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Abstract. We discuss and prove existence of multiple solutions for critical elliptic systems
in potential form on compact Riemannian manifolds.

1. Introduction

Let (M, g) be a smooth, compact Riemannian n-manifold, n ≥ 3. Let also p ≥ 1 be a
natural number and M s

p (R) be the vector space of all symmetric p× p real matrices. Namely,
M s

p (R) is the vector space of p × p real matrices S = (Sij) which are such that Sij = Sji for
all i, j. For A : M →M s

p (R) smooth, A = (Aij), we consider vector valued equations like

∆p
gU + A(x)U =

1

2∗
DU |U|2

∗
, (1.1)

where U : M → Rp is a map, referred to as a p-map in order to underline the fact that the
target space is Rp, ∆p

g is the Laplace–Beltrami operator acting on p-maps, 2∗ = 2n/(n − 2),
and DU is the derivation operator with respect to U . Writing U = (u1, . . . , up), we get

|U|2
∗

=
∑p

i=1 |ui|
2∗ , 1

2∗
DU |U|2

∗
=
(
|ui|2

∗−2 ui
)
i
, and ∆p

gU = (∆gui)i, where ∆g = − divg∇ is
the Laplace–Beltrami operator for functions. Another way in which we can write (1.1) is like
in the form of the following elliptic system

∆gui +

p∑
j=1

Aij(x)uj = |ui|2
∗−2 ui , (1.2)

where the equations have to be satisfied in M , and for all i = 1, . . . , p. We say that the
system is of order p, and refer to it as a p-system in potential form because of the nature of
the nonlinearity. The system has a variational structure. It is also critical from the Sobolev
viewpoint since, if H2

1 is the Sobolev space of functions in L2 with one derivative in L2, then 2∗

is the critical Sobolev exponent for the embeddings of H2
1 into Lebesgue spaces. In case p = 1,

(1.1)–(1.2) reduces to Yamabe-type equations, and we regard (1.1)–(1.2) as a natural extension
of such equations to weakly coupled systems. We introduce the Sobolev space H2

1,p (M) of all

p-maps whose components belong to H2
1 (M), and we say that a p-map U in H2

1,p (M) is a
solution of (1.1)–(1.2) if its components ui solve (1.2) weakly for i = 1, . . . , n. By regularity
theory, see Hebey [27], the components of any weak solution belong to C2,θ (M) for all real
numbers θ in (0, 1). We define the energy of a solution U of (1.1)–(1.2) by

E (U) =

p∑
i=1

∫
M

|ui|2
∗
dvg , (1.3)
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where the ui’s are the components of U , and dvg is the volume element of the manifold (M, g).
We also define the functional IA,g acting on H2

1,p (M) by

IA,g (U) =
1

2

∫
M

p∑
i=1

|∇ui|2g dvg +
1

2

∫
M

p∑
i,j=1

Aijuiujdvg

− 1

2∗

p∑
i=1

∫
M

|ui|2
∗
dvg . (1.4)

Critical points of IA,g are solutions of the system (1.1)–(1.2). We set

µA,g = inf
U∈N

IA,g (U) , (1.5)

where N is the Nehari manifold of the functional IA,g defined as the set of p-maps U in
H2

1,p (M) \ {0} such that DIA,g (U) .U = 0. We say that the operator ∆p
g + A is coercive

on H2
1,p (M) if its energy controls the H2

1,p-norm. A precise definition is given in Section 2.

When ∆p
g + A is coercive on H2

1,p (M), the lower bound µA,g is positive. Following standard
terminology we say that a map A : M →M s

p (R) is cooperative if its off-diagonal components
are nonnegative. In other words, A is said to be cooperative if there holds Aij ≥ 0 in M
for all distinct indices i and j. Still following standard terminology, we say that (1.1)–(1.2)
is fully coupled if the index set {1, . . . , p} does not split into two disjoint subsets {i1, . . . , ik}
and {j1, . . . , jk′}, k + k′ = p, such that there holds Aiαjβ ≡ 0 in M for all α = 1, . . . , k and
β = 1, . . . , k′. When (1.1)–(1.2) is not fully coupled, permuting if necessary the equations, A
may be written in diagonal blocks and the p-system may split into two independent systems.
A p-map is said to be positive if its components are all positive. In what follows we associate
each solution of equation (1.1)–(1.2) with its opposite one, and call that a pair of solutions.
A pair (U ,−U) is said to be positive if either U or −U is positive. We let Kn be the sharp
constant for the embedding of Ḣ2

1 (Rn) into L2∗ (Rn). Then, as is well known,

Kn =

√
4

n (n− 2)ω
2/n
n

, (1.6)

where ωn is the volume of the unit n-sphere. When ∆p
g +A is coercive on H2

1,p (M), the p-map

WU =

(
2
(
IA,g (U) + 1

2∗
E (U)

)
E (U)

)(n−2)/4

U (1.7)

belongs to N for all U ∈ H2
1,p (M) \{0}, where IA,g is as in (1.4), and E is the energy function

as in (1.3). In particular, for any U ∈ H2
1,p (M) \{0}, we get by (1.5) that µA,g ≤ IA,g (WU),

where WU is as in (1.7), and it follows that

µA,g ≤
1

n
inf
U∈H

(
2
(
IA,g (U) + 1

2∗
E (U)

)
E (U)2/2

∗

)n/2

≤ 1

n
K−nn (1.8)

for all (M, g) and all A such that ∆p
g + A is coercive, where H = H2

1,p (M) \{0}. The second
inequality in (1.8) follows from standard developments on the Yamabe problem, as in Aubin [4],
by testing p-maps with components all zero, except one which we choose to be like minimizers
for the embedding of Ḣ2

1 (Rn) into L2∗ (Rn). The first result we prove is as follows.
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Theorem 1.1. Let (M, g) be a smooth, compact Riemannian manifold of dimension n ≥ 3, let
p ≥ 1 be a natural number, and let A be a smooth map from M to M s

p (R) such that the operator

∆p
g +A is coercive on H2

1,p (M). Assume that for some k ≥ 1, there exists an odd, continuous

map Φ : Rk+1 → H2
1,p (M) such that there hold IA,g ◦ Φ < 2K−nn /n and IA,g ◦ Φ (z) → −∞ as

|z| → +∞. Then (1.1)–(1.2) admits at least k/2 pairs of nonzero solutions with energy less
than 2K−nn . If moreover there holds µA,g < K−nn /n, (−A) is cooperative, and (1.1)–(1.2) is
fully coupled, then (1.1)–(1.2) admits at least (k + 1) /2 pairs of nonzero solutions with energy
less than 2K−nn , and one of these pairs is positive.

Theorem 1.1 reduces the question of the existence of multiple solutions of (1.1)–(1.2) to the
proof of the existence of an odd, continuous map Φ : Rk+1 → H2

1,p (M) such that there hold
IA,g ◦Φ < 2K−nn /n and IA,g ◦Φ (z)→ −∞ as |z| → +∞. Following the very nice construction
in Clapp–Weth [10], we prove the existence of such a map with k = n + 1, see Section 7, as
soon as we can prove the existence of a two-parameters family of test functions Ux,ε, x ∈ Ω
and ε > 0, Ux,ε depending continuously on x, such that

(i) IA,g(WUx,ε) < K−n/n uniformly in x as ε→ 0,
(ii) SuppUx,ε ⊂ Bx(ε) for all x and all ε > 0,

where WUx,ε is as in (1.7), Ω is an open subset of M , SuppUx,ε stands for the support of Ux,ε,
and Bx(ε) is the ball in M of radius ε centered at x. With such a test function reduction,
which extends classical existence conditions of Aubin’s type [4], Theorem 1.1 provides several
examples of systems like (1.1)–(1.2) with multiplicity of solutions. In particular, the following
result holds true. We let hg = n−2

4(n−1) Scalg, where Scalg is the scalar curvature of g, so that hg
is the factor of the linear term in the n-dimensional Yamabe equation.

Theorem 1.2. Let (M, g) be a smooth, compact Riemannian manifold of dimension n ≥ 4,
let p ≥ 1 be a natural number, and let A be a smooth map from M to M s

p (R) such that the

operator ∆p
g + A is coercive on H2

1,p (M). If some diagonal component of A is less than the
function hg at some point in M (resp. equal to the function hg in a nonempty, open subset
of M in which the metric g is not conformally flat and if n ≥ 6) then (1.1)–(1.2) admits at
least (n+ 1) /2 pairs of nonzero solutions with energy less than 2K−nn . If moreover (−A) is
cooperative and (1.1)–(1.2) is fully coupled, then (1.1)–(1.2) admits at least (n+ 2) /2 pairs of
nonzero solutions with energy less than 2K−nn , and one of these pairs is positive.

Theorem 1.2 is proved by using test functions with no coupling, acting on the sole diagonal
coefficient they are concerned with. A major difficulty lies in property (ii) which requires
that the test functions we use should have their support shrinking to points as the dilatation
parameter ε goes to zero. This difficulty is of a new type in test functions computations
for manifolds. Another consequence of the shrinking property (ii) is that Schoen’s global
argument [41] developed for the Yamabe problem [45] cannot be used in the critical case
where the diagonal components of A are equal to hg and the manifold is locally conformally
flat. From the local viewpoint, such a manifold looks like the sphere. In particular, by
conformal invariance, when the diagonal components of A are equal to hg, strict inequalities
like in property (i) are unreachable by test functions with small support acting on a single
diagonal component of A. We overcome this difficulty in Theorem 1.3 below, when n ≥ 7, by
using our system structure and test functions with coupling, acting on different coefficients of
the matrix.
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Theorem 1.3. Let (M, g) be a smooth, compact Riemannian manifold of dimension n ≥ 7,
let p ≥ 2 be a natural number, and let A be a smooth map from M to M s

p (R) such that the

operator ∆p
g +A is coercive on H2

1,p (M). If some diagonal component Ai0i0 of A is equal to hg
around some point x0 in M , if the metric g is conformally flat around x0, and if there exists
j0 6= i0 such that Ai0j0(x0) 6= 0, then (1.1)–(1.2) admits at least (n+ 1) /2 pairs of nonzero
solutions with energy less than 2K−nn . If moreover (−A) is cooperative and (1.1)–(1.2) is fully
coupled, then (1.1)–(1.2) admits at least (n+ 2) /2 pairs of nonzero solutions with energy less
than 2K−nn , and one of these pairs is positive.

Without any pretention to exhaustivity, possible references on elliptic systems are Amster–
De Nápoli–Mariani [1], Angenent–van der Vorst [2, 3], Clément–Manásevich–Mitidieri [11],
de Figueiredo [19], de Figueiredo–Ding [20], de Figueiredo–Felmer [21], de Figueiredo–Sirakov
[22], Druet–Hebey [14], El Hamidi [18], Giaquinta–Martinazzi [24], Hebey [27–29], Hulshof–
Mitidieri–van der Vorst [30], Jost–Lin–Wang [31], Jost–Wang [32], Mancini–Mitidieri [34],
Mitidieri–Sweers [36], Montenegro [37], Pompino [39], Qing [40], and Sweers [43]. We also
mention the reference Vétois [44] for closely related developments.

