Intersection bounds for nodal sets of planar Neumann eigenfunctions with interior analytic curves

John Toth (McGill) (joint in part with Y. Canzani and L. El-Hajj)

Weyl law at 100 (Fields Institute)

September 19-21, 2012

• Let $\Omega \subset \mathbb{R}^2$ be an analytic, bounded planar domain with boundary $\partial \Omega$ and $H \subset \mathring{\Omega}$ be a real-analytic interior curve (ie. $H \subset \mathring{\Omega}$).

- Let $\Omega \subset \mathbb{R}^2$ be an analytic, bounded planar domain with boundary $\partial \Omega$ and $H \subset \mathring{\Omega}$ be a real-analytic interior curve (ie. $H \subset \mathring{\Omega}$).
- We consider Neumann (or Dirichlet) eigenfunctions φ_{λ} on real analytic plain domains $\Omega \subset \mathbf{R}^2$ with

$$\left\{ \begin{array}{cc} -\Delta \varphi_{\lambda} = \lambda^2 \varphi_{\lambda} & \mbox{ in } \Omega \\ \partial_{\nu} \varphi_{\lambda} = 0 & \mbox{ on } \partial \Omega. \end{array} \right\}.$$

- Let $\Omega \subset \mathbb{R}^2$ be an analytic, bounded planar domain with boundary $\partial \Omega$ and $H \subset \mathring{\Omega}$ be a real-analytic interior curve (ie. $H \subset \mathring{\Omega}$).
- We consider Neumann (or Dirichlet) eigenfunctions φ_{λ} on real analytic plain domains $\Omega \subset \mathbf{R}^2$ with

$$\left\{ \begin{array}{cc} -\Delta \varphi_\lambda = \lambda^2 \varphi_\lambda & \mbox{ in } \Omega \\ \partial_\nu \varphi_\lambda = 0 & \mbox{ on } \partial \Omega. \end{array} \right\}.$$

• The nodal set of ϕ_{λ} is by definition

$$\mathbf{N}_{\varphi_{\lambda}} = \{\mathbf{x} \in \Omega : \varphi_{\lambda}(\mathbf{x}) = 0\}.$$

- Let $\Omega \subset \mathbb{R}^2$ be an analytic, bounded planar domain with boundary $\partial \Omega$ and $H \subset \mathring{\Omega}$ be a real-analytic interior curve (ie. $H \subset \mathring{\Omega}$).
- We consider Neumann (or Dirichlet) eigenfunctions φ_{λ} on real analytic plain domains $\Omega \subset \mathbf{R}^2$ with

$$\left\{ \begin{array}{cc} -\Delta \varphi_\lambda = \lambda^2 \varphi_\lambda & \mbox{ in } \Omega \\ \partial_\nu \varphi_\lambda = 0 & \mbox{ on } \partial \Omega. \end{array} \right\}.$$

• The nodal set of ϕ_{λ} is by definition

$$\mathbf{N}_{\varphi_{\lambda}} = \{ \mathbf{x} \in \Omega : \varphi_{\lambda}(\mathbf{x}) = 0 \}.$$

 QUESTION: As λ → ∞, how many nodal lines (components of the nodal set) <u>intersect</u> a fixed interior real analytic curve *H*?

Probability density plot of an eigenstate of a Bunimovich stadium

• Define

$$n(\lambda, H) = \#\{N_{\varphi_{\lambda}} \cap H\}.$$

Define

$$n(\lambda, H) = \#\{N_{\varphi_{\lambda}} \cap H\}.$$

• A curve *H* is said to be **good** if for all $\lambda \geq \lambda_0$,

$$\int_{H} |\phi_{\lambda}|^{2} d\sigma \geq e^{-C\lambda}$$
(1)

for some constant C > 0.

Define

$$\mathsf{n}(\lambda, \mathsf{H}) = \#\{\mathsf{N}_{\varphi_{\lambda}} \cap \mathsf{H}\}.$$

• A curve *H* is said to be **good** if for all $\lambda \ge \lambda_0$,

$$\int_{H} |\phi_{\lambda}|^{2} d\sigma \geq e^{-C\lambda}$$
(1)

for some constant C > 0.

Theorem

Theorem (Zelditch-T (2009)) Let H be a real analytic interior curve that is good. Then, there is a constant $C_{\Omega,H} > 0$ such that for all Neumann eigenfunctions ϕ_{λ} ,

$$n(\lambda, H) \leq C_{\Omega, H}\lambda.$$

When $H = \partial \Omega$,

 $\boldsymbol{n}(\lambda,\partial\Omega) \leq \boldsymbol{C}_{\Omega}\lambda.$

Checking goodness condition

• The domain boundary $H = \partial \Omega$ is good by interior unique continuation.

