
EXISTENCE AND REGULARITY FOR CRITICAL ANISOTROPIC
EQUATIONS WITH CRITICAL DIRECTIONS

JÉRÔME VÉTOIS

Abstract. We establish existence and regularity results for doubly critical anisotropic equa-
tions in domains of the Euclidean space. In particular, we answer a question posed by Fra-
galà–Gazzola–Kawohl [24] when the maximum of the anisotropic configuration coincides with
the critical Sobolev exponent.

1. Introduction

In this paper, we investigate existence and regularity for doubly critical anisotropic equa-
tions. In dimension n ≥ 2, we provide ourselves with an anisotropic configuration −→p =
(p1, . . . , pn) with pi > 1 for all i = 1, . . . , n. We let D1,−→p (Ω) be the anisotropic Sobolev space
defined as the completion of the vector space of all smooth functions with compact support
in Ω with respect to the norm ‖u‖D1,−→p (Ω) =

∑n
i=1 ‖∂u/∂xi‖Lpi (Ω). We are concerned with the

following anisotropic problem of critical growth{
−∆−→p u = λ |u|p

∗−2 u in Ω ,

u ∈ D1,−→p (Ω) ,
(1.1)

on domains Ω in the Euclidean space Rn, where λ is a positive real number, p∗ is the critical
Sobolev exponent (see (1.3) below), and ∆−→p is the anisotropic Laplace operator defined by

∆−→p u =
n∑
i=1

∂

∂xi
∇pi
xi
u , (1.2)

where ∇pi
xi
u = |∂u/∂xi|pi−2 ∂u/∂xi for all i = 1, . . . , n. As one can check, ∆−→p involves di-

rectional derivatives with distinct weights. Anisotropic operators appear in several places in
the literature. Recent references can be found in physics [3, 7], in biology [11], and in image
processing [46].

We consider in this paper the doubly critical situation p+ = p∗, where p+ = max (p1, . . . , pn)
is the maximum value of the anisotropic configuration and p∗ is the critical Sobolev exponent
for the embeddings of the anisotropic Sobolev space D1,−→p (Ω) into Lebesgue spaces. In this
setting, not only the nonlinearity has critical growth, but the operator itself has critical growth
in particular directions of the Euclidean space. As a remark, the notion of critical direction
is a pure anisotropic notion which does not exist when dealing with the Laplace operator or
the p-Laplace operator. Given i = 1, . . . , n, the i-th direction is said to be critical if pi = p∗,
resp. subcritical if pi < p∗. Critical directions induce a failure in the rescaling invariance rule
associated with (1.1).
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Given an anisotropic configuration −→p satisfying
∑n

i=1 1/pi > 1 and pj ≤ n/
(∑n

i=1
1
pi
− 1
)

for all j = 1, . . . , n, the critical Sobolev exponent is equal to

p∗ =
n∑n

i=1
1
pi
− 1

. (1.3)

In this paper, we consider weak solutions of problem (1.1). We say that a function u in
D1,−→p (Ω) is a weak solution of problem (1.1) if there holds

n∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

∂ϕ

∂xi
dx =

∫
Ω

|u|p
∗−2 uϕdx

for all smooth functions ϕ with compact support in Ω.

In this paper, we prove an existence result and a regularity result for problem (1.1). The
regularity result, stated in Theorem 1.2 below, is established on arbitrary domains (bounded or
not), and is motivated in particular by a question posed by Fragalà–Gazzola–Kawohl [24, Sec-
tion 8.3, Problem 1]. The existence result, stated in Theorem 1.1 below, is established on
cylindric domains. Problem (1.1) on cylindric domains is involved in the description of the as-
ymptotic behavior of Palais–Smale sequences for critical anisotropic problems (see Vétois [44]).
The rescaling phenomenon is described in Section 3. Our existence result states as follows.

Theorem 1.1. Let n ≥ 3, 1 ≤ n+ < n, and −→p = (p1, . . . , pn), and assume that
∑n

i=1 1/pi > 1,
p+ = p∗, pn−n++1 = · · · = pn = p+, and pi < p+ for all i ≤ n − n+. Let V be a nonempty,
bounded, open subset of Rn+, and assume that Ω = Rn−n+ × V . Then there exists a positive
real number λ such that problem (1.1) admits at least one nonnegative, nontrivial solution.

Theorem 1.1 is concerned with cylindric domains. Theorem 1.2 below holds true for ar-
bitrary domains Ω, including Ω bounded. This result, which answers the question of the
regularity associated to (1.1), is stated as follows.

Theorem 1.2. Let n ≥ 3 and −→p = (p1, . . . , pn), and assume that
∑n

i=1 1/pi > 1 and p+ = p∗.
Let Ω be a nonempty, open subset of Rn, and λ be a positive real number. Then any solution
of problem (1.1) belongs to L∞ (Ω).

Theorem 1.2 is established on arbitrary domains. In case of bounded domains Ω, Theo-
rem 1.2 answers a question posed by Fragalà–Gazzola–Kawohl [24, Section 8.3, Problem 1].
The boundedness of nonnegative weak solutions of problem (1.1) was established in case
p+ < p∗ by Fragalà–Gazzola–Kawohl [24]. It was suggested in [24] that the result should
remain true in case p+ ≥ p∗ for solutions of the problem{

−∆−→p u = λup+−1 in Ω ,

u ∈ D1,−→p (Ω) ∩ Lp+ (Ω) .
(1.4)

Theorem 1.2 answers positively to this question in case p+ = p∗. On the other hand, we point
toward a negative answer when p+ > p∗. More precisely, we prove (by using Proposition 2.1,
see Section 2) that for particular anisotropic configurations −→p satisfying p+ > p∗, for instance
when p1 = · · · = pn− = 2 and pn−+1 = · · · = pn = p+ with p+ > 2∗, 2∗ = 2n−/ (n− − 2), and
2 < n− < n, if we assume the existence of nonnegative, unbounded solutions of the isotropic,
supercritical problem {

−∆u = up+−1 in Ω′ ,

u ∈ D1,2 (Ω′) ∩ Lp+ (Ω′) ,
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for some domain Ω′ in Rn− , where ∆ = div (∇u) is the classical Laplace operator, then the
anisotropic problem (1.4) with Ω = Ω′ ×Ω′′ admits nonnegative, unbounded solutions for all
domains Ω′′ in Rn−n− , including Ω′′ bounded. As is well-known, problems with supercritical
growth may admit unbounded solutions (see, for instance, Benguria–Dolbeault–Esteban [8],
Farina [22], and also Fragalà–Gazzola–Kawohl [24]).