2. Preliminary material

In the following, we let (M, g) be a smooth, compact Riemannian manifold of dimension
n ≥ 3 and A be a smooth map from M to M s

p (R). We first set some notations. We define a

scalar product on H2
1,p (M) by

〈U ,V〉H2
1,p(M) =

p∑
i=1

(∫
M

〈∇ui,∇vi〉g dvg + Λ

∫
M

uividvg

)
, (2.1)

where U = (u1, . . . , up) and V = (v1, . . . , vp), and where Λ is a positive constant to be chosen
large later on. Then the operator ∆p

g + A is coercive on H2
1,p (M) if there exists Λ0 > 0 such

that there holds
p∑
i=1

∫
M

|∇ui|2g dvg +

p∑
i,j=1

∫
M

Aijuiujdvg ≥ Λ0 ‖U‖2H2
1,p(M)

for all p-maps U = (u1, . . . , up) in H2
1,p (M), where ‖·‖H2

1,p(M) is the norm associated to

〈·, ·〉H2
1,p(M). For instance, if A is positive definite at all points in M , then the operator ∆p

g +A

is coercive on H2
1,p (M). Given a positive real number δ and a subset C of H2

1,p (M), we let

Bδ (C) stand for the neighborhood of C formed by all p-maps in H2
1,p (M) at a distance from

C less than or equal to δ. Given a real number c, we set IcA,g = I−1A,g ((−∞, c]). We let ∇IA,g
stand for the operator acting on H2

1,p (M) satisfying

〈∇IA,g (U) ,V〉H2
1,p(M) = DIA,g (U) .V

for all p-maps U and V in H2
1,p (M), where 〈·, ·〉H2

1,p(M) is as in (2.1). We define the operators

L1 : L2
p (M)→ H2

1,p (M) and L2 : L2∗
p (M)→ H2

1,p (M) by

∆p
gL1 (U) + Λ Idp L1 (U) = (Λ Idp−A)U , (2.2)

resp. ∆p
gL2 (U) + Λ Idp L2 (U) =

1

2∗
DU |U|2

∗
, (2.3)

where Idp is the identity matrix in M s
p (R), and Lqp (M) for q ≥ 1 is the set of p-maps with

components all in Lq. Then there holds

∇IA,g (U) = U − L1 (U)− L2 (U) (2.4)
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for all U ∈ H2
1,p (M). As one can check, L1 and L2 are locally Lipschitz when acting in

H2
1,p (M). In what follows, we let ϕA,g stand for the flow defined by

∂ϕA,g
∂t

(t,U) = −∇IA,g (ϕA,g (t,U)) if 0 ≤ t < T (U) ,

ϕA,g (0,U) = U ,
where for any p-map U in H2

1,p (M), T (U) is the maximal existence time for the trajectory

t → ϕA,g (t,U). By construction, for any p-map U in H2
1,p (M), and for any positive time t,

there holds
∂ (IA,g ◦ ϕA,g)

∂t
(t,U) = −‖∇IA,g (ϕA,g (t,U))‖2H2

1,p(M) . (2.5)

A subset D of H2
1,p (M) is said to be strictly positively invariant for the flow ϕA,g if for any U

in D and any time t in (0, T (U)), the p-map ϕA,g (t,U) belongs to the interior of D. As an
example, one can easily see by using (2.5) that the set IcA,g is strictly positively invariant for

the flow ϕA,g for all non-critical values c. Independently, we say that a subset D of H2
1,p (M) is

symmetric if there holds D = −D. The following deformation lemma is used in several places
in the proof of Theorem 1.1.

Lemma 2.1. Let (M, g) be a smooth, compact Riemannian manifold of dimension n ≥ 3,
let p ≥ 1 be a natural number, let A be a smooth map from M to M s

p (R), and let D be a

symmetric, closed subset of H2
1,p (M) which we assume to be strictly positively invariant for

the flow ϕA,g. Let c ∈ R, δ, ε ∈ R+, and let a symmetric subset C of H2
1,p (M) be such that for

any p-map U in I−1A,g ([c− ε, c+ ε]) ∩ Bδ (C), there holds

‖∇IA,g (U)‖H2
1,p(M) ≥

2ε

δ
. (2.6)

Then there exists an odd, continuous map ν : (Ic+εA,g ∩ C) ∪D → Ic−εA,g ∪D such that ν ≡ id in
the set D.

Proof. First, we claim that for any U ∈ Ic+εA,g ∩ C, the trajectory t → ϕA,g (t,U) cannot stay

in the set I−1A,g ((c− ε, c+ ε]) for all positive times t ∈ (0, T (U)). By (2.5), this implies that

for any p-map U ∈ Ic+εA,g ∩ C, there exists t0 > 0 such that ϕA,g (t,U) belongs to Ic−εA,g for all
t ≥ t0. We prove this claim by contradiction. Thus, we assume that there exists a p-map
U ∈ Ic+εA,g ∩ C such that ϕA,g (t,U) belongs to the set I−1A,g ((c− ε, c+ ε]) for all t ∈ (0, T (U)).
As long as ϕA,g (t,U) ∈ Bδ (C), by (2.6), we get

‖ϕA,g (t,U)− U‖H2
1,p(M) ≤

∫ t

0

∥∥∥∥∂ϕ∂t (s,U)

∥∥∥∥
H2

1,p(M)

ds

≤ δ

2ε

∫ t

0

‖∇IA,g (ϕA,g (t,U))‖2H2
1,p(M) ds

= − δ

2ε

∫ t

0

∂ (IA,g ◦ ϕA,g)
∂t

(s,U) ds

=
δ

2ε
(IA,g (U)− IA,g (ϕA,g (t,U))) . (2.7)

In particular, by (2.7), the trajectory t→ ϕA,g (t,U) stays in the ball Bδ (U) as long as it stays
in Bδ (C). By (2.7), we also get

t ≤
(
δ

2ε

)2

(IA,g (U)− IA,g (ϕA,g (t,U))) ≤ δ2

2ε
. (2.8)
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In particular, since the trajectory t → ϕA,g (t,U) stays in the ball Bδ (U) as long as it stays
in Bδ (C), and by (2.8), the standard extension theorem for solutions of ordinary differential
equations gives that t→ ϕA,g (t,U) cannot stay in Bδ (C) for all positive times. Let t1 > 0 be
the first positive time that the trajectory intersects ∂Bδ (C). By (2.7) with t = t1, we get

IA,g (ϕA,g (t,U)) ≤ IA,g (U)− 2ε ≤ c− ε ,

and this is in contradiction with the assumption that the trajectory t → ϕA,g (t,U) belongs
to I−1A,g ((c− ε, c+ ε]) for all t ∈ (0, T (U)). This proves the above claim that for any p-map

U ∈ Ic+εA,g ∩ C, the trajectory t → ϕA,g (t,U) cannot stay in the set I−1A,g ((c− ε, c+ ε]) for all
positive times t ∈ (0, T (U)). In particular, as already mentioned, this implies that for any
p-map U ∈ Ic+εA,g ∩C, there exists t0 > 0 such that ϕA,g (t,U) belongs to Ic−εA,g for all t ≥ t0. By

the positive invariance of D we then get that for any p-map U ∈ (Ic+εA,g ∩ C) ∪D, there exists

a nonnegative time τ (U) from which the trajectory t → ϕA,g (t,U) belongs to Ic−εA,g ∪D, and

τ (U) = 0 if U ∈ D. The function τ : (Ic+εA,g ∩C)∪D → R+ is clearly even. Now we claim that
τ is also a continuous function. The lower semicontinuity of τ is straightforward to check. We
prove the upper semicontinuity of τ in what follows. Let U ∈ (Ic+εA,g ∩ C) ∪ D. By definition

of τ , we get τ (U) ∈ ∂(Ic−εA,g ∪D). If ϕA,g (τ (U) ,U) ∈ ∂D, then the upper semicontinuity of τ

at U follows from the strict positive invariance of D. If ϕA,g (τ (U) ,U) ∈ ∂Ic−εA,g , by (2.7) with
t = τ (U), then we get ϕA,g (τ (U) ,U) ∈ Bδ (C), and the upper semicontinuity of τ at U then
follows from (2.5) and (2.6). Letting ν be given by ν (U) = ϕA,g (τ (U) ,U), this ends the proof
of the lemma. �

3. The H2
1 -theory for blow-up

The H2
1 -theory for the blow-up of Palais–Smale sequences, together with the above defor-

mation Lemma 2.1, is an essential ingredient in the proof of Theorem 1.1. Following standard
terminology, a sequence (Uα)α in H2

1,p (M) is said to be a Palais–Smale sequence for the func-

tional IA,g if the sequence (IA,g (Uα))α is bounded and if there holdsDIA,g (Uα)→ 0 inH2
1,p (M)′

as α → +∞. When IA,g (Uα) converges to a real number c as α → +∞, the sequence (Uα)α
is said to be a Palais–Smale sequence for the functional IA,g at level c. Bounded sequences in
H2

1,p (M) of solutions of equation (1.1) are Palais–Smale sequences for the functional IA,g. The

H2
1 -theory we briefly discuss in this section provides a structure equation for Palais–Smale se-

quences which describes their asymptotic behavior in H2
1,p (M) as α→ +∞. In what follows,

we let η be a smooth cutoff function on the Euclidean space centered at 0 with small support
around 0. By small, we mean, for instance, that the support of η is included in B0 (ig), where
ig is the injectivity radius of the manifold (M, g), and B0 (ig) is the Euclidean ball of center
0 and radius ig. Given a converging sequence (xα)α of points in M , and a sequence (µα)α of
positive real numbers converging to 0, we define the bubble in M of centers xα and weights
µα as the sequence (Bα)α of functions defined in M by

Bα (x) = µ−(n−2)/2α ηα (x)u
(
µ−1α exp−1xα (x)

)
, (3.1)

where ηα = η ◦ exp−1xα , and u is a nontrivial solution in Ḣ2
1 (Rn) of the equation

∆δu = |u|2
∗−2 u , (3.2)

where δ is the Euclidean metric in Rn. As is easily checked, (Bα)α converges to 0 weakly in
H2

1 (M) and strongly in L2 (M), but the H2
1 -norm of the functions Bα converges to ‖∇u‖L2(Rn)
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as α→ +∞. We also get ∫
M

|Bα|2
∗
dvg =

∫
Rn
|u|2

∗
dx+ o (1) (3.3)

when (Bα)α is given by (3.1), where o (1)→ 0 as α→ +∞. By extension, we define a p-bubble
in M as a sequence (Bα)α of p-maps with components all zero, except one which is a bubble
(Bα)α. In other words, (Bα)α is a p-bubble if there exists i = 1, . . . , p and a bubble (Bα)α
such that Biα = Bα and Bjα = 0 for all α and all j 6= i. The following result was proved by
Struwe [42] for scalar equations like (3.2) in bounded domains of the Euclidean space. The
result easily extends to systems and manifolds as shown in Hebey [27]. We state the result
with no proof and refer to [27] for more details.

Lemma 3.1. Let (M, g) be a smooth, compact Riemannian manifold of dimension n ≥ 3,
let p ≥ 1 be a natural number, and let A be a smooth map from M to M s

p (R). For any
Palais–Smale sequence (Uα)α for the functional IA,g, there exist a solution U∞ of (1.1)–(1.2),
a natural number k, and p-bubbles (B1

α)α , . . . ,
(
Bkα
)
α

such that, up to a subsequence, there hold

Uα = U∞ +
k∑
i=1

Biα +Rα (3.4)

and

IA,g (Uα) = IA,g (U∞) +
1

n

k∑
i=1

E
(
Biα
)

+ o (1)

for all α, where Rα → 0 in H2
1,p (M) as α→ +∞, IA,g is as in (1.4), E (Biα) is the energy of

the p-bubble (Biα)α, E is as in (1.3), and o (1)→ 0 as α→ +∞.

