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Abstract. Figalli–Kim–McCann proved in [14] the continuity and injectivity of optimal maps
under the assumption (B3) of nonnegative cross-curvature. In the recent [15, 16], they extend
their results to the assumption (A3w) of Trudinger-Wang [34], and they prove, moreover,
the Hölder continuity of these maps. We give here an alternative and independent proof of
the extension to (A3w) of the continuity and injectivity of optimal maps based on the sole
arguments of [14] and on new Alexandrov-type estimates for lower bounds.

1. Introduction

Given a cost function c : Rn × Rn → R, n ≥ 2, and two probability densities f and g in
Rn with respect to Lebesgue’s measure, Monge’s problem of optimal transportation consists in
finding a minimizer of the cost functional

C (T ) :=

∫
Rn
c (x, T (x)) f (x) dx

among all measurable maps T : Rn → Rn pushing the measure with density f forward to the
measure with density g i.e.

∫
Γ
g =

∫
T−1(Γ )

f for all Borel subsets Γ of Rn. A solution of the

optimal transportation problem is called an optimal map.

Figalli–Kim–McCann proved in [14] a continuity and injectivity result for optimal maps
under the assumption (B3) of nonnegative cross-curvature of the cost function (extending
the works by Loeper [29] and Trudinger–Wang [35] where the result was proved under the
stronger condition (A3)). In the recent [15, 16], Figalli–Kim–McCann extend their results to
the assumption (A3w) of Trudinger–Wang [34], and they prove, moreover, the Hölder continuity
of optimal maps. In this paper, we give an alternative proof which was found independently
of the extension to (A3w) of the continuity and injectivity of optimal maps based on the sole
arguments of [14] and on new Alexandrov-type estimates for lower bounds (see Theorem 3.3
and Corollary 3.5). These estimates are, on some aspects, more general than the estimates
obtained recently by Figalli–Kim–McCann [15]. Our proof relies, in particular, on invariance
properties of the cost function under affine renormalization, properties which are observed
but not used in [15]. The derivation of new estimates for lower bounds turns out to be the
main difficulty in the extension of the regularity of optimal maps to (A3w). In the rest of
the proof, we follow, and slightly adapt when necessary, the very nice ideas by Figalli–Kim–
McCann [14]. The strategy of the proof had been developed originally by Caffarelli [4] for the
Monge–Ampère equation. Several tricky obstacles arise when applying this strategy to more
general cost functions. These obstacles have been overcome by Figalli–Kim–McCann [14–16]
and, alternatively, in this paper as regards the extension from (B3) to (A3w) of the continuity
and injectivity.
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In this paper, we assume (A0)–(A3w) below for a cost function c : U → R in a bounded
open subset U of Rn × Rn.

(A0) c ∈ C4 (U).
(A1) For any (x, y) ∈ U and for any (−p,−q) ∈ Dxc (x, Ux) × Dyc (Uy, y), where Ux :=

{y′ ∈ Rn; (x, y′) ∈ U} and Uy := {x′ ∈ Rn; (x′, y) ∈ U}, there exist unique Y = Y (x, p)
and X = X (q, y) such that Dxc (x, Y ) = −p and Dyc (X, y) = −q.

(A2) For any (x, y) ∈ U , detD2
xyc (x, y) 6= 0.

(A3w) For any (x, y) ∈ U and (ξ, η) ∈ Rn × Rn such that ξ ⊥ η, there holds

−D2
ppA (x, p) . (ξ, ξ, η, η) ≥ 0 , (1.1)

where Y (x, p) = y, i.e. −p = Dxc (x, y), and A (x, p) := D2
xxc (x, Y (x, p)).

The assumptions (A0)–(A3w) are the same assumptions under which Trudinger–Wang [34]
obtained a smoothness result for optimal maps when the densities are smooth. See also the
former reference by Ma–Trudinger–Wang [32] where the result was proved under assumption
(A3) which consists in asking that the inequality in (1.1) is strict. In the same context of smooth
densities, Loeper [29] proved that (A3w) is necessary for the continuity of optimal maps. For
more general measures, under the assumption (A3), Loeper [29] proved the Hölder continuity of
optimal maps, and Trudinger–Wang [35] gave a different proof for the continuity (these results
follow from more general regularity results for potential functions proved in [29] and [35]).
Liu [26] improved the result of Loeper [29] by obtaining a sharp Hölder exponent. Figalli–
Kim–McCann, in their first paper on the question [14], proved the continuity and injectivity of
optimal maps under the following assumption (B3) of nonnegative cross-curvature (now called
(B4) in [15]).

(B3) For any curve t ∈ [−1, 1] 7→ (Dyc (x (t) , y (0)) , Dxc (x (0) , y (t))) which is an affinely
parametrized line segment, there holds

crossx(0),y(0) [x′ (0) , y′ (0)] := − ∂4

∂s2∂t2

∣∣∣∣
(s,t)=(0,0)

c (x (s) , y (t)) ≥ 0 . (1.2)

(A3w) is equivalent to asking that (1.2) holds provided ∂2

∂s∂t

∣∣
(s,t)=(0,0)

c (x (s) , y (t)) = 0. We

refer to Kim–McCann [24,25] for a detailed discussion on the notion of cross-curvature.

In addition to our assumptions on the cost function, we assume that the densities lie in two
open subsets Ω+ and Ω∗ of Rn which satisfy (B) below.

(B) Ω+ ×Ω∗ b U , Ω+ and Ω∗ are strongly c-convex with respect to each others.

Ω+ and Ω∗ are said to be c-convex (resp. strongly c-convex) with respect to each others if
Dxc (x,Ω∗) and Dyc (Ω+, y) are convex (resp. strongly convex) for all (x, y) ∈ Ω+ × Ω∗. A
convex set K is said to be strongly convex if there exists R > 0 such that for any x ∈ ∂K,
K ⊂ Bx−Rν (R) for some outer unit normal vector ν to a supporting hyperplane of K at x,
where Bx−Rν (R) is the ball of center x−Rν and radius R. In case K is smooth, K is strongly
convex if and only if all principal curvatures of its boundary are bounded below by 1/R. Strong
convexity is also called uniform convexity in Trudinger–Wang [34, 35]. Our main result states
as follows. We refer to Section 2 and to the references therein for discussions on Kantorovich
duality.

Theorem 1.1. Assume that the cost function satisfies (A0)–(A3w). Let Ω, Ω+, and Ω∗ be three
bounded open subsets of Rn such that Ω ⊂ Ω+ and such that (B) holds. Let f ∈ L1 (Ω+) and
g ∈ L1 (Ω∗) be two probability densities such that f ∈ L∞ (Ω+), (1/f) ∈ L∞ (Ω), g ∈ L∞ (Ω∗),
and (1/g) ∈ L∞ (Ω∗). Let T : Ω+ → Ω∗ be the optimal map determined by Kantorovich duality.
Then T is continuous and one-to-one in Ω.
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Regularity of optimal maps has been intensively studied. Historic references on this ques-
tion for the cost c (x, y) = − |x− y|2 are by Brenier [3], Caffarelli [4–9], Delanoë [10], and
Urbas [36]. We also mention the related works by Wang [39, 40] on the reflector antenna de-
sign problem. Another early result of regularity by Gangbo–McCann [22] addressed the case
of the squared cost when restricted to the product of the boundaries of two strongly convex
sets. For more general cost functions, without pretension of exhaustivity, recent advances
on the regularity of optimal maps are by Delanoë–Ge [11, 12], Figalli–Kim–McCann [13–16],
Figalli–Loeper [17], Figalli–Rifford [18], Figalli–Rifford–Villani [19, 20], Kim–McCann [24, 25],
Liu [26], Liu–Trudinger[27], Liu–Trudinger–Wang [28], Loeper [29, 30], Loeper–Villani [31],
Ma–Trudinger–Wang [32], and Trudinger–Wang [33–35]. More references can be found in
Figalli–Kim–McCann [14, 15]. We refer to [14, 15] for an extensive discussion on the problem
of regularity of optimal maps. We also refer to Gangbo–McCann [21], Urbas [37], and to the
book by Villani [38] where one can find more general material on optimal transportation.

The paper is organized as follows. We begin with some preliminaries in Section 2. In
particular, in Section 2, we state the regularity results for potential functions which imply
Theorem 1.1. In Sections 3 and 4, we derive Alexandrov-type estimates for lower and upper
bounds. We combine this material in Section 5 in order to prove the regularity of potential
functions. As an appendix, we state some results on optimal transportation and convex sets.

Acknowledgments: The author is very grateful to the Australian National University for its
generous hospitality during the period when the majority of this work has been carried out.
The author wishes to express his gratitude to Philippe Delanoë, Neil Trudinger, and Xu-Jia
Wang for supporting his visit to Canberra, and for several stimulating discussions on optimal
transportation. The author is indebted to Neil Trudinger for having introduced him to the
problem of regularity of optimal maps. The author wishes also to express his gratitude to
Emmanuel Hebey for helpful support and advice during the redaction, and to Jiakun Liu and,
again, Neil Trudinger for their valuable comments and suggestions on the manuscript.

