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ABSTRACT. We discuss static Klein-Gordon-Maxwell-Proca systems in the
critical case of 4-dimensional closed manifolds in the continuation of Hebey-
Truong [10]. We prove phase stability for all possible phases in the nonpos-
itively curved case, and in the positively curved case when the phase lies in
some set that we show to be maximal in the case of the round sphere.

We investigate in this paper phase stability for the electrostatic Klein-Gordon-
Maxwell-Proca system in 4-dimensional closed manifolds. The full Klein-Gordon-
Maxwell-Proca system (in short KGMP) is a massive version of the more traditional
Klein-Gordon-Maxwell system. It provides a dualistic model for the description of
the interaction between a charged relativistic matter scalar field and the electro-
magnetic field that it generates. The external vector field (¢, A) in the system
inherits a mass and is governed by the Proca action which generalizes that of
Maxwell. Let (M, g) be a closed 4-dimensional Riemannian manifold. Writing the
matter scalar field in polar form as v(z,t) = u(x, t)e*3(®*) | choosing the nonlinear-
ity in the model to be pure and critical in terms of Sobolev embeddings, the full
Klein-Gordon-Maxwell-Proca system is written as

2 2
% + Agu+miu = u® + ((% +qu) - |VS—qA|2) U

5 (5 +ap)u?) = V. (VS —qA)u?) =0 (0.1)
—V. (% + Vo) +mio+q(L +qp)u?=0
AgA+ 2 (2 + V) + miA=q(VS — qA)u?,

where A, = —div,V is the Laplace-Beltrami operator, A, = §d is half the Laplacian
acting on forms, and § is the codifferential. In its electrostatic form we assume A
and ¢ do not depend on the time variable. Looking for standing waves solutions
P(x,t) = u(z)e™ ™t letting ¢ = wv, there necessarily holds that A = 0 and the
system reduces to the two following critical equations

{Agu +miu=u?+w?(qv—1)>u

0.2
Agv+ (mi + ¢*u?) v = qu? . (02)

In the above, mg,m; > 0 are masses (mo is the mass of the particle, m; is the
Proca mass), and ¢ > 0 is the electric charge of the particle. The Proca formalism
comes with the assumption m; > 0. The system (0.2), in Proca form in closed
manifolds, has been investigated in Druet and Hebey [5] and Hebey and Wei [11]
in the case of 3-dimensional manifolds, and Hebey and Truong [10] in the critical
dimension n = 4 (4 is the dimension for which the second equation in (0.2) is also
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critical by the u?v term). A sequence (uqe™)  of standing waves is said to have
finite energy if ||uq||gr = O(1). We keep here the origin of the writing in polar
form and always assume in the sequel that the amplitude u of a standing wave
ue™! is nonnegative. A priori bounds were proved in Hebey and Truong [10]. We
aim here in proving phase stability with the objective of getting more phases and
more geometries by relaxing the a priori bound compactness property in Hebey and

Truong [10]. Given a sequence (wq,)q Of phases, we consider the family of equations

{AgU+m3u=u3 +w? (qu—1)"u (0.3)

Agv+ (mf + ¢u?) v = qu?
We define phase stability as follows.

Definition 0.1. A phase w € (—mqg, +myg) is said to be stable if for any sequence
of phases (wq)a converging to w, any sequence (uaei“’“t)a of finite energy standing
waves, uq > 0, and any sequence (v,), of gauge potentials, solutions of (0.3) for
all o, there holds that, up to a subsequence, uq — u and v, — v in C? as o — 400,
where u and v solve (0.2) with phase w.

When a phase w is stable, (0.2) is automatically compact in the finite energy
setting. But phase stability implies more and actually measures how much (0.2) is
robust with respect to perturbations of w. We let Rg(S,) be the range interval

Rg(Sy) = [mj\j[nSg,mj\:}XSg , (0.4)

where S is the scalar curvature of g. The first result of this paper,Theorem 0.1,
establishes that phases are stable as long as they do not enter in resonance with the
ambient geometry through the condition m2 — w? ¢ %Rg(Sg). The second result of
the paper, Theorem 0.2, establishes that this condition is sharp.

Theorem 0.1. Let (M, g) be a closed 4-dimensional manifold, and mgy, mq,q > 0
be positive real numbers. Any phase w € (—mo, +mg) such that m3 —w?* & + Rg(S,)
is a stable phase for (0.2), where Rg(Sy) is given by (0.4). In particular, if g has
nonpositive scalar curvature, then any phase w € (—myg, +myg) is stable.

A priori bounds were established in Hebey and Truong [10] under the condition
that mo and w satisfy that m$ — w? < %miny Sy, and thus that m§ — w? sits
on the left part of RT\$Rg(S,). While a priori bounds are stronger than phase
stability, the condition required to obtain such bounds is quite restrictive. It does
not cover the full phases w by missing the right part of R*‘\%Rg(SgL and it implies
that the background space has positive scalar curvature, which is not required by
Theorem 0.1. Basically, Theorem 0.1 establishes that by relaxing the a priori bound
property to the stable phase property, we gain more phases and more geometries
with respect to what was handled in Hebey and Truong [10]. Theorem 0.1 coupled
with Theorem 0.3 in Hebey and Truong [10] provide a complete description of
the various compactness properties one can associate to (0.2). Theorem 0.2 below
complements the above picture by showing that both Theorem 0.1 and Theorem
0.3 in Hebey and Truong [10] are optimal.

The second part of Theorem 0.1 obviously includes the model cases of flat torii
(T, g) and compact hyperbolic spaces (H*, g). Any phase w € (—myg, +myq) is
stable for these manifolds. The model case of the round sphere (S?, g) is contained
in the first part of Theorem 0.1. In the case of the round sphere (S%, g), S, = 12 and
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Theorem 0.1 asserts that any phase w € (—mqg, +myg) is stable except, possibly, if
mo > /2 and w is one of the two solutions of mZ —w? # 2. Theorem 0.2 asserts that
these two solutions are indeed unstable phases, and thus that the set in Theorem
0.1 is maximal in the case of the round sphere.

Theorem 0.2. Let (S%, g) be the round 4-sphere, and mg, my,q > 0 be positive real
numbers with m3 > 2. Let w € R be such that m3 —w? = 2. Then w is an unstable
phase for (0.2) which gives rise to resonant states in the sense that for such w’s
there exist a sequence (uaei“’“t)a, uq > 0, of standing waves, and a sequence (vy),,
of gauge potentials, solving (0.3) for all o, such that we — w and ||ug||pe — +o0
as o — +00.

Theorems 0.1 and 0.2 complement each other. They are distinct in nature.
Theorem 0.1 has to do with a priori estimates. Theorem 0.2 has to do with con-
structive approaches. They are proved by using two different methods. Theorem
0.1 is proved by passing through the C°-theory for blow-up, the analysis of the
range of influence, and then by getting a contradiction through a Pohozaev type
identity. Theorem 0.2 is proved by going into the finite dimensional Lyapounov-
Schmidt reduction method. We prove Theorem 0.1 in Sections 1 to 3. We prove
Theorem 0.2 in Section 4. We refer to Hebey and Truong [10] for the physics origin
of the problem and the building of the equations.

1. A PRIORI L°°-ESTIMATES

We let (M, g) be a smooth compact Riemannian 4-manifold, and mg,my,q > 0
be positive real numbers. Following a very nice idea going back to Benci and
Fortunato [1], we introduce the map ® : H! — H* solution of

Ag®(u) + (m] + ¢*u®) ®(u) = qu® (1.1)

for all u € H'. We refer to Hebey and Truong [10], see also Section 4, for the
existence and regularity of the map ® in the critical dimension n = 4, in the
Riemannian context. We let w € (—mq, +my), (uaei“’“t)a be an arbitrary sequence
of finite energy standing waves, u, > 0, and (v, ), be an arbitrary sequence of gauge
potentials, satisfying that

{Agua + M3 = ud + w2 (qua — 1)2 Ug

1.2
Agvg + (m% + qzui) Vo = quZ . (1.2)

for all a, and that wy, — w in R as @ — 4o00. Obviously, v, = ®(u,), and by
the maximum principle, there holds that 0 < v, < % in M for all «. We aim
in proving that, passing to a subsequence, the u,’s and v,’s converge in C? as
a — oco. By standard elliptic regularity theory, it suffices to prove that, passing to
a subsequence, ||uq|Le = O(1). We proceed by contradiction and assume that

[wallpo — o0 (1.3)

The second equation in (1.2) is critical (of maximal homogeneity 3 in 4-space dimen-
sion) and it acts as an auto-inductive perturbation (the perturbation depends on
the solution itself) of the first nonlinear Schrodinger equation through its potential
term
2
ha :mg—wi (qua — 1) (1.4)
) .
= m% — wi (¢P(uq) —1)" .
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Since 0 < v, < % for all «, the h,’s are bounded in L*>°. Noting that the v,’s are

bounded in H' N L*, they converge, up to a subsequence, in LP for all p, and so
do the hy,’s. We let h be the limit of the h,’s, e.g. in L2, so that