As a remark, see Ding [13] for more details, there exist solutions of (3.2) with arbitrarily high
energies. However, all positive solutions have the same minimal energy and are classified. More
precisely, nonnegative solutions of (3.2) have been classified by Caffarelli–Gidas–Spruck [6] and
Obata [38]. They are all of the form

uµ,x0 (x) =

 µ

µ2 + |x−x0|2
n(n−2)

(n−2)/2

, (3.5)

where µ is a nonnegative real number and x0 is a point in the Euclidean space. The uµ,x0 ’s are
extremal functions for the sharp Euclidean Sobolev inequality, and one can easily compute∫

Rn
|∇uµ,x0|

2 dx =

∫
Rn
|uµ,x0|

2∗ dx = K−nn ,

where Kn is the sharp constant given by (1.6). On the other hand, if u ∈ Ḣ2
1 (Rn) is a changing

sign solution of (3.2), then, decomposing u into its positive and negative parts, we get∫
Rn
|∇u|2 dx =

∫
Rn
|u|2

∗
dx > 2K−nn .

In other words, coming back to (3.3), we get that the energy of a constant sign bubble is
precisely K−nn , while the energy of a changing sign bubble is greater than 2K−nn . We also get
that if, in (3.4), one of the (B1

α)α’s come from a constant sign bubble (Bα)α, then, changing
if necessary the xα’s and µα’s, u in (3.1) can be chosen so that there holds u = ±u1,0, where
u1,0 is as in (3.5).



MULTIPLE SOLUTIONS FOR CRITICAL ELLIPTIC SYSTEMS 8

4. Relative equivariant Lusternik–Schnirelmann category

We very briefly discuss the notion of relative equivariant Lusternik–Schnirelmann category,
and the properties of relative equivariant Lusternik–Schnirelmann category we need in the
sequel. More developments can be found in Bartsch–Clapp [5] and Clapp–Puppe [8,9]. Let B
and D be two symmetric, closed subsets of a Banach space E such that D is included in B.
By definition, the equivariant Lusternik–Schnirelmann category of B relatively to D, denoted
by γD (B), is the smallest natural number k such that there exist

(i) symmetric, open subsets U0, . . . , Uk of E,
(ii) odd, continuous maps χi : Ui → {−1,+1}, i = 1, . . . , k,

(iii) an odd, continuous map χ0 : U0 → D,

with the properties that the Ui’s cover B, D ⊂ U0, and χ0 ≡ id in the set D. If no such natural
number exists then we set γD (B) = +∞. When D is empty, the equivariant Lusternik–
Schnirelmann category of B relatively to D = ∅ is defined as the smallest natural number k
such that there exist k symmetric, open subsets U1, . . . , Uk of E, and k odd, continuous maps
χi : Ui → {−1,+1}, i = 1, . . . , k, with the property that the Ui’s cover B. The equivariant
Lusternik–Schnirelmann category of B relatively to D = ∅ reduces to the Krasnosel′skĭı genus
γ (B) of B, defined as the smallest natural number k ≥ 1 such that there exists an odd,
continuous map χ : B → Rk\ {0}. In other words, we claim that if D = ∅, then γ (B) = γ∅ (B).
In order to prove this claim, we first assume that γ (B) < +∞ and we let k ≥ 1 be such that
there exists an odd, continuous map χ : B → Rk\ {0}. Letting Ui = χ−1 (U ′i), where U ′i
is the subset of Rk\ {0} consisting of the points (x1, . . . , xk) such that xi 6= 0, and letting
χi : Ui → {−1,+1} be defined by χi (u) = sign (χ (u)i), where sign is the sign function, we
get γ∅ (B) ≤ k. In particular, γ∅ (B) ≤ γ (B). Conversely, we assume that γ∅ (B) < +∞
and let k be a natural number such that there exist k symmetric, open subsets U1, . . . , Uk
of E which cover B, and k odd, continuous maps χi : Ui → {−1,+1} for i = 1, . . . , k. We
let (ηi)i be a partition of unity of B subordinated to the covering (Ui)i. Without loss of
generality, we may assume that the ηi’s are even functions. Then, we define χ : B → Rk\ {0}
by letting χ (u) =

∑k
i=1 ηi (u)χi (u) ei, where (e1, . . . , ek) is a basis of Rk. As is easily checked,

χ is odd, continuous, and nowhere vanishing. It follows that γ (B) ≤ k, and thus that
γ (B) ≤ γ∅ (B). This proves the above claim that γ (B) = γ∅ (B). We now state two properties
of the relative equivariant Lusternik–Schnirelmann category that we repeatedly use in the
proof of Theorem 1.1. We let B, C, and D be three symmetric, closed subsets of E. The two
following properties hold true:

(A1) If D ⊂ B ∩C and there exists an odd, continuous map ν : B → C such that ν ≡ id in
D, then γD (B) ≤ γD (C).

(A2) If D ⊂ B, then γD (B ∪ C) ≤ γD (B) + γ (C).

In particular, it follows from (A1) that if D ⊂ B ⊂ C, then γD (B) ≤ γD (C). These two prop-
erties (A1) and (A2) follow in a straightforward manner from the definition of relative equivari-
ant Lusternik–Schnirelmann category. Concerning (A1), we may assume that γD (C) < +∞.
Let the Ui’s and χi’s be given by (i)-(iii) for the relative equivariant Lusternik–Schnirelmann
category γD (C). We let V0 = U0 and χ′0 = χ0. We let also Vi = ν−1 (Ui) and χ′i = χi ◦ ν
for i = 1, . . . , γD (C). The Vi’s are symmetric, open subsets of E, and the χ′i’s are odd, con-
tinuous maps from the Vi’s to {−1,+1} when i ≥ 1. Noting that the Vi’s cover B, we get
γD (B) ≤ γD (C). This proves (A1). As for (A2), we may assume that γD (B) < +∞ and
γ (C) < +∞. Let the Ui’s and χi’s be given by (i)-(iii) for the relative equivariant Lusternik–
Schnirelmann category γD (B), and let the Vj’s and χ′j’s be given by the definition of the

Krasnosel′skĭı genus γ (C) = γ∅ (C). The union of these two families (Ui, χi) and
(
Vj, χ

′
j

)
gives
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a family (Wm, χ̃m) consisting of γD (B) + γ (C) + 1 elements which satisfies (i)-(iii) for B ∪C
and D. In particular, γD (B ∪ C) ≤ γD (B) + γ (C), and this proves (A2).

5. Proof of Theorem 1.1 - Part 1

We prove the first part of Theorem 1.1 in this section, and the second part in the fol-
lowing section, following arguments from Clapp–Weth [10]. Related references are Ekeland–
Ghoussoub [16,17], and Ghoussoub [23]. We let A be a smooth map from M to M s

p (R) such

that the operator ∆p
g +A is coercive on H2

1,p (M). We assume that for some k ≥ 1, there exists

Φ : Rk+1 → H2
1,p (M) an odd, continuous map such that there hold IA,g ◦ Φ < 2K−nn /n and

IA,g ◦ Φ (y) → −∞ as |y| → +∞, where IA,g is as in (1.4), and Kn is the sharp constant as
in (1.6). We aim in proving that (1.1)–(1.2) possesses at least k/2 pairs of nonzero solutions
with energy less than 2K−nn .

By the coercivity of the operator ∆p
g + A on H2

1,p (M), and by the Sobolev embedding
theorem, there exist Λ1Λ2 > 0 such that

IA,g (U) ≥ Λ1 ‖U‖2H2
1,p(M)

(
1− Λ2 ‖U‖2

∗−2
H2

1,p(M)

)
(5.1)

for all U ∈ H2
1,p (M). In particular, by (5.1), we get that there exist c0 ∈ (0, µA,g) and r0 > 0

such that for any U ∈ H2
1,p (M), there holds

‖U‖H2
1,p(M) = r0 =⇒ IA,g (U) ≥ 2c0 . (5.2)

Since c0 < µA,g, it follows from the definition of µA,g in (1.5) that c0 is not a critical value
of IA,g. Thus, Ic0A,g is strictly positive invariant for the flow ϕA,g. We prove the first part of
Theorem 1.1 in several steps. A preliminary step, which easily follows from the strict positive
invariance of Ic0A,g, is as follows.

Step 5.1. For any c ∈ (0, µA,g), γIcA,g(I
c
A,g) = 0, where µA,g is as in (1.5), and γIcA,g(I

c
A,g)

is the equivariant Lusternik–Schnirelmann category of IcA,g relatively to IcA,g. In particular,
γIc0A,g(I

c0
A,g) = 0, where c0 is as in (5.2).

Proof. We let c ∈ (0, µA,g) and define U0 to be the set of all p-maps U ∈ H2
1,p (M) with the

property that there exists a time τ (U) ∈ [0, T (U)) from which the trajectory t → ϕA,g (t,U)
belongs to IcA,g, where T (U) is the maximal existence time for the trajectory t → ϕA,g (t,U).
Let U0 ∈ U0. Then, by the definition of τ (U0) and by the strict positive invariance of IcA,g,
we get that for any ε0 > 0 sufficiently small, τ (U0) + ε0 < T (U0) and ϕA,g (τ (U0) + ε0,U0)
belongs to the interior of IcA,g. For U ∈ H2

1,p (M) sufficiently close to U0 we then get that
τ (U0) + ε0 < T (U) and that ϕA,g (τ (U0) + ε0,U) also belongs to the interior of IcA,g. This

implies that U ∈ U0 and that τ (U) ≤ τ (U0) + ε0 when U ∈ H2
1,p (M) is sufficiently close to

U0. In particular, U0 is an open subset of H2
1,p (M) and τ : U0 → R is upper semicontinuous.

The lower semicontinuity of τ is a straightforward consequence of the fact that IcA,g is closed.
By the definition of the equivariant Lusternik–Schnirelmann category in Section 4, this ends
the proof of Step 5.1. �

In what follows, given a natural number β ≥ 1, we define cβ by

cβ = inf
{
c > c0; γIc0A,g

(
IcA,g
)
≥ β

}
, (5.3)

where γIc0A,g

(
IcA,g
)

is the equivariant Lusternik–Schnirelmann category of IcA,g relatively to Ic0A,g,

and we adopt the convention that inf ∅ = +∞. A preliminary straightforward remark is that
the sequence (cβ)β is nondecreasing. Another preliminary step is as follows.



MULTIPLE SOLUTIONS FOR CRITICAL ELLIPTIC SYSTEMS 10

Step 5.2. For any β ≥ 1, if cβ in (5.3) is finite, then there exists a Palais–Smale sequence
for the functional IA,g at level cβ.

Proof. Let β ≥ 1 be such that cβ < +∞. It suffices to prove that for any ε > 0, there exists
U in I−1A,g ([cβ − ε, cβ + ε]) such that there holds ‖∇IA,g (U)‖H2

1,p(M) < ε. We proceed by con-

tradiction, and assume that there exists ε0 > 0 such that for any U in I−1A,g ([cβ − ε0, cβ + ε0]),

there holds ‖∇IA,g (U)‖H2
1,p(M) ≥ ε0. By Lemma 2.1 with C = H2

1,p (M) and D = Ic0A,g, there

exists an odd, continuous map

ν : I
cβ+ε0
A,g −→ I

max(cβ−ε0,c0)
A,g

such that ν ≡ id in the set Ic0A,g. By (A1) in Section 4 we then get

γIc0A,g

(
I
cβ+ε0
A,g

)
≤ γIc0A,g

(
I
max(cβ−ε0,c0)
A,g

)
. (5.4)

Since we also get by (A1) in Section 4 that γIc0A,g(I
c
A,g) ≤ γIc0A,g(I

cβ+ε0
A,g ) for any cβ ≤ c ≤ cβ + ε0,

(5.4) contradicts the definition of cβ in (5.3) if c0 < cβ, and thus if max (cβ − ε0, c0) < cβ. If
this is not the case, max (cβ − ε0, c0) = c0 and we conclude to a contradiction with Step 5.1.
This ends the proof of Step 5.2. �

Let β ≥ 1 be such that cβ < +∞. By Step 5.2, there exists a Palais–Smale sequence (Uα)α
for the functional IA,g at level cβ. By Lemma 3.1, we then get all the possible decompositions
of the sequence (Uα)α according to the value of cβ. In case cβ < K−nn /n, a subsequence of
(Uα)α converges in H2

1,p (M) to a nontrivial critical point of the functional IA,g. In particular,
c0 < cβ, and since c0 < K−nn /n, we always get c0 < cβ. In case K−nn /n ≤ cβ < 2K−nn /n, there
is at most one constant sign p-bubble in the decomposition (3.4) of (Uα)α, where a p-bubble
is said to be of constant sign if the bubble from which the p-bubble is defined comes in (3.1)
with a nonnegative or nonpositive solution u of (3.2). In particular, either cβ or cβ −K−nn /n
is a critical level of the functional IA,g. In what follows, for any real number c, we let Kc be
the set of all critical points of the functional IA,g at level c, namely

Kc =
{
U ∈ H2

1,p (M) ; IA,g (U) = c and ∇IA,g (U) = 0
}
. (5.5)

Step 5.3 in the proof of the first part of Theorem 1.1 is as follows.