Checking goodness condition

- The domain boundary $H = \partial \Omega$ is good by interior unique continuation.
- For interior *H*'s, the goodness condition is not easy to verify for all eigenfunctions.

Checking goodness condition

- The domain boundary $H = \partial \Omega$ is good by interior unique continuation.
- For interior *H*'s, the goodness condition is not easy to verify for all eigenfunctions.
- Easy to see that not all interior curves are good. For example, the Neumann eigenfunctions for the disc in polar variables $(r, \theta) \in (0, 1] \times [0, 2\pi]$ are

$$\phi_{m,n}(\mathbf{r},\theta) = C_{m,n} \cos m\theta J_m(j'_{m,n}\mathbf{r}) \ (C_{m,n} \sin m\theta J_m(j'_{m,n}\mathbf{r})).$$

Here, J_m is the *m*-th integral Bessel function and $j'_{m,n}$ is the *m*-th critical point of J_m . The eigenvalues are $\lambda^2_{m,n} = (j'_{m,n})^2$.

Positive results known

• Fix $m \in Z^+$ and consider

$$H_m = \{(r, \theta); \theta = \frac{2\pi k}{m}; k = 0, ..., m - 1\}.$$

Then, clearly for all n, $\phi_{m,n}|_{H_m} = 0$, and so H_m is not good.

Positive results known

Fix *m* ∈ *Z*⁺ and consider

$$H_m = \{(r, \theta); \theta = \frac{2\pi k}{m}; k = 0, ..., m - 1\}.$$

Then, clearly for all n, $\phi_{m,n}|_{H_m} = 0$, and so H_m is not good.

• When (M^n, g) is a flat torus with n = 2, 3, and $H \subset M$ has strictly positive curvature (Bourgain-Rudnick(2010))

$$\int_{H} |\phi_{\lambda}|^2 d\sigma \approx 1.$$

Positive results known

• Fix $m \in Z^+$ and consider

$$H_m = \{(r, \theta); \theta = \frac{2\pi k}{m}; k = 0, ..., m - 1\}.$$

Then, clearly for all n, $\phi_{m,n}|_{H_m} = 0$, and so H_m is not good.

• When (M^n, g) is a flat torus with n = 2, 3, and $H \subset M$ has strictly positive curvature (Bourgain-Rudnick(2010))

$$\int_{H} |\phi_{\lambda}|^2 d\sigma \approx 1.$$

• Closed horocycles *H* in finite-volume hyperbolic surfaces are good (Jung(2011)) and so the $O_H(\lambda)$ intersection bound holds.

Theorem

Let Ω be a bounded, piecewise-analytic domain and $H \subset \mathring{\Omega}$ an interior, C^{ω} curve with restriction map $\gamma_H : C^0(\Omega) \to C^0(H)$.

Theorem

Let Ω be a bounded, piecewise-analytic domain and $H \subset \mathring{\Omega}$ an interior, C^{ω} curve with restriction map $\gamma_H : C^0(\Omega) \to C^0(H)$.

Let $H_{\epsilon_0}^{\mathbb{C}}$ denote the complex radius $\epsilon_0 > 0$ Grauert tube containing H as its totally real submanifold and $(\gamma_H \phi_\lambda)^{\mathbb{C}}$ be the holomorphic continuation of $\gamma_H \phi_\lambda$ to $H_{\epsilon_0}^{\mathbb{C}}$.

Theorem

Let Ω be a bounded, piecewise-analytic domain and $H \subset \mathring{\Omega}$ an interior, C^{ω} curve with restriction map $\gamma_H : C^0(\Omega) \to C^0(H)$.

Let $H_{\epsilon_0}^{\mathbb{C}}$ denote the complex radius $\epsilon_0 > 0$ Grauert tube containing H as its totally real submanifold and $(\gamma_H \phi_\lambda)^{\mathbb{C}}$ be the holomorphic continuation of $\gamma_H \phi_\lambda$ to $H_{\epsilon_0}^{\mathbb{C}}$.

Suppose the curve H satisfies the revised goodness condition

$$\sup_{\mathsf{z}\in H^{\mathbb{C}}_{\epsilon_0}} |(\gamma_H \phi_{\lambda})^{\mathbb{C}}(\mathsf{z})| \ge e^{-C_0 \lambda} \qquad \qquad \text{for some } \mathsf{C}_0 > 0. \quad (*)$$

Theorem

Let Ω be a bounded, piecewise-analytic domain and $H \subset \mathring{\Omega}$ an interior, C^{ω} curve with restriction map $\gamma_H : C^0(\Omega) \to C^0(H)$.

Let $H_{\epsilon_0}^{\mathbb{C}}$ denote the complex radius $\epsilon_0 > 0$ Grauert tube containing H as its totally real submanifold and $(\gamma_H \phi_\lambda)^{\mathbb{C}}$ be the holomorphic continuation of $\gamma_H \phi_\lambda$ to $H_{\epsilon_0}^{\mathbb{C}}$.

