Northwestern University

Eigenfunction restriction bounds for Neumann data along hypersurfaces

J. Toth (joint work with H. Christianson and A. Hassell)

March 10, 2014

Background

- (M^n, g) compact, smooth manifold (with or without boundary).
- $H \subset M^n$ an orientable smooth hypersurface. In some cases, H can be a highercodimension submanifold.

Cauchy data along H

ullet Consider the eigenvalue problem on M

$$-\Delta_g \phi_j = \lambda_j^2 \phi_j, \quad \langle \phi_j, \phi_k \rangle = \delta_{jk}$$

$$B\phi_j = 0 \text{ on } \partial M,$$

where $\langle f,g\rangle=\int_M f\bar{g}dV$ (dV is the volume form of the metric) and where B is the boundary operator, e.g. $B\phi=\phi|_{\partial M}$ in the

Dirichlet case or $B\phi = \partial_{\nu}\phi|_{\partial M}$ in the Neumann case. We also allow $\partial M = \emptyset$.

• Let $h_j = \lambda_j^{-1}$ and ϕ_{h_j} be a corresponding orthonormal basis of eigenfunctions with eigenvalue h_j^{-2} , so that the eigenvalue problem takes the semi-classical form,

$$(-h^2\Delta_g - 1)\phi_h = 0,$$
 $B\phi_h = 0 \text{ on } \partial M$

where B = I or $B = hD_{\nu}$ in the Dirichlet or Neumann cases respectively.

Semiclassical Cauchy data along H:

$$CD(\phi_h) := \{ (\phi_h|_H, hD_{\nu}\phi_h|_H) \}.$$

- **Problem**: Upper (and lower) bounds for $\|\phi_h\|_{L^2(H)} \ (Dirichlet),$ $\|hD_\nu\phi_h\|_{L^2(H)} \ (Neumann).$
- A lot of recent work on upper bounds for Dirichlet data along H. We considered Neumann data (closely linked with Dirichlet via Rellich identity).
- Theorem 1 [Christianson-Hassell-T] Let $H \subset M$ be any oriented, smooth separating hypersurface with $H \cap \partial M = \emptyset$. Then,

$$||h\partial_{\nu}\phi_h||_{L^2(H)}=O(1).$$

• Result holds for eigenfunctions ϕ_h of general Schrödinger operators $P(h) = -h^2 \Delta_g + V(x)$ with $V \in C^{\infty}(M; \mathbf{R})$ and

$$P(h)\phi_h = E(h)\phi_h, \ E(h) = E + O(h),$$

 E regular energy value and $H \subset \{V(x) < E\}.$

Cauchy data along H: Rellich identity

- Let $H\subset M$ be an oriented separating hypersurface with exterior unit normal ν bounding smooth domain $M_H\subset M$.
- Rellich identity. Self-adjointness of Δ_g , the eigenfunction equation $-h^2\Delta_g\phi_h=\phi_h$ and an easy application of Green's formula gives with $any\ A(h)\in \Psi_h^m$ and $V\in C^\infty(M,\mathbf{R}),$

$$\frac{i}{h} \langle [-h^2 \Delta_g + V, A(h)] \phi_h, \phi_h \rangle_{M_H}$$

$$= \langle A(h) \phi_h, h D_{\nu} \phi_h \rangle_H + \langle h D_{\nu} A(h) \phi_h, \phi_h \rangle_H. \quad (*)$$

• Key identity relating Dirichlet and Neumann data along H to interior eigenfunctions on M.

- Let (x_n, x') be Fermi coordinates near H with $H = \{x_n = 0\}$ and $\chi \in C_0^{\infty}([-\delta, \delta])$ equal to 1 near origin. Idea of proof of [CHT] is to apply Rellich with $A(h) = \chi(x_n)hD_{x_n}$.
- In this case, Rellich gives

$$\frac{i}{h}\langle [-h^2\Delta_g + V, \chi h D_\nu] \phi_h, \phi_h \rangle_{M_H}$$

$$= \langle hD_{\nu}\phi_h, hD_{\nu}\phi_h \rangle_H + \langle (I + h^2\Delta_H)\phi_h, \phi_h \rangle_H.$$