Step 5.3. Let η be a smooth cutoff function as in Section 3. For any positive real number θ
and for i = 1, . . . , p, define

U i
θ = B2θ

(
Kcβ−K−nn /n + P i

θ

)
,

where P i
θ is the set consisting of the p-maps U = (u1, . . . , up) such that uj = 0 for all j 6= i,

and ui = (ηuµ,0) ◦ exp−1x0 for some 0 < µ ≤ θ and x0 ∈ M , where uµ,0 is as in (3.5). Let also
Uθ =

⋃p
i=1 U

i
θ. When θ > 0 is sufficiently small, the sets Uθ and −Uθ are disjoint.

Proof. By contradiction, we assume that for any natural number α ≥ 1, the intersection of
U1/α with −U1/α is not empty. Passing if necessary to a subsequence, we may assume that

there exist two indices i1 and i2 such that for any α, the intersection of U i1
1/α with −U i2

1/α is

not empty and thus that there exist sequences of p-maps U1
α and U2

α in Kcβ−K−nn /n, B1
α in P i1

1/α,

and B2
α in P i2

1/α, such that (
Uα + B1

α

)
−
(
Vα − B2

α

)
−→ 0 (5.6)

in H2
1,p (M) as α → +∞. Passing if necessary to a subsequence, (B1

α)α∈N and (B2
α)α∈N are

two nonnegative p-bubbles. Taking into account that p-bubbles converge weakly to 0 and that
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sequences in Kcβ−K−nn /n are compact in H2
1,p (M), since by assumption cβ−K−nn /n < K−nn /n, it

follows that up to a subsequence, (U1
α)α∈N and (U2

α)α∈N converge to the same limit in H2
1,p (M).

This leads to a contradiction since by (5.6), the p-bubbles (B1
α)α∈N and (B2

α)α∈N would converge
up to a subsequence to 0 in H2

1,p (M). We assumed here that the set Kcβ−K−nn /n is not empty

but the proof goes similarly, and is even easier if Kcβ−K−nn /n = ∅. Step 5.3 is proved. �

In what follows we let ]B be the cardinal number of a set, with the convention that ]B = 0
when B = ∅ and ]B = +∞ when B is infinite. Step 5.4 in the proof of the first part of
Theorem 1.1 is as follows.

Step 5.4. If there exists β such that cβ = cβ+1 < 2K−nn /n, then ]Kcβ = +∞ and the functional
IA,g thus has infinitely many critical points at level cβ, where cβ is as in (5.3), and Kcβ is as
in (5.5).

Proof. We proceed by contradiction, and assume that ]Kcβ < +∞. If we also get ]Kcβ > 0,

and thus if Kcβ is not empty, then there holds γ(Kcβ) = 1 and there also holds γ(B2θ
(
Kcβ

)
) =

γ(Kcβ) = 1 for θ > 0 sufficiently small. First we assume that cβ < K−nn /n. In that case, by
Step 5.2 and by the discussion after the proof of Step 5.2, Kcβ is not empty and Palais–Smale
sequences for the functional IA,g at level cβ are compact in H2

1,p (M). We let θ > 0 sufficiently

small be such that γ(B2θ
(
Kcβ

)
) = 1. By the compactness of Palais–Smale sequences for

the functional IA,g at level cβ, there exists ε ∈ (0, cβ − c0) such that for any p-map U in

I−1A,g ([cβ − ε, cβ + ε]) \Bθ
(
Kcβ

)
, there holds

‖∇IA,g (U)‖H2
1,p(M) ≥

2ε

θ
.

Thus, we can apply Lemma 2.1 with C = H2
1,p (M) \B2θ

(
Kcβ

)
, D = Ic0A,g, and δ = θ. This

yields an odd, continuous map

ν : I
cβ+ε
A,g \B2θ

(
Kcβ

)
∪ Ic0A,g −→ I

cβ−ε
A,g (5.7)

such that ν ≡ id in the set Ic0A,g. By the definition of cβ and by the properties (A1) and (A2)
of the relative equivariant Lusternik–Schnirelmann category listed in Section 4, it follows from
(5.7) that

β + 1 ≤ γIc0A,g

(
I
cβ+ε
A,g

)
≤ γIc0A,g

(
I
cβ+ε
A,g \B2θ

(
Kcβ

)
∪ Ic0A,g

)
+ γ

(
B2θ
(
Kcβ

))
≤ γIc0A,g

(
I
cβ−ε
A,g

)
+ γ

(
B2θ
(
Kcβ

))
< β + γ

(
B2θ
(
Kcβ

))
. (5.8)

Clearly, (5.8) is in contradiction with γ(B2θ
(
Kcβ

)
) = 1, and so we are left with the remaining

case where cβ ≥ K−nn /n. Given θ′ > 0 we adopt here the convention that Bθ′(Kcβ) = ∅ when
the set Kcβ is empty. We let Uθ be as in Step 5.3 and choose θ > 0 sufficiently small such
that Uθ and −Uθ are disjoint. Without any loss of generality, since Kcβ−K−nn /n is compact

and ]Kcβ < +∞, we may also choose θ > 0 sufficiently small such that B2θ(Kcβ) and Uθ are
disjoint, and such that B2θ(Kcβ) and −Uθ are disjoint. For θ′ > 0, we define

Zθ′ = Bθ′
(
Kcβ

)
∪ Uθ′/2 ∪

(
−Uθ′/2

)
.
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As is easily checked from the definition of the Krasnosel′skĭı genus, γ (Z2θ) = 1. Now we
proceed as above. Since Palais–Smale sequences for the functional IA,g at level cβ have at most
one constant sign p-bubble in their decomposition, there exists a real number ε ∈ (0, cβ − c0)
such that for any p-map U in I−1A,g ([cβ − ε, cβ + ε]) \Zθ, there holds

‖∇IA,g (U)‖H2
1,p(M) ≥

2ε

θ
.

Thus, we can apply Lemma 2.1 with C = H2
1,p (M) \Z2θ, D = Ic0A,g, and δ = θ. This yields an

odd, continuous map

ν : I
cβ+ε
A,g \Z2θ ∪ Ic0A,g −→ I

cβ−ε
A,g (5.9)

such that ν ≡ id in the set Ic0A,g. By the definition of cβ and by the properties (A1) and (A2)
of the relative equivariant Lusternik–Schnirelmann category listed in Section 4, it follows from
(5.9) that

β + 1 ≤ γIc0A,g

(
I
cβ+ε
A,g

)
≤ γIc0A,g

(
I
cβ+ε
A,g \Z2θ ∪ Ic0A,g

)
+ γ (Z2θ)

≤ γIc0A,g

(
I
cβ−ε
A,g

)
+ γ (Z2θ)

< β + γ (Z2θ) . (5.10)

Clearly, (5.10) is in contradiction with γ (Z2θ) = 1. In the two possible cases where cβ < K−nn /n
and cβ ∈ [K−nn /n, 2K−nn /n), we get a contradiction. This ends the proof of Step 5.4. �

Step 5.5 is the last step in the proof of the first part of Theorem 1.1. It states as follows.

Step 5.5. For k ≥ 1 as in Theorem 1.1, there holds ck+1 < 2K−nn /n, where ck+1 is as in (5.3).

Proof. We let k ≥ 1 and Φ be as in Theorem 1.1. Then Φ is an odd, continuous map from
Rk+1 to H2

1,p (M) such that IA,g ◦ Φ < 2K−nn /n and IA,g ◦ Φ (y)→ −∞ as |y| → +∞. We let

k̃ = γIc0A,g

(
I
sup(IA,g◦Φ)
A,g

)
, (5.11)

and prove that k̃ ≥ k+ 1. Since IA,g ◦Φ < 2K−nn /n and IA,g ◦Φ is negative outside large balls,
Step 5.5 obviously follows from this inequality. Without loss of generality, we may assume

that k̃ is finite. We let U0, . . . , Uk̃ and χ0, . . . , χk̃ be given by the definition in Section 4 of the

relative equivariant Lusternik–Schnirelmann category k̃ in (5.11). In particular, Ic0A,g ⊂ U0 and
χ0 : U0 → Ic0A,g is odd, continuous, and such that χ0 = id in Ic0A,g. Changing U0 if necessary
and using Dugundji’s [15] extension of Tietze’s theorem, we may regard χ0 as the restriction
of an odd, continuous map, still denoted χ0, defined from the whole Sobolev space H2

1,p (M)
to itself. We set

O = (χ0 ◦ Φ)−1 (B0 (r0)) , (5.12)

where r0 is as in (5.2). Clearly, O is symmetric, open, 0 ∈ O, and, since IA,g ◦Φ (y)→ −∞ as
|y| → +∞, we also get that O is bounded. By our choice of r0 in (5.2), Ic0A,g ∩ ∂B0 (r0) = ∅,
and we thus get that the set Φ−1 (U0) does not intersect ∂O. In particular, the boundary

of O is covered by the sets ∂O ∩ Φ−1 (Ui), i = 1, . . . , k̃. Let (ηj)j, where ηj : ∂O → R and
j = 1, . . . , l, be a partition of unity subordinated to this covering. Without loss of generality,
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we may assume that Supp ηj ⊂ ∂O ∩ Φ−1 (Uj) for all j and that l ≤ k̃. We may also assume
that the ηj’s consist of even functions. We define a map χ : ∂O → Rl by

χ (y) =
l∑

i=1

ηi (y)χi (Φ (y)) ei , (5.13)

where ei is the i-th vector in the canonical basis of Rl. The map χ as defined in (5.13) is
odd, continuous, and nowhere vanishing. Since O in (5.12) is symmetric, bounded, open, and
contains 0, it follows from the Borsuk–Ulam theorem (see, for instance, Kavian [33]) that l is

greater than or equal to k + 1. But l ≤ k̃ and we thus get k̃ ≥ k + 1. This ends the proof of
Step 5.5. �

By Steps 5.2, 5.4, and 5.5, we are now in position to prove the first part of Theorem 1.1.
The proof goes as follows.