Suppose the curve H satisfies the revised goodness condition

$$\sup_{\mathbf{z}\in H_{\epsilon_0}^{\mathbb{C}}} |(\gamma_H \phi_{\lambda})^{\mathbb{C}}(\mathbf{z})| \ge e^{-C_0 \lambda} \qquad \qquad \text{for some } C_0 > 0. \quad (*)$$

Then, there is a constant $C_{\Omega,H} > 0$ such that for all $\lambda \leq \lambda_0$,

 $n(\lambda, H) \leq C_{\Omega, H}\lambda.$

Key tool: potential layer

• An important point is that (*) can be verified using T^*T -type operator bounds for the holomorphic continuation to $H_{\epsilon_0}^{\mathbb{C}}$ of the potential layer operator $N(\lambda) : C^{\infty}(\partial\Omega) \to C^{\infty}(H)$

$$N(\lambda)(\mathbf{x},\mathbf{y}) = \int_{\partial\Omega} \partial_{\nu_{\mathbf{y}}} \mathbf{G}_0(\mathbf{x},\mathbf{y},\lambda) \, d\sigma(\mathbf{y}),$$

where,

$$\mathbf{G}_0(\mathbf{x},\mathbf{y},\lambda) = \frac{i}{4} \mathbf{H} \mathbf{a}_0^{(1)}(\lambda |\mathbf{x} - \mathbf{y}|).$$

By a slight abuse of notation, we denote the Neumann (or Dirichlet) eigenfunctions ϕ_{λ} by ϕ_{h} , and write $n(h, H) := n(\lambda, H)$.

By a slight abuse of notation, we denote the Neumann (or Dirichlet) eigenfunctions ϕ_{λ} by ϕ_{h} , and write $n(h, H) := n(\lambda, H)$.

Theorem

Let Ω be a bounded, piecewise-smooth convex domain with ergodic billiard flow and H be a closed C^{ω} interior curve with strictly positive geodesic curvature.

By a slight abuse of notation, we denote the Neumann (or Dirichlet) eigenfunctions ϕ_{λ} by ϕ_{h} , and write $n(h, H) := n(\lambda, H)$.

Theorem

Let Ω be a bounded, piecewise-smooth convex domain with ergodic billiard flow and H be a closed C^{ω} interior curve with strictly positive geodesic curvature.

Let $(\phi_{h_{j_k}})_{k=1}^{\infty}$ be a quantum ergodic sequence of Neumann or Dirichlet eigenfunctions in Ω .

By a slight abuse of notation, we denote the Neumann (or Dirichlet) eigenfunctions ϕ_{λ} by ϕ_{h} , and write $n(h, H) := n(\lambda, H)$.

Theorem

Let Ω be a bounded, piecewise-smooth convex domain with ergodic billiard flow and H be a closed C^{ω} interior curve with strictly positive geodesic curvature.

Let $(\phi_{h_{j_k}})_{k=1}^{\infty}$ be a quantum ergodic sequence of Neumann or Dirichlet eigenfunctions in Ω .

Then,

$$n(h_{j_k}, H) = \mathcal{O}_{H,\Omega}(h_{j_k}^{-1}).$$

Theorem

Let (M^2, g) be a compact, real-analytic surface with $\partial M = \emptyset$ and ergodic geodesic flow $G^t : S^*M \to S^*M$. Let $H \subset M^2$ be a real-analytic closed curve with strictly-positive geodesic curvature.

Theorem

Let (M^2, g) be a compact, real-analytic surface with $\partial M = \emptyset$ and ergodic geodesic flow $G^t : S^*M \to S^*M$. Let $H \subset M^2$ be a real-analytic closed curve with strictly-positive geodesic curvature.

Let $(\phi_{\mathbf{h}_{j_k}})_{k=1}^\infty$ be a quantum ergodic sequence of Laplace eigenfunctions. Then,

$$n(h_{j_k}, H) = \mathcal{O}_{M,H}(h_{j_k}^{-1}).$$

Theorem

Let (M^2, g) be a compact, real-analytic surface with $\partial M = \emptyset$ and ergodic geodesic flow $G^t : S^*M \to S^*M$. Let $H \subset M^2$ be a real-analytic closed curve with strictly-positive geodesic curvature.

Let $(\phi_{\mathbf{h}_{j_k}})_{k=1}^\infty$ be a quantum ergodic sequence of Laplace eigenfunctions. Then,

$$n(h_{j_k}, H) = \mathcal{O}_{M,H}(h_{j_k}^{-1}).$$

• When (M^2, g) is quantum uniquely ergodic (QUE), the intersection bound in Theorem 3 holds for all eigenfunctions. For example, this is the case when $M = \Gamma/\mathbf{H}$ is arithmetic (Lindenstrauss (2006)).