Aol = O(1) and hy — h in L? (1.5)

as @ — +oo (and, as we easily infer, the convergence in (1.4) holds in L? for all
1 < p < +00). No further control is a priori available on the h,’s, and this is going
to be a serious issue in what follows. There holds that A € L*° and

h>md —w? (1.6)

in M. In particular, Ay + h is coercive, where h is as in (1.5), and by Robert [14],
the C° and C'-estimates on the Green’s function of A, + h hold true. Following
standard terminology, we define a bubble (B,). as a sequence of functions in M
given in dimension 4 by

Ba(@) = —— % (17)
Mo+ =5
for all x € M and all «, where (z,), is a converging sequence of points in M,
and (14 )q 18 a sequence of positive real numbers converging to 0 as @ — +o0o. We
refer to the x,’s in (1.7) as the centers of (Bg)a, and to the u,’s as the weights of
(Ba)a- Then, see Druet-Hebey-Robert [6] and Hebey [9], the H!-theory for blow-
up, as developed in Struwe [15], can be applied. And, even more, the upper control
of the C%theory developed in Druet-Hebey-Robert [6] (see also Druet-Hebey [4]
and Hebey [9] for more recent expositions) also holds true. By the H!-theory we
get that there exist a solution (uso, ®(us)) of (0.2) with phase w, k € N*, and
k-bubbles (B!)a, i = 1,...,k, such that, up to a subsequence,
k
Ug, :UooJrZBZHrRa (1.8)
i=1

in M for all o, where ||Ry||g1 — 0 as & — +0o0, and
Mj,oc + Mi;a + dg(xiyaawj:a)Q N +OO (19)
i, Hj,o Hi,abg,ex

as o — +oo, for all i # j, where the z; s are the centers of (B!)q, and the Hia'S
are the weights of (B,),. To state the C°-theory, in the form we are going to use,

we need to introduce some more notions. Given i, j € {1, e k}, i # 7, welet ;5o
be given by
2 pisa dy (0, 75.0)°
15,0 = + Hiallj,a (110)
K 8

for all @, and then we define the range of influence 7; , of the blow-up point z;
by

min s; ; o ifus =0
Jes Sind,

Tia = (1.11)
min{mgl 844,08 ./ui’a} if ugo 0,
JEA;
where

A = {j {1, k), jAist o= O(Mj’a)} : (1.12)
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If A; = 0 and us = 0, we adopt the convention that r; , = 2i,, where i, is the

injectivity radius of (M, g), and if A; = 0 and us, # 0, we adopt the convention
that r; o = /i, From now on we order the blow-up points such that

,ul,a Z e Z Mk,a (113)
for all a. It follows from the structure equation (1.9) that

Ti, o

—= = 400 (1.14)
Hi,a
as a — 4oo0. If j € A; and i € A;, we let \; ; > 0 be given by
Ay = lim e (1.15)

a=+00 [lj o

Given i € {1,...,k}, we define
B; = {j € {1, kY, jAist dy (T Tja) = O(rm)} if 70 =0,

1 (1.16)
B; = {] S {1,71€}7j7élst IS Bx.b (219)} if'f‘i’a 7L>0
and, for j € B;, we let z; ; be given by
zi; = lim r;al exp;}a (zj,a) - (1.17)

a—r+o00
All the limits involved in these definitions are assumed to exist, which is always
possible passing to a subsequence. We let d; > 0 be such that for any ¢ and any
J € Bi,

We also define C; to be the subset of B; given by
Ci={jeBist z,;=0}nA, (1.19)

where A{ is the complementary set of A;, and thus the set consisting of the j’s
which are such that u; o = o(p;,«). Then, passing to a subsequence, and for any i,
there exist a subset D; of C; and a family (Ri,j)j ep, of positive real numbers such
that for any j17j2 c Di, jl 7é jg,
dg (51,0, Tj5 )
Sj1,i,a

— 400 (1.20)

as a — +o00, and such that for any j € C; there exists a unique j' € D; such that

d . ., R, . . R .
lim sup 2 (Zj.0, 25".0) < =L and limsupm < (1.21)
a—r+400 Sj7 i, a—+oo Sj’ia 20
where C; is as in (1.19). We let po = 1,4 be given by
fo = MaxX [l o - (1.22)
i=1,...,k

As shown in Druet and Hebey [4], see also Hebey [9] for an exposition in book
form, the C%-theory then gives that for any i € {1,...,k}, there exists C > 0 and
a sequence (g4 ), of positive real numbers converging to zero such that, passing to
a subsequence,
[t = BL| < € (H} +20) By + Cpiari2 + Y BL)
< CBj
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in By, (46; Tza)\U]eD o (%SNQ), where z; is the limit of the z;,’s as
a — +o0, H! is given by
i 1
H'(z) = <1 +1In W) dy(2i 0, 7)? (1.24)

in M\{x; o}, and H'(z; ) = 0 for all @ and all 4, §; is as in (1.18), the D;’s and
R; ;’s are as in (1.20)—(1.21), and r; o is the range of influence of z; o as in (1.11).
When 7; o — 0 as o = +o0, it follows from (1.23) that there exist C > 0 and a
sequence (€4 )q Of positive real numbers converging to zero such that

[ua(@) = Bi()] < caBa(@) + C(piaril + Y Bi@)) (1.25)
J€D;
for all x € M, and all a. From (1.23) and standard elliptic theory we then get that
for any 7 € {1,...,k}, there exists C' > 0 such that, up to a subsequence,
lua| < Cu, aTio 2 and [Vua| < Cu, aTi o (1.26)
in B,

2i0 (20i7i,0) \ Bz, o (§6iri7a), where §; is as in (1.18), and r; o is the range of
influence of x; , as in (1.11). We also get that there exists C' > 0 such that, up to
a subsequence, for any j € D;,

and |Vua| < Cpjos;s

_],’L (e

(1.27)

in By, (5R;j8ji,a) \Bz;.. ( Rusﬂa) where the D;’s and R; ;’s are given by
(1.20)—(1.21). Still by the CO theory, we can prove that given ¢ € {1,...,k}, if

Tiaq =0 (, =z “) then, up to a subsequence,

—2
N Ne

[ua| < Clj.as;

w
2 -1 1
T3 alli o la (exp%a (r,ﬂz)) — 8 (| E + ’Hz(z)> (1.28)
in C2 (B (26;) \ {0}) as a — +o0, where
Aij
Hiz)= Y., —=+X (1.29)

JEAINB; i€ A; |z — 2l
is a smooth function in By (26;) satisfying that H;(0) # 0, J; is as in (1.18), the
Ai,j’s are as in (1.15), the z; ;’s are as in (1.17), and the X;’s are nonnegative real
numbers given by

2
X;=( lim 72 u} A im e :
= (ot Je s 2 (i ) a)
]G(.AZ\Bl)U@L o
where we adopt the convention that the first term in the right hand side of (1.30)
is zero if us = 0, that the second term is zero if (A;\B;) U©,; = 0, and where

0, = {] cA;st. 1 g AJ}

2. SHARP ESTIMATES ON THE RANGE OF INFLUENCE

We let (M, g) be a smooth compact Riemannian 4-manifold, and mqg, my,q > 0
be positive real numbers. We let w € (—mqg, +myg), (uae“*’“t)a be an arbitrary se-
quence of finite energy standing waves, u, > 0, and (v,), be an arbitrary sequence

of gauge potentials, satisfying that they solve (1.2) for all a, and that w, — w in R
as o — +o0o. We assume that (1.3) holds true, and we want to get a contradiction.
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We follow the analysis in Druet and Hebey [4] but we need to face the lost of C!-
control on the h,’s in (1.4) which is going to lead to quite serious difficulties. As
in the preceding section, we order the blow-up points such that (1.13) holds true.
We aim in proving that the following proposition holds true.

Proposition 2.1. Leti € {1,...,k}. Ifrio = 0( *Z"“), where 1; o is the range

of influence of x; o as in (1.11), and py is as in (1.22), then, up to a subsequence,

1
<mg —w? = 6S’g(nci) + 0(1)) ria In

where H; is as in (1.29), w is the limit of the wy’s, and x; is the limit of the x; o ’s.
Moreover, there holds that VH;(0) = 0 if we assume in addition that m% — w? ¢

%Rg(Sg). In case rio # 0 (1 /‘Z—:), there holds that

=2H,(0) + o(1) , (2.1)

1,0

)

1 i 1
(1= = §uta) + o)) 2t 22 = O (i) +0 (sala ) | (22)

e 7,0

where o is as in (1.22).