In case p+ < p∗, namely when all directions are subcritical, anisotropic equations with crit-
ical nonlinearities have been investigated by Alves–El Hamidi [2], El Hamidi–Rakotoson [19,
20], El Hamidi–Vétois [21], Fragalà–Gazzola–Kawohl [24], Fragalà–Gazzola–Lieberman [25],
and Vétois [43]. Other recent references on anisotropic problems like (1.1) are Antontsev–
Shmarev [4, 5], Bendahmane–Karlsen [9, 10], Bendahmane–Langlais–Saad [11], Cianchi [13],
D’Ambrosio [14], Di Castro [17], Di Castro–Montefusco [18], Garćıa-Melián–Rossi–Sabina de Lis
[27], Li [30], Lieberman [31, 32], Mihăilescu–Pucci–Rădulescu [35], Mihăilescu–Rădulescu–
Tersian [36], Namlyeyeva–Shishkov–Skrypnik [37], Skrypnik [39], Tersenov–Tersenov [40], and
Vétois [42,44,45].

In the isotropic configuration where pi = p for all i = 1, . . . , n, there holds p < p∗ and all
directions are subcritical. In this particular situation, the operator (1.2) is comparable, though
slightly different, to the p-Laplace operator ∆p = div

(
|∇u|p−2∇u

)
. Possible references on

critical p-Laplace equations are Alves–Ding [1], Arioli–Gazzola [6], Demengel–Hebey [15, 16],
Filippucci–Pucci–Robert [23], Gazzola [28], and Guedda–Veron [29]. Needless to say, the above
list does not pretend to exhaustivity.

We illustrate our results with examples in Section 2, we prove Theorem 1.1 in Section 3,
and we prove Theorem 1.2 in Section 4.

2. Examples of solutions

In this section, we are concerned with the situation where the anisotropic configuration
−→p consists in two distinct exponents p− and p+. In other words, we assume that there
exist two indices n− ≥ 2 and n+ ≥ 1 such that n = n− + n+, p1 = · · · = pn− = p−, and
pn−+1 = · · · = pn = p+. Proposition 2.1 below is the basic tool in our construction. It relies
on a direct computation.

Proposition 2.1. Let n− ≥ 2, n+ ≥ 1, n = n− + n+, and −→p = (p1, . . . , pn), and assume that
p1 = · · · = pn− = p− and pn−+1 = · · · = pn = p+. Let λ be a positive real number. Let Ω1 be a
nonempty open subset of Rn− and Ω2 be a nonempty open subset of Rn+. Let v be a solution
of the problem  −

n−∑
i=1

∂

∂xi

(∣∣∣∣ ∂v∂xi
∣∣∣∣p−−2

∂v

∂xi

)
= |v|p+−2 v in Ω1 ,

v ∈ D1,p− (Ω1) ∩ Lp+ (Ω1) ,

(2.1)

and let w be a solution of the problem −
n+∑
i=1

∂

∂xi

(∣∣∣∣ ∂w∂xi
∣∣∣∣p+−2

∂w

∂xi

)
= |w|p+−2w − |w|p−−2w in Ω2 ,

w ∈ D1,p+ (Ω2) ∩ Lp− (Ω2) .

(2.2)
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Then the function u defined on Ω1 × λ
−1
p+Ω2 by

u (x1, . . . , xn) = λ
−1

p+−p− v
(
x1, . . . , xn−

)
w
(
λ

1
p+ xn−+1, . . . , λ

1
p+ xn

)
(2.3)

is a solution of the problem −∆−→p u = λ |u|p+−2 u in Ω1 × λ
−1
p+Ω2 ,

u ∈ D1,−→p (Ω1 × λ
−1
p+Ω2

)
∩ Lp+

(
Ω1 × λ

−1
p+Ω2

)
,

(2.4)

where ∆−→p is as in (1.2).

Proof. A direct computation provides the result. �

If p+ = p∗, then a solution of equation (2.1) is given by

Vn−,p−
(
x1, . . . , xn−

)
= Cn−,p−

(
1

1 +
∑n−

i=1 |xi|
p−
p−−1

)n−−p−
p−

, (2.5)

where

Cn−,p− =

(
n− (n− − p−)p−−1

(p− − 1)p−−1

)n−−p−
p2−

.

On the other hand, we search for solutions of equation (2.2) of the form

w
(
xn−+1, . . . , xn

)
=W (r) with r =

(
n∑

i=n−+1

|xi|
p+
p+−1

) p+−1

p+

.

As one can check, equation (2.2) then rewrites as

−r1−n+

(
rn+−1 |W ′|p+−2W ′

)′
= |W|p+−2W − |W|p−−2W in R+ . (2.6)

In case n+ = 1, the unique nonnegative, nontrivial C1-solution of (2.6) is given by

W (r) =

{
F−1 (F (W0)− r) if r < F (W0) ,

0 if r ≥ F (W0) ,

where

W0 =

(
p+

p−

) 1
p+−p−

and F (t) =

(
p+ − 1

p+

) 1
p+
∫ t

0

(
sp−

p−
− sp+

p+

)− 1
p+

ds .

In particular, there hold W (0) = W0, W ′ (0) = 0, W > 0 and W ′ < 0 in (0, F (W0)), and
W = 0 in [F (W0) ,+∞). In case n+ ≥ 2, by Franchi–Lanconelli–Serrin [26], we get that
equation (2.6) admits at least one nonnegative C1-solution which satisfies W ′ (0) = 0, W > 0
and W ′ < 0 in (0, R), and W = 0 in [R,+∞) for some positive real number R. Summarizing,
we can state the following corollary of Proposition 2.1.
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Corollary 2.1. Let n− ≥ 2, n+ ≥ 1, n = n− + n+, and −→p = (p1, . . . , pn), and assume that
p1 = · · · = pn− = p−, pn−+1 = · · · = pn = p+, and p+ = p∗. For any point a = (a1, . . . , an)
in Rn and for any positive real numbers µ and λ, there exists a nonnegative solution Ua,µ,λ in

D1,−→p (Rn) ∩ C1 (Rn) of equation (2.4) of the form

Ua,µ,λ (x1, . . . , xn) = µ−1λ
−1

p+−p−U
(
µ
p−−p+
p− (x1 − a1) , . . . , µ

p−−p+
p−

(
xn− − an−

)
,

λ
1
p+

(
xn−+1 − an−+1

)
, . . . , λ

1
p+ (xn − an)

)
,

where

U (x1, . . . , xn) = Vn−,p−
(
x1, . . . , xn−

)
W

( n∑
i=n−+1

|xi|
p+
p+−1

) p+−1

p+

 ,

where Vn−,p− is as in (2.5) and where W is such that W > 0 and W ′ < 0 in (0, R), and W = 0
in [R,+∞) for some positive real number R.

