MULTIPLE SOLUTIONS FOR CRITICAL ELLIPTIC SYSTEMS IN
POTENTIAL FORM

EMMANUEL HEBEY AND JEROME VETOIS

ABSTRACT. We discuss and prove existence of multiple solutions for critical elliptic systems
in potential form on compact Riemannian manifolds.

1. INTRODUCTION

Let (M, g) be a smooth, compact Riemannian n-manifold, n > 3. Let also p > 1 be a
natural number and M (R) be the vector space of all symmetric p x p real matrices. Namely,
M3 (R) is the vector space of p x p real matrices S = (5;) which are such that S;; = S;; for
all 4, j. For A: M — M;(R) smooth, A = (A;;), we consider vector valued equations like

1 .
AU + A(x)U = - Dy U, (1.1)

where U : M — RP is a map, referred to as a p-map in order to underline the fact that the
target space is RP, AP is the Laplace-Beltrami operator acting on p-maps, 2* = 2n/(n — 2),

and Dy, is the derivation operator with respect to Y. Writing U = (uq,...,u,), we get
U =30l + Dy U)> = (|qu|2 - u;),, and AU = (Agu,),, where Ay = —div, V is

the Laplace—Beltrami operator for functions. Another way in which we can write (1.1) is like
in the form of the following elliptic system

ST (1.2)

p
Agus + Y Ag(x)uy = Ju;
j=1

where the equations have to be satisfied in M, and for all « = 1,...,p. We say that the
system is of order p, and refer to it as a p-system in potential form because of the nature of
the nonlinearity. The system has a variational structure. It is also critical from the Sobolev
viewpoint since, if H? is the Sobolev space of functions in L? with one derivative in L?, then 2*
is the critical Sobolev exponent for the embeddings of H? into Lebesgue spaces. In case p = 1,
(1.1)—(1.2) reduces to Yamabe-type equations, and we regard (1.1)—(1.2) as a natural extension
of such equations to weakly coupled systems. We introduce the Sobolev space H7 , (M) of all
p-maps whose components belong to H? (M), and we say that a p-map U in pr (M) is a
solution of (1.1)—(1.2) if its components u; solve (1.2) weakly for i = 1,...,n. By regularity
theory, see Hebey [27], the components of any weak solution belong to C?? (M) for all real
numbers 6 in (0,1). We define the energy of a solution ¢ of (1.1)—(1.2) by

gW)ZZ/M'“Z"Q* dv, (1.3)
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where the u;’s are the components of U, and dv, is the volume element of the manifold (M, g).
We also define the functional I, acting on H7, (M) by

1 p 1 p
]A,g (Z/{) = 5 /]V[ Z |VUZ|3 dvg + 5 /]\/[ Z AijuindUg
=1

ij=1

1< .
L Z/M sl do, . (1.4)
i=1
Critical points of 14, are solutions of the system (1.1)-(1.2). We set

HAg = L}gﬁf IA,g (Z/{) ) (15)

where N is the Nehari manifold of the functional I, defined as the set of p-maps U in
HE, (M)\ {0} such that DI,,(U).U = 0. We say that the operator AP 4+ A is coercive
on i 127p (M) if its energy controls the H ip—norm. A precise definition is given in Section 2.
When AP + A is coercive on le,p (M), the lower bound ji4,4 is positive. Following standard
terminology we say that a map A: M — M} (R) is cooperative if its off-diagonal components
are nonnegative. In other words, A is said to be cooperative if there holds A;; > 0 in M
for all distinct indices i and j. Still following standard terminology, we say that (1.1)—(1.2)
is fully coupled if the index set {1,...,p} does not split into two disjoint subsets {iy,..., i}
and {j1,...,jw}, k + & = p, such that there holds A;,;, = 0in M for all « = 1,...,k and
f=1,...,K. When (1.1)—(1.2) is not fully coupled, permuting if necessary the equations, A
may be written in diagonal blocks and the p-system may split into two independent systems.
A p-map is said to be positive if its components are all positive. In what follows we associate
each solution of equation (1.1)—(1.2) with its opposite one, and call that a pair of solutions.
A pair (U, —U) is said to be positive if either U or —U is positive. We let K,, be the sharp
constant for the embedding of H? (R") into L?* (R™). Then, as is well known,

K, — \/m (1.6)

where w,, is the volume of the unit n-sphere. When AP + A is coercive on H 127p (M), the p-map

1 (n-2)/4
Wiy = (2 Uas (Lg (2)2_*5 (u))> U (1.7)

belongs to N for all U € HY , (M) \{0}, where I, is as in (1.4), and € is the energy function
as in (1.3). In particular, for any U € H7, (M) \{0}, we get by (1.5) that pay < Tay (W),
where Wy, is as in (1.7), and it follows that

Lo (20, @) + e @)
HAg > € (M)Q/Q*

n ueH
for all (M, g) and all A such that AP 4 A is coercive, where H = H7 , (M) \{0}. The second
inequality in (1.8) follows from standard developments on the Yamabe problem, as in Aubin [4],
by testing p-maps with components all zero, except one which we choose to be like minimizers
for the embedding of H? (R") into L* (R"). The first result we prove is as follows.

< —-K," (1.8)

S|
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Theorem 1.1. Let (M, g) be a smooth, compact Riemannian manifold of dimensionn > 3, let
p > 1 be a natural number, and let A be a smooth map from M to M; (R) such that the operator
AP+ A is coercive on H12,p (M). Assume that for some k > 1, there exists an odd, continuous
map @ : R¥' — H} (M) such that there hold 1440 ® < 2K, "/n and 140 P (2) = —0c0 as
|z| = +o00. Then (1.1)~(1.2) admits at least k/2 pairs of nonzero solutions with energy less
than 2K, ". If moreover there holds pa, < K;"/n, (—A) is cooperative, and (1.1)-(1.2) is
fully coupled, then (1.1)—~(1.2) admits at least (k + 1) /2 pairs of nonzero solutions with energy
less than 2K ™, and one of these pairs is positive.

Theorem 1.1 reduces the question of the existence of multiple solutions of (1.1)-(1.2) to the
proof of the existence of an odd, continuous map @ : R¥*' — HY (M) such that there hold
Iyg09P <2K,"/nand 4409 (2) = —o0 as |z| = 4o00. Following the very nice construction
in Clapp—Weth [10], we prove the existence of such a map with & = n + 1, see Section 7, as
soon as we can prove the existence of a two-parameters family of test functions U, ., x € (2
and € > 0, U, . depending continuously on z, such that

(1) Ta,gWu,.) < K~"/n uniformly in z as ¢ — 0,
(il) SuppU,. . C B,(e) for all  and all € > 0,

where W, . is as in (1.7), {2 is an open subset of M, Supp i, . stands for the support of U,
and B, (g) is the ball in M of radius € centered at x. With such a test function reduction,
which extends classical existence conditions of Aubin’s type [4], Theorem 1.1 provides several
examples of systems like (1.1)—(1.2) with multiplicity of solutions. In particular, the following
result holds true. We let h, = 4&—:21) Scal,, where Scal, is the scalar curvature of g, so that h,
is the factor of the linear term in the n-dimensional Yamabe equation.

Theorem 1.2. Let (M, g) be a smooth, compact Riemannian manifold of dimension n > 4,
let p > 1 be a natural number, and let A be a smooth map from M to M; (R) such that the
operator Ab + A s coercive on pr (M). If some diagonal component of A is less than the
function h, at some point in M (resp. equal to the function h, in a nonempty, open subset
of M in which the metric g is not conformally flat and if n > 6) then (1.1)~(1.2) admits at
least (n+ 1) /2 pairs of nonzero solutions with energy less than 2K, ™. If moreover (—A) is
cooperative and (1.1)~(1.2) is fully coupled, then (1.1)~(1.2) admits at least (n + 2) /2 pairs of
nonzero solutions with energy less than 2K, ", and one of these pairs is positive.

Theorem 1.2 is proved by using test functions with no coupling, acting on the sole diagonal
coefficient they are concerned with. A major difficulty lies in property (ii) which requires
that the test functions we use should have their support shrinking to points as the dilatation
parameter € goes to zero. This difficulty is of a new type in test functions computations
for manifolds. Another consequence of the shrinking property (ii) is that Schoen’s global
argument [41] developed for the Yamabe problem [45] cannot be used in the critical case
where the diagonal components of A are equal to h, and the manifold is locally conformally
flat. From the local viewpoint, such a manifold looks like the sphere. In particular, by
conformal invariance, when the diagonal components of A are equal to hy, strict inequalities
like in property (i) are unreachable by test functions with small support acting on a single
diagonal component of A. We overcome this difficulty in Theorem 1.3 below, when n > 7, by
using our system structure and test functions with coupling, acting on different coefficients of
the matrix.
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Theorem 1.3. Let (M, g) be a smooth, compact Riemannian manifold of dimension n > 7,
let p > 2 be a natural number, and let A be a smooth map from M to M; (R) such that the
operator Ab+ A is coercive on pr (M). If some diagonal component A;y;, of A is equal to hy
around some point xog in M, if the metric g is conformally flat around xq, and if there exists
Jo # io such that A, (zo) # 0, then (1.1)~(1.2) admits at least (n+ 1) /2 pairs of nonzero
solutions with energy less than 2K, ™. If moreover (—A) is cooperative and (1.1)—(1.2) is fully
coupled, then (1.1)~(1.2) admits at least (n 4 2) /2 pairs of nonzero solutions with enerqy less

than 2K, ", and one of these pairs is positive.