We prove Proposition 2.1 by finite inverse induction on . We let ¢ € {17 ey k},
and in case i < k, we assume that

forany j =i+ 1,...,k, (2.1) holds true

for j as soon as \/taTja =0 (Vij.a) -
If i = k we do not assume anything. Assuming (H;) we aim to prove that (2.1)

holds true for i. Let i € {1, ceey k}, i < k, be arbitrary. Assuming that (H;) holds
true we get that for any j € D;,

5;120, =0 <ln ! ) (2.3)
T o

where D; is as in (1.20)—(1.21). Indeed, if j € D;, then j > i. Moreover, for
any j € D;, we have that i € A; so that s;;.a > 7., and we clearly have that
55 i0 =0 (uj,a,u;i) = 0 (tj,ata’). The first equality is obvious. For the second
one we remark that if ¢ > 1, then for j € D;,
dy(xiaa xj,a)z =0 (7'1‘2,@) =0 (Ui,aﬂgl)

since 1 € A;. In particular, \/fiaTj.a = 0 (\/lij.a), and (2.3) is a direct consequence
of (H;) since H;(0) # 0. In what follows we introduce the subsets €; , of M given
by

(H;)

Qija = Bz, (diria) \ U Qija, (2.4)
JED;
where
Qi,j,a = ijya (Ri,jsj,i,a) (25)

for all j € D;, §; is as in (1.18), and the D;’s and R; ;’s are given by (1.20)—(1.21).
It follows from (1.20) that the €; ;.’s are disjoint for « sufficiently large, and it
is easily checked that s;; . = 0o(r; o) for all j € D;. We also have that D; = () if
i = k so that no €); ; ’s have to be considered in that case. We define X, to be
the smooth 1-form given by

Xalo) = (1= G Bl (0 (V). VSale) ) VEale) . (20
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where fo(z) = idg (210,2)°, and Rcf is the (0,2)-tensor field we get from the
(2,0)-Ricci tensor Re, thanks to the musical isomorphism. We let X, (Vu,) be
given by X, (Vus) = (Xa, Vue), where (-,-) is the pointwise scalar product for
1-forms. Applying the Pohozaev identity in Druet and Hebey [4] to the u,’s in Q; o
with the 1-forms X, we get that

1
/Q hauaXa(Vua)dvg—&-g /Q (A, (divyX,)) uZdvg,

1 . |
+3 /Q | (divyXa) houZdv, (2.7)

:Qasz£+Rl,a+R2,a ZRQQ7

JED; j€D;
where, if v = v, stands for the unit outer normal to 9§2; o, the Q,’s are given by

1
Qu :1/ (dngXa) (ayua)uadag
(Biri,a)

) (2.8)
_ / (Xa () |Vaua|? - Xa(Vua)(a,,ua)> do, ,
OB, . (§iria) \2
the @QJ,’s are given by
. 1
Q= 7/ (divyXa) (Ovua)uadogy
4 oQ; R
) (2.9)
_/ <2Xa(1/) Vtua)? — Xa(Vua)(a,,ua)) do, |
BQi,j,a
where €; ; o is as in (2.5), the Ry ,’s are given by
#
1
Rio= —/Q (VXa ~1 (divgXa) g) (Vua, Vug)dyg (2.10)
the Ry ,’s are given by
1 *
Rs o :i/ Xo (v)ul dog
OBy,  (0iTi,0)
. (2.11)
- / (8, (divyXa)) udo, |
8BziYO‘(6i7‘i,a)
and the Rga’s are given by
; 1 * 1
Ry, =~ / X, (V) uZ doy — < / (0, (divyX,))uiday, . (2.12)
B T S 8 Jo, j.a

We split the proof of Proposition 2.1 in several lemmas. All what follows is up to a
subsequence. The first lemma is contained in Druet and Hebey [4]. We note that
for X, as in (2.6),

[Xa (@) = O (dy (50,2))  divgXa(w) =4 =0 (dy (@10,0)%) .
9 (5,X) (2] = Oy (050) » and (2.13)
Ay (divyXo) (2) = 55, (#1,0) + O (dy (31,0, 0)) -
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Then we compute the right hand side in (2.7).

Lemma 2.1. Let i € {1,...,k} be arbitrary, and in case i < k, assume that (H;)
holds true. Let

. 1
= [ hawaXa(Vua)du, + / (B (divg Xo)) 2 dv,

Qi o Qz e

L : (2.14)

+ f/ (divgX o) houido,
4 Qi I L
where §; o is as in (2.4) and X, is as in (2.6). Then

: 1

Il = (7128(.037-[1(0) + 0(1))uf7ari_,§ +o (u?,a In - ) (2.15)

if ria =0 (, /“ﬂ—), and It = O (i apta) + 0 (uia In %) otherwise, where r; q
is the range of influence of x; o as in (1.11), H; is as in (1.29), and po is as in
(1.22).

The next lemma in the proof of Proposition 2.1 is as follows.

Lemma 2.2. Leti € {1,...,k} be arbitrary, and in case i < k, assume that (H;)
holds true. Let I:, be as in (2.14). There holds that

7,0

M;) (2.16)

+0 (/ vauidvg> +0 (/ vaua|Xa(Vua)|dvg> ,
Qi,a Qi,oc

where ;. 1s the range of influence of ;o as in (1.11), pq is as in (1.22), and z;
is the limit of the x; o ’s.

Proof of Lemma 2.2. Let hy be as in (1.4). Then,
ho =md — w2 + 0 (vy) (2.17)
and we get by (2.13) and (2.17) that

. 1 (e
Il = —64ws <mg —w? - 6Sg(:ci) + 0(1)) 11 o In Tio

to(piaric)+o (z@,a In

Il = (mg — Wi 0(1)) / UaXa(Vig)dy,
Qi a
1
+§/Q (Ag(dinga))uidvg
1 2 , . , (2.18)
+ 1( - w —|—0(1))/ (divyXo) udug

Qi o

+0 (/ Uauidvg> +0 (/ vaua|Xa(Vua)|dvg> .
Qi,a Qi,a

Using (1.23) it is easily checked that

1
/ dg (4,0, ) uZdvg = 0 (u?a In ) . (2.19)
Qi,a ’ /ui’a
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Integrating by parts, thanks to (1.26)—(1.27) and (2.13), there also holds that

1
/ UaXa(Vug)dv, = —2/ uzdv, + o (,u?’ari_’g) +o (,uia In ) . (2.20)
Qo

ia

i,

Then, by (2.18)—-(2.20), we get that

. 1
1= (= gyl o)) [ adar,

ia

! > (2.21)

1,0

+0 (/ vauidvg> +0 (/ vaua|Xa(Vua)|dvg> .
Q'i,a Qi,a

We have that .
/ (B.)?*dv, = o (uia In — ) (2.22)
Qi.,j,a /‘L%a

for all j € D;. Thanks to (2.21) and (2.22), and thanks to (1.23), we then get that

, 1 '
Il = — (m?j —w? = oS (2:) + 0(1)> /B . )(Bg)2dvg

+o(uari) o (i

_ 1
+o(piarid) +o (u?,a I > (2.23)

7,0

+0 (/ Uauidvg> +0 (/ vaua|Xa(Vua)|dvg> .
Qi,a Qi,a

We have that

i i,0 1
Ba; o (0iria) ' Hi,a ’ i,
Combining (2.23) and (2.24), this ends the proof of Lemma 2.2. 0

At this point it remains to handle the two terms involving the gauge potentials
Vo in (2.16). We let

A |
Q

for all . The following lemma reduces the problem of controlling these two terms
to the problem of controlling the first term.

vauidv, and B, :/ Vala| Xa(Vua)|dy, (2.25)
Qi o

ia

Lemma 2.3. Leti € {1,...,k} be arbitrary, and in case i < k, assume that (H;)
holds true. There exists C > 0 such that

B:<cC (uialn

+o0 (,ufJff)) Aq (2.26)

for all o, where Ay and By, are as in (2.25), and r; o s the range of influence of
T as in (1.11).

7,0

Proof of Lemma 2.3. By the Cauchy-Schwarz inequality, since the v,’s are bounded
in L*°, and by (2.13), there exists C' > 0 such that

B2 < CAa/ dg(Ti 0y )% | Ve |*do, (2.27)
Qi,a
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for all a. There also exists C' > 0 such that

[ ol P iadry <€ [y, ¥~ B,
Fie (2.28)
+C/ (i a, )2 VB2 dv,

for all a, and we can conclude by noting that

/ dg (xi,om |VBl | dvg =0 <M1 « ! > ’ (229)

i 7,0

and that by (1.23), using Holder’s inequalities,

/ dy (2.0, 1)° |V (ua — BY) |2 dvg = o (17 o7; a) +o (,uia In ,ul ) . (2.30)
Qi a i

This ends the proof of Lemma 2.3. O

Now we search for estimates on the A,’s in (2.25). We split v, into a quasi-
harmonic and a quasi-Poisson part. We define

Qi,a = Bm,a <35iri,a)\ U B‘Tj1a <§Ri,j8j,i,a) ) (2'31)
j€D;
where 0; is as in (1.18), and the D;’s and R; ;’s are given by (1.20)—(1.21). The
By o (%Ri,jsj’i,a)’s are disjoint for o > 1 and we have that Q; , C Qi,a for all ¢
and all . Then we let
Vg = Wi,a + W2 (232)

for all a, where wy  is given by

Ajwy o +miwy e =0 in SA)“X (2.33)
Wi,q = Vo ON 082 o '
for all o, wa 4 is given by
Ag'w2,o¢ + m%wQ,a =W, in Qi,(x (2 34)
W2 o = 0 on 8(217,1 '
for all «, and
Weo = Agva +mive = q (1 — qua)u? , (2.35)

for all a. As shown in Hebey and Truong [10], working at the macroscopic level,
we easily get that there exists 8 € (0,1] and C > 0 such that

Vo < Cul in M (2.36)
for all @. Now the next lemma establishes a first set of L°°-estimates for the quasi-

harmonic part of the decomposition of the v,’s.