Theorem

Let (M^2, g) be a compact, real-analytic surface with $\partial M = \emptyset$ and ergodic geodesic flow $G^t : S^*M \to S^*M$. Let $H \subset M^2$ be a real-analytic closed curve with strictly-positive geodesic curvature.

Let $(\phi_{\mathbf{h}_{j_k}})_{k=1}^\infty$ be a quantum ergodic sequence of Laplace eigenfunctions. Then,

$$n(h_{j_k}, H) = \mathcal{O}_{M,H}(h_{j_k}^{-1}).$$

- When (M^2, g) is quantum uniquely ergodic (QUE), the intersection bound in Theorem 3 holds for all eigenfunctions. For example, this is the case when $M = \Gamma/\mathbf{H}$ is arithmetic (Lindenstrauss (2006)).
- One can formulate a more general version of Theorem 2 in terms of defect measures which need not be ergodic (examples?)

• We want to show that $n(h, H) = O(h^{-1})$ under the assumption that $\sup_{z \in H_{\epsilon_0}^{\mathbb{C}}} |\phi_h^{H, \mathbb{C}}(z)| \ge e^{-C/h}$ for some C > 0.

- We want to show that $n(h, H) = \mathcal{O}(h^{-1})$ under the assumption that $\sup_{z \in H_{\epsilon_0}^{\mathbb{C}}} |\phi_h^{H,\mathbb{C}}(z)| \ge e^{-C/h}$ for some C > 0.
- Let $q : [-\pi, \pi] \to H$ be a C^{ω} -parametrization of a closed curve H with $|q'(t)| \neq 0$ and $q(t + 2\pi) = q(t)$.

- We want to show that $n(h, H) = \mathcal{O}(h^{-1})$ under the assumption that $\sup_{z \in H_{\epsilon_0}^{\mathbb{C}}} |\phi_h^{H,\mathbb{C}}(z)| \ge e^{-C/h}$ for some C > 0.
- Let $q : [-\pi, \pi] \to H$ be a C^{ω} -parametrization of a closed curve H with $|q'(t)| \neq 0$ and $q(t + 2\pi) = q(t)$.
- Consider the eigenfunction restriction,

$$\boldsymbol{u}_{\boldsymbol{h}}^{\boldsymbol{H}}(\boldsymbol{t})=\phi_{\boldsymbol{h}}(\boldsymbol{q}(\boldsymbol{t})),\,\boldsymbol{t}\in[-\pi,\pi]$$

and complexify u_h^H to a holomorphic function $u_h^{H,\mathbb{C}}(t)$ with $t \in S_{2\epsilon_0}$ where

$$S_{2\epsilon_0} = \{ t \in \mathbb{C}; |\Im t| < 2\epsilon_0 \}.$$

- We want to show that $n(h, H) = \mathcal{O}(h^{-1})$ under the assumption that $\sup_{z \in H_{\epsilon_0}^{\mathbb{C}}} |\phi_h^{H,\mathbb{C}}(z)| \ge e^{-C/h}$ for some C > 0.
- Let $q : [-\pi, \pi] \to H$ be a C^{ω} -parametrization of a closed curve H with $|q'(t)| \neq 0$ and $q(t + 2\pi) = q(t)$.
- Consider the eigenfunction restriction,

$$\boldsymbol{u}_{\boldsymbol{h}}^{\boldsymbol{H}}(\boldsymbol{t}) = \phi_{\boldsymbol{h}}(\boldsymbol{q}(\boldsymbol{t})), \, \boldsymbol{t} \in [-\pi,\pi]$$

and complexify u_h^H to a holomorphic function $u_h^{H,\mathbb{C}}(t)$ with $t \in S_{2\epsilon_0}$ where

$$\mathsf{S}_{2\epsilon_0} = \{ \mathsf{t} \in \mathbb{C}; |\Im \mathsf{t}| < 2\epsilon_0 \}.$$

• Let $C_{\epsilon_0} \subset S_{2\epsilon_0}$ be a simply-connected domain with C^{ω} boundary ∂C_{ϵ_0} containing the interval $[-\pi, \pi]$.