2. Preliminaries

2.1. Potential functions. We let U , Ω+, Ω∗, c satisfy (A0)–(A3w), (B), and we let Ω be an
open subset of Ω+. By Kantorovich duality, it is known, see for instance Caffarelli [9], Gangbo–
McCann [21], and Villani [38], that the solution of the optimal transportation problem is almost
everywhere uniquely determined by a map T : Ω+ → Ω∗ satisfying the relation

Dxc (x, T (x)) = −Du (x) a.e. in Ω+ (2.1)

for some c-convex function u in Ω+ focussing in Ω∗, i.e. such that there exists v : Ω∗ → R
satisfying v (y) = uc

∗
(y) and u (x) = vc (x) for all (x, y) ∈ Ω+ ×Ω∗, where

uc
∗

(y) := sup
x′∈Ω+

(−c (x′, y)− u (x′)) and vc (x) := sup
y′∈Ω∗

(−c (x, y′)− v (y′)) . (2.2)

The functions u and v are said to be potential functions for the optimal transportation problem.
We refer, for instance, to Kim–McCann [24] and to the book by Villani [38] for more material
on c-convex functions. In particular, c-convex functions are semiconvex, i.e. x 7→ u (x) +C |x|2

is locally convex in Ω+ for some C > 0. We define the c-subdifferential of u at x ∈ Ω+ by

∂cu (x) :=
{
y ∈ Ω∗; u (x) + uc

∗
(y) + c (x, y) = 0

}
, (2.3)

where uc
∗

is as in (2.2). The function u is differentiable at some point x ∈ Ω if and only if
∂cu (x) is a singleton, and in this case, we get ∂cu (x) = {T (x)}, where T (x) is as in (2.1). In
particular, T is continuous and one-to-one in Ω if and only if u is continuously differentiable
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and strictly c-convex in Ω, i.e. for any y ∈ ∂cu (Ω), there exists a unique x ∈ Ω such that
y ∈ ∂cu (x). Moreover, see Figalli–Kim–McCann [14, Lemma 3.1] (see also Ma–Trudinger–
Wang [32]), we get |∂cu| ≥ ‖f/g‖−1

L∞(Ω×Ω∗) Ln in Ω and |∂cu| ≤ ‖g/f‖L∞(Ω+×Ω∗) Ln in Ω+, in

the sense of measures, where Ln is Lebesgue’s measure and |∂cu (Γ )| = Ln (∂cu (Γ )) for all
Borel subset Γ of Ω+. In particular, in order to prove Theorem 1.1, we can assume that the
potential function u satisfies (C) and (D) below.

(C) u is c-convex in Ω+ focussing in Ω∗.
(D) There exist Λ1, Λ2 > 0 such that |∂cu| ≥ Λ1Ln in Ω and |∂cu| ≤ Λ2Ln in Ω+ in the

sense of measures, where Ln is the Lebesgue measure in Rn.

In Theorems 2.1 and 2.2 below, we state our regularity results for potential functions. The
proofs of Theorems 2.1 and 2.2 are left to Section 5.

Theorem 2.1. Assume that U , Ω, Ω+, Ω∗, c, u satisfy (A0)–(A3w), (B), (C), and (D). Then
u is strictly c-convex in Ω.

Theorem 2.2. Assume that U , Ω, Ω+, Ω∗, c, u satisfy (A0)–(A3w), (B), (C), and (D). Then
u is continuously differentiable in Ω.

Proof of Theorem 1.1. As discussed above, Theorem 1.1 follows from Theorems 2.1 and 2.2 by
Kantorovich duality. �

2.2. Convexity of sublevel sets. We let U , Ω+, Ω∗, c, u satisfy (A0)–(A3w), (B), (C), (D),
and we let Ω be an open subset of Ω+. We fix y0 ∈ Ω∗. We define

U0 := {(−Dyc (x, y0) , y) ; (x, y) ∈ U and (x, y0) ∈ U} , Ω0 := −Dyc (Ω, y0) ,

and Ω+
0 := −Dyc

(
Ω+, y0

)
. (2.4)

Clearly, Ω0 is an open subset of Ω+
0 . We define a new cost function c0 in U0 by

c0 (q, y) := c (X (q, y0) , y)− c (X (q, y0) , y0) , (2.5)

and we define a new function u0 in Ω+
0 by

u0 (q) := u (X (q, y0)) + c (X (q, y0) , y0) , (2.6)

where X (q, y0) is as in (A1). As is easily checked, after the above change of coordinates, U0,
Ω0, Ω+

0 , c0, u0 satisfy the same conditions as U , Ω, Ω+, c, u, except (A0) which is replaced by
(A0w) below. In other words, U0, Ω+

0 , c0, u0 satisfy (A0w)–(A3w), (B), (C), and (D).

(A0w) c0 ∈ C3 (U0) and D4
qqyyc0 exists and is continuous in U0.

Moreover, c0 satisfies two additional conditions, namely that

Dqc0 (q, y0) = 0 and Dyc0 (q, y0) = −q (2.7)

for all q ∈ Ω+
0 . In particular, it follows from (B) and (2.7) that Ω+

0 is strongly convex. In
Lemma 2.3 below, we state the property of convexity of sublevel sets. This property has been
proved and used independently by Figalli–Kim–McCann [14] and Liu [26]. Lemma 2.3 is stated
under the assumption (Bw) below, slightly weaker than (B).

(Bw) Ω+ ×Ω∗ b U , Ω+ and Ω∗ are c-convex with respect to each others.

Lemma 2.3. Let U , Ω+, Ω∗, c, u satisfy (A0)–(A3w), (Bw), (C), and let y0 ∈ Ω∗. Let U0,

Ω+
0 , c0, u0 be as in (2.4)–(2.6). Then for any q, q′ ∈ Ω+

0 , there holds

u0 ([q, q′]) ≤ max (u0 (q) , u0 (q′)) .

In particular, u0 has convex sublevel sets, i.e. for any λ ∈ R, the set

Ωλ
0 :=

{
q ∈ Ω+

0 ; u0 (q) ≤ λ
}

(2.8)

is convex.
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3. Alexandrov-type estimates for lower bounds

We let U , Ω+, Ω∗, c, u satisfy (A0)–(A3w), (Bw), and (C). We fix y0 ∈ Ω∗, and we let U0,

Ω+
0 , c0, u0 be as in (2.4)–(2.6). Moreover, for any compact convex subset K of Ω+

0 , we define

σ (c0, y0, K,Ω
∗) := sup

{
D2
ppA0 (q, p) . (ξ, ξ, η, η)

|〈ξ, η〉|
;

q ∈ [q−, q+] ⊂ K, p ∈ [0, η] , −η ∈ Dqc0 (q, Ω∗) , and ξ = q+ − q−
}
, (3.1)

where A0 (q, p) := D2
qqc0 (q, Y0 (q, p)) and Dqc0 (q, Y0 (q, p)) = −p. We adopt the convention

that σ (c0, y0, K,Ω
∗) = 0 in case diam (K) = 0. Preliminary to this section, we prove the

following lemma.

Lemma 3.1. Let U , Ω+, Ω∗, c satisfy (A0)–(A3w), (Bw), and let y0 ∈ Ω∗. Let U0, Ω+
0 , c0 be

as in (2.4) and (2.5). Then for any compact convex subset K of Ω+
0 , there holds

0 ≤ σ (c0, y0, K,Ω
∗) ≤ 2

∥∥D2
ppA0

∥∥
∞ ‖Dqc0‖∞ diam (K) (3.2)

where σ (c0, y0, [q, q
′] ,Ω∗) and A0 are as in (3.1), diam (K) and diam (Ω∗) are the diameters of

K and Ω∗.

Proof. We get the first inequality in (3.2) by letting ξ → 0 in the definition of σ (c0, y0, K,Ω
∗).

Now, we prove the second inequality. We let q−, q+ ∈ K, q ∈ [q−, q+], ξ = q+ − q−, −η ∈
Dqc0 (q, Ω∗), and p ∈ [0, η]. By (A3w), we get

D2
ppA0 (q, p) . (ξ, ξ, η, η) ≤ D2

ppA0 (q, p) .

(
〈ξ, η〉
|η|2

η, ξ, η, η

)

+D2
ppA0 (q, p) .

(
ξ − 〈ξ, η〉

|η|2
η,
〈ξ, η〉
|η|2

η, η, η

)
≤ 2

∥∥D2
ppA0

∥∥
∞ · |〈ξ, η〉| · |ξ| · |η| . (3.3)

Since K is convex and q−, q+ ∈ K, we get [q−, q+] ⊂ K. Moreover, we get −η ∈ Dqc0 (q, Ω∗).
It follows that

|η| ≤ ‖Dqc0‖∞ and |ξ| ≤ diam (K) . (3.4)

The second inequality in (3.2) then follows from (3.3) and (3.4). �

Our next lemma states as follows.