Proof of the first part of Theorem 1.1. We let the cβ’s be as in (5.3), and k ≥ 1 be as in
Theorem 1.1. By Steps 5.4 and 5.5, we may assume that the finite sequence (c1, . . . , ck+1) is
increasing and strictly bounded from above by 2K−nn /n. We let ck+2 = 2K−nn /n, and l ∈ N be
such that cl < K−nn /n ≤ cl+1. If l ≥ 1 then, by Step 5.2 and the discussion following Step 5.2,
cβ is a critical level of the functional IA,g for β = 1, . . . , l. Moreover, cβ comes with a nontrivial
solution of equation (1.1), and we get that there are l distinct nonzero critical levels of the
functional IA,g which are less than or equal to K−nn /n. For β = l + 1, . . . , k + 1, see again
Step 5.2 and the discussion following Step 5.2, either cβ or cβ − K−nn /n is a critical level of
the functional IA,g. It follows that we also get the existence of at least k − l distinct critical

levels of IA,g in (0, 2K−nn /n). We finally conclude that there exist at least l+(k−l)
2

= k
2

distinct
critical levels of IA,g in (0, 2K−nn /n). This ends the proof of the first part of Theorem 1.1. �

6. Proof of Theorem 1.1 - Part 2

We prove the second part of Theorem 1.1 in this section. We let A be a smooth map from
M to M s

p (R) such that the operator ∆p
g +A is coercive on H2

1,p (M). We assume that for some

k ≥ 1, there exists Φ : Rk+1 → H2
1,p (M) an odd, continuous map such tha IA,g ◦ Φ < 2K−nn /n

and IA,g ◦ Φ (y) → −∞ as |y| → +∞, where IA,g is as in (1.4), and Kn is the sharp constant
as in (1.6). We also assume that µA,g < K−nn /n, (−A) is cooperative, and (1.1)–(1.2) is fully
coupled, where µA,g is as in (1.5). Then, we aim in proving that (1.1)–(1.2) possesses at least
(k + 1) /2 pairs of nonzero solutions with energy less than 2K−nn . If u is a function in H2

1 (M),
we let u+ = max (u, 0) and u− = max (−u, 0). For a p-map U = (u1, . . . , up) in H2

1,p (M),

we let U+ =
(
u+1 , . . . , u

+
p

)
and U− =

(
u−1 , . . . , u

−
p

)
. We let also P be the set of all p-maps in

H2
1,p (M) with nonnegative components. Here again, we proceed in several steps. A first step

is as follows.

Step 6.1. Let Λ be the positive constant appearing in the definition of the scalar product (2.1).
If Λ is large enough then for sufficiently small positive real numbers δ, the sets Bδ (P) and
Bδ (−P) are strictly positively invariant for the flow ϕA,g.

Proof. Since ∇IA,g is odd, we may restrict ourselves to considering the sole sets Bδ (P). We
write ∇IA,g as in (2.4) so that ∇IA,g = id−L1−L2, where L1 and L2 are as in (2.2) and (2.3).
First, we claim that if the constant Λ is large enough then for sufficiently small positive real
numbers δ, there exists ν in (0, 1) such that for any p-map U in Bδ (P), there holds

d (L1 (U) + L2 (U) ,P) ≤ νd (U ,P) , (6.1)
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where d is the distance on the Sobolev space H2
1,p (M). In what follows, we set U = (u1, . . . , up),

L1 (U) = (F1 (U) , . . . , Fp (U)), L2 (U) = (G1 (U) , . . . , Gp (U)). We begin with estimating
d (L1 (U) ,P) for all p-maps U in H2

1,p (M). We assume that the constant Λ is greater than or
equal to any diagonal component of A so that all the components of Λ Idp−A are nonnegative.
By the maximum principle, we then get that L1 sends P to itself. By using (2.2) and the
coercivity of the operator ∆p

g + A, we get that if Λ is chosen large enough, then

‖L1 (U)‖2H2
1,p(M) =

p∑
i,j=1

∫
M

(Λδij − Aij)uiFj (U) dvg

≤ (1− ε)
(
‖U‖2H2

1,p(M) + ‖L1 (U)‖2H2
1,p(M)

)
for some constant ε ∈ (0, 1). It follows that

‖L1 (U)‖H2
1,p(M) ≤

√
1− ε ‖U‖H2

1,p(M) . (6.2)

We let V be the orthogonal projection of U on the closed convex set P . Applying (6.2) to the
p-map U − V , since there holds L1 (P) ⊂ P , and since L1 is a linear operator, we get

d (L1 (U) ,P) ≤ ‖L1 (U)− L1 (V)‖H2
1,p(M) ≤

√
1− εd (U ,P) . (6.3)

Now, we estimate d (L2 (U) ,P). Here again, by the maximum principle, L2 sends P to itself.
Multiplying (2.3) by the p-map −L2 (U)−, summing the p equations we get with this process,
and integrating by parts on M yield∥∥L2 (U)−

∥∥2
H2

1,p(M)
= −

p∑
i=1

∫
M

|ui|2
∗−2 uiGi (U)− dvg ≤

p∑
i=1

∫
M

∣∣u−i ∣∣2∗−2 u−i Gi (U)− dvg ,

and by Hölder’s inequality we then get∥∥L2 (U)−
∥∥2
H2

1,p(M)
≤

p∑
i=1

∥∥u−i ∥∥2∗−1L2∗ (M)

∥∥Gi (u)−
∥∥
L2∗ (M)

. (6.4)

We also clearly get ∥∥u−i ∥∥L2∗ (M)
= min

v∈H2
1 (M)+

‖ui − v‖L2∗ (M) (6.5)

for all i = 1, . . . , p, where H2
1 (M)+ stands for the set of the nonnegative functions in H2

1 (M).
Combining (6.4) and (6.5), thanks to the Sobolev embedding theorem, we then get that there
exists CΛ > 0, independent of U , such that∥∥L2 (U)−

∥∥
H2

1,p(M)
≤ CΛd (U ,P)2

∗−1 . (6.6)

Summing (6.3) with (6.6) yields

d (L1 (U) + L2 (U) ,P) ≤
√

1− εd (U ,P) + Cd (U ,P)2
∗−1 . (6.7)

Then, it easily follows from (6.7) that for δ > 0 sufficiently small, there exists ν in (0, 1) such
that (6.1) holds true for all U in Bδ (P). This proves the above claim, and now that we get
(6.1), we fix δ > 0 sufficiently small and write with (2.4) and (6.1) that for any λ ∈ (0, 1] and
any U ∈ Bδ (P), there holds

d (U − λ∇IA,g (U) ,P) ≤ d ((1− λ)U ,P) + d (λ (F (U) +G (U)) ,P) < d (U ,P) .

We then get that d (U − λ∇IA,g (U) ,Bδ (P)) = 0 for all λ ∈ (0, 1] and all p-maps U in Bδ (P).
Since Bδ (P) is closed, convex, and its interior is nonempty, it follows from Deimling [12,
Theorem 5.2] that Bδ (P) is positively invariant in the sense that for any p-map U in Bδ (P),
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the trajectory t → ϕA,g (t,U) stays in the set Bδ (P) for all positive times. It remains to
exhibit a contradiction in case such a trajectory intersects ∂Bδ (P) for some positive time t0.
If such a t0 > 0 exists, then by Mazur’s separation theorem (see, for instance, Megginson [35]),
there exists a continuous linear form ` on H2

1,p (M) such that ` (ϕA,g (t0,U)) < ` (int (Bδ (P))),
where int (Bδ (P)) is the interior of Bδ (P). By (6.1), the operator L1 + L2 sends Bδ (P) to its
interior int (Bδ (P)). Thus we can write

∂ (` ◦ ϕA,g)
∂t

(t0,U) = ` ((L1 + L2) (ϕA,g (t0,U)))− ` (ϕA,g (t0,U)) > 0 .

Hence, for sufficiently small ε > 0, there holds ` (ϕA,g (t0 − ε,U)) < ` (ϕA,g (t0,U)), and we get
ϕA,g (t0 − ε,U) does not belong to Bδ (P). This contradicts the positive invariance of the set
Bδ (P), and ends the proof of Step 6.1. �

Henceforth, we assume that Λ is sufficiently large and that δ is sufficiently small such
that the sets Bδ (P) and Bδ (−P) are strictly positively invariant for the flow ϕA,g. We set
Dδ = Bδ (P ∪ (−P)). Since 0 is the only critical point of the functional IA,g at level 0, it
follows from (2.5) and Step 6.1 that I0A,g ∪Dδ is strictly positively invariant for the flow ϕA,g.
Mimicking the proof of Step 5.1 in Section 5, we get that the following step holds true.

Step 6.2. There holds γI0A,g∪Dδ
(
I0A,g ∪ Dδ

)
= 0, where γI0A,g∪Dδ

(
I0A,g ∪ Dδ

)
is the equivariant

Lusternik–Schnirelmann category of I0A,g ∪Dδ relatively to I0A,g ∪Dδ, and Dδ = Bδ (P ∪ (−P))
is as above.

In what follows, given a natural number β ≥ 1, we define c̃β by

c̃β = inf
{
c > 0; γI0A,g∪Dδ

(
IcA,g ∪ Dδ

)
≥ β

}
, (6.8)

where γI0A,g∪Dδ
(
IcA,g ∪ Dδ

)
is the equivariant Lusternik–Schnirelmann category of IcA,g ∪ Dδ

relatively to I0A,g∪Dδ, and we adopt the convention that inf ∅ = +∞. Here again, the sequence
(c̃β)β is nondecreasing. Following Step 5.2 in Section 5, we now claim that the following step
holds true.

Step 6.3. For any β ≥ 1, if c̃β in (6.8) is finite, then there exists a Palais–Smale sequence

(Uα)α for the functional IA,g at level c̃β. Moreover, Uα ∈ H2
1,p (M) \Dδ/2 for all α.

Proof. In order to prove Step 6.3, it suffices to prove that for any ε > 0, there exists U in

I−1A,g ([c̃β − ε, c̃β + ε]) ∩H2
1,p (M) \Dδ/2 such that

‖∇IA,g (U)‖H2
1,p(M) <

4ε

δ
.

We proceed by contradiction and assume that there exists ε0 > 0 such that for any p-map

U in I−1A,g ([c̃β − ε0, c̃β + ε0]) ∩ H2
1,p (M) \Dδ/2, there holds ‖∇IA,g (U)‖H2

1,p(M) ≥ 4ε0/δ. Since

there holds
Bδ/2(H2

1,p (M) \Dδ) ⊂ H2
1,p (M) \Dδ/2 ,

we may apply Lemma 2.1 with C = H2
1,p (M) \Dδ, D = I0A,g ∪ Dδ, and δ/2 instead of δ. In

particular, we get the existence of an odd, continuous map

ν : I
c̃β+ε0
A,g ∪ Dδ −→ I

max(c̃β−ε0,0)
A,g ∪ Dδ

such that ν ≡ id in the set I0A,g ∪ Dδ. Then, by (A1) in Section 4, we get

γI0A,g∪Dδ

(
I
c̃β+ε0
A,g ∪ Dδ

)
≤ γI0A,g∪Dδ

(
I
max(c̃β−ε0,0)
A,g ∪ Dδ

)
, (6.9)
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and the contradiction with the definition of c̃β follows from (6.9) if c̃β > 0. If c̃β = 0, the
contradiction follows from (6.9) and Step 6.2. This ends the proof of Step 6.3. �

Let β ≥ 1 be such that c̃β is finite, and let (Uα)α be the Palais–Smale sequence for IA,g
at level c̃β we get from Step 6.3. We get d(Uα,P ∪ (−P)) ≥ δ/2 for all α. By Lemma 3.1,
since 0 is the only critical point of the functional IA,g at level 0, we then get that c̃β cannot
be equal to 0. In particular, c̃β > 0. Assuming that c̃β ≤ K−nn /n, we also get that there
exists a subsequence of (Uα)α converging to a nontrivial changing sign critical point of the
functional IA,g. By a changing sign p-map U , we mean that U 6∈ (−P)∪P . If we assume that
K−nn /n < c̃β < 2K−nn /n, then there is at most one constant sign p-bubble in the decomposition
of (Uα)α. Thus, either c̃β or c̃β −K−nn /n is a critical level of the functional IA,g. Step 6.4 in
the proof of the second part of Theorem 1.1 is as follows.

