

∣∣pα dvg) 2
pα

=
2pα
pα − 2

c̃(β)α + ‖Λ− h‖C0(M) Volg(M)
pα−2
pα

(
2pα
pα − 2

c̃(β)α

) 2
pα

.

By Step 3.8, the right hand side in this equation is converging as α → +∞. It follows that

the sequence (ũ
(β)
α )α is bounded in H2

1 (M). By Theorem 1.2, we get that (ũ
(β)
α )α converges up

to a subsequence in H2
1 (M) to a critical point ũβ of the functional Ig. Finally, it follows from

Step 3.8 that the level of ũβ is c̃β. This ends the proof of Step 3.9. �

The third and last step in the proof of Theorem 1.3 is as follows.

Step 3.10. There holds c̃β → +∞ as β → +∞.

Proof. We proceed by contradiction, and assume that the sequence of real numbers (c̃β)β is

bounded. By Step 3.8, we may construct an increasing sequence of natural numbers (αβ)β such

that there holds |c̃(β)αβ − c̃β| < 1 for all β and thus such that the sequence of real numbers (c̃
(β)
αβ )β

is bounded. By Ghoussoub [27, Corollary 10.5] (see also Bahri–Lions [4], Lazer–Solimini [38]
and Solimini [54]), for any β, we may select a critical point uβ of the functional I

αβ
g on the

constraint H at level c
(β)
αβ whose augmented Morse index is greater than or equal to αβ. Here,

the augmented Morse index of uβ as a critical point of the functional I
αβ
g turns out to be the

number of nonpositive eigenvalues, this time counted as many times as their multiplicity, of
the linearized operator ∆g + (h−

(
pαβ − 1

)
|uβ|pαβ−2). The same computations as in Step 3.9

yield that the sequence (uβ)β is bounded in H2
1 (M) and thus in L2∗ (M). It follows that the

functions (h−
(
pαβ − 1

)
|uβ|pαβ−2) are bounded in Ln/2 (M). With Lieb-type [44] arguments,
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we then get that the augmented Morse indices of the critical points uβ is bounded. This
contradiction ends the proof of Step 3.10. �

By Steps 3.9 and 3.10, we get a sequence of solutions for the equation

∆gu+ hu = |u|2
∗−2 u .

These solutions have unbounded energies. Up to a subsequence, we may assume that their
energies are increasing. This ends the proof of Theorem 1.3.
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