Lemma 3.2. Let U , Ω+, Ω∗, c satisfy (A0)–(A3w), (Bw), and let y0 ∈ Ω∗. Let U0, Ω+
0 , c0 be

as in (2.4) and (2.5). Then for any q, q′ ∈ Ω+
0 and y ∈ Ω∗ such that Dqc0 (q′, y) . (q′ − q) ≥ 0,

there holds
Dqc0 (q′, y) . (q′ − q) ≤ eσ(c0,y0,[q,q′],Ω∗)/2Dqc0 (q, y) . (q′ − q) , (3.5)

where σ (c0, y0, [q, q
′] ,Ω∗) is as in (3.1).

Proof. For any t ∈ [0, 1], we define ϕ (t) := c0 (qt, y), where qt := (1− t) q+tq′. By (2.7), we get
D2
qqc0 (qt, y0) = 0 and D3

qqyc0 (qt, y0) = 0. By (A0)–(A3w), (Bw), and the mean value theorem,
it follows that there exists s ∈ [0, 1] such that

ϕ′′ (t) = D2
qqc0 (qt, y) . (q′ − q, q′ − q) =

1

2
D2
ppA0 (qt, sp) . (q

′ − q, q′ − q, p, p)

≤ 1

2
σ (c0, y0, [q, q

′] ,Ω∗) |〈q′ − q, p〉| = 1

2
σ (c0, y0, [q, q

′] ,Ω∗) |ϕ′ (t)| , (3.6)
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where Y0 (qt, p) = y, i.e. Dqc0 (qt, y) = −p, and A0 (qt, sp) is as in (3.1). Integrating (3.6), we
get that either ϕ′ (t) < 0 for all t ∈ [0, 1] or ϕ′ (0) ≥ 0 and

ϕ′ (t) ≤ eσ(c0,y0,[q,q′],Ω∗)t/2ϕ′ (0)

for all t ∈ [0, 1]. In particular, in case t = 1 and ϕ′ (1) ≥ 0, we get (3.5). �

In what follows, we often combine Lemma 3.2 with the mean value theorem. Doing so, we

get that for any q, q′ ∈ Ω+
0 and y ∈ Ω∗, if Dqc0 (q′, y) . (q′ − q) ≥ 0, then

Dqc0 (q′, y) . (q′ − q) ≤ eσ(c0,y0,[q,q′],Ω∗)/2 (c0 (q′, y)− c0 (q, y)) . (3.7)

Similarly, we get that for any q, q′ ∈ Ω+
0 and y ∈ Ω∗, if c0 (q′, y)− c0 (q, y) ≥ 0, then

c0 (q′, y)− c0 (q, y) ≤ eσ(c0,y0,[q,q′],Ω∗)/2Dqc0 (q, y) . (q′ − q) . (3.8)

We state our general Alexandrov-type estimates for lower bounds in Theorem 3.3 below. In
case the cost function satisfies the assumption (B3) of nonnegative cross-curvature, see Figalli–
Kim–McCann [14], estimates for lower bounds can be deduced from the fact that in this case,
the cost measure is dominated by the Monge–Ampère measure. Our estimates state as follows.

Theorem 3.3. Let U , Ω+, Ω∗, c, u satisfy (A0)–(A3w), (Bw), (C), and let y0 ∈ Ω∗. Let U0,
Ω+

0 , c0, u0 be as in (2.4)–(2.6). Let λ ∈ R be such that Ωλ
0 6= ∅ and Ωλ

0 b Ω+
0 , where Ωλ

0 is as
in (2.8). Then for any K b Ωλ

0 such that K 6= ∅, there holds

(
λ− inf

K
u0

)n ≥ C
∥∥ det

(
D2
qyc0

)−1 ∥∥−1

∞
e−nσ(c0,y0,Ωλ0 ,Ω

∗)d
(
K, ∂Ωλ

0

)2n(
d
(
K, ∂Ωλ

0

)
+ diam (K)

)n |∂c0u0 (K)| (3.9)

for some C = C (n) > 0, where σ(c0, y0, Ω
λ
0 ,Ω

∗) is as in (3.1), diam (K) is the diameter of K,
and d

(
K, ∂Ωλ

0

)
is the distance between K and ∂Ωλ

0 .

Proof. For any q ∈ K, we define

Eλ
0 (q) :=

{
y ∈ Ω∗ ; c0 (q, y)− c0 (q′, y) ≤ λ− u0 (q) ∀q′ ∈ ∂Ωλ

0

}
.

Since u0 = λ on ∂Ωλ
0 , we have ∂c0u0 (q) ⊂ Eλ

0 (q). We claim that for any q, q0 ∈ K, and
y ∈ Eλ

0 (q), there holds

|Dqc0 (q0, y)| ≤ eσ(c0,y0,Ωλ0 ,Ω
∗)
(
λ− u0 (q)

)d (K, ∂Ωλ
0

)
+ diam (K)

d
(
K, ∂Ωλ

0

)2 . (3.10)

We prove this claim. Since Ωλ
0 is bounded and q ∈ K b Ωλ

0 , we get that there exists q′ ∈ ∂Ωλ
0

such that

Dqc0 (q0, y) . (q0 − q′) = |Dqc0 (q0, y)| · |q0 − q′| .
By (3.7), it follows that

|Dqc0 (q0, y)| · |q0 − q′| ≤ eσ(c0,y0,[q0,q′],Ω∗)/2 (c0 (q0, y)− c0 (q′, y)) . (3.11)

Since y ∈ Eλ
0 (q) and q′ ∈ ∂Ωλ

0 , we get

c0 (q0, y)− c0 (q′, y) ≤ c0 (q0, y)− c0 (q, y) + λ− u0 (q) . (3.12)

If q = q0, then it follows directly from (3.11) and (3.12) that

|Dqc0 (q0, y)| ≤ eσ(c0,y0,[q0,q′],Ω∗)/2

|q0 − q′|
(λ− u0 (q)) ≤ eσ(c0,y0,Ωλ0 ,Ω

∗)/2

d
(
K, ∂Ωλ

0

) (
λ− u0 (q)

)
, (3.13)
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and thus we get (3.10). Therefore, we can assume that q 6= q0. Since Ωλ
0 is bounded and

convex, we get that there exists a unique q̃ ∈ ∂Ωλ
0 such that

q − q̃
|q − q̃|

=
q0 − q
|q0 − q|

.

By (3.7) and (3.8), it follows that if c0 (q0, y)− c0 (q, y) ≥ 0, then

c0 (q0, y)− c0 (q, y) ≤ eσ(c0,y0,[q̃,q0],Ω∗)/2 |q0 − q|
|q − q̃|

(c0 (q, y)− c0 (q̃, y)) . (3.14)

Since y ∈ Eλ
0 (q) and q̃ ∈ ∂Ωλ

0 , we get

c0 (q, y)− c0 (q̃, y) ≤ λ− u0 (q) . (3.15)

By (3.11)–(3.15), we get

|Dqc0 (q0, y)| · |q0 − q′| ≤ eσ(c0,y0,Ωλ0 ,Ω
∗) (λ− u0 (q))

(
1 +
|q0 − q|
|q − q̃|

)
. (3.16)

Our claim (3.10) follows from (3.16) in view of |q0 − q′| ≥ d
(
K, ∂Ωλ

0

)
, |q − q̃| ≥ d

(
K, ∂Ωλ

0

)
and |q0 − q| ≤ diam (K). In particular, by (3.10), we get that∣∣Dqc0

(
q0, E

λ
0 (K)

)∣∣ ≤ ∣∣B0

(
Rλ

0

)∣∣ = |B0 (1)|
(
Rλ

0

)n
, (3.17)

where

Rλ
0 := eσ(c0,y0,Ωλ0 ,Ω

∗)
(
λ− inf

K
u0

)d (K, ∂Ωλ
0

)
+ diam (K)

d
(
K, ∂Ωλ

0

)2 .