Step 6.4. If there exists β such that c̃β = c̃β+1 < 2K−nn /n, then ]Kcβ = +∞ and the functional
IA,g thus has infinitely many critical points at level c̃β, where c̃β is as in (6.8), and Kcβ is as
in (5.5).

The proof of Step 6.4 goes as for the proof of Step 5.4. When applying Lemma 2.1 we just
set D = I0A,g ∪ Dδ instead of D = Ic0A,g as done in the proof of Step 5.4. We omit the proof of
Step 6.4 here. Step 6.5 in the proof of the second part of Theorem 1.1 is as follows.

Step 6.5. For k ≥ 1 as in Theorem 1.1, and for δ > 0 in (6.8) sufficiently small, there holds
c̃k < 2K−nn /n, where c̃k is as in (6.8).

Proof. We let k ≥ 1 and Φ be as in Theorem 1.1. Then, Φ is an odd, continuous map from
Rk+1 to H2

1,p (M) such that IA,g ◦ Φ < 2K−nn /n and IA,g ◦ Φ (y)→ −∞ as |y| → +∞. We set

k̃ = γI0A,g∪Dδ

(
I
sup(IA,g◦Φ)
A,g ∪ Dδ

)
.

It suffices to prove that k̃ is greater than or equal to k. We may assume that k̃ is finite. By

the definition of k̃, there exist k̃ + 1 symmetric, open subsets U0, . . . , Uk̃ of H2
1,p (M) which

cover I
sup(IA,g◦Φ)
A,g ∪ Dδ and such that

(
I0A,g ∪ Dδ

)
⊂ U0, and there exist k̃ + 1 odd, continuous

maps χ0 : U0 → I0A,g ∪ Dδ and χi : Ui → {−1, 1}, i = 1, . . . , k̃, such that χ0 ≡ id in the set

I0A,g ∪ Dδ. Changing U0, if necessary, and using Dugundji’s [15] extension of Tietze’s theorem
as in Step 5.5, we may regard χ0 as the restriction of an odd, continuous map, still denoted
χ0, defined from the whole Sobolev space H2

1,p (M) to itself. Now, we claim that there exists
an odd, continuous map χ : N ∩ Dδ → {−1, 1}, where N is the Nehari manifold of IA,g as
defined in the introduction. In order to prove this claim, we set

E =
{
U ∈ N ; U+ ∈ N and U− ∈ N

}
,

where U+ =
(
u+1 , . . . , u

+
p

)
and U− =

(
u−1 , . . . , u

−
p

)
if U = (u1, . . . , up). The distance between

the sets E and P ∪ (−P) is positive. Indeed, by the continuity of the embedding of H2
1 (M)

into L2∗ (M), we can write that there exists C > 0 such that for any p-maps U = (u1, . . . , up)
in E and V = (v1, . . . , vp) in P , there holds

‖U ± V‖2
∗

H2
1,p(M) ≥ C

p∑
i=1

∫
M

|ui ± vi|2
∗
dvg ≥ C

p∑
i=1

∫
M

∣∣u±i ∣∣2∗ dvg = nCIA,g
(
U±
)
≥ nCµA,g .

Decreasing δ > 0, if necessary, we may now assume that the sets E and Dδ are disjoint. As in
Castro–Cossio–Neuberger [7, Lemma 2.5] we get that the set N\E consists in two connected
components, namely {U ∈ N ; U ∈ P or DIA,g (U+) .U+ < 0} and its symmetric. It follows
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that N ∩Dδ also consists in two connected components and we get that there exists an odd,
continuous map χ : N ∩ Dδ → {−1, 1}. This proves the above claim. Now, we let O be the
inverse image by the map χ0 ◦Φ of the connected component C of H2

1,p (M) \N which contains

0, and let K : H2
1,p (M) \{0} → R+ be such that WU = K (U)U for all U ∈ H2

1,p (M) \{0},
where WU is as in (1.7). We get that there holds K (U) < 1 when U ∈ I0A,g and, by the
Sobolev embedding theorem, that there holds K (U) > 1 when U is sufficiently close to 0 in
H2

1,p (M). In particular, since WU = U if and only if U ∈ N , we get
(
I0A,g\{0}

)
∩ C = ∅. Since

there holds IA,g ◦Φ (y)→ −∞ as |y| → +∞, it follows that O is a symmetric, bounded, open

neighborhood of 0. The boundary of O is covered by the sets ∂O∩Φ−1 (Ui), i = 0, . . . , k̃. Let

χ̃i = χi when i = 1, . . . , k̃, and χ̃0 = χ ◦ χ0, where χ is the map we constructed above. Let
also

(
ηij
)
j
, where ηij : ∂O → R and j = 0, . . . , l, be a partition of unity subordinated to this

covering. Without loss of generality we may assume that Supp ηij ⊂ ∂O ∩ Φ−1
(
Uij
)

for all j

and that l ≤ k̃. We may also assume that the ηj’s consist of even functions. We define a map
χ : ∂O → Rl+1 by

χ (y) =
l∑

j=0

ηij (y) χ̃ij ◦ Φ (y) ej ,

where ej is the j-th vector in the canonical basis of Rl+1. This map is odd, continuous, and
nowhere vanishing. Since O is symmetric, bounded, open, and contains 0, it follows from the
Borsuk–Ulam theorem (see, for instance, Kavian [33]) that l + 1 is greater than or equal to

k + 1. But l ≤ k̃ and we thus get that k̃ ≥ k. This ends the proof of Step 6.5. �

By Steps 6.3, 6.4, and 6.5, we are now in position to prove the second part of Theorem 1.1.
The proof goes as follows.

Proof of the second part of Theorem 1.1. We let the c̃β’s be as in (6.8), and let k ≥ 1 be as
in Theorem 1.1. By Steps 6.4 and 6.5, we may assume that the finite sequence (c̃1, . . . , c̃k) is
increasing and strictly bounded from above by 2K−nn /n. By assumption, µA,g < K−nn /n, where
µA,g is as in (1.5). Then, since (−A) is cooperative, and the system (1.1)–(1.2) is fully coupled,
we get from Hebey [27] that µA,g is attained by a positive p-map which, up to a subsequence,
is in turn a positive solution of (1.1)–(1.2). As is easily checked, µA,g can only be attained by
p-maps in ±P when (−A) is cooperative. Since c̃1 is attained by a changing sign p-map when
c̃1 ≤ K−nn /n, we get µA,g < c̃1. In what follows, we let c̃0 = µA,g, c̃k+1 = 2K−nn /n, and l ≥ 0
be such that c̃l ≤ K−nn /n < c̃l+1. Then there exist at least l+ 1 distinct nonzero critical levels
of the functional IA,g which are less than or equal to K−nn /n. Since k+ 1 > (k+ 1)/2, we may
assume in what follows l < k. For β = l + 1, . . . , k, either c̃β or c̃β −K−nn /n is a critical level
of the functional IA,g. In particular, we get the existence of k− l distinct critical levels of IA,g
in (0, 2K−nn /n). We finally conclude that there exist at least l+1+(k−l)

2
= k+1

2
distinct critical

levels of the functional IA,g in (0, 2K−nn /n), and that c̃0 is attained by a positive p-map. This
ends the proof of the second part of Theorem 1.1. �

7. Proof of Theorem 1.2

We let i0 = 1, . . . , p be given, δ ∈ (0, 1), and η : R→ R be a smooth cutoff function centered
at 0 with support in [−1,+1] such that η ≡ 1 in [−δ,+δ]. We let also (µε)ε be a sequence
of positive real numbers such that µε → 0 as ε → 0, and, for x ∈ M , we define uε = uε,x,
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uε : M → R, by

uε(y) =
η
(
r
ε

)
(µε + r2)(n−2)/2

, (7.1)

where r = dg(x, y) is the Riemannian distance from x to y. Then Suppuε ⊂ Bx(ε) for all
ε > 0. We also define the p-map Uε = Uε,i0,x, Uε : M → Rp, by

Uε = (0, . . . , 0, uε, 0, . . . , 0) , (7.2)

where uε is as in (7.1) and is placed at rank i0 so that uiε = 0 for all i 6= i0 and ui0ε = uε if the
uiε’s stand for the components of Uε. We compute expansions for IA,g (WUε) in Lemmas 7.1
and 7.2 below. As a remark, there holds

IA,g (WUε) =
1

n

(∫
M

(
|∇uε|2 + Ai0i0u

2
ε

)
dvg(∫

M
u2∗ε dvg

)2/2∗
)n/2

.

The expansions for IA,g (WUε) in Lemmas 7.1 and 7.2 are closely related to those of Aubin [4].
However, we face in our computations the difficulty that the supports of the Uε’s shrink to a
point as ε → 0. Because of this ε-shrinking of the supports of the Uε’s, we need to compute
the ε-rate at which µε should converge to zero. Lemmas 7.1 and 7.2 correspond to the two
cases in Theorem 1.2 where

(i) n ≥ 4 and Ai0i0(x0) <
n−2

4(n−1) Scalg(x0) for some i0 and some x0,

(ii) n ≥ 6, Ai0i0 ≡ n−2
4(n−1) Scalg around some x0 for some i0, and Weylg(x0) 6≡ 0,

where Scalg is the scalar curvature of g, and Weylg is the Weyl curvature of g.

Lemma 7.1. Let i0 = 1, . . . , p be given. Assume µε
2

ε = O (ε) as ε → 0 when n = 4, and

µε = O
(
εθ
)

as ε→ 0 when n > 4, where θ > 2(n−2)
n−4 . Then for any x ∈M , there holds

IA,g (WUε) =
K−44

4
+
K−44

16
(Scalg(x)− 6Ai0i0(x))µε lnµε + o (µε lnµε) (7.3)

when n = 4, and

IA,g (WUε) =
K−nn
n
− K−nn

2n(n− 4)

(
Scalg(x)− 4(n− 1)

n− 2
Ai0i0(x)

)
µε + o (µε) (7.4)

when n > 4, where Kn is as in (1.6), IA,g is as in (1.4), WU for a p-map U is defined in (1.7),
Scalg is the scalar curvature of g, and Uε = Uε,i0,x is as in (7.1)–(7.2). Furthermore, (7.3) and
(7.4) are uniform in x.