• Formula has other applications such as in the case where (ϕ_h) is quantum ergodic (QE); that is, for any $B(h) \in \Psi_h^0(M)$,

$$\langle B(h)\phi_h,\phi_h\rangle_{L^2(M)}\sim_{h\to 0^+}\int_{B^*M}b(x,\xi)dxd\xi.$$

Quantum ergodic restriction for Cauchy data (QERCD)

• Theorem 1 [Christianson-Zelditch-T] Suppose $H \subset M$ is a smooth, codimension 1 embedded orientable separating hypersurface and assume $H \cap \partial M = \emptyset$ if $\partial M \neq \emptyset$. Assume that $\{\phi_h\}$ is an interior QE sequence. Then the appropriately renormalized Cauchy data $d\Phi_h^{CD}$ of ϕ_h is quantum ergodic in the sense that for any $a^w \in \Psi^0(H)$, there exists a sub-sequence of eigenvalues of density one so that as $h_j \to 0^+$,

$$\langle a^{w}hD_{\nu}\phi_{h}|_{H}, hD_{\nu}\phi_{h}|_{H}\rangle_{L^{2}(H)}$$

$$+\langle a^{w}(1+h^{2}\Delta_{H})\phi_{h}|_{H}, \phi_{h}|_{H}\rangle_{L^{2}(H)}$$

$$\to_{h\to 0^{+}} \frac{4}{\mu(S^{*}M)} \int_{B^{*}H} a_{0}(x',\xi') (1-|\xi'|^{2})^{1/2} d\sigma.$$

- Here, $a_0(x', \xi')$ is the principal symbol of a^w , $-h^2\Delta_H$ is the induced tangential (semiclassical) Laplacian with principal symbol $|\xi'|^2$ and $d\sigma$ is the standard symplectic volume form on B^*H .
- Result holds for *all* interior hypersurfaces and generalizes results of Hassell-Zelditch and Burq in the boundary case (ie. $H=\partial\Omega$.)
- Idea of Proof in [CTZ]: Apply Rellich with $A(h) = \chi(x_n)hD_{\nu}$ and compute LHS with the commutator $\frac{i}{h}[-h^2\Delta_g,A(h)]\in \Psi_h^0$ applying QE assumption on the eigenfunction sequence (ϕ_h) .

Dirichlet Data

• **Problem:** Estimate the L^2 restrictions

$$\int_{H} |\phi_{\lambda}(s)|^{2} d\sigma(s). \tag{1}$$

• Rationale: Key to understanding the large- λ behaviour of the ϕ_{λ} 's. Pointwise L^{∞} results are very hard; difficult to improve on the bound

$$\|\phi_{\lambda}\|_{L^{\infty}(M)} = \mathcal{O}(\lambda^{\frac{n-1}{2}}).$$

The problem in (1) is easier but still very non-trivial.

2) Restriction bounds naturally arise in study of eigenfunction nodal sets. In particular. *lower* bounds of the form

$$\int_{H} |\phi_{\lambda}|^2 ds \ge e^{-C\lambda}, \ C > 0$$

are central to this problem.

3) Quantum ergodicity: Recent results (Zelditch-T, Dyatlov-Zworski) on **Quantum Ergodic Restriction (QER)** show that for generic H's satisfying a geodesic asymmetry condition relative to H and a density-one subsequence of eigenfunctions ϕ_{λ} ,

$$\lim_{\lambda \to \infty} \langle Op_H(a)\phi_{\lambda}|_H, \phi_{\lambda}|_H \rangle_{L^2(H)}$$
$$= 2 \int_{B^*H} a(s, \sigma) (1 - |\sigma|^2)^{1/2} ds d\sigma.$$

• Most results extend to semiclassical Schrödinger operators $P(h) = -h^2 \Delta + V(x)$ with eigenfunctions ϕ_h satisfying $P(h)\phi_h = E(h)\phi_h$, |E(h)-E| = o(1), E a regular energy level.