Lemma 2.4. Leti € {1,...,k} be arbitrary, and in case i < k, assume that (H;)

holds true. Suppose 1; o 7# 0 (1 /‘Z—’”), where 1; o 1s the range of influence of ;o
as in (1.11). Then
le,aHLoo(Q y =0

1,0

as o — +o00o, where Qi,a is as in (2.31), and wy o s as in (2.32)-(2.33).
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Proof of Lemma 2.4. Assuming that r; o # 0 ( ”’—“), we get that

Ha
frio = O (r} o) = 0 (r7,) - (2.37)

By (1.26)—(1.27) and (2.37) we then get that
max Ue = 0(1) . (2.38)

aBriya(%(Si’l‘i,a)
Similarly, by (2.3), which follows from (H;), and by (1.26)—(1.27), there also holds

that

max U =o0(1) . (2.39)
9Ba; (3 Rij8j.a)

By the maximum principle,

0 <wiyq < max wy g (2.40)
O o

in €; o, and since wy o > 0, we get from (2.36) and (2.40) that

0 < wq,q < max v, < max uP (2.41)

«
o 00 o

in € . Combining (2.38), (2.39), and (2.41), this ends the proof of Lemma 2.4. [J
The next lemma provides a pointwise estimate for the ws 4’s.
Lemma 2.5. There exists C > 0 such that
2 dg(wi.omw)z
Mi,a In {2+ u?

i,

w () < (2.42)

/’L?,a + dg(xi,ou x)Z
foralla and all x € Qi,(,, where Qi,a is as in (2.31), and we o s as in (2.32)(2.34).

Proof of Lemma 2.5. Let Gy, be the Green’s function of A, +m? in Qi’a with zero
Dirichlet boundary condition on 8@1-’&, and G be the Green’s function of the same
operator in By, (3ig) with zero Dirichlet boundary condition on 9B, (3i4), where
x; is the limit of the x; s and i, is the injectivity radius of (M, g). Let x € Qi,a,
and Gg,z, G, be the functions defined for y # x by Gax(y) = Galz,y) and
G:(y) = G(z,y). Since Go < G5 on (‘9@1—,& we get that G, » < Gy in Qza\{x}
In particular, see Robert [14], we get that there exists C' > 0 such that

Ga(7,y) (2.43)

L —
— dg(x,y)?
for all z,y € Qi,a, x # y. There holds that

wa o () = / Go» (Agwgya + m?wza) dvg
e (2.44)
:/ GaWadvg
Qira

where W, is as in (2.35), and since W,, < Cu2, it follows from (2.43) and (2.44)
that there exists C' > 0 such that

uZdv

Wo.o(x) < C / —o 9 2.45

2, ( ) deg(%')Z ( )
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for all @ and all = € Q“X By (1.23) we then get that from (2.45) that
Bi Zd
vty <0 [ B0 i
00 do(7:y)
i ()2
<C / M
Bz'i,a(%5iri,(1) dg<.’17,y)

and (2.42) easily follows from (2.46) by noting that there exists C' > 0 such that

(2.46)

. 2 dg (i a,x) )
Bl (y2duy(y) _ MEatn (24 et
2 S C 2 2
B.,«1 o (%51‘7’7;)(,) dg (1’7 y) /‘Li,a + dg (xi1043 x)

for all x and all a. This ends the proof of Lemma 2.5. [

Thanks to Lemmas 2.4 and 2.5 we can prove the following.

Lemma 2.6. Let i € {1,...,k} be arbitrary, and in case i < k, assume that (H;)
holds true. Suppose 1; o # 0 (1 /’Z—(‘:), where 1; o 15 the range of influence of ;o

as in (1.11). Then
1
/ vauidvo, = o (u?a In > , (2.47)
Qira ' i,

where Q. o is as in (2.31).

Proof of Lemma 2.6. By Lemma 2.5, for any R > 0 there exists eg > 0 such that

”wQ,O‘”L"O(Qi,a\BmLQ(Rui,a)) <er (2.48)

for all o, and such that e — 0 as R — +o0. By (1.23), Lemma 2.4, and (2.48),
we then get that

/ Uauidvg < / v(,uidvg JreR/ uidvg
Qi o Qi,aNBa;  (Ri,a) Qo

(2.49)
< / vauidvg +epp?, In
Qi aNBa,  (Riti o) ' ia
for a > 1. By Hoélder’s inequality,
/ vauldv,
Qi,amBzi,a (R)u'i,a)
1/4 3/4 (2.50)
< / vidvg / ui/?’dvg
Bmiﬁa(RHi,a) Qi,aani)a (RM'i,a)
and by (1.23), there exists C' > 0 such that
/ ud3dv, < Cu?/o? (2.51)
Qi,ambi,a (Rﬂ‘i,a) '

for all oo. Also there holds that

/ vidu, < CVoly (Ba,., (Riiza)) < Ciit, (2.52)
Bmi‘a (Rui,a)



14 OLIVIER DRUET, EMMANUEL HEBEY, AND JEROME VETOIS

for all a. By (2.50)—(2.52) we then get that
/ vauidvg = O (13 ,) (2.53)
Qi,aan,’qa(RNi.a) ’

and since eg — 0 as R — +o00, we get (2.47) by combining (2.49) and (2.53). This
ends the proof of Lemma 2.6. (]

Now we handle the cases where r;, = o0 (1 /*Z—") The first lemma in this

direction is as follows.

Lemma 2.7. Leti € {1,...,k} be arbitrary, and in case i < k, assume that (H;)

holds true. Suppose r; o = 0 (1 /’Z—;“), where 1; o 15 the range of influence of z; o

as in (1.11). Then

ria In Jbo > €o (2.54)
7,0

for all a, where €9 > 0 is independent of c.

2
iy

as a — +o0. Since there also holds that r; o — 0 when 7; , = 0( ‘L“), we get

that

Proof of Lemma 2.7. We proceed by contradiction and assume that r; , In ;‘—0‘ -0

2
Ti o In

=0 (2.55)

7,0

as a — +o0o. By (1.23), since the v,’s are bounded, there exists C' > 0 such that

/ vauidu, < C’u?’a In (2.56)
ina 1,
for all a. By Lemmas 2.1 to 2.3, and (2.56), there holds that
2 -2 2 1
(—128%%(0) + 0(1))%&7«2.@ ) (,ui,aln - ) . (2.57)
Combining (2.55) and (2.57) it follows that H;(0) = 0, a contradiction with the
fact that H;(0) # 0. This ends the proof of Lemma 2.7. O

From Lemma 2.7 we get that the following key estimate holds true.
Lemma 2.8. Let i € {1,...,k} be arbitrary, and in case i < k, assume that (H;)

Hi,o
Ho

1
/ vauidv, = o (,u?a In > ) (2.58)
Qia ' Hi,a

where Q. is as in (2.31).

holds true. Suppose 14 = 0 (
as in (1.11). Then

), where 1; o s the range of influence of x; o

Proof of Lemma 2.8. By Lemma 2.7, TZ_O% < Cln u%’ and by (1.26)—(1.27) and
(2.36) we then get that there exists C' > 0 such that

1 B
Vo < C (ui,a In ) (2.59)

7,0
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on 0B, , (26;ri,a), for all a. Still by (1.26)-(1.27) and (2.36), it follows from (2.3),
and thus from (H;), that there exists C' > 0 such that

B
2 \B 1
Ve < C (ﬂj,asj,za) <C (/lj,a In > (2.60)
jia
on 0By, (%Ri,jsj,i,a) for all j € D; and all a. By the maximum principle, the
quasi-harmonic part w o of the decomposition of the v,’s satisfies that

0 < wio < max wi g
0o

and since wy o < v, for all a, it follows from (2.59) and (2.60) that
lwtallpo @, .y = 0 (2.61)

as @ — +00. Now we handle the quasi-Poisson part ws . of the decomposition
of the v,’s. By (1.23), since the v,’s are bounded, there exists Cp > 0 such that
Wo < Co(BL)? in €2 4 for all o, where W, is as in (2.35). Define w, by

{Agwa + m%wa = C()(Bg)z in BIi,a (%(siri,a)