Since the function W has compact support, Corollary 2.1 provides a class of solutions of
problem (1.1) on cylindric domains Ω = Rn− × V for all nonempty, open subsets V of Rn+ .
These solutions illustrate the general existence result stated in Theorem 1.1 in the particular
case where the anisotropic configuration −→p consists in two distinct exponents p− and p+.

In the supercritical case p+ > p∗, suppose there exists a nonnegative, unbounded solution
of problem (2.1) for some domain Ω1 in Rn− . Then we easily get with Proposition 2.1 that
problem (1.4) with Ω = Ω1 × Ω2 admits nonnegative, unbounded solutions for all domains
Ω2 in Rn+ , including Ω2 bounded. Indeed, since the above function W has compact support,
by rescaling W , we get a nonnegative solution of the problem (2.2) on the domain Ω2. Then
Proposition 2.1 provides the existence of a nonnegative, unbounded solution of the form (2.3)
of the problem (1.4) with Ω = Ω1 ×Ω2.

3. The existence result

This section is devoted to the proof of Theorem 1.1. We let n ≥ 3 and −→p = (p1, . . . , pn). We
assume that

∑n
i=1 1/pi > 1, p+ = p∗, and that there exists an index n+ such that pn−n++1 =

· · · = pn = p+, and pi < p+ for all i ≤ n − n+. Moreover, we assume that Ω = Rn−n+ × V ,
where V is a nonempty, bounded, open subset of Rn+ . Without loss of generality, we may
assume that the point 0 belongs to V .

The proof of Theorem 1.1 is based on concentration-compactness arguments. Let us first
set some notations. For any function u in D1,−→p (Rn) and any subset D of Rn, we let the energy
E (u,D) of u on D be defined by

E (u,D) =

∫
D

up+dx . (3.1)

For any positive real number µ and any point a = (a1, . . . , an) in Rn, we define the affine
transformation τ

−→p
µ,a : Rn → Rn by

τ
−→p
µ,a (x1, . . . , xn) =

(
µ
p1−p+
p1 (x1 − a1) , . . . , µ

pn−p+
pn (xn − an)

)
. (3.2)

As is easily checked, (3.2) provides a general rescaling invariance rule associated with equation

(1.1). Moreover for any subset D of Rn, we get E (u,D) = E
(
µu ◦

(
τ
−→p
µ,a

)−1
, τ
−→p
µ,a (D)

)
, where(

τ
−→p
µ,a

)−1
(x1, . . . , xn) =

(
µ
p+−p1
p1 x1 + a1, . . . , µ

p+−pn
pn xn + an

)
.
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Of importance in our critical setting is that the set D is only rescaled with respect to noncritical
directions. Therefore, we observe a concentration phenomenon on affine subspaces of Rn

spanned by critical directions. Figure 1 below illustrates the rescaling in case D is a three-
dimensional ball, the first two directions being noncritical, the third one being critical. In case
of the p-Laplace operator, the ball would have been rescaled to the whole euclidean space.

Figure 1. Rescaling of a ball (n = 3, p1 = p2 = 1.5, p3 = 6). The first line
describes the scale in the rescaling. The second line describes the deformation
of the domain.

We begin the proof of Theorem 1.1. We let (uα)α be a sequence of functions in D1,−→p (Ω)
such that∫

Ω

|uα|p+ dx = 1 and lim
α→+∞

n∑
i=1

1

pi

∫
Ω

∣∣∣∣∂uα∂xi

∣∣∣∣pi dx = inf
u∈D1,−→p (Ω)∫
Ω |u|

p+dx=1

n∑
i=1

1

pi

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx . (3.3)

Taking the absolute value, we may assume that for any α, the function uα is nonnegative.
Clearly, the sequence (uα)α is bounded in D1,−→p (Ω).

Step 3.1 below is the first step in the proof of Theorem 1.1. We say that a sequence (vα)α
in D1,−→p (Ω) is Palais–Smale for the functional Iλ defined in (3.4) if there hold |Iλ (vα)| ≤ C
for some positive constant C independent of α, and ‖DIλ (vα)‖D1,−→p (Ω)′ → 0 as α→ +∞.

Step 3.1. Up to a subsequence, (uα)α is a Palais–Smale sequence for the functional

Iλ (u) =
n∑
i=1

1

pi

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx− λ

p+

∫
Ω

|u|p+ dx , (3.4)

where

λ = lim
α→+∞

n∑
i=1

∫
Ω

∣∣∣∣∂uα∂xi

∣∣∣∣pi dx . (3.5)

Proof. It easily follows from (3.3) that there holds |Iλ (uα)| ≤ C for some positive contant C
independent of α. We then prove that for any bounded sequence (ϕα)α in D1,−→p (Ω), there
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holds DIλ (uα) .ϕα → 0 as α → +∞. By (3.3), we get that there exists a sequence (εα)α of
positive real numbers converging to 0 such that for any real number t, there holds

n∑
i=1

1

pi

∫
Ω

∣∣∣∣∂uα∂xi

∣∣∣∣pi dx− εα ≤ n∑
i=1

1

pi

∫
Ω

∣∣∣∣∣∣ ∂∂xi
 uα + tϕα(∫

Ω
|uα + tϕα|p+ dx

) 1
p+

∣∣∣∣∣∣
pi

dx

=
n∑
i=1

1

pi

(∫
Ω

|uα + tϕα|p+ dx
)− pi

p+
∫
Ω

∣∣∣∣∂uα∂xi
+ t

∂ϕα
∂xi

∣∣∣∣pi dx . (3.6)

As is easily checked, there exists a positive real number C such that for any i = 1, . . . , n and
for any real numbers x and y, there holds

∣∣|x+ y|pi − |x|pi − pi |x|pi−2 xy
∣∣ ≤ C

{
|y|pi if pi ≤ 2

|y|2
(
|x|pi−2 + |y|pi−2) if pi > 2.