Without any pretention to exhaustivity, possible references on elliptic systems are Amster—
De Népoli-Mariani [1], Angenent—van der Vorst [2, 3], Clément—Manésevich-Mitidieri [11],
de Figueiredo [19], de Figueiredo—-Ding [20], de Figueiredo—Felmer [21], de Figueiredo—Sirakov
[22], Druet—Hebey [14], El Hamidi [18], Giaquinta—Martinazzi [24], Hebey [27-29], Hulshof-
Mitidieri—van der Vorst [30], Jost-Lin-Wang [31], Jost—-Wang [32], Mancini-Mitidieri [34],
Mitidieri-Sweers [36], Montenegro [37], Pompino [39], Qing [40], and Sweers [43]. We also
mention the reference Vétois [44] for closely related developments.

2. PRELIMINARY MATERIAL

In the following, we let (M, g) be a smooth, compact Riemannian manifold of dimension
n > 3 and A be a smooth map from M to M; (R). We first set some notations. We define a
scalar product on H{ , (M) by

P
<Z/{,V)H12’p(M) = Z (/ (Vu;, Voy) , dvg + /1/ uividvg) : (2.1)
i=1 Y M M
where U = (uq,...,u,) and V = (vy,...,v,), and where A is a positive constant to be chosen

large later on. Then the operator AP + A is coercive on H 127p (M) if there exists Ay > 0 such

that there holds
p
Z/ |Vui\§dvg +
i=1 Y M

for all p-maps U = (u1,...,u,) in H7, (M), where HHHIQ (v 18 the norm associated to
’ P

p
2
Z/ Aguiugdvg > Ao [[U[g2 )
y ,

ij=1

(-, '>H12p(M)‘ For instance, if A is positive definite at all points in M, then the operator Al + A
is coercive on H}, (M). Given a positive real number § and a subset C' of Hf (M), we let
Bs (C') stand for the neighborhood of C' formed by all p-maps in H}, (M) at a distance from
C less than or equal to §. Given a real number ¢, we set I3, = I;lg ((—o0,c]). Welet Viy,
stand for the operator acting on Ht , (M) satisfying

(Vag W), Vs gy = Dlag U) V

for all p-maps ¢ and V in H} , (M), where (., V2 (ary 18 as in (2.1). We define the operators
L : L2 (M) — Hf (M) and £, : L2 (M) — H} (M) by
AP (U) + Aldy, & (U) = (Ald, —A) U, (2.2)
]. *
resp. A7L, (U) + Ald, £ U) = - Dy U, (2.3)
where Id, is the identity matrix in M (R), and L (M) for ¢ > 1 is the set of p-maps with
components all in L?. Then there holds

Vi, U)=U— 2 U) — L U) (2.4)
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for all U € Hip (M). As one can check, £, and £, are locally Lipschitz when acting in
H?, (M). In what follows, we let ¢4, stand for the flow defined by

P28 (1.10) = V1, (g (1LU) IO <1< T (),

PAg (O,U) =U,

where for any p-map U in Hf (M), T (U) is the maximal existence time for the trajectory

t — @agq(t,U). By construction, for any p-map U in Hip (M), and for any positive time t,
there holds

Iy, 0

O 2000) (4 1) — VL (o (LU - (25)
A subset D of Hip (M) is said to be strictly positively invariant for the flow ¢4 , if for any U
in D and any time ¢ in (0,7 (U)), the p-map 4, (£,U) belongs to the interior of D. As an
example, one can easily see by using (2.5) that the set [ 4,4 18 strictly positively invariant for
the flow ¢4 4 for all non-critical values c. Independently, we say that a subset D of H f’p (M) is
symmetric if there holds D = —D. The following deformation lemma is used in several places
in the proof of Theorem 1.1.

Lemma 2.1. Let (M,g) be a smooth, compact Riemannian manifold of dimension n > 3,
let p > 1 be a natural number, let A be a smooth map from M to M; (R), and let D be a
symmetric, closed subset of Hf’p (M) which we assume to be strictly positively invariant for
the flow pa4. Let c € R, 0, € RT, and let a symmetric subset C' of Hip (M) be such that for
any p-map U in I, ([c —e,c+¢€]) N Bs (C), there holds
2
IVLag @Mz 0y 2 5 -
Then there exists an odd, continuous map v : (I5> NC)U D — 157U D such that v = id in
the set D.

Proof. First, we claim that for any U € ijf; N C, the trajectory ¢t — @4, (t,U) cannot stay
in the set ]qu ((c — e,c+¢]) for all positive times ¢t € (0,7 (U)). By (2.5), this implies that
for any p-map U € Iﬁf; N C, there exists ty > 0 such that a4 (t,U) belongs to If ~ for all
t > tg. We prove this claim by contradiction. Thus, we assume that there exists a p-map
U € I3 N C such that w4, (t,U) belongs to the set I} ((c —e,c+e]) for all t € (0,T (U)).
As long as pa, (t,U) € Bs (C), by (2.6), we get

t
s (1) = Ul < |

(2.6)

% (s.u)

A d
ot 5

5 [t 9
< o [ IV (ong (U g

5 [0 ({ag0pay)
= %) T e (s,U)ds
)

=5 (Lag U) = Lag (pa, (t,U)))- (2.7)

In particular, by (2.7), the trajectory ¢t — @4, (t,U) stays in the ball Bs (/) as long as it stays
in Bs (C). By (2.7), we also get

J

f< (2_) (Lug U) = Tay (pay (,U))) <

62

ot (2.8)
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In particular, since the trajectory t — @a, (t,U) stays in the ball Bs (i) as long as it stays
in Bs (C), and by (2.8), the standard extension theorem for solutions of ordinary differential
equations gives that t — ¢, (t,U) cannot stay in By (C') for all positive times. Let ¢; > 0 be
the first positive time that the trajectory intersects 0Bs (C'). By (2.7) with ¢ = ¢;, we get

Tag(pag(t,U)) <IygU)—2c<c—c¢,

and this is in contradiction with the assumption that the trajectory t — ¢4, (¢,U) belongs

to Ig’lg ((c—e,c+¢]) for all t € (0,7 (U)). This proves the above claim that for any p-map
U e 157> N C, the trajectory t — @a4 (t,U) cannot stay in the set IZ; ((c —e,c+¢]) for all
positive times ¢t € (0,7 (U)). In particular, as already mentioned, this implies that for any
p-map U € ]z’; N C, there exists tg > 0 such that 4, (t,U) belongs to I§ 7 for all t > #;. By
the positive invariance of D we then get that for any p-map U € ([XF; N C) U D, there exists
a nonnegative time 7 (i) from which the trajectory ¢ — a4 (¢,U) belongs to I3 ~U D, and
7(U) =0ifU € D. The function 7 : (I§'7 N C)U D — R* is clearly even. Now we claim that
7 is also a continuous function. The lower semicontinuity of 7 is straightforward to check. We

prove the upper semicontinuity of 7 in what follows. Let U € (]ZF; N C)U D. By definition

of 7, we get 7 (U) € (I3, UD). If pay(7(U),U) € ID, then the upper semicontinuity of 7
at U follows from the strict positive invariance of D. If pa, (7 (U),U) € 0I5 7, by (2.7) with
t =71 (U), then we get wa, (T (U),U) € Bs (C), and the upper semicontinuity of 7 at I then
follows from (2.5) and (2.6). Letting v be given by v (U) = pa4 (7 (U) ,U), this ends the proof

of the lemma. ]

3. THE H-THEORY FOR BLOW-UP

The H?z-theory for the blow-up of Palais-Smale sequences, together with the above defor-
mation Lemma 2.1, is an essential ingredient in the proof of Theorem 1.1. Following standard
terminology, a sequence (Uy), in H} , (M) is said to be a Palais-Smale sequence for the func-
tional 14 4 if the sequence (14,4 (Ua)), is bounded and if there holds DI, (Uy,) — 0in H7, (M)
as a — +o0o. When Iy, (U,) converges to a real number ¢ as o — +00, the sequence (Uy),,
is said to be a Palais-Smale sequence for the functional 14, at level c. Bounded sequences in
H? (M) of solutions of equation (1.1) are Palais-Smale sequences for the functional I, 4. The
H?-theory we briefly discuss in this section provides a structure equation for Palais-Smale se-
quences which describes their asymptotic behavior in Hf , (M) as o = +o0. In what follows,
we let 7 be a smooth cutoff function on the Fuclidean space centered at 0 with small support
around 0. By small, we mean, for instance, that the support of 7 is included in By (4,), where
iy is the injectivity radius of the manifold (M, g), and By (i4) is the Euclidean ball of center
0 and radius 7,. Given a converging sequence (z,), of points in M, and a sequence (p,), of
positive real numbers converging to 0, we define the bubble in M of centers x, and weights
o as the sequence (B,), of functions defined in M by

Bq () = 1" 200 () u (ng " expy) (2)) (3.1)
where 7, =10 exp,!, and u is a nontrivial solution in H? (R™) of the equation
Asu = |u* u, (3.2)

where ¢ is the Euclidean metric in R"”. As is easily checked, (B,), converges to 0 weakly in
H} (M) and strongly in L? (M), but the Hi-norm of the functions B, converges to [|Vu|| 2 gn)
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/ |Bu[? dv, — / f* dz + 0 (1) (3.3)
M n

when (B,),, is given by (3.1), where o (1) — 0 as @ — +o00. By extension, we define a p-bubble
in M as a sequence (B,), of p-maps with components all zero, except one which is a bubble
(Ba),- In other words, (B,), is a p-bubble if there exists ¢ = 1,...,p and a bubble (B,),,
such that B!, = B, and B/, = 0 for all a and all j # i. The following result was proved by
Struwe [42] for scalar equations like (3.2) in bounded domains of the Euclidean space. The
result easily extends to systems and manifolds as shown in Hebey [27]. We state the result
with no proof and refer to [27] for more details.

as a — +o0o. We also get

Lemma 3.1. Let (M,g) be a smooth, compact Riemannian manifold of dimension n > 3,
let p > 1 be a natural number, and let A be a smooth map from M to MJ(R). For any
Palais-Smale sequence (Uy,),, for the functional 144, there exist a solution U of (1.1)-(1.2),
a natural number k, and p-bubbles (BL),,,- - -, (B’;)a such that, up to a subsequence, there hold

k
Up=Ux+ > B, +Ra (3.4)
i=1

and
1 o .
Lag Ua) = Lag (Uso) + ~ > E(BL) +0(1)
=1

for all o, where Ry — 0 in HY , (M) as a — +00, L4 is as in (1.4), € (B},) is the energy of

).

the p-bubble (B.,),, € is as in (1.3), and o(1) = 0 as o — +o0.