2.62
we =0 on 0By, , (%&H,a) . (2.62)

By the maximum principle, 0 < ws 4 < w, in Qi,a for all a, and by (1.23) and
Hoélder’s inequality we then get that

1/4 3/4
/ w2,auidvg S </ ’U)g advg> </ ui/?’dvg>
Qi,a Qi_p( ’ Qi7a
1/4 3/4
<C </ widvg> (/ (33)8/3d0g>
B”L(a) BI(OL)

for all a, where B;(a) = By, ., (%51-7‘2»’&). There holds that
[ @man, =0 (ulf) . (2.64)
Bi (Oc)

and we can write using (2.64) that there exists C' > 0 such that

(2.63)

HwaH?{l(Bl(a)) < C/; . (Agwa —I-m%wa) wadvg

<C (BL)wadv,
Bi(a)

1/4 3/4 (2.65)
<C (/ widvg> </ (Bfl)s/?’dvg)
B1(05) B7(Oc)
1/4
< Clg,a (/ widvg>
Bl(a)

for all a. By the Euclidean Sobolev inequality, ||wa|[z4(B,(a)) < K||VwallL2(B,(a))
for all o and some K > 0 independent of «, and by (2.65) it follows that

1/4
(/ widvg> =0 (Hi,a) - (2.66)
B;(«)
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Combining (2.63), (2.64), and (2.66), we then get that

/Q wgvauidvg =0 (uia) =o0 <,u, o 1n

We easily get (2.58) from (2.61) and (2.67) since v, = w1 o + W2, and since, by

(1.23),
1
2
Uall 2 g =0 i, .
ool o, = O (st )

This ends the proof of Lemma 2.8. (]

1 > . (2.67)

7,

At this point we can prove Proposition 2.1. This is the subject of what follows.

Proof of Proposition 2.1. First we let i € {1,...,k} be arbitrary, and in case ¢ < k,
we assume that (H;) holds true. By Lemma 2.3, Lemma 2.6, and Lemma 2.8, we
always have that

A, =0 (u?’a In ! ) +o0 (,u?ar;g) , and

7,00

1
> +o(uiaris)

1,00

(2.68)

By =o0 <,u?7a In

where A, and B, are as in (2.25). As is easily checked, (2.1) and (2.2) follow from
Lemma 2.1, Lemma 2.2, and (2.68). It remains to prove that VH;(0) = 0 if we
assume that r; o =0 (, / ’Z—;) and that m3 —w? ¢ %Rg(Sg). Let Y be an arbitrary

1-form in R™. We apply again the Pohozaev identity in Druet and Hebey [4] to u,
in §2; o, but we choose here X = X, to be given in the exponential chart at z; o by

2 )
(Xa)s =Yy — anjkl(-fi,a).zjle ,

where Y! = Y] for all [ and the R,k are the components of the Riemann tensor
Rmg at x; o, in the exponential chart. As is easily checked, still in geodesic normal
coordinates at ; o, (VXa)Hj = —R,ijkl(xi’a)kal + 0 (|:E|2) so that we obtain
divy (Xo) = O (|z[?). Then, thanks to the symmetries of the Riemann tensor, we
get with the Pohozaev identity that

1
/ (Xa V) |Vua|* — Xa(Vua)&,ua> dog + / hatiaXa(Vig)dv,
8Qi,a 2 Qi,a
=0 / uZdv, | +0O /
Qi,u Qi,u
+0 (/ ugjdgg> +0 (/ ugdag> +0 (/ 3yua|uadag> ,
OQi,a aQi,a aﬂi,a

where v = v, stands for the unit outer normal to 9€; ,. Estimating the right-hand
side of (2.69) thanks to (2.3), and thanks to (1.23) and (1.26), we get that

/ <1Xa V) |Vua|* — Xa(Vua)ayua) do,
0. \2

+/ haua (vua)dvg_O(:u’za 1 >+O(7,o¢ 12)
Q

i i,

dg (Ti,0,7)° | Vuua|? dvg> (2.69)

(2.70)
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By (2.17),
/ hattaXa(Vua)dvg = (m§ — w?) / UaXa(Vug)dvg + O (By) ,  (2.71)
Q0 Q

i,

and, integrating by parts, it is easily checked that
1 —
/ UaXa(Vug)dvg = O (uialn - > +0 (uiarij) .
Qo i,0
Coming back to (2.71), thanks to (2.68), it follows that

1
/ (Xa V) |[Vual* - Xa(Vua)al,ua) do,
0y,

2
X (2.72)
=0 (umn ) + O (ar?)
By (1.26)—(1.29), thanks also to (2.3), we can write that
1
/ (Xa ) [Vual? - Xa(Vua)&,ua) do,
0900 \2 (2.73)

= (128ws3 (Y (VH,))y + 0(1)) 117 o773 + Oa
where (Y (VH;)), = Y" (V.H;) (0), and

R 1 \3/2
On =o|u?, <ln ) .
’ Hia

If we assume that m3 — w? ¢ %Rg(Sg), then we get as a consequence of (2.1) that

1\ /2
Tia | In =0(1) .
o(mh) " =ow

Coming back to (2.72) and (2.73), it follows that (Y (VH,;)), = 0, and since Y is
arbitrary, we get that V#H;(0) = 0. This ends the proof of Proposition 2.1. (I

3. PROOF OF THEOREM 0.1

We prove Theorem 0.1 in this section. We let (M, g) be a smooth compact
Riemannian 4-manifold, and mg,m1,q > 0 be positive real numbers. We let w €
(=mg, +my), (uaei“’at)a be an arbitrary sequence of finite energy standing waves,
Uq > 0, and (vq), be an arbitrary sequence of gauge potentials, satisfying that
they solve (1.2) for all o, and that wy, — w in R as & — +oo. We assume that

m} o ¢ <Re(S,) (31)

and that (1.3) holds true, and we want to get a contradiction. As in the preceding
section, we order the blow-up points such that (1.13) holds true. First we claim that
Uso i1 (1.8) has to be zero. To prove this, we proceed by contradiction and assume
that us # 0. Then, by the definition of the range of influence, r1,o = O(y/lta),
where po = p1 is as in (1.22). In particular r , = o(1l) and we can apply
Proposition 2.1 with i = 1. As we know, H1(0) # 0 and, therefore, it follows from
(2.1) in Proposition 2.1 that

1
ria In ™ >C, (3.2)
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where C' > 0 is independent of «. Noting that (3.2) leads to a contradiction
when combined with the estimate 71 o = O(,/fla), this proves that u,, = 0. Now
we remark that by (3.1) and (2.2) in Proposition 2.1 there necessarily holds that
r1, — 0 as & — 4o00. In particular, A; # (), where A; is as in (1.12). Moreover,
by (2.1) in Proposition 2.1 and (3.1) we get that for any i € A; U {1}, there exists
C; > 0 such that

riaIn— =G (3.3)
’ Hia
as & — 400. By (3.3), for any i € A; U {1},
fia =0 (r7,) - (3.4)

It follows from (3.4) that for any i € A; U {1}, A; N B; # 0, where the B;’s are as
in (1.16). By the explicit formula (1.30),

M= 3 D (35)

2 b
jeA;,nB; 17— zig

where H; is as in (1.29). Let & = (A1 NBy) U{1}. For any i € A; N By, we have
that A; N B; = &1\ {i}. Let i € & be such that

dg (xl,onmi,a) > dg (xl,avxj,a)

for all j € & and all . Then the z; ;’s all lie in a ball whose boundary contains zero.
In particular they all lie in a half space and we get that there exists v; € R™, |v;| = 1,
such that (v, 7 ;) > 0 for all j € A; N B;. By Proposition 2.1, VH,;(0).(v;) = 0,
and by (3.5) we have that

A
VHi(0).(ki) =2 > (v ziy)
jeans; |7l

a contradiction since A;; > 0. This ends the proof of Theorem 0.1.