(3.7)

Since (uα)α and (ϕα)α are bounded in D1,−→p (Ω), by (3.7) and Hölder’s inequality, we get∣∣∣∣∣
∫
Ω

∣∣∣∣∂uα∂xi
+ t

∂ϕα
∂xi

∣∣∣∣pi dx− ∫
Ω

∣∣∣∣∂uα∂xi

∣∣∣∣pi dx− pit∫
Ω

∣∣∣∣∂uα∂xi

∣∣∣∣pi−2
∂uα
∂xi

∂ϕα
∂xi

dx

∣∣∣∣∣
≤ C


tpi
∫
Ω

∣∣∣∣∂ϕα∂xi

∣∣∣∣pi dx if pi ≤ 2

t2
(∫

Ω

∣∣∣∣∂uα∂xi

∣∣∣∣pi dx) 2
pi
(∫

Ω

∣∣∣∣∂ϕα∂xi

∣∣∣∣pi dx)
pi−2

pi

+ tpi
∫
Ω

∣∣∣∣∂ϕα∂xi

∣∣∣∣pi dx if pi > 2.

≤ C ′

{
tpi if pi ≤ 2

t2
(
1 + tpi−2

)
if pi > 2.

(3.8)

for all i = 1, . . . , n, and∣∣∣∣∫
Ω

|uα + tϕα|p+ dx−
∫
Ω

up+α dx− p+t

∫
Ω

up+−1
α ϕαdx

∣∣∣∣
≤ C


tp+
∫
Ω

|ϕα|p+ dx if p+ ≤ 2

t2
(∫

Ω

|uα|p+ dx
) 2

p+

(∫
Ω

|ϕα|p+ dx
) p+−2

p+

+ tp+
∫
Ω

|ϕα|p+ dx if p+ > 2.

≤ C ′

{
tp+ if p+ ≤ 2

t2
(
1 + tp+−2

)
if p+ > 2.

(3.9)

for some positive constants C and C ′ independent of α and t. By (3.6), (3.8), (3.9), we get

−εα ≤ t

(
n∑
i=1

∫
Ω

∣∣∣∣∂uα∂xi

∣∣∣∣pi−2
∂uα
∂xi

∂ϕα
∂xi

dx−

(
n∑
i=1

∫
Ω

∣∣∣∣∂uα∂xi

∣∣∣∣pi dx
)∫

Ω

up+−1
α ϕαdx

)
+ o (t)

≤ t

(
DIλ (uα) .ϕα +

(
λ−

n∑
i=1

∫
Ω

∣∣∣∣∂uα∂xi

∣∣∣∣pi dx
)∫

Ω

up+−1
α ϕαdx

)
+ o (t)
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as t→ 0 uniformly with respect to α, where λ is as in (3.5). Passing to the limit as α→ +∞,
we get

0 ≤ lim sup
α→+∞

(tDIλ (uα) .ϕα) + o (t)

as t → 0. Since the real number t takes either positive or negative values, it follows that
DIλ (uα) .ϕα → 0 as α → +∞. Since this holds true for all bounded sequences (ϕα)α in

D1,−→p (Ω), we get ‖DIλ (uα)‖D1,−→p (Ω)′ → 0 as α→ +∞. This ends the proof of Step 3.1. �

Now, for any α, we define the concentration function Qα : R+ → R+ by

Qα (s) = max
y∈Ω
E
(
uα,P

−→p
y (s)

)
,

where the energy functional E is as in (3.1) and

P
−→p
y (s) =

{
(x1, . . . , xn) ∈ Ω; |xi − yi| < s

p+−pi
pi ∀i ∈ {1, . . . , n− n+}

}
(3.10)

for all positive real number s and for all point y = (y1, . . . , yn) in Ω. By the continuity of the
functions Qα and by (3.3), given a real number δ0 in (0, 1), we get the existence of a sequence
(µα)α of positive real numbers such that there holds Qα (µα) = δ0 for all α. We let xα be a

point in Ω for which Qα (µα) is reached, so that there holds

max
y∈Ω
E
(
uα,P

−→p
y (µα)

)
= E

(
uα,P

−→p
xα (µα)

)
= δ0 (3.11)

for all α. By definition of P−→pxα (µα), see (3.10), we may assume that the n+ last coordinates of
the point xα are equal to 0. For any α, we then define the function ũα by

ũα = µαuα ◦
(
τ
−→p
µα,xα

)−1
,

where τ
−→p
µα,xα is as in (3.2). Since Ω = Rn−n+ × V , pn−n++1 = · · · = pn = p+, and p+ = p∗, we

get τ
−→p
µα,xα (Ω) = Ω for all α. As well as (uα)α, we get that (ũα)α is a Palais–Smale sequence

for the functional Iλ defined in (3.4). Moreover, there holds ‖ũα‖D1,−→p (Ω) = ‖uα‖D1,−→p (Ω) for

all α. In particular, the sequence (ũα)α is bounded in D1,−→p (Ω). Passing if necessary to a
subsequence, we may assume that (ũα)α converges weakly to a nonnegative function u∞ in

D1,−→p (Ω) and that (ũα)α converges to u∞ almost everywhere in Ω. The second step in the
proof of Theorem 1.1 is as follows.

Step 3.2. If the constant δ0 is small enough, then (ũα)α converges, up to a subsequence, to
u∞ in L

p+
loc (Rn).

Proof. We fix a positive real number R, and we let B0 (R) be the (n− n+)-dimensional ball
of center 0 and radius R. We show that the sequence (ũα)α converges to u∞ in Lp+ (B0 (R)).
For any α, we let vα = ũα − u∞. By Banach–Alaoglu theorem, since the sequence (vα)α is

bounded in D1,−→p (Ω) and since Ω = Rn−n+ × V , where V is bounded, passing if necessary to
a subsequence, we may assume that there exist nonnegative, finite measures µ and ν1, . . . , νn
on B0 (2R) × Rn+ such that |vα|p+ ⇀ µ and |∂vα/∂xi|pi ⇀ νi as α → +∞ in the sense of

measures on B0 (2R) × Rn+ , for all i = 1, . . . , n. Moreover, the supports of the measures µ

and ν1, . . . , νn are included in B0 (2R)× V . Now, we borrow some ideas in Lions [33,34] with
the tricky difference here that the concentration holds on n+-dimensional affine subspaces of
Rn. Since p+ = p∗, by the anisotropic Sobolev inequality in Troisi [41], there exists a positive
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constant Λ = Λ (−→p ) such that for any α and any smooth function ϕ with compact support in
B0 (2R)× Rn+ , there holds