As aremark, see Ding [13] for more details, there exist solutions of (3.2) with arbitrarily high
energies. However, all positive solutions have the same minimal energy and are classified. More
precisely, nonnegative solutions of (3.2) have been classified by Caffarelli-Gidas—Spruck [6] and
Obata [38]. They are all of the form

(n—2)/2
I
Uy (¥) = | ———3 , (3:5)

|z—ao|?
'U'2 + n(n—02)

where f1 is a nonnegative real number and x is a point in the Euclidean space. The u,, ,,’s are

extremal functions for the sharp Euclidean Sobolev inequality, and one can easily compute

/ |vuu,mo|2 dr = / ‘u,u,mo|2* dr = K;n,
Rn n

where K, is the sharp constant given by (1.6). On the other hand, if u € H 2 (R™) is a changing
sign solution of (3.2), then, decomposing u into its positive and negative parts, we get

/ \Vu\de—/ lul* de > 2K
R n

In other words, coming back to (3.3), we get that the energy of a constant sign bubble is
precisely K", while the energy of a changing sign bubble is greater than 2K, ". We also get
that if, in (3.4), one of the (B}),’s come from a constant sign bubble (B,),, then, changing
if necessary the z,’s and p,’s, u in (3.1) can be chosen so that there holds u = £u, o, where
u1p is as in (3.5).
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4. RELATIVE EQUIVARIANT LUSTERNIK—SCHNIRELMANN CATEGORY

We very briefly discuss the notion of relative equivariant Lusternik—Schnirelmann category,
and the properties of relative equivariant Lusternik—Schnirelmann category we need in the
sequel. More developments can be found in Bartsch—Clapp [5] and Clapp—Puppe [8,9]. Let B
and D be two symmetric, closed subsets of a Banach space E such that D is included in B.
By definition, the equivariant Lusternik—Schnirelmann category of B relatively to D, denoted
by vp (B), is the smallest natural number £ such that there exist

(i) symmetric, open subsets Uy, ..., Uy of E,
(ii) odd, continuous maps x; : U; = {—1,+1}, i =1,... k,
(iii) an odd, continuous map xo : Uy — D,

with the properties that the U;’s cover B, D C Uy, and xo = id in the set D. If no such natural
number exists then we set vp (B) = +oo. When D is empty, the equivariant Lusternik—
Schnirelmann category of B relatively to D = () is defined as the smallest natural number &
such that there exist k£ symmetric, open subsets Uy, ..., Uy of E, and k odd, continuous maps
Xi : Ug = {—=1,+1}, i = 1,..., k, with the property that the U;’s cover B. The equivariant
Lusternik—Schnirelmann category of B relatively to D = ) reduces to the Krasnosel’skii genus
v (B) of B, defined as the smallest natural number £ > 1 such that there exists an odd,
continuous map x : B — R*\ {0}. In other words, we claim that if D = ), then y (B) = vy (B).
In order to prove this claim, we first assume that v (B) < 400 and we let & > 1 be such that
there exists an odd, continuous map y : B — R¥\ {0}. Letting U; = x~! (U}), where U]
is the subset of R*\ {0} consisting of the points (x1,...,z;) such that x; # 0, and letting
xi : Ui = {—1,+1} be defined by x; (u) = sign (x (u),), where sign is the sign function, we
get 79 (B) < k. In particular, 74 (B) < 7 (B). Conversely, we assume that vy (B) < +00
and let £ be a natural number such that there exist £ symmetric, open subsets Uy, ..., U
of E which cover B, and k odd, continuous maps x; : U; — {—1,+1} fori = 1,... k. We
let (n;), be a partition of unity of B subordinated to the covering (U;),. Without loss of
generality, we may assume that the 7;’s are even functions. Then, we define x : B — R*\ {0}
by letting x (u) = 3%, m; (u) xi (u) €5, where (eq, ..., e;) is a basis of RF. As is easily checked,
X is odd, continuous, and nowhere vanishing. It follows that v (B) < k, and thus that
v (B) < 7 (B). This proves the above claim that v (B) = 7y (B). We now state two properties
of the relative equivariant Lusternik—Schnirelmann category that we repeatedly use in the
proof of Theorem 1.1. We let B, C', and D be three symmetric, closed subsets of E. The two
following properties hold true:

(A1) If D € BN C and there exists an odd, continuous map v : B — C such that v = id in
D, then ~vp (B) < ~p (C).

(A2) If D C B, then vp (BUC) <~vp(B) +~(C).
In particular, it follows from (A1) that if D C B C C, then vp (B) < vp (C). These two prop-
erties (A1) and (A2) follow in a straightforward manner from the definition of relative equivari-
ant Lusternik—Schnirelmann category. Concerning (A1), we may assume that vp (C) < +oc0.
Let the U;’s and x;’s be given by (i)-(iii) for the relative equivariant Lusternik-Schnirelmann
category vp (C). We let Vy = Uy and x; = xo. We let also V; = v™1 (U;) and x} = y;ov
fori =1,...,vp (C). The V;’s are symmetric, open subsets of E, and the x}’s are odd, con-
tinuous maps from the V;’s to {—1,+1} when ¢ > 1. Noting that the V;’s cover B, we get
vp (B) < vp (C). This proves (Al). As for (A2), we may assume that vp (B) < +oo and
v (C) < +o0o. Let the U;’s and x;’s be given by (i)-(iii) for the relative equivariant Lusternik—
Schnirelmann category vp (B), and let the V;’s and x/j’s be given by the definition of the
Krasnosel'skii genus v (C') = 7y (C). The union of these two families (U;, x;) and (V}, X;) gives
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a family (W, Xmm) consisting of vp (B) + v (C) + 1 elements which satisfies (i)-(iii) for BUC
and D. In particular, vp (BUC) < ~vp (B) + v (C), and this proves (A2).

5. PROOF OF THEOREM 1.1 - PART 1

We prove the first part of Theorem 1.1 in this section, and the second part in the fol-
lowing section, following arguments from Clapp—Weth [10]. Related references are Ekeland-
Ghoussoub [16,17], and Ghoussoub [23]. We let A be a smooth map from M to M (R) such
that the operator AP+ A is coercive on H 127p (M). We assume that for some k > 1, there exists
@ : R*!' — Hf (M) an odd, continuous map such that there hold I440 & < 2K."/n and
Ig,09(y) = —o0 as |y| — +oo, where 14, is as in (1.4), and K, is the sharp constant as
in (1.6). We aim in proving that (1.1)-(1.2) possesses at least k/2 pairs of nonzero solutions
with energy less than 2K ".

By the coercivity of the operator Af + A on Hip (M), and by the Sobolev embedding
theorem, there exist A; A4, > 0 such that

Lag @) = Ay [Ulle gy (1= A2 U155 ) (5.1)

for all U € H?, (M). In particular, by (5.1), we get that there exist co € (0, p1a,9) and 7o > 0
such that for any U € H; , (M), there holds

||u||H12p(M) =T — IA,g (U) > 200 . (52)

Since ¢y < ftag, it follows from the definition of p4, in (1.5) that ¢y is not a critical value
of I44. Thus, ]j‘)g is strictly positive invariant for the flow ¢4, We prove the first part of
Theorem 1.1 in several steps. A preliminary step, which easily follows from the strict positive

invariance of Iy , is as follows.

Step 5.1. For any ¢ € (0,pag), Vg ,(I4,) = 0, where pagy is as in (1.5), and viq (I5,)
is the equivariant Lusternik-Schnirelmann category of I , relatively to I ,. In particular,
Yo (I3)) = 0, where cq is as in (5.2).

g ’

Proof. We let ¢ € (0, pta,4) and define Uy to be the set of all p-maps U € Hf, (M) with the
property that there exists a time 7 (i) € [0,T (U)) from which the trajectory t — a4 (t,U)
belongs to I ,, where T' (U) is the maximal existence time for the trajectory t — @a 4 (t,U).
Let Uy € Up. Then, by the definition of 7 (Uy) and by the strict positive invariance of I3 ,
we get that for any ¢y > 0 sufficiently small, 7 (Up) +eo < T (Up) and pa 4 (T (Up) + 0, Up)
belongs to the interior of I3 ;. For U € pr (M) sufficiently close to Uy we then get that
7 (Up) +e0 < T (U) and that pa, (T (Uo) + €0,U) also belongs to the interior of I3 . This
implies that & € Uy and that 7 (U) < 7 (Up) + g0 when U € HF (M) is sufficiently close to
Up. In particular, Uy is an open subset of Hip (M) and 7 : Uy — R is upper semicontinuous.
The lower semicontinuity of 7 is a straightforward consequence of the fact that 5 , is closed.
By the definition of the equivariant Lusternik—Schnirelmann category in Section 4, this ends
the proof of Step 5.1. U

In what follows, given a natural number S > 1, we define cs by

cp = inf {c > o3 Vi, (I5,) > 5} ; (5.3)

where e, (Ijh g) is the equivariant Lusternik—Schnirelmann category of I§ , relatively to Iy ,

and we adopt the convention that inf () = +00. A preliminary straightforward remark is that
the sequence (cg) g 18 nondecreasing. Another preliminary step is as follows.
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Step 5.2. For any > 1, if cg in (5.3) is finite, then there exists a Palais-Smale sequence
for the functional I, at level cg.