4. PROOF OF THEOREM 0.2

We prove Theorem 0.2 in this section. The proof is based on a finite-dimensional
reduction method, the so-called Lyapounov-Schmidt method (introduced originally
by Floer and Weinstein [8] in the one-dimensional case). An early reference on the
Lyapounov-Schmidt method for a Sobolev critical equation is Rey [12]. Different
techniques based on the finite dimensional reduction method have been developed
for such problems such as, among others, the localized energy method (see del Pino,
Felmer, and Musso [3], Rey and Wei [13], and Wei [16]). Here, we use the Lyapunov—
Schmidt method with respect to the H'-norm, as it is used, for instance, in Esposito,
Pistoia, and Vétois [7] for the Yamabe equation. In our case, on the sphere, we
restrict ourselves to radial functions in H'. We let (S, g) be the round 4-sphere,
mo,m1,q > 0 be positive real numbers such that m3 > 2, and w € (—mq, +mo).
We let ® be the map given by (1.1). Then, see Hebey and Truong [10], ® is locally
Lipschitz and differentiable, and its differential D®(u) = V,, at u is given by

AgVule) + (M3 + ) Vu(p) = 2qu (1 — q®(u)) ¢ (4.1)
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for all ¢ € H'(M). There also holds that 0 < ® < L in H'. Letting I, : H' — R
be given by

1 1
I,(u) = 3 /S4 |Vu|§ dvg + i(m% —w?) /84 u?dv,

1
—Z/ uidvg—&—gcf/ ®(u)u’dv,
s s

for all w € H', where uy = max(u,0), it follows that I, is C! in H! and that its
critical points v € H! are such that

Agu+miu = u? + w?® (¢®(u) — D’u. (4.3)

(4.2)

By the maximum principle, since m3 > w? (¢®(u) — 1)2, we then get that u > 0.
In particular, (u, ®(u)) solves (0.2). We define
£w =2+w? —m} (4.4)
so that e, — 0 if and only if w? — m2 —2. We fix 7o € S*, and we define the radial
Sobolev space
HYSYY ={ue H'(S") st.uoo=uforalloc € G, } ,
where G, is the group of rotations about xo. In particular, H} C H'! is a closed
subspace of H'. Similarly, for any p > 1, we define the radial Lebesgue space
LP(S*Y) = {ue LP(S*) st. uoo =uforallo € Gy, } .
We let £, be the conformal Laplacian on (S*, g) given by £, = A, +2. As is easily
checked by using standard minimization technics, for any f € L;l/ 3, there exists a
unique u = Eg_l(f), u € H}, such that L,u = f. Given u € H} we define
fo(u) = u} + epu — qw? (2 — q®(u)) ®(u)u (4.5)

where ® is given by (1.1), and &, is as in (4.4). Now, given § > 0, we let W5 be
the fundamental solution of the conformal critical equation. Then

V26
V1 + 62 — cosdy(zg, )
and, as is well known, Wj satisfies that
LWs =W} (4.7)

in §* for all § > 0. There also holds, see for instance Druet, Hebey and Robert [6],
that

Ws =

(4.6)

Hs

Ws=——"0"—
2 ¢ Lo

+ Ry (4.8)

for all 6 > 0, where us = m, and Rs — 0in H' as § — 0. We aim to
construct solutions of (4.3) of the form u = W5 + 5. We define Zs € H} by

dWs
Js =0—— . 4.
5 7 (4.9)

By Bianchi-Egnell [2], Z;s is, up to the product by a constant, the only solution in
H} of the linearized equation associated to (4.7), and thus the only solution in H}
of

L,75 =3WZ2Zs . (4.10)
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We let (-, )., be the scalar product associated with £, so that

(u,v), = / ((VuVv) + 2uv) du, (4.11)
sS4
for all u,v € H}, and let || - ||z, be the corresponding norm. Then we define
Zi ={ue H} st (u,Zs)e, =0}, (4.12)
and let H(SL cH! — Z5L be the projection onto Z(SL. It follows that
(u, Zs)c
Myu=mu— =275
1Zs1Z,

for all u. By (4.7) and (4.10), Ws € Z3 for all § > 0. At last we define Ls,, Ns.u,
and Rs ., by
Lsw(u) =1z (u— L' (Dfo(Ws)w))
Nsow =I5 (L5 (fo(Ws +u) = fu(Ws) — D fu(Ws).u)) (4.13)
Ry =g (L (fu(Ws)) — Ws)

for all w € H}, where f, is given by (4.5). We split the proof of Theorem 4 in

several lemmas. The first lemma consists in the following rewriting of equation
(4.3).

Lemma 4.1. A function ¢ € Z3 is such that u = Ws + 1 solves (4.3) in Zs if
and only if

Lsw(¥) = Nsw(¥) + R (4.14)
where Ls,, N5, and Rs,, are as in (4.13).

Proof of Lemma 4.1. Let u = W5+ 5. As we easily check, ¢ satisfies (4.14) if and
only if IIj (u — L, (fu(u))) = 0, and thus if and only if u — L, (fu(u)) = aZ;,
where « € R. In particular, ¢ satisfies (4.14) if and only if

Agu+miu = ul + w? (qP(u) — 1)’ u+ aly(Zs) ,
and thus if and only if u solves (4.3) in Z3. This ends the proof of Lemma 4.1. O

Now we prove that the following estimate holds true.

Lemma 4.2. There exist 69 > 0 and g9 > 0 such that for any § € (0,8y) and
any € € (0,80), Lo : Z(sl — Z(;L is invertible. Moreover, there exists C > 0,
independent of § and w, such that

[Lsw (), = Cll¥lle, (4.15)
for all 6 € (0,60), € € (0,e0), and ¥ € Z3.
Proof of Lemma 4.2. In order to apply the Fredholm alternative, we show that for
any 0 > 0 and w € R (fixed), the map Ls,, : ¢ — 9 — Ls,(¢) is compact. We
let (1o )a be a bounded sequence in Z3. For any a € N, we define the function
Pa = £g_1 (Df(Ws).10a) so that L, (¥a) = I3 4. Since (¥q)aen is bounded in
H*, we get from (4.1) that (D f,,(W5).1), is bounded in H'. By elliptic regularity
theory, it follows that (¢a)aen is compact in H', and thus that (Ls(¥a))a is

compact in Z g-. This proves that the map L, is compact. Now, by the Fredholm
alternative, in order to get the invertibility of Ls ., it suffices to prove that the
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kernel of L, is reduced to {0}, which is a consequence of (4.15). We prove (4.15)
by contradiction. We assume that there exist (dq)a, (Wa)a, and (¢q)q such that
0o — 0 and e, — 0 as @ = +o00, such that ¢, € Zg; and [|1a]/z, = 1 for all «,
and such that '

L6 wa (Ya)llz, =0 (4.16)
as a — +oo. We claim that
o = £, (Do (Wi, ) 00| o, = 0(1) - (4.17)
By (4.16), in order to obtain (4.17) it suffices to prove that
(o = £ (D, (W, )00) . Zs,) . = o(1) (418)

By (4.10) we get that

<7/}o¢ - £;1 (waa (Wéa)¢a) 7Z(Sa>£ = /4 (3W52a¢oz - waa (Wéa)1/}o¢) Zéadvg ;
9 S
and by Holder’s inequality and Lemma 4.3 it follows that

(0 = £ (Dfuoa (Wi,) ) Zs.) |
= O (IIBW2 o — Do, (Ws,) tball /51 Zs, || 1) (4.19)
= O (I3W} tha = D fuo, (Wa,)tallpass) -
By the definition (4.5) of f, there holds that
3W5, Yo — D fu,(Ws,)-Ya
= —euw, Vo + g (2 — q®(Ws,)) 2(Ws, )ta
+2qw), (1 - q®(Ws,) Ws, DO(W;, ) -¢ba,

and since 0 < ®(Ws,) < %, €wo — 0 as a = +00, [[Yalz, = 1 for all o, and
IWs|lL2 — 0 as § — 0, it follows that

H3W52a7/}a - wam (W5a)~1/)oz||L4/3
= o([[allLass) + O (I12(Ws, )l mr [[Yallmr)
+ O (W5, DO(Ws,,)tball pars)

— o(allm) + O (1O(Ws_) s [all ) (4.20)
+ O ([Ws, | 2| D2(Ws,, ) Yall mr)
— o(1) + O (|0(Ws)2) + 0 (DS (W, ) tbalzs) -
By (1.1) and (4.1),
[B(Ws )l = O (W, [24/0) = o(1) (4.21)
and
IDOWs. ) allis = O (IWa, oo lalin) = o ([allir) = o(1) . (422)

By (4.21) and (4.22), coming back to (4.20), we obtain that
1BWZ, o = Do Ws,) o ajs = o(1) - (4.23)
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Then, by (4.19) and (4.23), we deduce (4.18), and thus also (4.17). Then, by (4.17)
and (4.23), for any sequence (¢4 )q in HY,

<'l/)aa <’00‘>Eg = 3/84 W(?awoc@advg +o (H@allHl) . (4'24)

Given ¢ € C°(R%), we apply (4.24) with ¢, given by

1 /1
Pa(T) = gﬁﬂ (5(1 XDy, x)
for all z € S%. In particular, ||ps| 71 = O(1), and by using (4.8), we obtain from
(4.24) that
7 (2%
Vo V)dr =24 ———d 1 4.25
L (Vs =21 [ o). (425)
where z/;a is given by }
Ve (T) = da¥a (expm((; m)) .
Since [|¢a|[z1 = O(1), there holds that Viba||z2 = O(1), and we deduce that, up
to a subsequence, 1, — ¥s in H' as a — +oo. Passing into the limit in (4.25),
and since (4.25) holds for all ¢ € C°(R*), we obtain that 1, solves the equation