∫
Ω

|vαϕ|p+ dx ≤ Λ

n∏
i=1

(∫
Ω

∣∣∣∣∂ (vαϕ)

∂xi

∣∣∣∣pi dx)
p+
npi

≤ Λ

n∏
i=1

((∫
Ω

∣∣∣∣vα ∂ϕ∂xi
∣∣∣∣pi dx) 1

pi

+

(∫
Ω

∣∣∣∣∂vα∂xi
ϕ

∣∣∣∣pi dx) 1
pi

) p+
n

. (3.12)

For i = 1, . . . , n−n+, by the compact embeddings in Rákosńık [38], we get that (vα)α converges
to 0 in Lpi (Suppϕ). Passing to the limit as α→ +∞ into (3.12) gives

∫
B0(R)×V

|ϕ|p+ dµ ≤ Λ

n−n+∏
i=1

(∫
B0(R)×V

|ϕ|pi dνi
) p+

npi

×
n∏

i=n−n++1

((∫
B0(R)×V

∣∣∣∣ ∂ϕ∂xi
∣∣∣∣p+ dµ) 1

p+

+

(∫
B0(R)×V

|ϕ|p+ dνi
) 1

p+

) p+
n

.

By an easy density argument, it follows that for any bounded measurable function ϕ on
B0 (R)× V which does not depend on the variables xn−n++1, . . . , xn, there holds

∫
B0(R)×V

|ϕ|p+ dµ ≤ Λ
n∏
i=1

(∫
B0(R)×V

|ϕ|pi dνi
) p+

npi

. (3.13)

In particular, for any Borelian set A in B0 (R), taking ϕ = 1A×V , we get

µ
(
A× V

)
≤ Λ

n∏
i=1

νi
(
A× V

) p+
npi . (3.14)

Letting ν =
∑n

i=1 νi, since
∑n

i=1
1
pi

= n+p+
p+

, it follows that

µ
(
A× V

)
≤ Λν

(
A× V

)n+p+
n . (3.15)

We let µ̃ and ν̃1, . . . , ν̃n be the measures defined on B0 (R) by µ̃ (A) = µ
(
A× V

)
and ν̃i (A) =

νi
(
A× V

)
for all i = 1, . . . , n. We let ν̃ =

∑n
i=1 ν̃i. By the Lebesgue decomposition of ν̃

with respect to µ̃, there exist a nonnegative function f in L1
(
B0 (R), dµ̃

)
and a nonnegative

bounded measure σ on B0 (R) such that there holds ν̃ = fµ̃ + σ and such that σ is singular
with respect to µ̃. We may assume in addition that the function f is identically zero on the
support of the measure σ. By (3.15), we get µ̃

({
x ∈ B0 (R); f (x) = 0

})
= 0. For any natural

number β, any real number q ≥ 1, and any Borelian set A in B0 (R), by (3.13) with ϕ = f q1Aβ ,
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where Aβ = {x ∈ A ; f (x) ≤ β}, we get

∫
Aβ

f qp+dµ̃ ≤ Λ

n∏
i=1

(∫
Aβ

f qpidν̃i

) p+
npi

≤ Λ
n∏
i=1

(∫
Aβ

f qpi+1dµ̃

) p+
npi

≤ Λ

n−n+∏
i=1

(∫
Aβ

f qpi+1dµ̃

) p+
npi

(
β

∫
Aβ

f qp+dµ̃

)n+
n

.

Choosing q large enough so that q > 1/ (p+ − pi) for all i = 1, . . . , n − n+, by Hölder’s
inequality, it follows that

∫
Aβ

f qp+dµ̃ ≤ β
n+
n Λν

(
B0 (R)× V

) p+q−1

nq

∑n−n+
i=1

1
pi
−n−n+

n

(∫
Aβ

f qp+dµ̃

) 1
nq

∑n−n+
i=1

1
pi

+1

.

We then get that either
∫
Aβ
f qp+dµ̃ = 0 or

∫
Aβ
f qp+dµ̃ > Cβ, for some positive constant Cβ

independent of A. It follows that for any β, the measure A →
∫
Aβ
f qp+dµ̃ is a finite linear

combination of Dirac masses. Since µ̃
({
x ∈ B0 (R); f (x) = 0

})
= 0, it follows that for any

β, the measure A → µ̃ (Aβ) is a finite linear combination of Dirac masses. Passing to the
limit as β → +∞, we get that there exists an at most countable index set J of distinct points
yj =

(
yj1, . . . , y

j
n−n+

)
in B0 (R), j ∈ J , such that Supp µ̃ = {yj ; j ∈ J}. It follows that

Suppµ ∩B0 (R)× V ⊂
⋃
j∈J

V yj , (3.16)

where

V yj =
{(
yj1, . . . , y

j
n−n+

)}
× V . (3.17)

We end the proof of Theorem 1.1 by using Palais–Smale properties of the sequence (ũα)α. For
any smooth function φ with compact support in Ω, we get

n∑
i=1

∫
Ω

∣∣∣∣∂ũα∂xi

∣∣∣∣pi−2
∂ũα
∂xi

∂φ

∂xi
dx = λ

∫
Ω

ũp+−1
α φdx+ o (1) (3.18)

as α → +∞. The functions ũp+−1
α keep bounded in Lp+/(p+−1) (Ω) and converge, up to a

subsequence, almost everywhere to up+−1
∞ in Ω as α → +∞. By standard integration theory,

it follows that the functions ũp+−1
α converge weakly to up+−1

∞ in Lp+/(p+−1) (Ω). On the other
hand, for any i = 1, . . . , n, the functions |∂ũα/∂xi|pi−2 ∂ũα/∂xi keep bounded in Lpi/(pi−1) (Ω),
and thus converge, up to a subsequence, weakly to a function ψi in Lpi/(pi−1) (Ω) as α→ +∞.
Passing to the limit into (3.18) as α→ +∞, we get

n∑
i=1

∫
Ω

ψi
∂φ

∂xi
dx = λ

∫
Ω

up+−1
∞ φdx . (3.19)