Proof. Let 8 > 1 be such that c¢g < 4+o00. It suffices to prove that for any ¢ > 0, there exists
U in IA ([eg — €,¢p + €]) such that there holds ||V 14, (L{)||H12 oy < € We proceed by con-
tradiction, and assume that there exists &g > 0 such that for any U in I, ([cs — €0, ¢ + €0)),
there holds ||V14, (U)Hle,p(M) > g9. By Lemma 2.1 with C' = H{ (M) and D = I , there
exists an odd, continuous map

max| c £0,Ci
[ (B 070)

such that v =id in the set I} . By (Al) in Sectlon 4 we then get

cg+e max|(cg—ep,C
0 (157) 7, (155°) 60

Since we also get by (A1) in Section 4 that e, (I5,) < e, (I ) for any cg < ¢ < ¢+ &,

IC[}"FEO

(5.4) contradicts the definition of ¢z in (5.3) 1f co < cg, and thus if max (cg — g, co) < cp. If
this is not the case, max (¢ — €9, ¢y) = ¢ and we conclude to a contradiction with Step 5.1.
This ends the proof of Step 5.2. O

Let 5 > 1 be such that ¢z < +00. By Step 5.2, there exists a Palais-Smale sequence (U, )q
for the functional 144 at level c3. By Lemma 3.1, we then get all the possible decompositions
of the sequence (U, ), according to the value of cg. In case ¢y < K, "/n, a subsequence of
(Ua)a converges in Hi , (M) to a nontrivial critical point of the functional I, ,4. In particular,
co < cg, and since ¢g < K" /n, we always get ¢y < cg. In case K" /n < ¢z < 2K, " /n, there
is at most one constant sign p-bubble in the decomposition (3.4) of (U, )a, Where a p-bubble
is said to be of constant sign if the bubble from which the p-bubble is defined comes in (3.1)
with a nonnegative or nonpositive solution u of (3.2). In particular, either ¢z or ¢z — K, ™/n
is a critical level of the functional I, ,. In what follows, for any real number ¢, we let K. be
the set of all critical points of the functional I4 , at level ¢, namely

Ke={UeH;,(M); Ir,U)=c and Vs, (U)=0}. (5.5)
Step 5.3 in the proof of the first part of Theorem 1.1 is as follows.

Step 5.3. Let n be a smooth cutoff function as in Section 3. For any positive real number 0
and fori=1,...,p, define

BQQ( cg— K /n+P9>

where P} is the set consisting of the p-maps U = (uq, ..., u,) such that u; = 0 for all j # i,
and u; = (u,0) o exp,l for some 0 < p < 6 and xg € M, where u, is as in (3.5). Let also
Up = Us. When 6> 0 is sufficiently small, the sets Uy and —Uy are disjoint.

Proof. By contradiction, we assume that for any natural number a > 1, the intersection of
Ui/ with —Uj, is not empty. Passing if necessary to a subsequence, we may assume that
there exist two indices ¢; and i such that for any «, the intersection of U e, With Uﬁa i
not empty and thus that there exist sequences of p-maps U} and U2 in K _Ki" B! in Plz}a,

and B2 in Pfj , such that

Ua +B.) — (Vo —B2) — 0 (5.6)
in Hf , (M) as a — +oo. Passing if necessary to a subsequence, (B )aen and (B2)aen are
two nonnegative p-bubbles. Taking into account that p-bubbles converge weakly to 0 and that
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sequences in K _y—n, are compact in Hj 2 » (M), since by assumption cg— K™ /n < K" /n, it
follows that up to a subsequence, (U}),en and (U?) pen converge to the same hmlt in H L, (M).
This leads to a contradiction since by (5.6), the p-bubbles (B.)aen and (B2 ),eny would converge
up to a subsequence to 0 in H? iy, (M ). We assumed here that the set Kcﬁ_ K" /n 18 MOt empty
but the proof goes similarly, and is even easier if Kcﬁ_ Kimjn = (). Step 5.3 is proved. O

In what follows we let £B be the cardinal number of a set, with the convention that B = 0
when B = () and §B = +o0o when B is infinite. Step 5.4 in the proof of the first part of
Theorem 1.1 is as follows.

Step 5.4. If there exists 3 such that cg = cgy 1 < 2K /n, then § K., = +o0o and the functional
Iag thus has infinitely many critical points at level cg, where cg is as in (5.3), and K, is as

n (5.5).

Proof. We proceed by contradiction, and assume that K., < +oo. If we also get §1K., > 0,
and thus if K, is not empty, then there holds v(K.,) = 1 and there also holds v(Bag (K,)) =
Y(K.,) = 1 for 6 > 0 sufficiently small. First we assume that ¢z < K;™/n. In that case, by
Step 5.2 and by the discussion after the proof of Step 5.2, K., is not empty and Palais-Smale
sequences for the functional I, 4 at level ¢z are compact in Hy,, (M). We let 6 > 0 sufficiently
small be such that ~(Bag (K%)) = 1. By the compactness of Palais—-Smale sequences for
the functional 14, at level cg, there exists ¢ € (0,c3 — o) such that for any p-map U in

IX; ([eg —€,c5 +€]) \Bo (KCB)7 there holds

2e
HVIAy (U)HH%J)(M) > ? .

Thus, we can apply Lemma 2.1 with C' = H7 , (M) \Bas (Kcﬁ), D =1y, and 6 = 0. This
yields an odd, continuous map

v I \Bag (Key) UIY, — 19T (5.7)

such that v = id in the set I'{, . By the definition of ¢z and by the properties (A1) and (A2)
of the relative equivariant Lustermk Schnirelmann category listed in Section 4, it follows from

(5.7) that
B+1 <y (157
< (1B (R U 3,) + (B (K,

< T, (ijg_€> +7 (320 (KC,e))
< B+7 (B (Ke,)) - (5:8)

Clearly, (5.8) is in contradiction with (B (K¢,)) = 1, and so we are left with the remaining
case where cg > K" /n. Given ¢ > 0 we adopt here the convention that Bg (K.,) = () when
the set K., is empty. We let Uy be as in Step 5.3 and choose 6 > 0 sufficiently small such
that Uy and —Uy are disjoint. Without any loss of generality, since K _Kkn/p IS compact
and §K., < +o0o, we may also choose 6 > 0 sufficiently small such that 829( ,) and Uy are
disjoint, and such that Ba(K,) and —Uj are disjoint. For ¢’ > 0, we define

Zy =By (Ke,) UUp U (=Ug)2) -
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As is easily checked from the definition of the Krasnosel'skii genus, v (Z2) = 1. Now we
proceed as above. Since Palais-Smale sequences for the functional 1, 4 at level cg have at most
one constant sign p-bubble in their decomposition, there exists a real number € € (0, ¢z — ¢p)

such that for any p-map U in I} ([cs — €, ¢ + €]) \ Zy, there holds

2e

IVIag (Z’I)”Hip(M) 2 0

Thus, we can apply Lemma 2.1 with C' = H}, (M) \Zay, D = I, and 6 = 6. This yields an
odd, continuous map

v IS N\ Zag UIR, — I3 (5.9)

such that v = id in the set I} . By the definition of cs and by the properties (A1) and (A2)
of the relative equivariant Lusternik—Schnirelmann category listed in Section 4, it follows from
(5.9) that

5+15W&(ﬁﬂﬁ
=, (I;B,;E\Zze U [510,9) + 7 (Z2)

<, (12,7) +7(2u)

< B+ (Z2). (5.10)
Clearly, (5.10) is in contradiction with v (Z2) = 1. In the two possible cases where ¢g < K, /n
and cg € [K,"/n,2K,"/n), we get a contradiction. This ends the proof of Step 5.4. O

Step 5.5 is the last step in the proof of the first part of Theorem 1.1. It states as follows.
Step 5.5. Fork > 1 as in Theorem 1.1, there holds cx+1 < 2K, ™/n, where cxiq is as in (5.3).