. 24
Ao = T \xl2)2¢°° (4.26)

in R*. We have that ¢, € H} by the definition of Z(; in (4.12), and thus t)s, is
radially symmetric. By B1anch1 and Egnell, the sole radially symmetric solutions
of (4.26) are of the form

g Az — 1)
o (T) = T
D= a2

for some A € R. At this point we claim that A = 0. Since ¢ € Z3, and Zs,
satisfies (4.10), we have that
/ W3 Zs badvg =0 (4.28)
SAL

for all a. Rescaling (4.28), splitting the integral over By(R) and R*\ By(R), using
Lemma 4.3 for the noncompact part of the integral, we obtain that

9 ~
S RE ST E N

Then, combining (4.27) and (4.29), it follows that A = 0 and then that 1., = 0
Finally we apply (4.24) with ¢, = 1,. We obtain that

lvallz, = [ W3 02dv, +o01)

(4.27)

=0. (4.29)

We may assume that 1), — 1o in L2 of any compact subset of R%. Here again,
by rescaling and splitting the integral over By(R) and R*\ By(R), and since we just
got that 1o = 0, we obtain that HwaH%g — 0 as a@ — 400, in obvious contradiction
with the fact that [|¢4[|z, =1 for all a. This proves (4.15) and Lemma 4.2. O

The following estimate on the £j-norm of Zs was used in the proof of Lemma
4.2. Tt will be used again in the concluding argument in the proof of Theorem 0.2.
We state it as a lemma.
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Lemma 4.3. There holds that
1251z, =
as 6 — 0, where Zs is given by (4.9), and ws is the volume of the round 3-sphere.

Proof of Lemma 4.3. Let 8 =+/1+ 2. We compute

~ V26(1— Bcosr)
~ B(B—cosr)?
where r = dy(zo,-). Independently, by (4.10), we obtain that

1251, =3 [ wiziin,

The result follows from direct computations noting that in geodesic normal coordi-
nates r3dv, = (sinr)3dz. This ends the proof of Lemma 4.3. O

16&)3

(1+0(1))

Zs

Now we define the map Ty, : Z3 — Z; given by
T5.w(¥) = Lyg, (N5 () + Ro) (4.30)

for all ) € Z;. By Lemma 4.1, solving (4.3) in Z; amounts to finding a fixed point
of T(;,w.

Lemma 4.4. There exist 69 > 0 and g9 > 0 such that for any ¢ € (0,dp) and any
e € (0,e9), the map Ts,, in (4.30) has a fized point s, € Zi. Moreover, there
ezists C' > 0 such that

lswlln < C (208 +6%/[lnd]) (4.31)

for all 6 € (0,00) and all € € (0,e0). In addition, the map (§,w) — V5., with
values in H', is C* with respect to § and w.

Proof of Lemma 4.4. First we claim that there exists C' > 0 such that

[Rswllmr < C (Ewé + 52\/|1n5|) (4.32)
for all 6 > 0 and all € > 0. It is easily checked that there exists C > 0 such that

el < CllLgpllpars

for all p € H'. Since W solves (4.7), |[IIy || < 1, and 0 < ®(Wj) < %mve then get
that
[R5 0

‘Hl <C ||fw(W5) - £9W5||L4/3
< C(ewlWsllpass + |12(Ws)Willpass)
for all 6 > 0 and &, > 0, where C' > 0 is independent of § and .. There holds that
[@(Ws)W;||pasa = O (|(Ws) || a1 [Woll2) = O ([Wsll7s/5 W]l 22) (4.34)
by (4.21). Direct computations give that

[Willzars = 06) , IWallze = O (8y/Tnel) , [Willpes = O (V3) . (4.35)

Then (4.32) follows from (4.33)—(4.35). Now, we aim to apply the fixed point
theorem to the map 75, in the set

Bso(A) = {w e Z& st o)lm < A (gw5+52\/m)}

(4.33)
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for some A > 0. By Lemma 4.2, there exist dg > 0, 9 > 0, and C' > 0 such that

[ Ts.0 ()1 < C([[Nsw (@)1 + | Rswll 1) (4.36)
for all 6 € (0,80), €w € (0,€0), and all ¢ € Z3, and such that
[Ts.0 (1) = s (W2) |y < Cl[Nsw(W1) — Now ()| (4.37)

for all 6 € (0,00), € € (0,e0), and all ¥y, € Z5. Direct computations, using
Holder’s inequalities, and estimates like in (4.21) and (4.22), then give that there
exists €5 > 0, €5 = £5(A), such that es — 0 as 6 — 0, and such that

[Nsw (1) = Now ()l < esllbn — o[ (4.38)

for all 6 € (0,6¢), ew € (0,€0), and 1,92 € Bs,(A). By (4.32), (4.36), and (4.38),
taking 1o = 0 and ¥; = v in (4.38), we get there exists dp > 0 small, £g > 0 small,
and A > 0 sufficiently large, such that

Tg’w : Blg,w(/\) — B(g’w (A)

for all 6 € (0,0p) and &, € (0,&0). In addition, (4.37) and (4.38) give that T, is a
contraction map in Bj,,(A). By the fixed point theorem it follows that T ., admits
a fixed point 95, € Bj.,(A). This proves both the existence of the fixed point and
(4.31). Tt remains to prove that )5, is C! with respect to § and w. To be more
precise, we prove the regularity of s, with respect to § and e, by applying the
implicit function theorem to the map G : (0, +00)? x H' — H! given by

G0 0, %) =¥ — U5y — i (L5 (fu(UsWs + 54)))

for all » € H'. It is easily checked that G is C! with respect to its three variables,
while we just proved that G(d,¢e,,, Ws + ¥s.) = 0 when § > 0 and ¢, > 0 are
sufficiently small. There holds that

DyG (6, 0 Wi + 1h5.)-(v) = v =Tz (L5 (D fu(Ws + ¥s.0).15v))

for all v € H'. Using the Fredholm alternative, we obtain the invertibility of the
differential DG (9, e, W5 + 5.,) if we prove that its kernel is reduced to {0}.
Direct computations, similar to the ones needed to get (4.38), give that there exists
C > 0 such that

1Dy G (6, €0, Ws + 5.0)-(0) [ a1 = Cllvllae

for all v € H!. In particular, KerDyG (6, e, Wi + 15.,) = {0}, and by the implicit
function theorem, this ends the proof Lemma 4.4. O

Now we define the reduced functional Z,, by
Z.(6) = Lo(Ws + ths) (4.39)

where I, is as in (4.2) and 5, is given by Lemma 4.4. We prove that the following
holds true.

Lemma 4.5. There holds that
Z,(8) = L,(Ws) + O (¢26% + 6*| Ind)) (4.40)

for all § > 0 small and £, > 0 small.
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Proof of Lemma 4.5. Using that W is a solution of (4.7), we get that

L,(6) — Lo(Ws) = 5/34 \wg,wﬁdvﬁ / 3 dvg
—E&w /4 W5¢5,wd’09
1 3
- i/s (Ws +thsw)t — Wi — dWiis,.,) dug (4.41)
+ gw2 /S4 (D(Ws + t5.0) — P(W5)) (Ws + s5.) dug

+ gw2 / O (Ws)h3 ,dvg + qu? / O(W5)Wsths wdvy -
sS4 sS4

For any a > 0 and b real numbers, |(a + b)} — a* — 4a®b| < C(a? + b%)b* for some
C > 0 independent of a and b. By Holder’s and Sobolev inequalities, it follows that

/ ’ Wé‘f'wéw) - 4W5¢6w’dvg
4.42
O ((IWsll3: + \\w5,5||H1>||¢5,w||%1) (4.42)
= O (|[vswlip) -
‘We also have that
1
3 | IVisaldv,+ 52 =) [ W3udu, =0 (Iws.li) (4.43)
and by Holder’s and Sobolev inequalities, we get that
[ Watbsl vy = O (IWall sl (149
that
[ @ 0Vs +5.) = V3| (W + 5.) Py o
= O ([|2(Ws + ¥s.) — @Ws)|lmr (IWsll7s/5 + 1vswllzrn))
and that
O(Ws)2 , + qu?®(Ws)Waths.o| d
/SJ (Ws)¥§ o + quP (W) Wsths o | duyg (4.46)
=0 (12(Ws)llm [¥s.ll e (1swlze + [[Wsllr2)) -
By (1.1),
[@(Ws + 1s.w) — 2(Ws)|lzr = O (( ) ) (4.47)

and it follows from (4.21), (4.35), and (4.41)—(4.47) that

7,(8) — I, (Ws) = O (H + (ew(5—|—62\/| ln5|) ||¢57w||H1) . (448)
Then (4.40) follows from (4.31) and (4.48). This ends the proof of Lemma 4.5. O

Now we compute I, (Ws).
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Lemma 4.6. There holds that
8
L(Ws) = S7°  8ne, | o] + gw/ B(Ws)W2duy + 0 (.62 Ind])  (4.49)
§4
as 0 — 0 uniformly with respect to w, and there exists C > 1 such that
1
—% < / O(Ws)Widv, < C8? (4.50)
C S4
for all § > 0 small.
Proof of Lemma 4.6. By (4.7),
1 1
I,(Ws) = 7/ Widv, — 75w/ Widv, + %2/ S (Ws)Widv, . (4.51)
4 S4 2 S4 2 S4
Direct computations give that
2
/ Widv, = %772 and / Widv, = 16726%| Ind| + o(6?|Ind) . (4.52)
1 1

Then (4.49) follows from (4.51) and (4.52). Independently, testing equation (1.1)
with u = W; against ®(Ws), we get by Holder’s and Sobolev inequalities that

ol =0 ([ @viwias, ) =0 (Wllslemolm) (453
and testing (1.1) with u = W; against W5, we get that
/S4 Widvg = O ([Wsll g2 [ @(Ws) [ e + W Ll (W5)l| 24)

=0 (leWs)lar) -

Noting that there exists C' > 0 such that fs4 ngvg > (6 for all § > 0 small, it
follows from (4.35), (4.53), and (4.54) that (4.50) holds true. This ends the proof
of Lemma 4.6. O

(4.54)

Now, we prove the following lemma establishing the relation between being a
critical point of the reduced functional Z,, and getting a solution us ., = Ws + s .,
of (4.3).