Moreover, since ∂c0u0 (q) ⊂ Eλ
0 (q) for all q ∈ K, we get

|∂c0u0 (K)| ≤
∣∣Eλ

0 (K)
∣∣ ≤ ∥∥ det

(
D2
qyc0

)−1 ∥∥
∞

∣∣Dqc0

(
q0, E

λ
0 (K)

)∣∣ . (3.18)

Finally, (3.9) follows from (3.17) and (3.18). �

In what follows, we combine Theorem 3.3 with affine renormalizations. The invariance
under affine renormalization of the optimal transportation problem with general costs have
been observed but not used in Figalli–Kim–McCann [15]. We let L : Rn → Rn be an affine

transformation such that detL 6= 0. We define L∗ := | detL|2/n · tL−1
, where tL

−1
and detL

are, respectively, the transpose of the inverse and the determinant of the linear part of L. In
particular, we have detL∗ = detL. For simplicity, we denote detL := detL. We define

UL :=
{(
x, (L∗)−1 y

)
; (x, y) ∈ U

}
, (Ω∗)L := (L∗)−1Ω∗,

cL (x, y) := |detL|−2/n c (x, L∗y) , and uL (x) := |detL|−2/n u (x) . (3.19)

As is easily checked, UL, (Ω∗)L, cL, and uL satisfy (A0)–(A3w), (Bw), (C). Moreover, given
y0 ∈ Ω∗, we define yL0 := (L∗)−1 y0, and similarly to (2.4)–(2.6), we define

UL
0 :=

{(
−Dyc

L
(
x, yL0

)
, y
)

; (x, y) ∈ UL and
(
x, yL0

)
∈ UL

}
,
(
Ω+

0

)L
:= −Dyc

L
(
Ω+, yL0

)
,

cL0 (q, y) := cL
(
XL
(
q, yL0

)
, y
)
− cL

(
XL
(
q, yL0

)
, yL0
)
,

uL0 (q) := uL
(
XL
(
q, yL0

))
+ cL

(
XL
(
q, yL0

)
, yL0
)
,
(
Ωλ

0

)L
:=
{
q ∈ Ω+

0 ; uL0 (q) ≤ λL
}
, (3.20)
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where λL := |detL|−2/n λ and XL (q, y) is such that Dyc
L
(
XL (q, y) , y

)
= q. By direct calcu-

lations, we get XL (q, y) = X
(
Lq, L∗y

)
, and thus

UL
0 =

{(
L
−1
q, (L∗)−1 y

)
; (q, y) ∈ U0

}
,
(
Ω+

0

)L
= L

−1
Ω+

0 , c
L
0 (q, y) = |detL|−2/n c0

(
Lq, L∗y

)
,

uL0 (q) = |detL|−2/n u0

(
Lq
)
, and

(
Ωλ

0

)L
= L

−1
Ωλ

0 . (3.21)

Now, we prove the following key property of σ(c0, y0, Ω
λ
0 ,Ω

∗).

Lemma 3.4. Let U , Ω+, Ω∗, c satisfy (A0)–(A3w), (Bw), and let y0 ∈ Ω∗. Let U0, Ω+
0 , c0

be as in (2.4)–(2.5), and UL
0 ,
(
Ω+

0

)L
, cL0 be as in (3.20)–(3.21). For any affine transformation

L : Rn → Rn and any compact convex subset K of Ω+
0 , there holds

σ
(
cL0 , y

L
0 , K

L, (Ω∗)L
)

= σ
(
c0, y0, K,Ω

∗), (3.22)

where KL := L
−1
K.

Proof. We fix

q ∈ [q−, q+] ⊂ K, ξ := q+ − q−, −η ∈ Dqc0

(
q, Ω∗

)
, and p ∈ [0, η] . (3.23)

We define

qL := L
−1
q, qL± := L

−1
q±, ξ

L := qL+ − qL−, ηL := (L∗)−1 η, and pL := (L∗)−1 p. (3.24)

By (3.21), (3.23), and (3.24), we get

qL ∈
[
qL−, q

L
+

]
⊂ KL, ξL = qL+ − qL−, −ηL ∈ Dqc

L
0

(
qL, (Ω∗)L

)
, and pL ∈

[
0, ηL

]
. (3.25)

Now, we claim that

D2
ppA

L
0

(
qL, pL

)
.
(
ξL, ξL, ηL, ηL

)
|〈ξL, ηL〉|

=
D2
ppA0 (q, p) . (ξ, ξ, η, η)

|〈ξ, η〉|
, (3.26)

where AL0
(
qL, pL

)
:= D2

qqc
L
0

(
qL, Y L

0

(
qL, pL

))
and Dqc

L
0

(
qL, Y L

0

(
qL, pL

))
= −pL. From (3.21),

we derive

Y L
0

(
qL, pL

)
= (L∗)−1 (Y0 (q, p)) ,

AL0
(
qL, pL

)
.
(
ξL, ξL

)
= |detL|−2/nA0 (q, p) . (ξ, ξ) ,

and thus

D2
ppA

L
0

(
qL, pL

)
.
(
ξL, ξL, ηL, ηL

)
= |detL|−2/nD2

ppA0 (q, p) . (ξ, ξ, η, η) . (3.27)

Moreover, we have 〈
ξL, ηL

〉
= |detL|−2/n 〈ξ, η〉 . (3.28)

Our claim (3.26) then follows from (3.27) and (3.28). Finally, we deduce (3.22) from (3.25)
and (3.26). �

By combining Theorem 3.3 and Lemma 3.4, we get Corollary 3.5 below. We use this result
in Section 5 in order to prove Theorems 2.1 and 2.2.

Corollary 3.5. Let U , Ω+, Ω∗, c, u satisfy (A0)–(A3w), (Bw), (C), and let y0 ∈ Ω∗. Let
U0, Ω+

0 , c0, u0 be as in (2.4)–(2.6). Let λ ∈ R be such that Ωλ
0 b Ω+

0 and the interior
of Ωλ

0 is nonempty, where Ωλ
0 is as in (2.8). Let E be a n-dimensional ellipsoid such that

E ⊂ Ωλ
0 ⊂ nE, where nE is the dilation of E with respect to its center of mass (the existence

of such an ellipsoid is given by Theorem 6.5). Assume that there exist Λ1 > 0, δ ∈ (0, 1), and
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q0 ∈ Ωλ
0 such that |∂c0u0| ≥ Λ1Ln in Eδ := q0 − cE + δE in the sense of measures, where Ln is

the Lebesgue measure in Rn and cE is the center of E. Then there holds(
λ− inf

Ωλ0

u0

)n ≥ CΛ1

∥∥ det
(
D2
qyc0

)−1 ∥∥−1

∞ e
−nσ(c0,y0,Ωλ0 ,Ω

∗)δ2n
∣∣Ωλ

0

∣∣2 (3.29)

for some C = C (n) > 0, where σ(c0, y0, Ω
λ
0 ,Ω

∗) is as in (3.1).

Corollary 3.5 can be compared with the estimates obtained recently by Figalli–Kim–McCann
[15]. Under similar conditions as in Corollary 3.5, Figalli–Kim–McCann [15, Theorem 6.2] prove
that, provided that δ < εc/ (4diam (E)), where εc > 0 depends on the cost function, there holds(

λ− inf
Ωλ0

u0

)n ≥ CΛ1

∥∥ det
(
D2
qyc0

)−1 ∥∥−1

∞ δ
2n
∣∣Ωλ

0

∣∣2 (3.30)

for some C = C (n) > 0. Clearly, for δ small, the lower bound in (3.30) is better than ours in
(3.29) because of the exponential term which depends on the cost function in (3.29). For δ fixed
and diam (E) large, the lower bound in (3.29) is better since (3.30) is established provided that
δ < εc/ (4diam (E)). In general, the question whether our estimate or Figalli–Kim–McCann’s
one is better depends on δ, c, and diam (E).

Proof. By translation, we can assume that cE = 0. We let L : Rn → Rn be a linear transfor-
mation satisfying E = L

(
B0 (1)

)
, where B0 (1) is the ball of center 0 and radius 1. We define

yL0 := (L∗)−1 y0, and we let UL
0 ,
(
Ω+

0

)L
, cL0 , uL0 , λL, and

(
Ωλ

0

)L
be as in (3.20)–(3.21). Since

E ⊂ Ωλ
0 ⊂ nE, we get B0 (1) ⊂

(
Ωλ

0

)L ⊂ B0 (n). We define

Kδ :=
{
q ∈ Ωλ

0 ∩ Eδ ; d
(
L−1q, ∂

(
Ωλ

0

)L ) ≥ δ/ (2n)
}
,

KL
δ := L−1Kδ =

{
q ∈

(
Ωλ

0

)L ∩BqL0
(δ) ; d

(
q, ∂

(
Ωλ

0

)L ) ≥ δ/ (2n)
}
,

where qL0 := L−1q0. By Theorem 3.3, we get(
λL − inf

KL
δ

uL0
)n ≥ C

∥∥ det
(
D2
qyc

L
0

)−1 ∥∥−1

∞
e−nσ(cL0 ,y

L
0 ,(Ω

λ
0 )L,(Ω∗)L)d

(
KL
δ , ∂

(
Ωλ

0

)L )2n(
d
(
KL
δ , ∂

(
Ωλ

0

)L )
+ diam

(
KL
δ

))n ∣∣∂cL0 uL0 (KL
δ

)∣∣
(3.31)

for some C = C (n) > 0. By definition of KL
δ , we get d

(
KL
δ , ∂

(
Ωλ

0

)L ) ≥ δ/ (2n) and

diam
(
KL
δ

)
≤ 2δ, and thus

d
(
KL
δ , ∂

(
Ωλ

0

)L )2

d
(
KL
δ , ∂

(
Ωλ

0

)L )
+ diam

(
KL
δ

) ≥ δ

2n (1 + 4n)
. (3.32)

By direct calculations, we get(
λL − inf

KL
δ

uL0
)n ≤ (λL − inf

(Ωλ0 )L
uL0
)n

= |detL|−2 (λ− inf
Ωλ0

u0

)n
, (3.33)

|detL|−2 =
∣∣Ωλ

0

∣∣−2 ·
∣∣ (Ωλ

0

)L ∣∣2 ≤ ∣∣Ωλ
0

∣∣−2 ·
∣∣B0 (n)