Proof. We let k > 1 and @ be as in Theorem 1.1. Then @ is an odd, continuous map from
R¥ to HY (M) such that Ing0® < 2K, "/n and I440® (y) — —o0 as |y| = +oo. We let

~ sup(la,qg0P
E=g, (1), (5.11)

and prove that k > k+ 1. Since Iyg0® < 2K, /n and 1440 is negative outside large balls,
Step 5.5 obviously follows from this inequality. Without loss of generality, we may assume
that k is finite. We let Uy, ..., Uz and xo, ..., Xz be given by the definition in Section 4 of the
relative equivariant Lusternik—Schnirelmann category kin (5.11). In particular, I} s C Up and
Xo : Up — I, is odd, continuous, and such that xo = id in I'?,. Changing Uy if necessary
and using Dugundji’s [15] extension of Tietze’s theorem, we may regard yo as the restriction
of an odd, continuous map, still denoted xo, defined from the whole Sobolev space H7, (M)
to itself. We set

O =(x00®) " (Bo(ro)), (5.12)
where 7 is as in (5.2). Clearly, O is symmetric, open, 0 € O, and, since 4 ,0® (y) — —o0 as
ly| = +oo, we also get that O is bounded. By our choice of 7 in (5.2), I3, N 9By (1) = 0,
and we thus get that the set @' (Uy) does not intersect OO. In particular, the boundary

of O is covered by the sets 0O NS (U;), i = 1,... k. Let (nj);, where n; : 00 — R and
7 =1,...,1, be a partition of unity subordinated to this covering. Without loss of generality,
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we may assume that Suppn; C 00 N @~ (U;) for all j and that [ < k. We may also assume
that the 7,’s consist of even functions. We define a map y : 00 — R! by

X (y) = Z i (y) Xi ( (y)) e (5.13)

where e; is the i-th vector in the canonical basis of R!. The map x as defined in (5.13) is
odd, continuous, and nowhere vanishing. Since O in (5.12) is symmetric, bounded, open, and
contains 0, it follows from the Borsuk-Ulam theorem (see, for instance, Kavian [33]) that [ is

greater than or equal to k + 1. But [ < k and we thus get kK > k4 1. This ends the proof of
Step 5.5. 0

By Steps 5.2, 5.4, and 5.5, we are now in position to prove the first part of Theorem 1.1.
The proof goes as follows.

Proof of the first part of Theorem 1.1. We let the cs’s be as in (5.3), and & > 1 be as in
Theorem 1.1. By Steps 5.4 and 5.5, we may assume that the finite sequence (¢y, ..., cx1) iS
increasing and strictly bounded from above by 2K, ™ /n. We let ¢4 = 2K, /n, and | € N be
such that ¢; < K, ™/n < ¢;y4q1. If [ > 1 then, by Step 5.2 and the discussion following Step 5.2,
cp is a critical level of the functional 14, for 8 =1,...,l. Moreover, cg comes with a nontrivial
solution of equation (1.1), and we get that there are [ distinct nonzero critical levels of the
functional 74, which are less than or equal to K,"/n. For § =1+ 1,...,k + 1, see again
Step 5.2 and the discussion following Step 5.2, either cg or ¢z — K, ™/n is a critical level of
the functional 1,4 4. It follows that we also get the existence of at least k — [ distinct critical

levels of 14, in (0,2K,,"/n). We finally conclude that there exist at least H(# = % distinct

critical levels of I, in (0,2K,,"/n). This ends the proof of the first part of Theorem 1.1. O

6. PROOF OF THEOREM 1.1 - PART 2

We prove the second part of Theorem 1.1 in this section. We let A be a smooth map from
M to M; (R) such that the operator AP 4 A is coercive on Hy , (M). We assume that for some
k > 1, there exists @ : R**! — H? (M) an odd, continuous map such tha I, 40® < 2K;"/n
and [440@(y) = —o0 as |y| — +oo, where I, is as in (1.4), and K, is the sharp constant
as in (1.6). We also assume that p4, < K, "/n, (—A) is cooperative, and (1.1)-(1.2) is fully
coupled, where /14 4 is as in (1.5). Then, we aim in proving that (1.1)-(1.2) possesses at least
(k 4 1) /2 pairs of nonzero solutions with energy less than 2K ". If u is a function in HZ (M),
we let u* = max (u,0) and v~ = max (—u,0). For a p-map U = (uy,...,u,) in Hy (M),
we let UT = (uf, e ,u;) and U~ = (uf, e ,u;). We let also P be the set of all p-maps in
H 12’;) (M) with nonnegative components. Here again, we proceed in several steps. A first step
is as follows.

Step 6.1. Let A be the positive constant appearing in the definition of the scalar product (2.1).
If A is large enough then for sufficiently small positive real numbers §, the sets Bs (P) and
Bs (=P) are strictly positively invariant for the flow @4 .

Proof. Since V1, is odd, we may restrict ourselves to considering the sole sets Bs (P). We
write VI, 4 asin (2.4) so that VI, =id —£1 — £5, where £; and £, are as in (2.2) and (2.3).
First, we claim that if the constant A is large enough then for sufficiently small positive real
numbers ¢, there exists v in (0, 1) such that for any p-map U in Bs (P), there holds

d(&U) + L U),P)<vd(U,P), (6.1)
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where d is the distance on the Sobolev space Hf , (M). In what follows, we set U = (uy, ..., up),
gU) = (FU),....F,U), LU) = (GiU),...,G,U)). We begin with estimating
d (&1 (U),P) for all p-maps U in HY ,(M). We assume that the constant A is greater than or
equal to any diagonal component of A so that all the components of A1d, —A are nonnegative.
By the maximum principle, we then get that £; sends P to itself. By using (2.2) and the
coercivity of the operator AP + A, we get that if A is chosen large enough, then

p
121 @Ol o = D [ (405 = Ay uiF @)

ij=1
2 2
< (o) (Il oy + 124 @O ap)
for some constant ¢ € (0,1). It follows that
1€ @)l any < VI= WUl an- (6.2

We let V be the orthogonal projection of U on the closed convex set P. Applying (6.2) to the
p-map U — V, since there holds £ (P) C P, and since £ is a linear operator, we get

d(L(U),P) < 1€ U) = L W)lluz ) < VI—ed (U, P). (6.3)

Now, we estimate d (£ (U),P). Here again, by the maximum principle, £, sends P to itself.
Multiplying (2.3) by the p-map —£, (U)~, summing the p equations we get with this process,
and integrating by parts on M yield

p p
220 N iy == 20 [l i@ doy < 3 [ PGty oy,
i=1 i=1
and by Holder’s inequality we then get
p
2 2t _
||£2 ) HHl%p(M) < Z ‘ U 12*(11\4) HGl (u) HL?*(M) : (6.4)
i=1
We also clearly get
”uz ||L2*(M) = veg%}?/[ﬁ [wi = vll 2 (ar) (6.5)

foralli =1,...,p, where H? (M)™ stands for the set of the nonnegative functions in H? (M).
Combining (6.4) and (6.5), thanks to the Sobolev embedding theorem, we then get that there
exists C'y > 0, independent of U, such that

L2 (U)*\\Hip(M) <CudU,P)* 1. (6.6)
Summing (6.3) with (6.6) yields
d(& (U)+ L U),P)<VI—edU,P)+CdU,P)* " (6.7)

Then, it easily follows from (6.7) that for § > 0 sufficiently small, there exists v in (0, 1) such
that (6.1) holds true for all &/ in Bs (P). This proves the above claim, and now that we get
(6.1), we fix 6 > 0 sufficiently small and write with (2.4) and (6.1) that for any A € (0, 1] and
any U € Bs (P), there holds

dU—=AVIa, (U),P)<d(1=NUP)+dNF U)+GMU)),P)<dU,P).
We then get that d (U — AV 14, (U),Bs (P)) =0 for all A € (0,1] and all p-maps U in Bs (P).

Since Bs (P) is closed, convex, and its interior is nonempty, it follows from Deimling [12,
Theorem 5.2] that Bs (P) is positively invariant in the sense that for any p-map U in B; (P),
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the trajectory t — wa, (t,U) stays in the set Bs (P) for all positive times. It remains to
exhibit a contradiction in case such a trajectory intersects 0Bs (P) for some positive time t.
If such a ty > 0 exists, then by Mazur’s separation theorem (see, for instance, Megginson [35]),
there exists a continuous linear form £ on Hf , (M) such that € (pa4 (to,U)) < £ (int (Bs (P))),
where int (Bs (P)) is the interior of Bs (P). By (6.1), the operator £; + £, sends B; (P) to its
interior int (Bs (P)). Thus we can write

040 200) (1, 10y = (814 £) (o t0U) — i (0. = 0.

Hence, for sufficiently small ¢ > 0, there holds ¢ (pa 4 (to — &,U)) < € (a4 (to,U)), and we get
a4 (to —e,U) does not belong to Bs (P). This contradicts the positive invariance of the set
Bs (P), and ends the proof of Step 6.1. d

Henceforth, we assume that A is sufficiently large and that ¢ is sufficiently small such
that the sets Bs (P) and Bs (—P) are strictly positively invariant for the flow 4, We set
Ds = Bs (PU(—=P)). Since 0 is the only critical point of the functional I, at level 0, it
follows from (2.5) and Step 6.1 that If} , U Dy is strictly positively invariant for the flow @4 .
Mimicking the proof of Step 5.1 in Section 5, we get that the following step holds true.

Step 6.2. There holds i p, (1%,UDs) = 0, where V15, ,uD, (1%, U Ds) is the equivariant
Lusternik-Schnirelmann category of I3 ,UDs relatively to I} ,UD;, and Ds = Bs (P U (=P))
15 as above.

In what follows, given a natural number 3 > 1, we define ¢z by
& = inf {c > 0; 1g_upy (15, UDs) 2 5} , (6.8)

where vy ,UDs ([ GgY Dg) is the equivariant Lusternik-Schnirelmann category of I3 , U Ds

relatively to ]191’ ;Y Ds, and we adopt the convention that inf () = +o00. Here again, the sequence
(¢s) g I8 nondecreasing. Following Step 5.2 in Section 5, we now claim that the following step
holds true.

Step 6.3. For any > 1, if ¢z in (6.8) is finite, then there exists a Palais-Smale sequence
(Us),, for the functional 144 at level 5. Moreover, U, € H} , (M) \Dyy for all o.