Lemma 4.7. If§ > 0 and £, > 0 are small and I'(§) = 0, then us, = W5 + s
is a solution of (4.3).

Proof of Lemma 4.7. Welet (dq)q and (wq)q be such that 7/, (6,) = 0and e, >0
for all «, and such that 6, — 0 and ¢,,, — 0 as & — +00. By Lemmas 4.1 and 4.4,
if we let
o = Ws, + s, .0,
then
Ua — Eg_l (fun(Ua)) = XaZs,

for some A\, € R, and u,, solves (4.3) if and only if A\, = 0 (the inequality u, > 0
follows from the maximum principle when A, = 0). There holds that

7., (6a) = Xa(Zs,,, du;;%\a:aahg : (4.55)

In particular, by (4.55), we get that either u, solves (4.3), or

d
< 5 Us,wq

55 la=ba )e, =0 (4.56)
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We assume (4.56) by contradiction. Since 5, € Z3 for all § > 0, we get by (4.31)
that

s, dZs
(Zs.,, T |5:50>£g = _<W|6:6a7"/}6a,wa>£g
s (4.57)
=0 (1 o-s. s W) -
Direct computations give that
dZs 1
200 =0(—=] . 4.58
[, =0 (%) (459
Noting that
duﬁ,wu 1 2 dwé,wa
(Zs.,, 75 |5:5Q>Lg = EHZtSQHHl +(Zs,,, T 5:5Q>Lg7
we then get by (4.31), and by (4.56)—(4.58), that
1
151 = 0 (- Wl ) =ol0). (4.59)

The contradiction follows from Lemma 4.3 and (4.59). This ends the proof of
Lemma 4.7. U

At this point we are ready to prove Theorem 0.2. This is the subject of what
follows.

Proof of Theorem 0.2. We may assume that m3 > 2. In case mg = 2, then w = 0,
and letting w, = 0 we get the desired sequence of solutions with u, = Wj,, for any
sequence (), of positive real numbers converging to zero. Now, for any ¢ > 0 and
w € R such that €, > 0, where ¢, is as in (4.4), we let

S, (t) = et (4.60)

In particular, é,(t) — 0 uniformly in compact subsets of (0, +c0) as , — 0. By
(4.40) and (4.49) in Lemmas 4.5 and 4.6 there holds that

T, (6,()) = %2 +E,(t) +o (e;> (4.61)
uniformly in compact subsets of (0, +00) as &, — 0, where
E(t) = —8rlte s + goﬂ /S B (W)W v - (4.62)
By continuity, for any K > 1, there exists tx ., € [%, K] such that
T, (0w(tkw)) = min T, (6,(t)) , (4.63)
t€[ % K]

and, by the definition of &,,, we have that ¢, — 0 if and only if w? — mZ — 2. By
(4.50) in Lemma 4.6,

2 —2t 2 —2t
<87r2t+ q;é) em < B(t) < <87r2t + qc;w > e . (4.64)
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In particular, we get by (4.64) that there exists 0 < t; < to < t3, depending only
on C' and my, such that

8
T, (6,(1)) > gﬁ for all t < t; ,

L, (0u(t2)) < ng , and (4.65)

T, (6,(t)) > T, (3., (t2)) for all t >t ,

uniformly with respect to w for 0 < g, < 1 sufficiently small. Letting K > 1
be such that [ti,t5] C (&, K), we get with (4.65) that ¢, = tx . satisfies that
% < t, < K for all w such that 0 < ¢, < 1. Then, by Lemma 4.7,

U () w = Wo(te) T Voo (te) w (4.66)

is a solution of (4.3). We know from (4.31) in Lemma 4.4 that ||V, ¢,)wllar — 0
as &, — 0, and by combining (4.8) and (4.66), we get that us, ). has one bubble
in its H'-decomposition as £, — 0. By elliptic theory, this automatically implies

that ||us, (t,)wllze — +00 as &, — 0. Theorem 0.2 is proved. O
REFERENCES
[1] Benci, V., and Fortunato, D., Solitary waves of the nonlinear Klein-Gordon field equation

[10]
(11]
(12]
(13]

[14]
(15]

(16]

coupled with the Mazwell equations, Rev. Math. Phys. 14 (2002), 409-420.

Bianchi, G., and Egnell, H., A note on the Sobolev inequality, J. Funct. Anal., 100, 18-24,
1991.

del Pino, M., Felmer, P., and Musso, M., Two-bubble solutions in the super-critical Bahri-
Coron’s problem, Calc. Var. Partial Differential Equations, 16, 113—-145, 2003.

Druet, O., and Hebey, E., Stability for strongly coupled critical elliptic systems in a fully
inhomogeneous medium, Analysis and PDEs, 2, 2009, 305—-359.

, Existence and a priori bounds for electrostatic Klein-Gordon-Maxwell systems in
fully inhomogeneous spaces, Commun. Contemp. Math., 12, 831-869, 2010.

Druet, O., Hebey, E., and Robert, F., Blow-up theory for elliptic PDEs in Riemannian
geometry, Mathematical Notes, Princeton University Press, vol. 45, 2004.

Esposito, P., Pistoia, A., and Vétois, J., The effect of linear perturbations on the Yamabe
problem. Preprint at arXiv: 1210.7979.

Floer, A., Weinstein, A., Nonspreading wave packets for the cubic Schrodinger equation with
a bounded potential, J. Funct. Anal., 69 no. 3, 397408, 1986.

Hebey, E., Compactness and stability for nonlinear elliptic equations, Ziurich Lectures in
Advanced Mathematics, European Mathematical Society, To appear.

Hebey, E., and Truong, T., Static Klein-Gordon-Maxwell-Proca systems in 4-dimensional
closed manifolds, J. reine angew. Math., 667, 2012, 221-248.

Hebey, E., and Wei, J., Resonant states for the static Klein-Gordon-Maxwell-Proca system,
Math. Res. Lett., To appear.

Rey, O., The role of the Green’s function in a nonlinear elliptic equation involving the critical
Sobolev exponent, J. Funct. Anal., 89, no. 1, 1-52, 1990.

Rey, O., and Wei, J., Blowing up solutions for an elliptic Neumann problem with sub- or
supercritical nonlinearity. I. N = 3, J. Funct. Anal., 212, 472-499, 2004.

Robert, F., Green’s Functions estimates for elliptic type operators, Preprint, 2006.

M. Struwe, A global compactness result for elliptic boundary problems involving limiting
nonlinearities, Math. Z., 187, 1984, 511-517.

Wei, J., Existence and stability of spikes for the Gierer-Meinhardt system, Handbook of
differential equations: stationary partial differential equations, Vol. V, 487585, Handb. Differ.
Equ., Elsevier /North-Holland, Amsterdam, 2008.




STABLE PHASES FOR THE KGMP SYSTEM 29

OLIVIER DRUET, INSTITUT CAMILLE JORDAN, UNIVERSITE CLAUDE BERNARD LYON 1, 43 BOULE-
VARD DU 11 NOVEMBRE 1918, 69622 VILLEURBANNE CEDEX, FRANCE
E-mail address: Olivier.Druet@math.univ-lyoni.fr

EMMANUEL HEBEY, UNIVERSITE DE CERGY-PONTOISE, DEPARTEMENT DE MATHEMATIQUES,
SITE DE SAINT-MARTIN, 2 AVENUE ADOLPHE CHAUVIN, 95302 CERGY-PONTOISE CEDEX, FRANCE
E-mail address: Emmanuel .Hebey@math.u-cergy.fr

JEROME VETOIS, LABORATOIRE J.-A. DIEUDONNE, UNIVERSITE DE NICE - SOPHIA ANTIPOLIS
PARC VALROSE 06108 NI1CE CEDEX 2
E-mail address: vetois@unice.fr