By an easy density argument, (3.19) holds true for all functions φ in D1,−→p (Ω). Now, we let ϕ
be a nonnegative, smooth function with support in B0 (2R)× Rn+ . Since the sequence (ũα)α
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is Palais–Smale for the functional Iλ, we get

n∑
i=1

(∫
Ω

∣∣∣∣∂ũα∂xi

∣∣∣∣pi ϕdx+

∫
Ω

∣∣∣∣∂ũα∂xi

∣∣∣∣pi−2
∂ũα
∂xi

ũα
∂ϕ

∂xi
dx

)
= λ

∫
Ω

ũp+α ϕdx+DIλ (ũα) . (ũαϕ)

≤ λ

∫
Ω

ũp+α ϕdx+ o (1) (3.20)

as α→ +∞. For any i = 1, . . . , n− n+, by the compact embeddings in Rákosńık [38], we get
that the sequence (ũα)α converges to u∞ in Lpi (Suppϕ), and thus that∫

Ω

∣∣∣∣∂ũα∂xi

∣∣∣∣pi−2
∂ũα
∂xi

ũα
∂ϕ

∂xi
dx −→

∫
Ω

ψiu∞
∂ϕ

∂xi
dx (3.21)

as α→ +∞. For any α and any i = n− n+ + 1, . . . , n, we get∣∣∣∣∣
∫
Ω

∣∣∣∣∂ũα∂xi

∣∣∣∣p+−2
∂ũα
∂xi

ũα
∂ϕ

∂xi
dx

∣∣∣∣∣ ≤
∥∥∥∥∂ũα∂xi

∥∥∥∥p+−1

Lp+ (Ω)

‖ũα‖Lp+ (Ω)

∥∥∥∥ ∂ϕ∂xi
∥∥∥∥
L∞(Rn)

. (3.22)

Since the sequence (ũα)α is bounded in Lp+ (Ω) and converges to u∞ almost everywhere in Ω,
by Brezis–Lieb [12], we get∫

Ω

ũp+α ϕdx −→
∫
Ω

up+∞ ϕdx+

∫
B0(2R)×V

ϕdµ . (3.23)

Since there holds |∂ũα/∂xi|pi ≥ |∂vα/∂xi|pi − |∂u∞/∂xi|pi , where vα = ũα − u∞ for all α and
i = 1, . . . , n, we get

lim inf
α→+∞

∫
Ω

∣∣∣∣∂ũα∂xi

∣∣∣∣pi ϕdx ≥ ∫
B0(2R)×V

ϕdνi −
∫
Ω

∣∣∣∣∂u∞∂xi
∣∣∣∣pi ϕdx (3.24)

as α→ +∞. By (3.21), (3.22), (3.23), and (3.24), passing to the limit into (3.20) as α→ +∞,
we get

n∑
i=1

∫
B0(2R)×V

ϕdνi −
n∑
i=1

∫
Ω

∣∣∣∣∂u∞∂xi
∣∣∣∣pi ϕdx+

n−n+∑
i=1

∫
Ω

ψiu∞
∂ϕ

∂xi
dx

≤ λ

(∫
Ω

up+∞ ϕdx+

∫
B0(2R)×V

ϕdµ

)
+ C

n∑
i=n−n++1

∥∥∥∥ ∂ϕ∂xi
∥∥∥∥
L∞(Rn)

(3.25)

for some positive constant C independent of ϕ. Increasing if necessary the constant C, it
follows from (3.19) and (3.25) that

n∑
i=1

∫
B0(2R)×V

ϕdνi −
n∑
i=1

∫
Ω

∣∣∣∣∂u∞∂xi
∣∣∣∣pi ϕdx− n∑

i=1

∫
Ω

ψi
∂u∞
∂xi

ϕdx

≤ λ

∫
B0(2R)×V

ϕdµ+ C
n∑

i=n−n++1

∥∥∥∥ ∂ϕ∂xi
∥∥∥∥
L∞(Rn)

. (3.26)

We let η be a smooth cutoff function on Rn−n+ such that η = 1 in B0 (1), 0 ≤ η ≤ 1 in

B0 (2) \B0 (1), and η = 0 in Rn−n+\B0 (2). For any point y =
(
y1, . . . , yn−n+

)
in B0 (R) and

for any positive real number ε, we let ϕε,y be the function defined on Rn by

ϕε,y (x1, . . . , xn) = η

(
1

ε
(x1 − y1) , . . . ,

1

ε

(
xn−n+ − yn−n+

))
.
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Plugging ϕ = ϕε,y into (3.26), and passing to the limit as ε→ 0, we get
n∑
i=1

νi
(
V y

)
≤ λµ

(
V y

)
, (3.27)

where V y is as in (3.17). By (3.14) and (3.27), we get that there holds either

µ
(
V y

)
= 0 or λµ

(
V y

) p+
n+p+ ≥ Λ

−n
n+p+ (3.28)

for all points y in Rn−n+ . On the other hand, by (3.11) and by an easy change of variable, for
any α, we get

E
(
ũα,P

−→p
y (1)

)
≤ δ0 , (3.29)

where the energy functional E is as in (3.1) and P−→py (1) is as in (3.10). By (3.23) and since

there holds V y ⊂ P
−→p
y (1), passing to the limit into (3.29) as α→ +∞, it follows that

E
(
u∞,P

−→p
y (1)

)
≤ δ0 . (3.30)

Choosing δ0 small enough so that δ0 < Λ
− n
p+ λ

−n+p+
p+ , it follows from (3.28) and (3.30) that

there holds µ
(
V y

)
= 0 for all points y in B0 (R). By (3.16), we then get that the measure µ

is identically zero on B0 (R). It follows that |vα|p+ ⇀ 0 as α → +∞, where vα = ũα − u∞,
and thus that the sequence (ũα)α converges to u∞ in L

p+
loc (B0 (R)). This ends the proof of

Step 3.2. �

The next step in the proof of Theorem 1.1 is as follows.

Step 3.3. If the constant δ0 is small enough, then ∇ũα converges, up to a subsequence, to
∇u∞ almost everywhere in Ω.