• Assuming $u_h^{H,\mathbb{C}}(t) \neq 0$ for all $t \in C_{\epsilon_0}$, frequency function method of Han-Lin gives the upper bound

$$n(h,H) \leq C_1 \left(\frac{\|\partial_T u_h^{H,\mathbb{C}}\|_{L^2_{\epsilon_0}}}{\|u_h^{H,\mathbb{C}}\|_{L^2_{\epsilon_0}}} \right).$$
(2)

• Assuming $u_h^{H,\mathbb{C}}(t) \neq 0$ for all $t \in C_{\epsilon_0}$, frequency function method of Han-Lin gives the upper bound

$$\mathsf{n}(h,H) \leq \mathsf{C}_1\left(\frac{\|\partial_{\mathsf{T}} u_h^{H,\mathbb{C}}\|_{L^2_{\epsilon_0}}}{\|u_h^{H,\mathbb{C}}\|_{L^2_{\epsilon_0}}}\right).$$
(2)

• In (2), $L^2_{\epsilon_0} := L^2(\partial C_{\epsilon_0}, d\sigma(t))$ and ∂_T is the unit tangential derivative along ∂C_{ϵ_0} .

• We *h*-microlocally decompose the right hand side in (2). Let $\chi_{R} \in C_{0}^{\infty}(T^{*}\partial C_{\epsilon_{0}})$ with $\chi_{R}(s, \sigma) = 1$ for $|\sigma| \leq R + 1$ and $\chi_{R}(s, \sigma) = 0$ for $|\sigma| \geq R + 2$ with R > 1 sufficiently large.

• We *h*-microlocally decompose the right hand side in (2). Let $\chi_{R} \in C_{0}^{\infty}(T^{*}\partial C_{\epsilon_{0}})$ with $\chi_{R}(s,\sigma) = 1$ for $|\sigma| \leq R + 1$ and $\chi_{R}(s,\sigma) = 0$ for $|\sigma| \geq R + 2$ with R > 1 sufficiently large.

Clearly,

$$\|\partial_{\mathsf{T}}\boldsymbol{u}_{h}^{\mathcal{H},\mathbb{C}}\|_{\boldsymbol{L}^{2}_{\epsilon_{0}}} \leq \|\partial_{\mathsf{T}}\boldsymbol{O}\boldsymbol{p}_{h}(\boldsymbol{\chi}_{\mathsf{R}})\boldsymbol{u}_{h}^{\mathcal{H},\mathbb{C}}\|_{\boldsymbol{L}^{2}_{\epsilon_{0}}} + \|\partial_{\mathsf{T}}(1-\boldsymbol{O}\boldsymbol{p}_{h}(\boldsymbol{\chi}_{\mathsf{R}}))\boldsymbol{u}_{h}^{\mathcal{H},\mathbb{C}}\|_{\boldsymbol{L}^{2}_{\epsilon_{0}}}.$$
(3)

• We *h*-microlocally decompose the right hand side in (2). Let $\chi_{R} \in C_{0}^{\infty}(T^{*}\partial C_{\epsilon_{0}})$ with $\chi_{R}(s,\sigma) = 1$ for $|\sigma| \leq R + 1$ and $\chi_{R}(s,\sigma) = 0$ for $|\sigma| \geq R + 2$ with R > 1 sufficiently large.

Clearly,

$$\|\partial_{\mathsf{T}}\boldsymbol{u}_{h}^{\mathsf{H},\mathbb{C}}\|_{L^{2}_{\epsilon_{0}}} \leq \|\partial_{\mathsf{T}}\boldsymbol{O}\boldsymbol{p}_{h}(\chi_{\mathsf{R}})\boldsymbol{u}_{h}^{\mathsf{H},\mathbb{C}}\|_{L^{2}_{\epsilon_{0}}} + \|\partial_{\mathsf{T}}(1-\boldsymbol{O}\boldsymbol{p}_{h}(\chi_{\mathsf{R}}))\boldsymbol{u}_{h}^{\mathsf{H},\mathbb{C}}\|_{L^{2}_{\epsilon_{0}}}.$$
(3)

• Since $h\partial_T Op_h(\chi_R) \in Op_h(S^{0,0}(T^*\partial C_{\epsilon_0}))$, by L^2 -boundedness one estimates the first term on RHS of (3):

$$\frac{\|\partial_{T} Op_{h}(\chi_{R}) u_{h}^{H,\mathbb{C}}\|_{L^{2}_{\epsilon_{0}}}}{\|u_{h}^{H,\mathbb{C}}\|_{L^{2}_{\epsilon_{0}}}} = h^{-1} \frac{\|h\partial_{T} Op_{h}(\chi_{R}) u_{h}^{H,\mathbb{C}}\|_{L^{2}_{\epsilon_{0}}}}{\|u_{h}^{H,\mathbb{C}}\|_{L^{2}_{\epsilon_{0}}}} = \mathcal{O}(h^{-1}).$$
(4)

• To estimate the right hand side of (3), we use potential layer formulas combined with a complex contour deformation argument to show that

$$\|h\partial_T(1-Op_h(\chi_R))u_h^{H,\mathbb{C}}\|_{L^2_{\epsilon_0}}=\mathcal{O}(e^{-C_R/h}).$$

Here, $C_R \gg R$ as $R \to \infty$.