Proof. In order to prove Step 6.3, it suffices to prove that for any ¢ > 0, there exists U in
I3} ([ — e, + <)) N HE, (M) \Dj/3 such that

4e
HVIA,g (u)HHf’p(M) < F :

We proceed by contradiction and assume that there exists ¢g > 0 such that for any p-map
U in I ([¢s — 0,Cs + e0]) N HE, (M) \Ds)s, there holds || V14, (Z/l)HHip(M) > 4egy/d. Since
there holds

Bsjo(H?, (M)\Ds) C Hi, (M) \Ds)2 ,

we may apply Lemma 2.1 with C' = H} ,(M)\D;, D = 1'9179 U Ds, and 0/2 instead of 4. In
particular, we get the existence of an odd, continuous map

maX(ngso,O)

v IOUD — 1 U D;

such that v = id in the set I3 , U D;. Then, by (A1) in Section 4, we get

S+ max(cg—eo,0
V19, uDs (IAﬁ,g €0y Da) < V19, uDs ([Ag (@ —=0.0) U p(;) , (6.9)
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and the contradiction with the definition of ¢z follows from (6.9) if ¢g > 0. If ¢z = 0, the
contradiction follows from (6.9) and Step 6.2. This ends the proof of Step 6.3. O

Let 8 > 1 be such that ¢z is finite, and let (U,), be the Palais-Smale sequence for 14,
at level ¢z we get from Step 6.3. We get d(U,, P U (=P)) > ¢/2 for all a. By Lemma 3.1,
since 0 is the only critical point of the functional /44 at level 0, we then get that c¢s cannot
be equal to 0. In particular, ¢z > 0. Assuming that ¢z < K"/n, we also get that there
exists a subsequence of (U,), converging to a nontrivial changing sign critical point of the
functional 14 ,. By a changing sign p-map U, we mean that U ¢ (—P)UP. If we assume that
K, " /n < ¢z < 2K, ™/n, then there is at most one constant sign p-bubble in the decomposition
of (Us)a. Thus, either ¢ or ¢g — K" /n is a critical level of the functional 14 ,. Step 6.4 in
the proof of the second part of Theorem 1.1 is as follows.

Step 6.4. If there exists 3 such that ¢g = gy < 2K /n, then § K., = +o0o and the functional
Iag4 thus has infinitely many critical points at level ¢z, where ¢z is as in (6.8), and K., is as
in (5.5).

The proof of Step 6.4 goes as for the proof of Step 5.4. When applying Lemma 2.1 we just
set D = [g’g U D; instead of D = Iy, as done in the proof of Step 5.4. We omit the proof of
Step 6.4 here. Step 6.5 in the proof of the second part of Theorem 1.1 is as follows.

Step 6.5. For k > 1 as in Theorem 1.1, and for § > 0 in (6.8) sufficiently small, there holds
¢ < 2K, ™/n, where ¢ is as in (6.8).

Proof. We let kK > 1 and @ be as in Theorem 1.1. Then, @ is an odd, continuous map from
R¥ to HY (M) such that I40® < 2K,"/n and I440® (y) — —o0 as |y| = +0o0. We set

~ sup(fa,qg0P
k= up, ([A,g( +oo) Da) :

It suffices to prove that k is greater than or equal to k. We may assume that k is finite. By
the definition of &, there exist k + 1 symmetric, open subsets Uy, ...,U; of Hip (M) which

sup(IAgoqﬁ)

cover [ Ag U D;s and such that (Iﬂyg U Dg) C Uy, and there exist k + 1 odd, continuous

maps xo : Up — I3 ,UDs and x; : Uy — {—1,1}, i = 1,...k, such that o = id in the set
I3 ,U Ds. Changing U, if necessary, and using Dugundji’s [15] extension of Tietze’s theorem
as in Step 5.5, we may regard x( as the restriction of an odd, continuous map, still denoted
Xo, defined from the whole Sobolev space Hip (M) to itself. Now, we claim that there exists
an odd, continuous map x : NN Ds; — {—1,1}, where NV is the Nehari manifold of I, , as
defined in the introduction. In order to prove this claim, we set

E={UeN; U"eN and U eN},

where UT = (uf,... ,u;) and U~ = (uy, ... ,u;) if i = (uy,...,u,). The distance between
the sets & and P U (—P) is positive. Indeed, by the continuity of the embedding of H? (M)

into L*" (M), we can write that there exists C' > 0 such that for any p-maps U = (uy,...,u,)
in £ and V = (vy,...,v,) in P, there holds

p p
IIZ8== V||121;127P(M) > C’Z/M |u; & v > dvg > C’Z/M ‘uﬂQ dvg =nCla, (UT) >nClayg.
=1 =1

Decreasing § > 0, if necessary, we may now assume that the sets £ and Dy are disjoint. As in
Castro—Cossio-Neuberger [7, Lemma 2.5] we get that the set A'\E consists in two connected
components, namely {4 € N; U € P or DI, (U") U <0} and its symmetric. It follows
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that N N Ds also consists in two connected components and we get that there exists an odd,
continuous map x : N N Ds — {—1,1}. This proves the above claim. Now, we let O be the
inverse image by the map x(o@® of the connected component C of H ip (M)\N which contains
0, and let K : H7 ,(M)\{0} — R* be such that Wy, = K (U)U for all U € H7, (M) \{0},
where Wy is as in (1.7). We get that there holds K () < 1 when U € I}, and, by the
Sobolev embedding theorem, that there holds K (i) > 1 when U is sufficiently close to 0 in
H},(M). In particular, since Wy, = U if and only if U € N, we get (I3 ,\{0}) NC = 0. Since
there holds 14 4,0 @ (y) = —o0 as |y| — 400, it follows that O is a symmetric, bounded, open
neighborhood of 0. The boundary of O is covered by the sets 0O N®~1 (U;), i =0, ... ,E. Let

Xi = X; wheni=1,... k and xo = x o xo, where x is the map we constructed above. Let
also (%)j» where 7;, : 00 — R and j = 0,...,[, be a partition of unity subordinated to this

covering. Without loss of generality we may assume that Suppn;, C 90 N Pt (Uij) for all 5
and that [ < k. We may also assume that the 7n;’s consist of even functions. We define a map

X : 00 — RI*L by
l
X (y) = Znij (y) %Z‘j od (y) €55
=0

where e; is the j-th vector in the canonical basis of R'*!. This map is odd, continuous, and
nowhere vanishing. Since O is symmetric, bounded, open, and contains 0, it follows from the
Borsuk—Ulam theorem (see, for instance, Kavian [33]) that [ + 1 is greater than or equal to
k+ 1. But [ < k and we thus get that £ > k. This ends the proof of Step 6.5. O

By Steps 6.3, 6.4, and 6.5, we are now in position to prove the second part of Theorem 1.1.
The proof goes as follows.

Proof of the second part of Theorem 1.1. We let the ¢3’s be as in (6.8), and let £ > 1 be as
in Theorem 1.1. By Steps 6.4 and 6.5, we may assume that the finite sequence (¢1,...,¢) is
increasing and strictly bounded from above by 2K, ™ /n. By assumption, pa, < K, "/n, where
fag is asin (1.5). Then, since (—A) is cooperative, and the system (1.1)-(1.2) is fully coupled,
we get from Hebey [27] that p14,, is attained by a positive p-map which, up to a subsequence,
is in turn a positive solution of (1.1)-(1.2). As is easily checked, p14,, can only be attained by
p-maps in +P when (—A) is cooperative. Since ¢; is attained by a changing sign p-map when
a < K, "/n, we get pa, < ¢i. In what follows, we let ¢y = pa gy, cxr1 = 2K,"/n, and [ > 0
be such that ¢, < K" /n < ¢41. Then there exist at least [ 4 1 distinct nonzero critical levels
of the functional 14 , which are less than or equal to K,,™/n. Since k+1 > (k+1)/2, we may
assume in what follows | < k. For f =1+1,... k, either ¢z or ¢g — K,;™/n is a critical level
of the functional 74 4. In particular, we get the existence of k — distinct critical levels of 144

in (0,2K,"/n). We finally conclude that there exist at least w = L distinct critical
levels of the functional 14, in (0,2K,™/n), and that ¢, is attained by a positive p-map. This

ends the proof of the second part of Theorem 1.1. O

7. PROOF OF THEOREM 1.2

We let ig = 1,...,pbegiven, § € (0,1), and  : R — R be a smooth cutoff function centered
at 0 with support in [—1,+41] such that n = 1 in [—d, +6]. We let also (). be a sequence
of positive real numbers such that y. — 0 as ¢ — 0, and, for x € M, we define u. = u.,,
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u: : M — R, by
_ ()
u&(y) - (ME + 7’2)(n_2)/2 )

where r = dy(z,y) is the Riemannian distance from x to y. Then Suppu. C B,(e) for all
e > 0. We also define the p-map U, = U, ;, », U. : M — RP, by

U= (0,...,0,u.,0,...,0), (7.2)

where u, is as in (7.1) and is placed at rank ¢y so that v’ = 0 for all i # iy and u’® = w,. if the
u'’s stand for the components of U.. We compute expansions for 14, (W) in Lemmas 7.1
and 7.2 below. As a remark, there holds

n/2

l <fM (‘VUE|2 + Aioioug) dvg)
. 2/2+ :

" (fM u? dvg) !

The expansions for 14, (W, ) in Lemmas 7.1 and 7.2 are closely related to those of Aubin [4].

However, we face in our computations the difficulty that the supports of the U.’s shrink to a

point as € — 0. Because of this e-shrinking of the supports of the U.’s, we need to compute

the e-rate at which p. should converge to zero. Lemmas 7.1 and 7.2 correspond to the two
cases in Theorem 1.2 where

(7.1)

IA,g (Wu5> =

(i) n >4 and A;y;,(20) < ﬁ Scaly(zg) for some 4y and some zy,
(ii) n > 6, Aiyi, = 4(’;—__21) Scal, around some z, for some ig, and Weyl, (o) #Z 0,

where Scaly is the scalar curvature of g, and Weyl, is the Weyl curvature of g.