∣∣2, (3.34)∥∥ det
(
D2
qyc

L
0

)−1 ∥∥
∞ =

∥∥ det
(
D2
qyc0

)−1 ∥∥
∞ , (3.35)∣∣∂cL0 uL0 (KL

δ

)∣∣ =
∣∣ (L∗)−1 (∂c0u0

(
Kδ

))∣∣ = |detL|−1
∣∣∂c0u0

(
Kδ

)∣∣. (3.36)

Since Kδ ⊂ Eδ, by assumption, we get∣∣∂c0u0

(
Kδ

)∣∣ ≥ Λ1

∣∣Kδ

∣∣ = Λ1 |detL| ·
∣∣KL

δ

∣∣. (3.37)

We claim that ∣∣KL
δ

∣∣ ≥ Cδn (3.38)
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for some C = C (n) > 0. We prove this claim. By convexity of
(
Ωλ

0

)L
and since B0 (1) ⊂

(
Ωλ

0

)L
and qL0 ∈

(
Ωλ

0

)L
, we have

Hull
(
B0 (1) ∪

{
qL0
})
⊂
(
Ωλ

0

)L
,

where HullE is the convex hull of a set E. By definition of KL
δ , it follows that

BqL0
(δ) ∩ Hull

(
B0

(
1− δ

2n

)
∪
{
qL0 −

δ

2n
· q

L
0

|qL0 |

})
⊂ KL

δ . (3.39)

Using that
∣∣qL0 ∣∣ ≤ n, we then deduce (3.38) from (3.39) by direct computations. Finally, (3.29)

follows from (3.31)–(3.38) and Lemma 3.4. �

4. Alexandrov-type estimates for upper bounds

We let U , Ω+, Ω∗, c, u satisfy (A0)–(A3w), (Bw), and (C). We fix y0 ∈ Ω∗, and we let U0,
Ω+

0 , c0, u0 be as in (2.4)–(2.6). Contrary to the estimates for lower bounds in the previous
section, the extension to (A3w) of the Alexandrov-type estimates for upper bounds relies on a
simple adaptation of the arguments by Figalli–Kim–McCann [14]. Except for this adaptation
(located in (4.7)–(4.8) in the proof of Theorem 4.2), and though we write the proofs in a slightly
more direct way, we follow in this section the very nice ideas by Figalli–Kim–McCann [14]. We
rewrite their arguments for the sake of completeness in our paper. Preliminary to the estimates
for upper bounds, Figalli–Kim–McCann [14] establish the following Lipschitz estimate.

Lemma 4.1. Let U , Ω+, Ω∗, c satisfy (A0)–(A2), (Bw), and let y0 ∈ Ω∗. Let U0, Ω+
0 , c0 be

as in (2.4) and (2.5). Then for any q, q′ ∈ Ω+
0 and y ∈ Ω∗, there holds

|Dqc0 (q′, y)−Dqc0 (q, y)| ≤ β (c0)−1 |q′ − q| |Dqc0 (q, y)| , (4.1)

where β (c0)−1 =
∥∥D3

qqyc0

∥∥
∞

∥∥ (D2
qyc0

)−1 ∥∥
∞.

Proof. By the mean value theorem, we get that there exists t ∈ [0, 1] such that

|Dqc0 (q′, y)−Dqc0 (q, y)|2 = D2
qqc0 (qt, y) . (Dqc0 (q′, y)−Dqc0 (q, y) , q′ − q) ,

where qt = (1− t) q + tq′. It follows from (2.7) that Dqc0 (q, y0) = 0, D2
qqc0 (qt, y0) = 0, and

D3
qqyc0 (qt, y0) = 0. By (Bw) and the mean value theorem, we then get that there exists s ∈ [0, 1]

such that

|Dqc0 (q′, y)−Dqc0 (q, y)|2

= D3
qqyc0 (qt, Y0 (q, sp)) . (Dqc0 (q′, y)−Dqc0 (q, y) , q′ − q,DpY0 (q, sp) .p)

≤
∥∥D3

qqyc0

∥∥
∞ ‖DpY0‖∞ |Dqc0 (q′, y)−Dqc0 (q, y)| |q′ − q| |p| , (4.2)

where Y0 (q, p) = y, i.e. Dqc0 (q, y) = −p. In particular, we get ‖DpY0‖∞=
∥∥ (D2

qyc0

)−1 ∥∥
∞.

(4.1) then follows from (4.2). �

Given a family of mutually orthogonal hyperplanes (Π1, . . . ,Πn) supporting a compact con-
vex subset K of Rn, we get the existence of a unique dual family of mutually orthogonal
hyperplanes (Π′1, . . . ,Π

′
n) supporting K such that Π′i//Πi and Π′i 6= Πi for all i = 1, . . . , n.

We let BoxΠ1,...,Πn (K) be the compact subset of Rn delimited by the hyperplanes (Π1, . . . ,Πn)
and (Π′1, . . . ,Π

′
n). We state a general result on Alexandrov-type estimates for upper bounds in

Theorem 4.2 below. In particular, Theorem 4.2 extends the original work by Alexandrov [1]
which was concerned with the special case of the cost function c (x, y) = − |x− y|2. Here,
the nonlinearity of the modified cost makes the general situation much trickier than in [1]. In
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the proof of Theorem 4.2, we mostly follow Figalli–Kim–McCann [14], except for the slight
adaptation in (4.7)–(4.8) which extends the result to (A3w).

Theorem 4.2. Let U , Ω+, Ω∗, c, u satisfy (A0)–(A3w), (Bw), (C), and let y0 ∈ Ω∗. Let U0,
Ω+

0 , c0, u0 be as in (2.4)–(2.6). Let λ ∈ R, q0 ∈ Ωλ
0 , and (Π1, . . . ,Πn) be a family of mutually

orthogonal hyperplanes supporting Ωλ
0 . Assume that BoxΠ1,...,Πn

(
Ωλ

0

)
⊂ Ω+

0 . There exists δn
depending only on n such that if diam

(
Ωλ

0

)
≤ δnβ (c0), where β (c0) is as in Lemma 4.1 and

diam
(
Ωλ

0

)
is the diameter of Ωλ

0 , then

(λ− u0 (q0))n ≤ C
∥∥det

(
D2
qyc0

)∥∥
∞

( n∏
i=1

d (q0,Πi)

) ∣∣∂c0u0

(
Ωλ

0

)∣∣ (4.3)

for some C = C (n) > 0, where d (q0,Πi) is the distance between q0 and Πi.

Proof. First, we claim that

Eλ
0 :=

{
y ∈ Ω∗ ; c0 (q0, y)− c0 (q, y) ≤ λ− u0 (q0) ∀q ∈ ∂Ωλ

0

}
⊂ ∂c0u0

(
Ωλ

0

)
(4.4)

(in the notations of Figalli–Kim–McCann [14], Eλ
0 is the c0-subdifferential at q0 of the c0-cone

generated by q0 and Ωλ
0 with height λ− u0 (q0)). Indeed, since u0 = λ on ∂Ωλ

0 , we get that if y
belongs to Eλ

0 , then the function v0,y : q 7→ u0 (q) + c0 (q, y)− c0 (q0, y)− u0 (q0) is nonnegative
on ∂Ωλ

0 . Since v0,y (q0) = 0, q0 ∈ Ωλ
0 , and Ωλ

0 is bounded, it follows that v0,y admits a local
minimum at some point q0,y in Ωλ

0 . By Corollary 6.3 in appendix, we then get that q0,y is a

global minimum point of v0,y in Ω+
0 , i.e. y ∈ ∂c0u0 (q0,y) ⊂ ∂c0u0

(
Ωλ

0

)
. This ends the proof

of (4.4). Now, for any i = 1, . . . , n, we choose qi ∈ Πi ∩ ∂Ωλ
0 and we claim that there exists

yi ∈ Eλ
0 such that Dqc0 (qi, yi) is normal to Πi and

c0 (q0, yi)− c0 (qi, yi) = λ− u0 (q0) . (4.5)

Indeed, by Corollary 6.2, we get ∂u0 (qi) = −Dqc0 (qi, ∂c0u0 (qi)). In particular, by semiconvex-
ity of u0, since Ωλ

0 is a level set of u0 and Πi is a supporting hyperplane of Ωλ
0 , we get that there

exists y′i ∈ ∂c0u0 (qi) such that Dqc0 (qi, y
′
i) is normal to Πi. Since y′i ∈ ∂c0u0 (qi), qi ∈ ∂Ωλ

0 , and
u0 = λ on ∂Ωλ

0 , we get
c0 (q, y′i)− c0 (qi, y

′
i) ≥ λ− u0 (q) (4.6)

for all q ∈ Ω+
0 . By (Bw), by continuity of the function y 7→ c0 (q0, y) − c0 (qi, y) on the c∗0-

segment connecting y0 and y′i with respect to qi, and since, by (2.7), c0 (q0, y0)− c0 (qi, y0) = 0,
we get that there exists yi ∈ Ω∗ on this c∗0-segment such that (4.5) holds. By (4.6), since
u0 = λ on ∂Ωλ