Proof. We assume that µε
2

ε = O (ε) as ε → 0 when n = 4, and that µε = O
(
εθ
)

as ε → 0

when n > 4, where θ > 2(n−2)
n−4 . For any x ∈M , there holds

1

ωn−1rn−1

∫
∂Bx(r)

√
|g|dσ = 1− 1

6n
Scalg(x)r2 + O

(
r4
)

(7.5)

as r → 0, where |g| is the determinant of the components of g in geodesic normal coordinates.
By standard properties of the exponential map, the rest O (r4) in (7.5) can be made uniform

with respect to x. We set Iqp =
∫ +∞
0

(1 + r)−prqdr for all positive real numbers p and q such
that p− q > 1. When n = 4, thanks to (7.5), we compute∫

M

|∇uε|2 dvg =
2ω3

µε

(
I24 +

Scalg(x)

24
µε lnµε + o (µε lnµε)

)
(7.6)
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and ∫
M

Ai0i0u
2
εdvg = −ω3Ai0i0(x)

2
lnµε + o (lnµε) (7.7)

as ε → 0, uniformly with respect to x, where uε = uε,x is as in (7.1). Similarly, when n > 4,
still thanks to (7.5), we compute∫

M

|∇uε|2 dvg =
(n− 2)2ωn−1I

n/2
n

2µ
(n−2)/2
ε

(
1− (n+ 2) Scalg(x)

6n(n− 4)
µε + o (µε)

)
(7.8)

and ∫
M

Ai0i0u
2
εdvg =

2(n− 1)(n− 2)ωn−1I
n/2
n Ai0i0(x)

n(n− 4)µ
(n−4)/2
ε

+ o
(
µ(4−n)/2
ε

)
(7.9)

as ε → 0, uniformly with respect to x. Thanks to (7.5), we also compute that when n ≥ 4,
there holds ∫

M

u2
∗

ε dvg =
ωn−1I

(n−2)/2
n

2µ
n/2
ε

(
1− Scalg(x)

6(n− 2)
µε + o (µε)

)
(7.10)

as ε→ 0, uniformly with respect to x. We get

n− 2

n
In/2n = I(n−2)/2n =

ωn
2n−1ωn−1

(7.11)

and

(n− 2)2 ωn−1
2

In/2n =
1

K2
n

(
(n− 2)ωn−1I

n/2
n

2n

)2/2∗

, (7.12)

and combining (7.6)–(7.12), we get that (7.3) and (7.4) hold true as ε → 0, uniformly with
respect to x. This ends the proof of Lemma 7.1. �

Lemma 7.2. Let x0 ∈M and i0 = 1, . . . , p be such that Ai0i0 ≡ hg in an open neighborhood of

x0, where hg is as in Theorem 1.2. Assume µε
4

ε = O (ε) as ε→ 0 when n = 6, and µε = O
(
εθ
)

as ε→ 0 when n ≥ 7, where θ > 2(n−2)
n−6 . Then there exists an open neighborhood Ω of x0 such

that for any x ∈ Ω, there holds

IA,g (WUε) =
K−66

6
+

K−66

25920

(
45
∣∣Weylg(x)

∣∣2 − 75 |Eg(x)|2 − 2 Scalg(x)2
)
µ2
ε lnµε

+ o
(
µ2
ε lnµε

)
(7.13)

when n = 6, and

IA,g (WUε) =
K−nn
n
−

3
∣∣Weylg(x)

∣∣2 − αn |Eg(x)|2 + βn Scalg(x)2

72n (n− 4) (n− 6)Kn
n

µ2
ε + o

(
µ2
ε

)
(7.14)

when n > 6, where Kn is as in (1.6), IA,g is as in (1.4), WU for a p-map U is defined in (1.7),
Weylg is the Weyl curvature of g, Eg is the traceless part of the Ricci curvature of g, Scalg is
the scalar curvature of g, αn = 4(2n − 7)/(n − 2), βn = −2 (n+ 2) / (n(n− 1) (n− 2)), and
Uε = Uε,i0,x is as in (7.1)–(7.2). Furthermore, (7.3) and (7.4) are uniform in x.

Proof. We assume that µε
4

ε = O (ε) as ε → 0 when n = 6, and that µε = O
(
εθ
)

as ε → 0

when n ≥ 7, where θ > 2(n−2)
n−6 . For any x ∈M , there holds

1

ωn−1rn−1

∫
∂Bx(r)

Ai0i0
√
|g|dσ = Ai0i0(x)− Λi0(x)

2n
r2 + O

(
r4
)

(7.15)
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and
1

ωn−1rn−1

∫
∂Bx(r)

√
|g|dσ = 1− 1

6n
Scalg(x)r2 + Ag(x)r4 + O

(
r5
)

(7.16)

as r → 0, where |g| is the determinant of the components of g in geodesic normal coordinates,

Λi0 (x) = ∆gAi0i0 (x) +
1

3
Ai0i0 (x) Scalg (x) ,

Ag(x) =
18∆g Scalg(x) + 8 |Ricg(x)|2 − 3 |Rmg(x)|2 + 5 Scalg(x)2

360n(n+ 2)
,

and Rmg, Ricg, and Scalg are respectively the Riemann curvature, the Ricci curvature, and
the scalar curvature of g. By standard properties of the exponential map, the rests O (r4)

and O (r5) in (7.15) can be made uniform with respect to x. We let Iqp =
∫ +∞
0

(1 + r)−prqdr,
p− q > 1, be as in the proof of Lemma 7.1. When n = 6, thanks to (7.15), we compute∫

M

|∇uε|2 dvg =
3ω6

8µ2
ε

(
1− Scalg(x)

9
µε − 20Ag(x)µ2

ε lnµε + o
(
µ2
ε lnµε

))
(7.17)

and ∫
M

Ai0i0u
2
εdvg =

1

8µε

(
5ω6

4
Ai0i0 (x) +

ω5Λi0 (x)

3
µε lnµε + o (µε lnµε)

)
(7.18)

as ε → 0, uniformly with respect to x, where uε = uε,x is as in (7.1). Similarly, when n > 6,
still thanks to (7.15), we compute∫

M

|∇uε|2 dvg =
(n− 2)2ωn−1I

n/2
n

2µ
(n−2)/2
ε

×
(

1− (n+ 2) Scalg(x)

6n(n− 4)
µε +

(n+ 2)(n+ 4)Ag (x)

(n− 4)(n− 6)
µ2
ε + o

(
µ2
ε

))
(7.19)

and ∫
M

Ai0i0u
2
εdvg =

ωn

2n−1µ
(n−4)/2
ε

(
2(n− 1)Ai0i0(x)

n− 4
− (n− 1)Λi0(x)

(n− 4)(n− 6)
µε + o (µε)

)
(7.20)

as ε → 0, uniformly with respect to x. Thanks to (7.15), we also compute that when n ≥ 6,
there holds ∫

M

u2
∗

ε dvg =
ωn

2nµ
n/2
ε

(
1− Scalg(x)

6(n− 2)
µε +

n(n+ 2)Ag(x)

(n− 2)(n− 4)
µ2
ε + o

(
µ2
ε

))
(7.21)

as ε → 0, uniformly with respect to x. Assume that Ai0i0 ≡ hg in Bx0(2δ) for some x0 ∈ M
and some δ > 0, combining (7.17)–(7.21), and thanks to (7.11) and (7.12), we get that (7.13)
and (7.14) hold true as ε → 0, uniformly with respect to x in Bx0(δ). This ends the proof of
Lemma 7.2. �

By Lemmas 7.1 and 7.2, we are now in position to prove Theorem 1.2. By these lemmas, see
(7.23) below, µA,g <

1
n
K−nn when (i) or (ii) hold true. By Theorem 1.1 the proof of Theorem 1.2

then reduces to proving that there exists an odd, continuous map Φ : Rn+2 → H2
1,p(M) such

that IA,g ◦ Φ < 2K−nn /n and IA,g ◦ Φ (y)→ −∞ as |y| → +∞. Preliminary remarks are that

IA,g (WU) = max
t≥0

IA,g (tU) , (7.22)

andWλU =WU for all λ > 0 and U ∈ H2
1,p(M)\{0}. The proof of Theorem 1.2 goes as follows.
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Proof of Theorem 1.2. We assume that (i) or (ii) holds true, and let r0 ∈ (0, ig/3) be suffi-
ciently small so that either Ai0i0 < λn Scalg in Bx0(4r0) and n ≥ 4, or Ai0i0 ≡ λn Scalg in
Bx0(4r0), Weylg 6≡ 0 at any point in Bx0(4r0) and n ≥ 6, where λn = (n − 2)/4(n − 1). By

conformal invariance of the conformal Laplacian, if g̃ = ϕ4/(n−2)g is a conformal metric to g,
and Ai0i0 ≡ λn Scalg in Bx0(4r0), then

IA,g (WϕUε) = Iλn Scalg̃ Idp,g̃ (WUε)

for all ε ∈ (0, θ−1r0) and all x ∈ Bx0(3r0), where Uε = Uε,i0,x is as in (7.1)–(7.2), but now defined
with respect to g̃, θ ≥ 1 depends only on g and g̃, Scalg̃ is the scalar curvature of g̃, and Idp is
the identity p× p matrix. As is easily checked, we can choose g̃ such that Ricg̃(x0) ≡ 0, where

Ricg̃ is the Ricci curvature of g̃. We then get αn |Eg(x0)|2 − βn Scalg(x0)
2 = 0, where αn and

βn are as in Lemma 7.2. In particular, the Weyl curvature becomes the leading term in the
expansions (7.13)–(7.14) of Lemma 7.2. By Lemmas 7.1 and 7.2, we then get that for r0 > 0
sufficiently small, there exists ε0 ∈ (0, r0) such that

IA,g
(
WŨε

)
<

1

n
K−nn (7.23)

for all x ∈ Bx0 (2r0) and all ε ∈ (0, ε0], where Ũε = ϕUε, ϕ > 0 is a smooth, positive function,
and Uε = Uε,i0,x is as in (7.1)–Th2Eq2 with r in (7.1) being the distance with respect to
g̃. Here, ϕ ≡ 1 in case (i) holds true and ϕ comes from the conformal change of metric

g̃ = ϕ4/(n−2)g in case (ii) holds true, where g̃ is chosen so that Ricg̃(x0) ≡ 0. A priori, Ũε has

its support in the closure of the g̃-ball B̃x(ε). Decreasing ε if necessary, letting Ũε = ϕUθε for

θ > 0 sufficiently small, we may assume that Ũε has its support in the closure of the g-ball

Bx(ε), and thus that Supp Ũε ⊂ Bx(ε) for all x and all ε. Now we claim that there exist a
real number ε1 in (0, ε0) and a smooth cutoff function v such that v ≡ 1 in Bx0 (ε1), v ≡ 0 in
M\Bx0 (ε0), and such that

IA,g

(
W(1−v)Ũε0

)
<

1

n
K−nn (7.24)

for all points x in the ball Bx0 (2r0), where Ũε0 is as in (7.23). In order to prove this claim, we
first note that by standard properties of the capacities of balls,

cap2 (Bx0(ε), Bx0(ε0)) = inf
u∈Hε,ε0

∫
Bx0 (ε0)\Bx0 (ε)

|∇u|2g dvg −→ 0 (7.25)

as ε → 0, where Hε,ε0 is the set of all Lipschitz functions such that u ≡ 1 in Bx0 (ε) and u
has compact support in Bx0 (ε0). We refer to Grigor′yan [25] for more details on the notion
of capacity. For ε0 > 0 sufficiently small, we also get (see, for instance, Hebey [26]) that the
Poincaré inequality holds true in the set Hε,ε0 . In other words, we also get that there exists a
positive constant C such that for any function u inHε,ε0 , there holds ‖u‖L2(M) ≤ C ‖∇u‖L2(M).

The existence of a real number ε1 and a smooth cutoff function v such that v ≡ 1 in Bx0 (ε1),

v ≡ 0 in M\Bx0 (ε0), and such that (7.24) holds true for all points x in the ball Bx0 (2r0) then
follows from (7.23) and (7.25) by the continuity of the functionals in IA,g. This proves (7.24).
Without loss of generality, we may assume that there exists Λ > 1 such that

1

Λ
|y − x| ≤ dg

(
expx0(x), expx0(y)

)
(7.26)

for all points x and y in the Euclidean ball B0(r0), where expx0 is the exponential map at x0.
We also may assume that 2Λε0 < r0. For any natural number k > 0, we let Bk be the unit
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ball in Rk and Sk be the unit sphere in Rk+1. We also let N be the Nehari manifold of IA,g as

in (1.5). We now define Φ1, Φ2 : Bn → N by

Φ1(x) =W (x0, ε1) if |x| ≤ 1

2
,

Φ1(x) =W (x1(x), ε(x)) if
1

2
< |x| ≤ 1 ,

Φ2(x) = Ŵ (x2(x), ε0) if |x| ≤ 1

2
,

Φ2(x) =W (x3(x), ε0) if
1

2
< |x| ≤ 1 ,

(7.27)

where W (x, ε) = WŨ(x,ε), Ŵ (x, ε) = W(1−v)Ũ(x,ε), Ũ(x, ε) = Ũε,i0,x is as in (7.23), v and ε1
are as in (7.24), ε (x) is given by ε (x) = 2 (ε0 − ε1) |x|+ 2ε1 − ε0, and for Λ > 1 as in (7.26),
x1 (x), x2 (x), and x3 (x) are given by

x1 (x) = expx0

(
−2Λε0

(
2− 1

|x|

)
x

)
,

x2 (x) = expx0 (4Λε0x) , and x3 (x) = expx0

(
2Λε0

x

|x|

)
.