Lemma 7.1. Let ig = 1,...,p be given. Assume uf = 0O(e) as ¢ — 0 when n = 4, and
e =0 (59) as € — 0 when n > 4, where § > %. Then for any x € M, there holds
Kt K
Iy Wie) =~ o S (Sealy () = 644 (0)) pe e + o) (73)

when n =4, and

g V) = 52 = b (Saaly o) = 20 ) e o) (7

when n > 4, where K, is as in (1.6), La4 is as in (1.4), Wy for a p-map U is defined in (1.7),
Scal, is the scalar curvature of g, and U = U, 4y, s as in (7.1)~(7.2). Furthermore, (7.3) and
(7.4) are uniform in x.

Proof. We assume that ,ug?‘ = 0O(e) as e —» 0 when n = 4, and that y. = O (59) ase — 0

when n > 4, where 6 > 2(:__42). For any x € M, there holds

1 1
— do =1— — Scaly(z)r* 4+ O (r* 75
s, V1ol = 1 G Seal, @7 40 (+) (75

as r — 0, where |g| is the determinant of the components of ¢ in geodesic normal coordinates.
By standard properties of the exponential map, the rest O (r*) in (7.5) can be made uniform
with respect to x. We set [ = f0+oo(1 + 1) "Pridr for all positive real numbers p and ¢ such
that p — ¢ > 1. When n = 4, thanks to (7.5), we compute

2 Scal
/M V| dv, = :3 (IZ + %@)us In e + o0 (e lnus)) (7.6)
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and (2)
W3AZ’ io\ L
/ Ajgiguidv, = % In e + o (In pe) (7.7)
M

as ¢ — 0, uniformly with respect to x, where u. = u., is as in (7.1). Similarly, when n > 4,
still thanks to (7.5), we compute

/ Vo dv _ (n—2)%w,_ Vs (1 _ (n+2)Scaly(x)
e g =

e + O (PJ&)) (78)

2"/ 6n(n —4)
and )
2(n — )(n — 2w, 172 A,
/ Azozo gdvg (n )(n )w ( 14)/2 0 0(37) +o (M§4—n)/2) (79)
M n(n —4)pu"
as € — 0, uniformly with respect to x. Thanks to (7.5), we also compute that when n > 4,
there holds oy
n—2)/2
o Wn-11n Scaly(z)
dv, = ——" (1 - —/—"2y, . 7.10
as € — 0, uniformly with respect to x. We get
n—2 w
S22z T 7.11
n n n 2n_1wn_1 ( )
and )
2 n/2 2/2"
(n—2)" w,_ Ly 1 [ (n—2)wp_1ln | (7.12)
2 K2 2n
and combining (7.6)—(7.12), we get that (7.3) and (7.4) hold true as ¢ — 0, uniformly with
respect to x. This ends the proof of Lemma 7.1. U

Lemma 7.2. Let g € M and iy = 1,...,p be such that A;,;, = hy in an open neighborhood of
xo, where hgy is as in Theorem 1.2. Assume pgl =0(e) ase — 0 whenn =6, and p. = O (59)

as € — 0 when n > 7, where 6 > 2(: 62). Then there exists an open neighborhood §2 of xy such
that for any x € {2, there holds
K%  K© 9
Tng W) = =6 + 525 (45 Wyl ()]* = 75 [By () * — 2 Scalg(a:)2> 42 1In pi.

+o(pllnp.) (7.13)

when n =6, and

K 3| Weyly(2)|® — an |Eg(@)® + Ba Scaly(2)? )
Tag W) = . 70 (n—4) (n—6) k" 2+ o () (7.14)

when n > 6, where K,, is as in (1.6), L4 4 is as in (1.4), Wy for a p-map U is defined in (1.7),
Weyl, is the Weyl curvature of g, E, is the traceless part of the Ricci curvature of g, Scal, is
the scalar curvature of g, o, = 4(2n —T7)/(n —2), B = —2(n+2)/(n(n—1) (n —2)), and
U = U iy is as in (7.1)~(7.2). Furthermore, (7.3) and (7.4) are uniform in x.

Proof. We assume that ,u; = O(e) as e — 0 when n = 6, and that y. = O (¢?) as e — 0
when n > 7, where 6 > 2 (n= 2) . For any x € M, there holds

1 A;
/ AigioV |gldo = Ajio () — ﬂﬁ +0 (") (7.15)
8Ba(r) 2n

Wy 17"
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and
1
wWy—17" !

/63 V]gldo =1 - — Scal o(2)r* + Ag(z)r* + O (1°) (7.16)

as  — 0, where |g| is the determlnant of the components of ¢ in geodesic normal coordinates,
1
Aig (x) = AgAigiy () + 3 Aigio () Scaly (2),
184, Scal, (2) + 8 |Ric,(2)]* — 3[Ry («)|” + 5 Scal, (x)?
360n(n + 2) '

and Rmg, Ric,, and Scal, are respectively the Riemann curvature, the Ricci curvature, and
the scalar curvature of g. By standard properties of the exponential map, the rests O (r4)

and O (r°) in (7.15) can be made uniform with respect to z. We let 1¢ = 0+OO(1 + ) "Pridr,
p —q > 1, be as in the proof of Lemma 7.1. When n = 6, thanks to (7.15), we compute

Ay(z) =

3w Scal,(x
/ ]Vug| dv, = - g ( 99( )Na — 20A,(x)p2 Inp1. + o (,ug ln,ua)> (7.17)
and
1 /5 A
/ Ajiguidv, = ﬁAioiO (x) + %—O(z)ua In pe + 0 (pte In i) (7.18)

as ¢ — 0, uniformly with respect to x, where u. = u., is as in (7.1). Similarly, when n > 6,
still thanks to (7.15), we compute

n/2
2 (TL — 2) Wp— 1]
/M Vu|"dv, = 2 P

(n +2) Scal,(z) (n+2)(n+4)A, (z) , 5
x (1 T o1 T i nm-g Tt (“E)) (7.19)

and
Wn 2(n — 1) A () (n—1)4;(x)
A iuld s — B . . 7.20
/M 0ip Ue Vg = 2n71u£n—4)/2 ( n—4 (n _ 4)(n _ 6)M +o (:u' ) ( )
as € — 0, uniformly with respect to z. Thanks to (7.15), we also compute that when n > 6,
there holds
. Scal,(x) n(n+2)A,(z)
u¥ dv, = —2n (1 — L+ I + o (u2 7.21
Rl Gt e T e e AL ) B

as ¢ — 0, uniformly with respect to x. Assume that A, ,, = h, in B,,(2J) for some zyp € M
and some § > 0, combining (7.17)-(7.21), and thanks to (7.11) and (7.12), we get that (7.13)
and (7.14) hold true as € — 0, uniformly with respect to x in B,,(d). This ends the proof of
Lemma 7.2. 0

By Lemmas 7.1 and 7.2, we are now in position to prove Theorem 1.2. By these lemmas, see
(7.23) below, pa,y < K, ™ when (i) or (ii) hold true. By Theorem 1.1 the proof of Theorem 1.2
then reduces to provmg that there exists an odd, continuous map @ : R"*? — H 27p(M ) such
that [4,0® < 2K, "/n and I4,0® (y) - —oo as |y| — +o0o. Preliminary remarks are that

IA,g (Wu) = I?;QE)X IA,g (tU) s (7.22)

and Wy = Wy, for all A > 0 and U € H{ ,(M)\{0}. The proof of Theorem 1.2 goes as follows.
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Proof of Theorem 1.2. We assume that (i) or (ii) holds true, and let 7y € (0,4,/3) be suffi-
ciently small so that either A;,, < A,Scaly in By (4r9) and n > 4, or A;;, = A\, Scal, in
B, (4r0), Weyl, # 0 at any point in By, (4r) and n > 6, where \,, = (n — 2)/4(n — 1). By
conformal invariance of the conformal Laplacian, if § = ©*(2)¢ is a conformal metric to g,
and A; ;, = A\, Scaly in B, (470), then

Iag W) = I, scai; 1,5 (W)

foralle € (0,607 o) and all x € By, (3rg), where U = UL ;, . is as in (7.1)—(7.2), but now defined
with respect to g, 6 > 1 depends only on g and g, Scalj is the scalar curvature of g, and Id, is
the identity p x p matrix. As is easily checked, we can choose g such that Ricz(zo) = 0, where
Ric; is the Ricci curvature of §. We then get ay, |Ey(20)|> — 8, Scaly(9)? = 0, where a,, and
B, are as in Lemma 7.2. In particular, the Weyl curvature becomes the leading term in the
expansions (7.13)-(7.14) of Lemma 7.2. By Lemmas 7.1 and 7.2, we then get that for 7y > 0
sufficiently small, there exists gy € (0,7¢) such that

Tag(Wy) < %K,j” (7.23)

for all & € By, (2ry) and all € € (0, &), where U. = @lUs, ¢ > 0 is a smooth, positive function,
and U. = U. ;.. is as in (7.1)-Th2Eq2 with r in (7.1) being the distance with respect to
g. Here, ¢ = 1 in case (i) holds true and ¢ comes from the conformal change of metric
g = "™ Vg in case (ii) holds true, where g is chosen so that Ricg(zg) = 0. A priori, U. has
its support in the closure of the g-ball EZ(&?). Decreasing ¢ if necessary, letting U = Uy for
6 > 0 sufficiently small, we may assume that ﬁe has its support in the closure of the g-ball
B.(¢), and thus that Supp U C % for all x and all . Now we claim that there exist a
real number ¢ in (0, g9) and a smooth cutoff function v such that v =1 in B, (1), v =0 in
M\ B4, (g0), and such that