0 , and since, by (2.7), c0 (qi, y0)− c0 (q, y0) = 0 for all q ∈ ∂Ωλ
0 , by Theorem 6.1

in appendix, we get c0 (qi, yi) − c0 (q, yi) ≤ 0 for all q ∈ ∂Ωλ
0 . By (4.5), we then get yi ∈ Eλ

0 .
Moreover, since Dqc0 (qi, y

′
i) is normal to Πi and yi belongs to the c0-segment connecting y0

and y′i with respect to qi, we get that Dqc0 (qi, yi) is normal to Πi. By Theorem 6.1, we get
that the function q 7→ −c0 (q, yi) has convex sublevel sets. By (4.5) and since yi ∈ Eλ

0 , qi ∈ Πi,
and Dqc0 (qi, yi) is normal to Πi, it follows that

c0 (q0, yi)− c0 (q, yi) ≥ λ− u0 (q0) (4.7)

for all q ∈ Πi. We let q′i ∈ Πi be such that |q0 − q′i| = d (q0,Πi). Since BoxΠ1,...,Πn

(
Ωλ

0

)
⊂ Ω+

0 ,
we get q′i ∈ Ω+

0 . By (4.7) and the mean value theorem, we get that there exists t ∈ [0, 1] such
that

Dqc0 (qt, yi) . (q0 − q′i) ≥ λ− u0 (q0) ,

where qt = (1− t) q′i + tq0. Since |q0 − q′i| = d (q0,Πi), it follows that

|Dqc0 (qt, yi)| ≥
λ− u0 (q0)

d (q0,Πi)
. (4.8)
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Moreover, we get

|qt − q0| = (1− t) |q0 − q′i| = (1− t) d (q0,Πi) ≤ d (q0, qi) ≤ diam
(
Ωλ

0

)
. (4.9)

It follows from (4.9) and Lemma 4.1 that

|Dqc0 (qt, yi)| ≤
(
1 + β (c0)−1 diam

(
Ωλ

0

))
|Dqc0 (q0, yi)| . (4.10)

By Lemma 4.1, we also get∣∣∣∣ Dqc0 (qi, yi)

|Dqc0 (qi, yi)|
− Dqc0 (q0, yi)

|Dqc0 (q0, yi)|

∣∣∣∣ ≤ 2 |Dqc0 (qi, yi)−Dqc0 (q0, yi)|
|Dqc0 (q0, yi)|

≤ 2β (c0)−1 |qi − q0|

≤ 2β (c0)−1 diam
(
Ωλ

0

)
. (4.11)

By continuity of the determinant function, we get that there exists a constant δn depending
only on n such that for any families e = (e1, . . . , en) and f = (f1, . . . , fn) of vectors in Rn, if e
is orthogonal and

∣∣ ei
|ei| −

fi
|fi|

∣∣ ≤ 2δn for all i = 1, . . . , n, then |det (f)| ≥ 1
2
· |f1| · |f2| · · · |fn|. By

(4.11), it follows that if diam
(
Ωλ

0

)
≤ δnβ (c0), then

n∏
i=1

|Dqc0 (q0, yi)| ≤ 2 det (Dqc0 (q0, yi))i=1,...,n = 2n!
∣∣Hull (Dqc0 (q0, yi))i=1,...,n

∣∣. (4.12)

By Theorem 6.1 in appendix, we get that Eλ
0 is c∗0-convex with respect to q0, and thus∣∣Dqc0

(
q0, E

λ
0

)∣∣ ≥ ∣∣Hull (Dqc0 (q0, yi))i=1,...,n

∣∣. (4.13)

Moreover, by (4.4), we get∣∣∂c0u0

(
Ωλ

0

)∣∣ ≥ ∣∣Eλ
0

∣∣ ≥ ∥∥ det
(
D2
qyc0

) ∥∥−1

∞

∣∣Dqc0

(
q0, E

λ
0

)∣∣ . (4.14)

Finally, (4.3) follows from (4.8)–(4.14). �

Now, still following Figalli–Kim–McCann [14], we fix a supporting hyperplane Π of Ωλ
0 ,

and we claim that we can choose a family of mutually orthogonal hyperplanes (Π1, . . . ,Πn)
supporting Ωλ

0 such that Π1 = Π and such that for any q0 ∈ Ωλ
0 , there holds

n∏
i=2

d (q0,Πi) ≤ CHn−1
(
π1

(
Ωλ

0

))
(4.15)

for some C = C (n) > 0, where π1

(
Ωλ

0

)
is the projection of Ωλ

0 onto Π. Indeed, in order to
get (4.15), we can choose, for instance, the hyperplanes (Π2, . . . ,Πn) to be orthogonal to the
axes of a (n− 1)-dimensional ellipsoid E satisfying E ⊂ π1

(
Ωλ

0

)
⊂ (n− 1)E (which existence

is given by Theorem 6.5). We then get the following corollary of Theorem 4.2 by applying
Theorem 6.6 as in Figalli–Kim–McCann [14].

Corollary 4.3. Let U , Ω+, Ω∗, c, u satisfy (A0)–(A3w), (Bw), (C), and let y0 ∈ Ω∗. Let U0,
Ω+

0 , c0, u0 be as in (2.4)–(2.6). Let λ ∈ R, q0 ∈ Ωλ
0 , and (Π1, . . . ,Πn), Π1 = Π, be a family

of mutually orthogonal hyperplanes supporting Ωλ
0 and such that (4.15) holds. Assume that

BoxΠ1,...,Πn

(
Ωλ

0

)
⊂ Ω+

0 . If diam
(
Ωλ

0

)
≤ δnβ (c0), where δn and β (c0) are as in Lemma 4.1 and

Theorem 4.2 and diam
(
Ωλ

0

)
is the diameter of Ωλ

0 , then

(λ− u0 (q0))n ≤ C
∥∥det

(
D2
qyc0

)∥∥
∞
d (q0,Π)

`Π

∣∣Ωλ
0

∣∣ ∣∣∂c0u0

(
Ωλ

0

)∣∣ (4.16)

for some C = C (n) > 0, where d (q0,Π) is the distance between q0 and Π, and `Π is the
maximal length among all segments obtained by intersecting Ωλ

0 with an orthogonal line to Π.
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Proof. By (4.15) and Theorem 6.6, we get

`Π

n∏
i=2

d (q0,Πi) ≤ C
∣∣Ωλ

0

∣∣ (4.17)

for some C = C (n) > 0. (4.16) then follows from (4.17) and Theorem 4.2. �

5. Proofs of Theorems 2.1 and 2.2

We let U , Ω+, Ω∗, c, u satisfy (A0)–(A3w), (B), (C) (D), and we let Ω be an open subset
of Ω+. We prove Theorems 2.1 and 2.2 by combining the Alexandrov-type estimates for lower
and upper bounds in Corollaries 3.5 and 4.3. The proofs of Theorems 2.1 and 2.2 follow a
strategy developed by Caffarelli [4] for the Monge–Ampère equation and extended by Figalli–
Kim–McCann [14] to the more general and more difficult setting of nonlinear cost functions.

Proof of Theorem 2.1. We assume by contradiction that there exists y0 ∈ ∂cu (Ω) such that
(∂cu)−1 (y0) ∩ Ω is not a singleton. By Theorem 6.4 in appendix and since (∂cu)−1 (y0) is
closed and Ω+ is open and bounded, we get y0 ∈ Ω∗ and (∂cu)−1 (y0) b Ω+. We let U0,
Ω0, Ω+

0 , c0, u0 be as in (2.4)–(2.6). By Lemma 2.3, we get that (∂c0u0)−1 (y0) is convex.
Translating, if necessary, the set (∂c0u0)−1 (y0), we may assume that 0 is an exposed point of
(∂c0u0)−1 (y0). Since (∂c0u0)−1 (y0) ∩ Ω0 is not a singleton, it follows that there exists q0 ∈
(∂c0u0)−1 (y0) ∩ Ω0\ {0} and v0 ∈ (∂c0u0)−1 (y0) \ {0} such that v0 is normal to a supporting
hyperplane of (∂c0u0)−1 (y0) at 0. We define

K0 :=
{
q ∈ (∂c0u0)−1 (y0) ; 〈q, v0〉 ≤ 〈q0, v0〉

}
,

K ′0 :=
{
q ∈ (∂c0u0)−1 (y0) ; 〈q, v0〉 ≤ γ0 |v0|2

}
,

for some γ0 ∈ (0, 1) to be chosen small. In particular, we get K ′0 ( K0. Moreover, since
v0 ∈ (∂c0u0)−1 (y0) \ {0} is normal to a supporting hyperplane of (∂c0u0)−1 (y0) at 0, we get
〈q, v0〉 ≥ 0 for all q ∈ K0. For ε > 0 small, letting yε = y0 − εv0, we define

Uε := {(−Dyc (q, yε) , y) ; (q, y) ∈ U and (q, yε) ∈ U} , Ωε := −Dyc (Ω, yε) ,

Ω+
ε := −Dyc

(
Ω+, yε

)
, qε := −Dyc0 (q0, yε) , q

′
ε := −Dyc0 (γ0v0, yε) , and q′′ε := −Dyc0 (0, yε) .