Proof. We let ϕ be a smooth function with compact support in Rn. Since the sequence (ũα)α
is Palais–Smale for the functional Iλ, there holds DIλ (ũα) . ((ũα − u∞)ϕ) → 0 as α → +∞,
and thus

n∑
i=1

∫
Ω

∣∣∣∣∂ũα∂xi

∣∣∣∣pi−2
∂ũα
∂xi

(
∂ũα
∂xi
− ∂u∞

∂xi

)
ϕdx+

n∑
i=1

∫
Ω

∣∣∣∣∂ũα∂xi

∣∣∣∣pi−2
∂ũα
∂xi

(ũα − u∞)
∂ϕ

∂xi
dx

− λ
∫
Ω

ũp+−1
α (ũα − u∞)ϕdx −→ 0 (3.31)

as α→ +∞. By Hölder’s inequality and by Step 3.2, we get∣∣∣∣∫
Ω

ũp+−1
α (ũα − u∞)ϕdx

∣∣∣∣ ≤ ‖ϕ‖L∞(Ω) ‖ũα‖
p+−1
Lp+ (Ω) ‖ũα − u∞‖Lp+ (Suppϕ) −→ 0 (3.32)

and ∣∣∣∣∣
∫
Ω

∣∣∣∣∂ũα∂xi

∣∣∣∣pi−2
∂ũα
∂xi

(ũα − u∞)
∂ϕ

∂xi
dx

∣∣∣∣∣
≤ |Suppϕ|

p+−pi
p+pi

∥∥∥∥ ∂ϕ∂xi
∥∥∥∥
L∞(Ω)

∥∥∥∥∂ũα∂xi

∥∥∥∥pi−1

Lpi (Ω)

‖ũα − u∞‖Lp+ (Suppϕ) −→ 0 (3.33)

as α→ +∞ for all i = 1, . . . , n. By (3.31), (3.32), and (3.33), we get
n∑
i=1

∫
Ω

∣∣∣∣∂ũα∂xi

∣∣∣∣pi−2
∂ũα
∂xi

(
∂ũα
∂xi
− ∂u∞

∂xi

)
ϕdx −→ 0 (3.34)
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as α → +∞. On the other hand, since the sequence (ũα)α converges weakly to the function

u∞ in D1,−→p (Ω), we get∫
Ω

∣∣∣∣∂u∞∂xi
∣∣∣∣pi−2

∂u∞
∂xi

∂ũα
∂xi

ϕdx −→
∫
Ω

∣∣∣∣∂u∞∂xi
∣∣∣∣pi ϕdx (3.35)

as α→ +∞ for all i = 1, . . . , n. By (3.34) and (3.35), we get
n∑
i=1

∫
Ω

(∣∣∣∣∂ũα∂xi

∣∣∣∣pi−2
∂ũα
∂xi
−
∣∣∣∣∂u∞∂xi

∣∣∣∣pi−2
∂u∞
∂xi

)(
∂ũα
∂xi
− ∂u∞

∂xi

)
ϕdx −→ 0 (3.36)

as α→ +∞. Since (3.36) holds true for all smooth functions ϕ with compact support in Rn,
we then get that for any i = 1, . . . , n and any bounded domain Ω′ of Rn, there holds∫

Ω′

(∣∣∣∣∂ũα∂xi

∣∣∣∣pi−2
∂ũα
∂xi
−
∣∣∣∣∂u∞∂xi

∣∣∣∣pi−2
∂u∞
∂xi

)(
∂ũα
∂xi
− ∂u∞

∂xi

)
dx −→ 0

as α→ +∞. In particular, up to a subsequence, there holds(∣∣∣∣∂ũα∂xi

∣∣∣∣pi−2
∂ũα
∂xi
−
∣∣∣∣∂u∞∂xi

∣∣∣∣pi−2
∂u∞
∂xi

)(
∂ũα
∂xi
− ∂u∞

∂xi

)
−→ 0 a.e. in Ω

as α → +∞. It easily follows that the functions ∂ũα/∂xi converge, up to a subsequence,
almost everywhere to ∂u∞/∂xi in Ω as α→ +∞. This ends the proof of Step 3.3. �

The final step in the proof of Theorem 1.1 is as follows.

Step 3.4. The function u∞ is a nontrivial, nonnegative solution of the problem (1.1).

Proof. We let ϕ be a smooth function with compact support in Ω. Since the sequence (ũα)α
is Palais–Smale for the functional Iλ, we get

n∑
i=1

∫
Ω

∣∣∣∣∂ũα∂xi

∣∣∣∣pi−2
∂ũα
∂xi

∂ϕ

∂xi
dx− λ

∫
Ω

ũp+−1
α ϕdx −→ 0 (3.37)

as α→ +∞. By Step 3.3 (resp. Step 3.2), the functions ∂ũα/∂xi (resp. ũα) converge almost
everywhere to ∂u∞/∂xi (resp. u∞) in Ω as α→ +∞. Moreover, |∂ũα/∂xi|pi−2 ∂ũα/∂xi (resp.
ũp+−1
α ) keep bounded in Lpi/(pi−1) (Ω) (resp. Lp+/(p+−1) (Ω)). By standard integration theory,

it follows that ∫
Ω

ũp+−1
α ϕdx −→

∫
Ω

up+−1
∞ ϕdx (3.38)

and ∫
Ω

∣∣∣∣∂ũα∂xi

∣∣∣∣pi−2
∂ũα
∂xi

∂ϕ

∂xi
dx −→

∫
Ω

∣∣∣∣∂u∞∂xi
∣∣∣∣pi−2

∂u∞
∂xi

∂ϕ

∂xi
dx (3.39)

as α→ +∞ for all i = 1, . . . , n. By (3.37), (3.38), and (3.39), we get that u∞ is a solution of
problem (1.1). Moreover, u∞ is nonnegative since the functions ũα are nonnegative. We finally
claim that u∞ is not identically zero. Indeed, by (3.11) and by an easy change of variable, for
any α, we get

E
(
ũα,P

−→p
0 (1)

)
= δ0 , (3.40)

where the energy functional E is as in (3.1) and P
−→p
0 (1) is as in (3.10). By Step 3.2, passing

to the limit into (3.40) as α→ +∞, we get

E
(
u∞,P

−→p
0 (1)

)
= δ0 .

In particular, u∞ is not identically zero. This ends the proof of Step 3.4. �
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Step 3.4 ends the proof of Theorem 1.1

4. The regularity result

In this section, we prove Theorem 1.2.