1 —n
Tag <W(1_v)z,7€0) <K, (7.24)

for all points z in the ball By, (2rg), where U, is as in (7.23). In order to prove this claim, we
first note that by standard properties of the capacities of balls,

ueHs,sO

capy (B, (€), By (€0)) = inf / ]Vulz dvy — 0 (7.25)
on(EO)\Baco(E)

as € — 0, where H. ., is the set of all Lipschitz functions such that v = 1 in B, (¢) and u
has compact support in By, (g9). We refer to Grigor'yan [25] for more details on the notion
of capacity. For €y > 0 sufficiently small, we also get (see, for instance, Hebey [26]) that the
Poincaré inequality holds true in the set ‘H. .. In other words, we also get that there exists a
positive constant C' such that for any function w in H. ., there holds |[ul| j2(py < C [[Vul| 12(py)-
The existence of a real number £, and a smooth cutoff function v such that v = 1 in B,, (1),
v =0in M\B,, (g9), and such that (7.24) holds true for all points z in the ball B, (2ry) then
follows from (7.23) and (7.25) by the continuity of the functionals in /4 ,. This proves (7.24).
Without loss of generality, we may assume that there exists A > 1 such that

Ty =] < dy (exp, (2), exp,, (1) (7.2

for all points 2 and y in the Euclidean ball By(ry), where exp,, is the exponential map at .
We also may assume that 24y < ro. For any natural number k& > 0, we let B* be the unit
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ball in R¥ and S* be the unit sphere in R¥**. We also let N be the Nehari manifold of I, as
in (1.5). We now define @,,®, : B — A by

(

1
Py (x) =W (20,€1) if o] < 3,

B1(z) = W (21 (2), 2(x)) if% <l <1,
(7.27)

~

Ba(a) =W (walw),0) i Jol < 5,

1
\ Dy(x) =W (z3(x),e0)  if 5 < lz] <1,

~ ~ ~

where W (z,€) = Wy, W(@,6) = Wi yiine) UT,€) = Uejp e is as in (7.23), v and &
are as in (7.24), € (z) is given by € (z) = 2 (g9 — €1) || + 261 — €9, and for A > 1 as in (7.26),
x1 (x), x2 (z), and x3 (z) are given by

21 () = exp,, (—2450 (2 - y?l\) x) ’ (7.28)

Ty (x) = exp,, (4Aeox), and w3(x) = exp,, (2/150%) :

For any point z such that 1/2 < |z| < 1, we get that e (x) belongs to [e1,&¢] and that the
points z; (z) in (7.28) belong to By, (2r¢) for i = 1,2, 3 since Agy < r9/2. For any point x such
that |x| = 1/2, there hold x; (z) = z¢ and ¢ (z) = £;. It follows that @, in (7.27) is continuous.
Similarly, for any point z such that |z| = 1/2, there hold 3 () = 23 (z) and v = 0 in By,(4) (€0)
since d (zo, z2 (v)) = 2Aeg, v = 0 in M\ By, (0), and A > 1. It follows that @, in (7.27) is
also continuous. There hold Supp @, (x) C By, (€1) and Supp @s (x) C Bay() (€0)\Ba, (€1) in
case |x| < 1/2, and there hold Supp @ (z) C By, (¢ () and Supp s (x) C Byy(e) (€0) in
case x| > 1/2. By (7.26), we get dy (z1(x), z3(x)) > 4eq|x|. It follows that for any point
x € B", there holds

Supp @1 (x) N Supp @, () = 0. (7.29)

We also easily get @1 (z) = @y (—z) for all x in S"'. We then define the map @, : S* — N by

5 D1 (21, ..., Tn) if 2,41 20
0 (@1 ) = Dy (—x1,...,—1,) otherwise,

(7.30)

where @; and @, are as in (7.27). It is easily checked that the map @ is also continuous. We
now introduce the map

G (S" x (—1,1))U (B! x {~1,1}) — H?, (M)\ {0}

defined by
x .
& (0.1) = 2 || 2o (m) + (1= [z]) W (%, £0) ift=1,
x .
—2|z| (‘m) — (L= |z[) W (yo,€0) ift=—1,

where yo = exp,, (2robp) for some 6y in S”, and P is as in (7.30). For any = € B”, the supports
of the p-maps @, and @, in (7.27) are subsets of B, ((24 4 1)eg), and since d,(zo, yo) = 270,
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and 79 > (A + 1)y, we get

Supp W (vo,€0) N Supp P1(z) = 0 (7.31)
and

Supp W (vo, €0) N Supp P2(z) = 0 (7.32)
for all z € B. By (7.29), (7.31), and (7.32), the supports of the p-maps @, (v), @, (z) and
W (o, €0) are mutually disjoint for all points z in B*. In particular, the p-map @ takes its
values in H7 , (M)\{0}. It is easily checked that  is odd and continuous. Taking into account
that the domain of definition of the map @ is precisely the boundary of the set B"* x (—1,1),
we may define the radial extension of ¢ as the map @ : R"2 — H, (M)\{0} given by
@ (tx) = t& (z) for all positive real numbers ¢ and all points 2 in 9 (B! x (=1,1)). Then

the map @ is odd and continuous. By (7.22), (7.23), and (7.24), we get that there holds
Iyg0® <2K,™/n. Asis easily checked, € (U) > nua, > 0 for alld € N. Tt follows that

LTy, (2 -
Iuneaj\}/( A’g(u) R

as t — +o00. We then get that there holds I4, 0@ (y) — —o0 as |y| — +o0o. This ends the
proof of Theorem 1.2. O

8. PROOF OF THEOREM 1.3

Let xy € M, ro > 0, and iy € {1,...,p} be such that g is conformally flat in B,,(4r) and
Aivio = A\pScaly in By (4rg), where A\, = (n —2)/4(n — 1), and Scal, is the scalar curvature
of g. We also assume that n > 6. Decreasing r, if necessary, there exists § = ¢*" g a
conformal metric to g such that g is flat in By, (4r). We define u. = u., as in (7.1) with r
being the distance with respect to g. Let K > 1 be such that K‘ldg < dz < Kdg,, where d,
and dj are the distances with respect to g and g. Since g is flat in B, (4r,), we easily compute
that for any x € B,,(3rg), any € € (0, K 'rq), and any smooth function h in M, there holds

19l s = (n = D (140 (2l 2)) (8.1)
2, (”— 1)th(l“) 4o (n—4)/2

/M huZdvg = 2 4O (e +O (el ), (8.2)
. W, o

uniformly with respect to . Assume that pu. = O (520) for some 6 > 6,,, where 60, = Z—j.
Then, by (8.1), we get that there exists kK = %2(6 — 6,,), k > 0, such that there holds

/!Vu€|d~ mR 2 (140 (). (8.4)

n 2) /2
2 _ (” - 1)th($) 2
/M huldvg = QH(” =T (e +0(12)), (8.5)
/ W dvy = = (140 (12)) (2.6)
M 2”/#2

uniformly with respect to . Now we assume that there exists 7; # 4o, for instance i; > 1o,
such that A;;, (xo) # 0. We define U = U ;, 4, » by

U- = (0,...,0,u.,0,...,0,av.u.,0,...,0), (8.7)
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where u. is as above, the two nonzero components u. and av.u. of U, are placed at ranks
ip and iy, a = —sign (A, (70)) is equal to —1 if A, (zo) is positive and 1 if A, (zo) is
negative, and the 1v.’s, to be chosen later on, are positive and such that v. — 0 as ¢ — 0. By
conformal invariance of the conformal Laplacian and since § = ¢* (" 2)g is flat in B, (4r),
we get

IA:g (W‘Pu5> = IZ,g (Wus) (88)
for all z € B,,(3ry) and all € € (0, K~'rq), where
A =% (A —\,Scal, Id,) (8.9)

and Id, is the identity p x p matrix. Let Avij be the components of Ain (8.9). Since Avioio =0
in B,,(4ry), we compute

/M (|vu€|2 n Z(ug,ug)) dv;

Aigi =
= (1+17) / IV |? dvg + 20w, / s uldvg + uf/ A i uidog
M M P M

and thus, by (8.4), we get

/M (Ivu5|2 +A’<us,us)) dvs = %
8(77, _ 1)aAioil (l‘)
X (1-+71@1——2)01__4>¢?ﬁQ(x)

We now set v, = plt? for some @’ € (0, ). Then the O (u2uf)’s, O (12)’s, and O (v.u2)’s are
like o (peve). In particular, we get with (8.4), (8.8), and (8.10) that

1, 8(n — 1)ad, ()
Iag Wen,) = EK” (1 + n(n —2)(n —4)p* 2(z)

for all z € B,,(3rg) and all € € (0, K 'ry), the expansion being uniform with respect to .
Since a = —sign (A;yi, (x0)), it follows from (8.11) that for ro > 0 sufficiently small, there
exists g9 € (0,79) such that

e £ 0 (%) 40 (2) +0 (i) ) . (5.10)

feVe + O (pgl/a)) (8.11)

Tng Wy) < %Kg” (8.12)

for all z € B,, (2r¢) and all € € (0, g¢], where U. = oU., ¢ > 0 is a smooth, positive function,
and U. = U. ;,.4, . 1s as in (8.7). In particular, by (8.12) we are back to estimates like in (7.23),
and we may then continue as in the proof of Theorem 1.2 in Section 7. This ends the proof of
Theorem 1.3.
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