By (2.7) and since c0 ∈ C1 (U0) and yε → y0, we get Ωε → Ω0, Ω+
ε → Ω+

0 , qε → q0, q′ε → γ0v0,
and q′′ε → 0. We define a new cost function cε in Uε by

cε (q, y) = c (X (q, yε) , y)− c (X (q, yε) , yε) ,

and we define a new function uε in Ω+
ε by

uε (q) = u (X (q, yε)) + c (X (q, yε) , yε) ,

where X (q, yε) is as in (A1). Moreover, we define

Kε :=
{
q ∈ Ω+

ε ; uε (q) ≤ uε (qε)
}
,

K ′ε :=
{
q ∈ Ω+

ε ; uε (q) ≤ uε (q′ε)
}
.

By Lemma 2.3, we get that Kε and K ′ε are convex. We claim that Kε → K0 and K ′ε → K ′0 as
ε→ 0. Indeed, we get

−Dycε (Kε, y0) =
{
q ∈ Ω+

0 ; u0 (q) ≤ u0 (q0) + c0 (q0, yε)− c0 (q, yε)
}
. (5.1)
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For all q ∈ Ω+
0 , by (2.7), we find

c0 (q0, yε)− c0 (q, yε)

= (Dyc0 (q0, y0)−Dyc0 (q, y0)) . (yε − y0) + O
(∥∥D3

qyyc0

∥∥
∞ |q − q0| |yε − y0|2

)
= ε 〈q0 − q, v0〉+ O

(∥∥D3
qyyc0

∥∥
∞ diam

(
Ω+

0

)
ε2 |v0|2

)
. (5.2)

It follows from (5.1) and (5.2) that −Dycε (Kε, y0) → K0 as ε → 0. In particular, since

K0 ⊂ (∂c0u0)−1 (y0) b Ω+
0 , we get −Dycε (Kε, y0) b Ω+

0 for ε small. Since c0 ∈ C1 (U0),

yε → y0, we get (−Dycε (·, y0))−1 = −Dyc0 (·, yε) → −Dyc0 (·, y0) = idΩ+
0

uniformly in Ω+
0 as

ε → 0. It follows that Kε → K0 as ε → 0. In particular, since K0 ⊂ (∂c0u0)−1 (y0) b Ω+
0 and

Ω+
ε → Ω+

0 , we get Kε b Ω+
ε for ε small. Similarly, we get K ′ε → K ′0 as ε → 0. By definition

of Kε and K ′ε, we get either Kε ⊂ K ′ε or K ′ε ⊂ Kε. Since their limits satisfy K ′0 ( K0, we get
K ′ε ( Kε for ε small. By Theorem 6.5, we get that there exists a n-dimensional ellipsoid Eε
such that Eε ⊂ Kε ⊂ nEε, where nEε is the dilation of Eε with respect to its center of mass.
Since Kε → K0 as ε → 0 and K0 is bounded, we get that the diameter ot Eε is uniformly
bounded for ε small. Since qε → q0 and Ωε → Ω0 as ε→ 0, and since q0 ∈ Ω0 and Ω0 is open,
it follows that there exists δ ∈ (0, 1) such that Eε,δ := (qε − cEε + δEε) ⊂ Ωε for ε small, where
cEε is the center of Eε. In particular, by (D), we get that for any Borel subset Γ of Eε,δ, there
holds

|∂cεuε (Γ )| = |∂cu (X (Γ, yε))| ≥ Λ1 |X (Γ, yε)|

≥ Λ1

∥∥det (DqX)−1
∥∥−1

∞ |Γ | = Λ1

∥∥det
(
D2
xyc
)∥∥−1

∞ |Γ | .

By Corollary 3.5, it follows that(
uε (qε)− inf

Kε
uε
)n ≥ CΛ1

∥∥det
(
D2
xyc
)∥∥−1

∞

∥∥ det
(
D2
qycε
)−1 ∥∥−1

∞ e
−nσ(cε,yε,Kε,Ω∗)δ2n |Kε|2 (5.3)

for some C = C (n) > 0, where σ(cε, yε, Kε,Ω
∗) is as in (3.1). By (3.7), we get

σ
(
cε, yε, Kε,Ω

∗) ≤ 2
∥∥D2

ppAε
∥∥
∞ ‖Dqcε‖∞ diam (Kε) , (5.4)

where Aε (q, p) := D2
qqcε (q, Yε (q, p)) and Dqcε (q, Yε (q, p)) = −p. Moreover, we get∥∥ det
(
D2
qycε
)−1 ∥∥

∞ ≤
∥∥ det

(
D2
xyc
)−1 ∥∥

∞

∥∥ det (DqX)−1
∥∥
∞

=
∥∥ det

(
D2
xyc
)−1 ∥∥

∞

∥∥ det
(
D2
xyc
) ∥∥
∞ , (5.5)∥∥Dqcε

∥∥
∞ ≤

∥∥Dxc
∥∥
∞

∥∥DqX
∥∥
∞ =

∥∥Dxc
∥∥
∞

∥∥ (D2
xyc
)−1 ∥∥

∞ , (5.6)∥∥D2
ppAε

∥∥
∞ ≤

∥∥D2
ppA
∥∥
∞

∥∥DqX
∥∥2

∞

∥∥ (DqX)−1
∥∥2

∞ =
∥∥D2

ppA
∥∥
∞

∥∥ (D2
xyc
)−1 ∥∥2

∞

∥∥D2
xyc
∥∥2

∞ . (5.7)

By (5.3)–(5.7) and since diam (Kε)→ diam (K0) <∞ as ε→ 0, we get(
uε (qε)− inf

Kε
uε
)n ≥ C |Kε|2 . (5.8)

for some C > 0 independent of ε. Since 0, γ0v0, q0 ∈ (∂c0u0)−1 (y0), by (5.2), and since 〈q, v0〉 ≥
0 for all q ∈ K0, we get

uε (q′ε)− uε (q′′ε )

uε (qε)− infKε uε
≥ c0 (γ0v0, yε)− c0 (0, yε)

sup−q∈Dycε(Kε,y0) (c0 (q0, yε)− c0 (q, yε))

≥ γ0 |v0|2

〈q0, v0〉
+ O

(∥∥D3
qyyc0

∥∥
∞ diam

(
Ω+

0

)
ε |v0|2

)
. (5.9)
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Now, we end the proof by applying Theorem 4.2 and showing a contradiction with (5.8) and
(5.9). For ε small, we define

Πε :=
{
q ∈ Rn; 〈q, v0〉 = inf

q′∈K′ε
〈q′, v0〉

}
.

We let (Π1,ε, . . . ,Πn,ε) be a family of mutually orthogonal hyperplanes supporting K ′ε, such
that Π1,ε = Πε, and such that (4.15) holds with Ωλ

0 := K ′ε. Since 0 ∈ Ω+
0 is an exposed

point of (∂c0u0)−1 (y0), since v0 ∈ (∂c0u0)−1 (y0) \ {0} is normal to a supporting hyperplane of
(∂c0u0)−1 (y0) at 0, and since K ′ε → K ′0, Ω+

ε → Ω+
0 , and β (cε)→ β (c0) as ε→ 0, we can choose

γ0 small enough so that BoxΠ1,ε,...,Πn,ε (K ′ε) ⊂ Ω+
ε and diam (K ′ε) < δnβ (cε), where β (cε) and

δn are as in Lemma 4.1 and Theorem 4.2. By Corollary 4.3, we then get(
uε (q′ε)− uε (q′′ε )

)n ≤ C
∥∥det

(
D2
qycε
)∥∥
∞
d (q′′ε ,Πε)

`Πε

|K ′ε| |∂cεuε (K ′ε)| (5.10)

for some C = C (n) > 0, where d (q′′ε ,Πε) is the distance between q′′ε and Πε, and `Πε is the
maximal length among all segments obtained by intersecting K ′ε with a line spanned by the
vector v0. By (D), we get

|∂cεuε (K ′ε)| = |∂cu (X (K ′ε, yε))| ≤ Λ2 |X (K ′ε, yε)|

≤ Λ2

∥∥ det (DqX)
∥∥
∞ |K

′
ε| ≤ Λ2

∥∥ det
(
D2
xyc
)−1 ∥∥

∞ |K
′
ε| . (5.11)

Moreover, we get ∥∥det
(
D2
qycε
)∥∥
∞ ≤

∥∥ det
(
D2
xyc
) ∥∥
∞

∥∥ det (DqX)
∥∥
∞

≤
∥∥ det

(
D2
xyc
) ∥∥
∞

∥∥ det
(
D2
xyc
)−1 ∥∥

∞ . (5.12)

It follows from (5.10)–(5.12) that(
uε (q′ε)− uε (q′′ε )

)n ≤ C
d (q′′ε ,Πε)

`Πε

|K ′ε|
2

(5.13)

for some C > 0 independent of ε. By (5.8), (5.9), (5.13), and since K ′ε ⊂ Kε, we get

d (q′′ε ,Πε) ≥ C`Πε (5.14)

for some C > 0 independent of ε. Since K ′ε → K ′0 as ε → 0, we get Πε → Π0 and `Πε → `Π0 .
Since q′′ε → 0 ∈ Π0 and `Π0 ≥ γ0 |v0|2, we then get a contradiction by passing to the limit as
ε→ 0 into (5.14). This ends the proof of Theorem 2.1. �

Now, using the strict c-convexity of u, we prove the continuous differentiability of u as follows.