• To estimate the right hand side of (3), we use potential layer formulas combined with a complex contour deformation argument to show that

$$\|h\partial_T(1-Op_h(\chi_R))u_h^{H,\mathbb{C}}\|_{L^2_{\epsilon_0}}=\mathcal{O}(e^{-C_R/h}).$$

Here,
$$C_R \gg R$$
 as $R \to \infty$.

 Choose the strip S_{ϵ0,π} = {t ∈ C; -π ≤ ℜt ≤ π, |ℜt| < ϵ₀} with S_{ϵ0,π} ⊂ Int(C_{ϵ0}). By Cauchy integral formula, Cauchy-Schwarz and the goodness condition (*),

$$\|u_h^{H,\mathbb{C}}\|_{L^2_{\epsilon_0}} \geq C \cdot \sup_{t \in S_{\epsilon_0,\pi}} |u_h^{H,\mathbb{C}}(t)| \geq e^{-C_0/h}.$$

• It follows that

$$\frac{\|h\partial_{T}(1-Op_{h}(\chi_{R}))u_{h}^{H,\mathbb{C}}\|_{L^{2}_{\epsilon_{0}}}}{\|u_{h}^{H,\mathbb{C}}\|_{L^{2}_{\epsilon_{0}}}}=\mathcal{O}(e^{(-C_{R}+C_{0})/h}).$$

It follows that

$$\frac{\|h\partial_{T}(1-Op_{h}(\chi_{R}))u_{h}^{H,\mathbb{C}}\|_{L^{2}_{\epsilon_{0}}}}{\|u_{h}^{H,\mathbb{C}}\|_{L^{2}_{\epsilon_{0}}}}=\mathcal{O}(e^{(-C_{R}+C_{0})/h}).$$

• By choosing *R* sufficiently large in the radial frequency cutoff χ_R , we get that $C_R - C_0 \gg R > 0$.

• We consider here the case where Ω is a bounded, convex planar domain with ergodic billiards and that (ϕ_{h_j}) is a sequence of QE interior eigenfunctions. We want to show that $\sup_{z \in H_{\epsilon_0}^{\mathbb{C}}} |\phi_h^{H,\mathbb{C}}(z)| \ge e^{-C/h}$ in the case where $H \subset \Omega$ is an interior curve with $\kappa_H > 0$. We do this by proving some weighted- L^2 lower bounds.

- We consider here the case where Ω is a bounded, convex planar domain with ergodic billiards and that (ϕ_{h_j}) is a sequence of QE interior eigenfunctions. We want to show that $\sup_{z \in H_{\epsilon_0}^{\mathbb{C}}} |\phi_h^{H,\mathbb{C}}(z)| \ge e^{-C/h}$ in the case where $H \subset \Omega$ is an interior curve with $\kappa_H > 0$. We do this by proving some weighted- L^2 lower bounds.
- To sketch the argument, assume for simplicity that $\partial \Omega$ is \textit{C}^∞ and convex.

- We consider here the case where Ω is a bounded, convex planar domain with ergodic billiards and that (ϕ_{h_j}) is a sequence of QE interior eigenfunctions. We want to show that $\sup_{z \in H_{\epsilon_0}^{\mathbb{C}}} |\phi_h^{H,\mathbb{C}}(z)| \ge e^{-C/h}$ in the case where $H \subset \Omega$ is an interior curve with $\kappa_H > 0$. We do this by proving some weighted- L^2 lower bounds.
- To sketch the argument, assume for simplicity that $\partial \Omega$ is \textit{C}^∞ and convex.
- Let $\mathcal{H}^{\mathbb{C}}(\epsilon_0)$ be a complex Grauert tube of radius $\epsilon_0 > 0$ with totally-real part \mathcal{H} and $\zeta_{\epsilon_0} \in C^{\infty}(\mathcal{H}^{\mathbb{C}}(\epsilon_0); [0, 1])$ be a cutoff on the Grauert tube equal to 1 on the annulus $\mathcal{H}^{\mathbb{C}}(\epsilon_0/2) \mathcal{H}^{\mathbb{C}}(\epsilon_0/3)$ and vanishing outside.

• The main technical part of the proof of Theorem 2 consists of showing that under the non-vanishing curvature condition on H and for $\epsilon_0 > 0$ small, there is an order-zero semiclassical pseudodifferential operator

$$P(h) \in Op_h(S^{0,0}(T^*\partial\Omega))$$

and a weight function

$$\rho \in \mathbf{C}^{\omega}(\operatorname{supp} \zeta_{\epsilon_0}; \mathbb{R}^+)$$

such that

$$h^{-1/2} \int \int_{\mathbb{C}} e^{-2\rho(t)/h} |u_{h}^{H,\mathbb{C}}(t)|^{2} \zeta_{\epsilon_{0}}(t) dt d\bar{t} \sim_{h \to 0^{+}} \langle P(h)\phi_{h}^{\partial\Omega}, \phi_{h}^{\partial\Omega} \rangle.$$
(5)