(7.28)

For any point x such that 1/2 ≤ |x| ≤ 1, we get that ε (x) belongs to [ε1, ε0] and that the

points xi (x) in (7.28) belong to Bx0 (2r0) for i = 1, 2, 3 since Λε0 < r0/2. For any point x such
that |x| = 1/2, there hold x1 (x) = x0 and ε (x) = ε1. It follows that Φ1 in (7.27) is continuous.
Similarly, for any point x such that |x| = 1/2, there hold x2 (x) = x3 (x) and v ≡ 0 in Bx2(x) (ε0)
since dg (x0, x2 (x)) = 2Λε0, v ≡ 0 in M\Bx0 (ε0), and Λ > 1. It follows that Φ2 in (7.27) is

also continuous. There hold SuppΦ1 (x) ⊂ Bx0 (ε1) and SuppΦ2 (x) ⊂ Bx2(x) (ε0)\Bx0 (ε1) in

case |x| ≤ 1/2, and there hold SuppΦ1 (x) ⊂ Bx1(x) (ε (x)) and SuppΦ2 (x) ⊂ Bx3(x) (ε0) in
case |x| ≥ 1/2. By (7.26), we get dg (x1(x), x3(x)) ≥ 4ε0 |x|. It follows that for any point

x ∈ Bn, there holds

SuppΦ1 (x) ∩ SuppΦ2 (x) = ∅ . (7.29)

We also easily get Φ1 (x) = Φ2 (−x) for all x in Sn−1. We then define the map Φ0 : Sn → N by

Φ0 (x1, . . . , xn+1) =

{
Φ1 (x1, . . . , xn) if xn+1 ≥ 0

Φ2 (−x1, . . . ,−xn) otherwise,
(7.30)

where Φ1 and Φ2 are as in (7.27). It is easily checked that the map Φ0 is also continuous. We
now introduce the map

Φ̃ : (Sn × (−1, 1)) ∪
(
Bn+1 × {−1, 1}

)
→ H2

1,p (M) \ {0}

defined by

Φ̃ (x, t) =



(1 + t)Φ0 (x)− (1− t)Φ0 (−x) if x ∈ Sn ,

2 |x|Φ0

(
x

|x|

)
+ (1− |x|)W (y0, ε0) if t = 1 ,

− 2 |x|Φ0

(
− x

|x|

)
− (1− |x|)W (y0, ε0) if t = −1 ,

where y0 = expx0 (2r0θ0) for some θ0 in Sn, and Φ0 is as in (7.30). For any x ∈ Bn, the supports
of the p-maps Φ1 and Φ2 in (7.27) are subsets of Bx0 ((2Λ+ 1)ε0), and since dg(x0, y0) = 2r0,
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and r0 > (Λ+ 1)ε0, we get

SuppW (y0, ε0) ∩ SuppΦ1(x) = ∅ (7.31)

and
SuppW (y0, ε0) ∩ SuppΦ2(x) = ∅ (7.32)

for all x ∈ Bn. By (7.29), (7.31), and (7.32), the supports of the p-maps Φ1 (x), Φ2 (x) and

W (y0, ε0) are mutually disjoint for all points x in Bn. In particular, the p-map Φ̃ takes its

values in H2
1,p (M) \{0}. It is easily checked that Φ̃ is odd and continuous. Taking into account

that the domain of definition of the map Φ̃ is precisely the boundary of the set Bn+1× (−1, 1),

we may define the radial extension of Φ̃ as the map Φ : Rn+2 → H2
1,p (M) \{0} given by

Φ (tx) = tΦ̃ (x) for all positive real numbers t and all points x in ∂ (Bn+1 × (−1, 1)). Then
the map Φ is odd and continuous. By (7.22), (7.23), and (7.24), we get that there holds
IA,g ◦ Φ < 2K−nn /n. As is easily checked, E (U) ≥ nµA,g > 0 for all U ∈ N . It follows that

max
U∈N

IA,g (tU) −→ −∞

as t → +∞. We then get that there holds IA,g ◦ Φ (y) → −∞ as |y| → +∞. This ends the
proof of Theorem 1.2. �

8. Proof of Theorem 1.3

Let x0 ∈ M , r0 > 0, and i0 ∈ {1, . . . , p} be such that g is conformally flat in Bx0(4r0) and
Ai0i0 = λn Scalg in Bx0(4r0), where λn = (n − 2)/4(n − 1), and Scalg is the scalar curvature
of g. We also assume that n > 6. Decreasing r0 if necessary, there exists g̃ = ϕ4/(n−2)g a
conformal metric to g such that g̃ is flat in Bx0(4r0). We define uε = uε,x as in (7.1) with r
being the distance with respect to g̃. Let K ≥ 1 be such that K−1dg ≤ dg̃ ≤ Kdg, where dg
and dg̃ are the distances with respect to g and g̃. Since g̃ is flat in Bx0(4r0), we easily compute
that for any x ∈ Bx0(3r0), any ε ∈ (0, K−1r0), and any smooth function h in M , there holds∫

M

|∇uε|2 dvg̃ =
n(n− 2)ωn

2nµ
(n−2)/2
ε

(
1 + O

(
ε2−nµ(n−2)/2

ε

))
, (8.1)∫

M

hu2εdvg̃ =
(n− 1)ωnh(x)

2n−2(n− 4)µ
(n−2)/2
ε

(
µε + O

(
ε4−nµ(n−4)/2

ε

))
, (8.2)∫

M

u2
∗

ε dvg̃ =
ωn

2nµ
n/2
ε

(
1 + O

(
ε−nµn/2ε

))
(8.3)

uniformly with respect to x. Assume that µε = O
(
ε2θ
)

for some θ > θn, where θn = n−2
n−6 .

Then, by (8.1), we get that there exists κ = n−6
2θ

(θ − θn), κ > 0, such that there holds∫
M

|∇uε|2 dvg̃ =
n(n− 2)ωn

2nµ
(n−2)/2
ε

(
1 + O

(
µ2+κ
ε

))
, (8.4)∫

M

hu2εdvg̃ =
(n− 1)ωnh(x)

2n−2(n− 4)µ
(n−2)/2
ε

(
µε + O

(
µ2
ε

))
, (8.5)∫

M

u2
∗

ε dvg̃ =
ωn

2nµ
n/2
ε

(
1 + O

(
µ2+κ
ε

))
(8.6)

uniformly with respect to x. Now we assume that there exists i1 6= i0, for instance i1 > i0,
such that Ai0i1(x0) 6= 0. We define Uε = Uε,i0,i1,x by

Uε = (0, . . . , 0, uε, 0, . . . , 0, ανεuε, 0, . . . , 0) , (8.7)
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where uε is as above, the two nonzero components uε and ανεuε of Uε are placed at ranks
i0 and i1, α = − sign (Ai0i1(x0)) is equal to −1 if Ai0i1(x0) is positive and 1 if Ai0i1(x0) is
negative, and the νε’s, to be chosen later on, are positive and such that νε → 0 as ε→ 0. By
conformal invariance of the conformal Laplacian and since g̃ = ϕ4/(n−2)g is flat in Bx0(4r0),
we get

IA,g (WϕUε) = IÃ,g̃ (WUε) (8.8)

for all x ∈ Bx0(3r0) and all ε ∈ (0, K−1r0), where

Ã = ϕ2−2∗ (A− λn Scalg Idp) (8.9)

and Idp is the identity p× p matrix. Let Ãij be the components of Ã in (8.9). Since Ãi0i0 ≡ 0
in Bx0(4r0), we compute∫

M

(
|∇Uε|2 + Ã(Uε,Uε)

)
dvg̃

=
(
1 + ν2ε

) ∫
M

|∇uε|2 dvg̃ + 2ανε

∫
M

Ai0i1
ϕ2∗−2u

2
εdvg̃ + ν2ε

∫
M

Ãi1i1u
2
εdvg̃ ,

and thus, by (8.4), we get∫
M

(
|∇Uε|2 + Ã(Uε,Uε)

)
dvg̃ =

n(n− 2)ωn

2nµ
(n−2)/2
ε

×
(

1 +
8(n− 1)αAi0i1(x)

n(n− 2)(n− 4)ϕ2∗−2(x)
µενε + O

(
µ2+κ
ε

)
+ O

(
ν2ε
)

+ O
(
µ2
ενε
))

. (8.10)

We now set νε = µ1+θ′
ε for some θ′ ∈ (0, κ). Then the O (µ2

εµ
κ
ε )’s, O (ν2ε )’s, and O (νεµ

2
ε)’s are

like o (µενε). In particular, we get with (8.4), (8.8), and (8.10) that

IA,g (WϕUε) =
1

n
K−nn

(
1 +

8(n− 1)αAi0i1(x)

n(n− 2)(n− 4)ϕ2∗−2(x)
µενε + o (µενε)

)
(8.11)

for all x ∈ Bx0(3r0) and all ε ∈ (0, K−1r0), the expansion being uniform with respect to x.
Since α = − sign (Ai0i1(x0)), it follows from (8.11) that for r0 > 0 sufficiently small, there
exists ε0 ∈ (0, r0) such that

IA,g
(
WŨε

)
<

1

n
K−nn (8.12)

for all x ∈ Bx0 (2r0) and all ε ∈ (0, ε0], where Ũε = ϕUε, ϕ > 0 is a smooth, positive function,
and Uε = Uε,i0,i1,x is as in (8.7). In particular, by (8.12) we are back to estimates like in (7.23),
and we may then continue as in the proof of Theorem 1.2 in Section 7. This ends the proof of
Theorem 1.3.
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[17] , Selected new aspects of the calculus of variations in the large, Bull. Amer. Math. Soc. (N.S.) 39

(2002), no. 2, 207–265 (electronic).
[18] A. El Hamidi, Existence results to elliptic systems with nonstandard growth conditions, J. Math. Anal.

Appl. 300 (2004), no. 1, 30–42.
[19] D. G. de Figueiredo, Semilinear elliptic systems, Nonlinear Functional Analysis and Applications to Dif-

ferential Equations (Trieste, 1997), World Sci. Publ., River Edge, 1998, pp. 122–152.
[20] D. G. de Figueiredo and Y. H. Ding, Strongly indefinite functionals and multiple solutions of elliptic

systems, Trans. Amer. Math. Soc. 355 (2003), no. 7, 2973–2989 (electronic).
[21] D. G. de Figueiredo and P. L. Felmer, On superquadratic elliptic systems, Trans. Amer. Math. Soc. 343

(1994), no. 1, 99–116.
[22] D. G. de Figueiredo and B. Sirakov, Liouville type theorems, monotonicity results and a priori bounds for

positive solutions of elliptic systems, Math. Ann. 333 (2005), no. 2, 231–260.
[23] N. Ghoussoub, Duality and perturbation methods in critical point theory, Cambridge Tracts in Mathemat-

ics, vol. 107, Cambridge University Press, Cambridge, 1993. With appendices by David Robinson.
[24] M. Giaquinta and L. Martinazzi, An introduction to the regularity theory for elliptic systems, harmonic

maps and minimal graphs, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), vol. 2, Edizioni della
Normale, Pisa, 2005.

[25] A. Grigor′yan, Isoperimetric inequalities and capacities on Riemannian manifolds, The Maz′ya anniversary
collection, Vol. 1 (Rostock, 1998), Oper. Theory Adv. Appl., vol. 109, Birkhäuser, Basel, 1999, pp. 139–153.
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