Proof of Theorem 2.2. By Corollary 6.2 in appendix, we get that ∂u (x) = −Dxc (x, ∂cu (x))
for all x ∈ Ω. In particular, by semiconvexity of u, in order to prove that u is continuously
differentiable in Ω, it suffices to prove that for any x ∈ Ω, ∂cu (x) is a singleton. By contra-
diction, we assume that there exists x0 ∈ Ω such that ∂cu (x0) contains at least two distinct
points. We let y0 ∈ ∂cu (x0) be such that −Dxc (x0, y0) is an exposed point of ∂u (x0). We let
U0, Ω0, Ω+

0 , c0, u0 be as in (2.4)–(2.6). We get

∂u0 (q0) = (∂u (x0) +Dxc (x0, y0)) .DqX (q0, y0) , (5.15)

where X (q0, y0) = x0. In particular, we get that 0 is an exposed point of ∂u0 (q0). Since
∂cu (x0) contains at least two distinct points, it follows that there exists v0 ∈ ∂u0 (q0) \ {0}
such that v0 is normal to a supporting hyperplane of ∂u0 (q0) at 0. For ε > 0 small, we define

Kε :=
{
q ∈ Ω+

0 ; u0 (q) ≤ u0 (q0) + ε
}
.
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By continuity of u0 and since, by Theorem 2.1, u0 is strictly c-convex, we get Kε → {q0} as
ε→ 0. For ε small, we define

Πε :=
{
q ∈ Rn; 〈q, v0〉 = sup

q′∈Kε
〈q′, v0〉

}
.

Applying Corollaries 3.5 and 4.3 in the same way as in the proof of Theorem 2.1, we then prove
that

d (q0,Πε) ≥ C`Πε (5.16)

for some C > 0 independent of ε, where `Πε is the maximal length among all segments obtained
by intersecting Kε with a line spanned by the vector v0. Now, we end the proof by estimating
d (q0,Πε) and `Πε as ε → 0 and showing a contradiction with (5.16). On the one hand, by
(3.7), letting y′0 ∈ ∂c0u0 (q0) be such that Dqc0 (q0, y

′
0) = −v0, we get that for any q ∈ Ω+

0 , if
〈q, v0〉 ≥ 〈q0, v0〉, then

u0 (q)− u0 (q0) ≥ c0 (q0, y
′
0)− c0 (q, y′0) ≥ e−σ(c0,y0,Ω

+
0 ,Ω

∗)/2Dqc0 (q0, y
′
0) . (q0 − q)

= e−σ(c0,y0,Ω
+
0 ,Ω

∗)/2 〈q − q0, v0〉 .

It follows that for ε small, there holds

Kε ⊂
{
q ∈ Rn ; 〈q − q0, v0〉 < εeσ(c0,y0,Ω

+
0 ,Ω

∗)/2
}
.

In particular, we get

d (q0,Πε) ≤ εeσ(c0,y0,Ω
+
0 ,Ω

∗)/2/ |v0| . (5.17)

On the other hand, since v0 ∈ ∂u0 (q0) \ {0} is normal to a supporting hyperplane of ∂u0 (q0)
at 0 and since u0 is semiconvex, by the max formula, see Borwein–Lewis [2, Corollary 6.1.2],
we get

u0 (q0 − γv0)− u0 (q0) ≤ γ max
p∈∂u0(q0)

〈p,−v0〉+ o (γ) = o (γ)

as γ → 0. It follows that for ε small, there exists γε > 0 such that q0−γεv0 ∈ Kε and γε/ε→∞.
In particular, we get `Πε/ε → ∞, which contradicts (5.16) and (5.17). This ends the proof of
Theorem 2.2. �

6. Appendix

In this appendix, we gather some results on optimal transportation and convex sets that we
use in this paper.

6.1. The maximum principle for cost functions. In Theorem 6.1 below, we state a
maximum principle which was first established by Loeper [29], see also Kim–McCann [24],
Trudinger–Wang [33,35], and Villani [38] for other proofs and extensions. For any x ∈ Ω+ and
y, y′ ∈ Ω∗, letting Dxc (x, y) = −p and Dxc (x, y′) = −p′, i.e. Y (x, p) = y and Y (x, p′) = y′,
we say that t 7→ Y (x, (1− t) p+ tp′) is the c∗-segment connecting y and y′ with respect to x.
Loeper’s maximum principle states as follows. Needless to say, a dual result can be obtained
by exchanging the roles of x and y.

Theorem 6.1. Let U , Ω+, Ω∗, c satisfy (A0)–(A3w) and (Bw). Let x, x′ ∈ Ω+ and y, y′ ∈ Ω∗.
Then for any t ∈ [0, 1], there holds f (t) := c (x, yt)−c (x′, yt) ≤ max (f (0) , f (1)), where t 7→ yt
is the c∗-segment connecting y and y′ with respect to x.
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For any x ∈ Ω+, we let ∂cu (x) be as in (2.3) and ∂u (x) be the subdifferential of u at x
defined by

∂u (x) := {y ∈ Rn; u (x′) ≥ u (x) + 〈y, x′ − x〉+ o (|x′ − x|) as x′ → x} . (6.1)

We give two corollaries below of Theorem 6.1 which we use in this paper. These results were
obtained by Loeper [29]. Here again, we mention the related references by Kim–McCann [24],
Trudinger–Wang [33,35], and Villani [38].

Corollary 6.2. Let U , Ω+, Ω∗, c, u satisfy (A0)–(A3w), (Bw), and (C). For any x ∈ Ω+,
there holds ∂u (x) = −Dxc (x, ∂cu (x)), where ∂u (x) and ∂cu (x) are as in (2.3) and (6.1). In
particular, Dxc (x, ∂cu (x)) is convex.

Corollary 6.3. Let U , Ω+, Ω∗, c, u satisfy (A0)–(A3w), (Bw), and (C). For any y ∈ Ω∗, any
local minimum point of the function x 7→ u (x) + c (x, y) is a global minimum point in Ω+.

6.2. On the image and inverse image of boundary points. The assumption (B) of strong
c-convexity of domains is used in this paper in order to apply Theorem 6.4 below, which is due
to Figalli–Kim–McCann [14].

Theorem 6.4. Let Ω ⊂ Ω+ and Ω∗ be bounded open subsets of Rn. Let c and u satisfy
(A0)–(A2) and (C).

(i) If |∂cu| ≥ Λ1Ln in Ω for some Λ1 > 0 and Ω∗ is strongly c∗-convex with respect to
Ω, then interior points of Ω cannot be mapped by ∂cu to boundary points of Ω∗, i.e.
∂cu

−1 (∂Ω∗) ∩Ω = ∅.
(ii) If |∂cu| ≤ Λ2Ln in Ω+ for some Λ2 > 0 and Ω+ is strongly c-convex with respect to Ω∗,

then boundary points of Ω+ cannot be mapped by ∂cu into interior points of Ω∗, i.e.
∂cu (∂Ω+) ∩Ω∗ = ∅.

6.3. Two results on convex sets. We also use in this paper the following two results on
convex sets. The first one is John’s Theorem [23]. We use this result in both the Alexandrov-
type estimates for lower and upper bounds in Sections 3 and 4.

Theorem 6.5. For any compact convex subset K of Rn with nonempty interior, there exists a
n-dimensional ellipsoid such that E ⊂ K ⊂ nE, where nE is the dilation of E with respect to
its center of mass.

Another result on convex sets, Theorem 6.6 below, is used in the proof of the Alexandrov-
type estimates for upper bounds Corollary 4.3. This result was established by Figalli–Kim–
McCann [14].

Theorem 6.6. Let K be a convex subset of Rn = Rn′ × Rn′′. Let π′′ be the projection of Rn

onto Rn′′. Let x′′ ∈ π′′ (K) and K ′ = (π′′)−1 (x′′) ∩K. Then there holds

Hn′ (K ′)Hn′′ (π′′ (K)) ≤ CLn (K)

for some C = C (n′, n′′) > 0, where Hd is the d-dimensional Haussdorf measure and Ln is the
n-dimensional Lebesgue measure.
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