• The potential layer formula gives

$$\phi_h^H = \gamma_H \mathbf{N}(h) \phi_h^{\partial \Omega}, \qquad (u_h^H(t) = \phi_h^H(q(t))),$$

with holomorphic continuation

$$\phi_{h}^{H,\mathbb{C}} = (\gamma_{H} \mathbf{N}(h) \phi_{h}^{\partial \Omega})^{\mathbb{C}}, \qquad (u_{h}^{H,\mathbb{C}}(t))$$

• The potential layer formula gives

$$\phi_h^H = \gamma_H \mathbf{N}(h) \phi_h^{\partial \Omega}, \qquad (\mathbf{u}_h^H(\mathbf{t}) = \phi_h^H(\mathbf{q}(\mathbf{t}))),$$

with holomorphic continuation

$$\phi_h^{H,\mathbb{C}} = (\gamma_H \mathbf{N}(h) \phi_h^{\partial \Omega})^{\mathbb{C}}, \qquad (u_h^{H,\mathbb{C}}(t))$$

• Writing the LHS of (5) as a composition, reduced to proving that $P(h) : C^{\infty}(\partial \Omega) \to C^{\infty}(\partial \Omega)$ with $P(h) = (e^{-\rho/h}\zeta_{\epsilon_0}\gamma_H^{\mathbb{C}}N^{\mathbb{C}}(h))^* \circ (e^{-\rho/h}\zeta_{\epsilon_0}\gamma_H^{\mathbb{C}}N^{\mathbb{C}}(h))$

is *h*-pseudodifferential.

• It is this point that the curvature assumption $\kappa_H > 0$ on H is used.

• The potential layer formula gives

$$\phi_h^H = \gamma_H \mathbf{N}(h) \phi_h^{\partial \Omega}, \qquad (u_h^H(t) = \phi_h^H(q(t))),$$

with holomorphic continuation

$$\phi_h^{H,\mathbb{C}} = (\gamma_H \mathbf{N}(h) \phi_h^{\partial \Omega})^{\mathbb{C}}, \qquad (u_h^{H,\mathbb{C}}(t))$$

• Writing the LHS of (5) as a composition, reduced to proving that $P(h): C^{\infty}(\partial\Omega) \to C^{\infty}(\partial\Omega)$ with

$$\mathbf{P}(\mathbf{h}) = (\mathbf{e}^{-\rho/h} \zeta_{\epsilon_0} \gamma_H^{\mathbb{C}} \mathbf{N}^{\mathbb{C}}(\mathbf{h}))^* \circ (\mathbf{e}^{-\rho/h} \zeta_{\epsilon_0} \gamma_H^{\mathbb{C}} \mathbf{N}^{\mathbb{C}}(\mathbf{h}))$$

is *h*-pseudodifferential.

- It is this point that the curvature assumption $\kappa_H > 0$ on H is used.
- Here, $N^{\mathbb{C}}(h)$ is holomorphic continuation of the potential layer operator $N(h) : C^{\infty}(\partial\Omega) \to C^{\infty}(\partial\Omega)$ and $\gamma_{H}^{\mathbb{C}} : \Omega_{\epsilon_{0}}^{\mathbb{C}} \to H_{\epsilon_{0}}^{\mathbb{C}}$ is restriction.

• The principal symbol $\sigma(\mathbf{P}(\mathbf{h}))$ satisfies

$$\int_{\boldsymbol{B}^*\partial\Omega}\sigma(\boldsymbol{P}(\boldsymbol{h}))\gamma^{-1}\,d\boldsymbol{y}d\eta\geq \boldsymbol{C}_{\boldsymbol{H},\Omega,\epsilon_0}>0$$

where $\gamma(\mathbf{y}, \eta) = \sqrt{1 - |\eta|^2}$.

• The principal symbol $\sigma(\mathbf{P}(\mathbf{h}))$ satisfies

$$\int_{\boldsymbol{B}^*\partial\Omega}\sigma(\boldsymbol{P}(\boldsymbol{h}))\gamma^{-1}\,d\boldsymbol{y}d\eta\geq \boldsymbol{C}_{\boldsymbol{H},\Omega,\epsilon_0}>0$$

where $\gamma(\mathbf{y}, \eta) = \sqrt{1 - |\eta|^2}$.