Proof of Theorem 1.2. Without loss of generality, we may assume that there exists an index
n+ such that pn−n++1 = · · · = pn = p+ and pi < p+ for all i ≤ n− n+. We let u be a solution
of problem (1.1). We begin with proving that u belongs to Lq (Ω) for all real numbers q > p+.
We let

ϕα = min
(
|u|

q−p+
p+ , α

)
for all positive real numbers α. For any j = 1, . . . , n, multiplying equation (1.1) by uϕ

pj
α and

integrating by parts on Ω, since u = 0 on ∂Ω, we get
n∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi ϕpjα dx ≤ λ

∫
Ω

|u|p+ ϕpjα dx . (4.1)

Moreover, for any positive real number β, we get∫
Ω

|u|p+ ϕpjα dx ≤ β
(q−p+)pj

p+

∫
Ω

|u|p+ dx+

∫
Wβ

|u|p+ ϕpjα dx , (4.2)

where
Wβ = {x ∈ Ω ; |u (x)| > β} . (4.3)

By Hölder’s inequality, we get∫
Wβ

|u|p+ ϕpjα dx ≤

(∫
Wβ

|u|p+ dx

) p+−pj
p+

(∫
Ω

|u|p+ ϕp+α dx
) pj

p+

. (4.4)

Since p+ = p∗, by the anisotropic Sobolev inequality in Troisi [41], we get∫
Ω

|u|p+ ϕp+α dx ≤ Λ
n∏
i=1

(∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi ϕpiα dx)

p+
npi

(4.5)

for some positive constant Λ independent of α and u. By Young’s inequality, it follows that
for any ε > 0, there holds∫

Ω

|u|p+ ϕp+α dx ≤
Λ

n

(
ε
−n+
n−n+

n−n+∑
i=1

(∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi ϕpiα dx)

p+
pi

+ ε
n∑

i=n−n++1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p+ ϕp+α dx). (4.6)

By (4.1)–(4.6), we get

∫
Ω

∣∣∣∣ ∂u∂xj
∣∣∣∣pj ϕpjα dx ≤ λβ

(q−p+)pj
p+

∫
Ω

|u|p+ dx+ λ

(
Λ

n

) pj
p+

(∫
Wβ

|u|p+ dx

) p+−pj
p+

×

n−n+∑
i=1

(
ε
−n+
n−n+

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi ϕpiα dx)

pj
pi

+

ε n∑
i=n−n++1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p+ ϕp+α dx


pj
p+

 . (4.7)
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Choosing ε small enough so that ε < n/ (λΛ), it follows that

n∑
i=n−n++1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p+ ϕp+α dx ≤ nλβq−p+

n− λΛε

∫
Ω

|u|p+ dx

+
λΛ

n− λΛε

n−n+∑
i=1

(
ε
−n+
n−n+

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi ϕpiα dx)

p+
pi

. (4.8)

It follows from (4.7) with ε = 1 and (4.8) with ε < n/ (λΛ) that

n−n+∑
i=1

(∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi ϕpiα dx) 1

pi

≤ C

(
β
q−p+
p+

n−n+∑
i=1

(∫
Ω

|u|p+ dx
) 1

pi

(4.9)

+

(
n−n+∑
i=1

(∫
Wβ

|u|p+ dx
) p+−pi

p+pi

)(
β
q−p+
p+

(∫
Ω

|u|p+ dx
) 1

p+

+

n−n+∑
i=1

(∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi ϕpiα dx) 1

pi

))

for some positive constant C independent of α, β, and u. Since the function u belongs to
Lp+ (Ω), increasing if necessary the constant C, it follows from (4.8) and (4.9) that for β
large, there holds

n∑
i=1

(∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi ϕpiα dx) 1

pi

≤ Cβ
q−p+
p+ , (4.10)

where C is independent of α, β, and u. Passing to the limit into (4.10) as α→ +∞, we get

n∑
i=1

(∫
Ω

∣∣∣∣ ∂∂xi
(
|u|

q
p+

)∣∣∣∣pi dx) 1
pi

< +∞ .

By the continuity of the embedding of D1,−→p (Ω) into Lp+ (Ω), it follows that |u|
q
p+ belongs to

Lp+ (Ω), and thus that u belongs to Lq (Ω) for all real numbers q > p+. Now, we prove that
u belongs to L∞ (Ω). For any positive real number t, we define the function ϕt : R→ R by

ϕt (s) =


s+ t if s ≤ −t ,
0 if − t < s < t ,

s− t if s ≥ t .

Multiplying equation (1.1) by ϕt (u) and integrating by parts on Ω, since u = 0 on ∂Ω, we get

n∑
i=1

∫
Wt

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx = λ

∫
Wt

|u|p+−2 uϕt (u) dx ,

where Wt is as in (4.3). For any real number q > p+, by Hölder’s inequality, it follows that

n∑
i=1

∫
Wt

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx ≤ λ |Wt|

(p+−1)(q−p+)
p+q

(∫
Wt

|u|q dx
) p+−1

q
(∫

Wt

|ϕt (u)|p+ dx
) 1

p+

. (4.11)
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Since p+ = p∗, by the anisotropic Sobolev inequality in Troisi [41], and by Young’s inequality,
we get (∫

Wt

|ϕt (u)|p+ dx
) n

n+p+

≤ Λ
n∏
i=1

(∫
Wt

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx)

p+

(n+p+)pi

≤ p+Λ

n+ p+

n∑
i=1

1

pi

∫
Wt

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx (4.12)

for some positive constant Λ independent of t and u. Since the function u belongs to Lq (Ω),
it follows from (4.11) and (4.12) that(∫

Wt

|ϕt (u)|p+ dx
) 1

p+

≤ C |Wt|
(n+p+)(p+−1)(q−p+)

(np+−n−p+)p+q

for some positive constant C independent of t and u. By Fubini’s theorem and Hölder’s
inequality, we then get∫ +∞

t

|Ws| ds =

∫ +∞

t

∫
Wt

1Wsdxds =

∫
Wt

|ϕt (u)| dx ≤ C |Wt|
(p+−1)(nq−n−p+)

(np+−n−p+)q .

Choosing q large enough so that

(p+ − 1) (nq − n− p+)

(np+ − n− p+) q
> 1 ,

it easily follows that there holds |Wt| = 0 for t large, and thus that u belongs to L∞ (Ω). �
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[36] M. Mihăilescu, V. Rădulescu, and S. Tersian, Eigenvalue problems for anisotropic discrete boundary value

problem, Journal of Difference Equations and Applications 15 (2009), no. 6, 557–567.
[37] Y. V. Namlyeyeva, A. E. Shishkov, and I. I. Skrypnik, Isolated singularities of solutions of quasilinear

anisotropic elliptic equations, Adv. Nonlinear Stud. 6 (2006), no. 4, 617–641.
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