Given a quantum ergodic sequence (φ_{h_{jk}})[∞]_{k=1}, the boundary restrictions (φ^{∂Ω}_{h_{jk}})[∞]_{k=1} are themselves quantum ergodic (Burq,Hassell-Zelditch) in the sense that

$$\langle \mathbf{P}(\mathbf{h})\phi_{\mathbf{h}}^{\partial\Omega},\phi_{\mathbf{h}}^{\partial\Omega}\rangle \sim_{\mathbf{h}\to0^{+}} \int_{\mathbf{B}^{*}\partial\Omega} \sigma(\mathbf{P}(\mathbf{h}))\gamma^{-1}\,d\mathbf{y}d\eta.$$
 (6)

• It follows that

$$h^{-1/2} \int \int_{\mathbb{C}} e^{-2\rho(t)/h} |u_{h}^{H,\mathbb{C}}(t)|^{2} \zeta_{\epsilon_{0}}(t) dt d\overline{t}$$

$$\sim_{h \to 0^{+}} \int_{\mathcal{B}^{*} \partial \Omega} \sigma(\mathcal{P}(h)) \gamma^{-1} dy d\eta = \mathcal{C}_{\Omega,H,\epsilon_{0}} > 0$$
(7)

It follows that

$$h^{-1/2} \int \int_{\mathbb{C}} e^{-2\rho(t)/h} |u_{h}^{H,\mathbb{C}}(t)|^{2} \zeta_{\epsilon_{0}}(t) dt d\overline{t}$$

$$\sim_{h \to 0^{+}} \int_{\mathcal{B}^{*} \partial \Omega} \sigma(\mathcal{P}(h)) \gamma^{-1} dy d\eta = \mathcal{C}_{\Omega,H,\epsilon_{0}} > 0$$
(7)

• The lower bound in (7) implies that the revised goodness condition (*) must be satisfied.

• Both Theorems 1 and 2 have analogues (proved similarly) when (M,g) is a compact surface with $\partial M = \emptyset$.

- Both Theorems 1 and 2 have analogues (proved similarly) when (M,g) is a compact surface with $\partial M = \emptyset$.
- Potential layer operator N(h) gets replaced by heat operator $W(h) = e^{-h\Delta_g}$ (or wave operator)

- Both Theorems 1 and 2 have analogues (proved similarly) when (M,g) is a compact surface with $\partial M = \emptyset$.
- Potential layer operator N(h) gets replaced by heat operator $W(h) = e^{-h\Delta_g}$ (or wave operator)
- For example, holomorphic continuation of the obvious identity $e^{-1/h}\phi_h = e^{-h\Delta_g}\phi_h$ gives

$$\phi_h^{H,\mathbb{C}} = e^{1/h} (\gamma_H W(h))^{\mathbb{C}} \phi_h = \gamma_H^{\mathbb{C}} W(h)^{\mathbb{C}} \phi_h.$$

- Both Theorems 1 and 2 have analogues (proved similarly) when (M,g) is a compact surface with $\partial M = \emptyset$.
- Potential layer operator N(h) gets replaced by heat operator $W(h) = e^{-h\Delta_g}$ (or wave operator)
- For example, holomorphic continuation of the obvious identity $e^{-1/h}\phi_h = e^{-h\Delta_g}\phi_h$ gives

$$\phi_{h}^{\mathcal{H},\mathbb{C}} = e^{1/h} (\gamma_{\mathcal{H}} \mathcal{W}(h))^{\mathbb{C}} \phi_{h} = \gamma_{\mathcal{H}}^{\mathbb{C}} \mathcal{W}(h)^{\mathbb{C}} \phi_{h}.$$

• Main point is to prove that $P(h) : C^{\infty}(M) \to C^{\infty}(M)$ with

$$P(h) = (e^{-\rho/h} \zeta_{\epsilon_0} \gamma_H^{\mathbb{C}} W(h)^{\mathbb{C}})^* \circ (e^{-\rho/h} \zeta_{\epsilon_0} \gamma_H^{\mathbb{C}} W(h)^{\mathbb{C}})$$

is *h*-pseudodifferential.

Questions and Remarks

• (i) Derive an asymptotic density of states formula for complex zeros of $\phi_h^{H,\mathbb{C}}$ when *H* is geodesically curved (in analogy with the case where *H* is geodesic (Zelditch (2012)).

Questions and Remarks

• (i) Derive an asymptotic density of states formula for complex zeros of $\phi_h^{H,\mathbb{C}}$ when *H* is geodesically curved (in analogy with the case where *H* is geodesic (Zelditch (2012)).

(ii) Upper bounds for n(H, λ) for more general (non-ergodic) domains when H is curved.

Questions and Remarks

• (i) Derive an asymptotic density of states formula for complex zeros of $\phi_h^{H,\mathbb{C}}$ when *H* is geodesically curved (in analogy with the case where *H* is geodesic (Zelditch (2012)).

• (ii) Upper bounds for *n*(*H*, λ) for more general (non-ergodic) domains when *H* is curved.

• (iii) Polynomial lower bounds for $n(H, \lambda)$ when H is either an interior curve or $H = \partial \Omega$.