General Results for Dirichlet data

 \bullet For general Laplace eigenfunctions with $\|\phi_{\lambda}\|_{L^2(M)}=1, \mbox{Burq-G\'erard-Tzvetkov} \ [\mbox{BGT}]$ prove that

$$\int_{H} |\phi_{\lambda}|^2 d\sigma(s) = \mathcal{O}(\lambda^{\frac{1}{2}}), \ (n=2).$$
 (2)

- The universal bound (2) is achieved on S^2 with $H=\{(x,y,z)\in S^2; z=0\}$ the equator and $\phi_n(x,y,z)=c_0n^{\frac{1}{4}}(x+iy)^n; n=1,2,3,...$, the highest-weight harmonics.
- In the case where H has positive geodesic curvature, the bound (2) improves to

$$\int_{H} |\phi_{\lambda}|^{2} d\sigma(s) = \mathcal{O}(\lambda^{\frac{1}{3}}); \quad (n=2).$$

BGT also obtain sharp general L^p bounds for $p \neq 2$ in any dimension and Hu generalized the positively-curved results to any dimension. Hassell-Tacy have extended these L^p bounds to the semiclassical case where $P(h) = -h^2 \Delta + V(x)$.

• Improvements for (M,g) non-positive curvature (Chen-Sogge, Sogge-Zelditch), flat tori with dim = 2,3 (Bourgain-Rudnick), arithmetic surfaces (Jung, Rudnick-Sarnak, Ghosh-Reznikov-Sarnak), quantum completely integrable case (T), ...

Neumann Data along H

• Starting point is the Rellich identity with test operator $A(h) = \chi(x_n)hD_{x_n}$. We recall it here (with V = 0 for simplicity):

$$\frac{i}{h}\langle [-h^2\Delta_g, \chi h D_\nu] \phi_h, \phi_h \rangle_{M_H}$$

$$= \langle hD_{\nu}\phi_h, hD_{\nu}\phi_h \rangle_H + \langle (I + h^2\Delta_H)\phi_h, \phi_h \rangle_H.$$

• Let $\gamma_H: C^0(M) \to C^0(H)$ be restriction. Consider spectral projector $N(h) = \sum_j \chi(h^{-1} - h_j^{-1})\phi_j(x)\overline{\phi_j(y)}$ with supp $\hat{\chi} \subset [\epsilon, 2\epsilon] > 0$. The kernel

$$N(x,y,h) = (2\pi h)^{-(n-1)/2} e^{ir(x,y)/h} a(x,y,h)$$
$$+O(h^{\infty})_{L^2 \to L^2}.$$

Writing

$$\gamma_H \phi_h = \gamma_H N(h) \phi_h$$

it is not hard to show that

$$WF_h(\phi_h) \subset B^*H = \{(s,\eta) \in T^*H; |\eta|_{g(s)} \le 1\}.$$
 (*)

• **Heuristic:** On the RHS of Rellich, the Dirichlet term $\langle (I+h^2\Delta_H)\phi_h,\phi_h\rangle_H$ looks like it should be "essentially" non-negative in view of (*) since

$$\sigma(I + h^2 \Delta_H)(s, \eta) = 1 - |\eta|_{g(s)}^2.$$

 If that is the case, we are done and would simply get

$$\begin{split} \|hD_{\nu}\phi_h\|_H^2 &\leq \frac{i}{h}\langle [-h^2\Delta_g,\chi D_{\nu}\phi_h]\phi_h,\phi_h\rangle_{M_H} = O(1) \\ \text{where the last estimate follows by} \\ L^2\text{-boundedness of } \frac{i}{h}[-h^2\Delta_g,\chi D_{\nu}\phi_h] \in \Psi_h^0(M). \end{split}$$

• Unfortunately, we cannot quite prove this. Subtlety lies in mass concentration of $\phi_h|_H$ near glancing set S^*H on h^δ -scales with $\delta > 1/2$.

The example of the disc

• Consider Dirichlet eigenfunctions $\phi_{\lambda}(r,\theta)$ in the unit disc with eigenvalue λ . They are of the form

$$\phi_{\lambda,n}(r,\theta) = c_n J_n(\lambda r) e^{in\theta}, J_n(\lambda) = 0.$$

• Let $H = \{r = \frac{1}{2}\}$, so that

$$\phi_{\lambda,n}^H(\theta) = c_n J_n\left(\frac{\lambda}{2}\right) e^{in\theta}.$$

• Consider pairs (λ, n) with

$$\lambda = 2nzn^{1/3}, \ z \in [z_1, z_2].$$

These eigenfunctions peak near the caustic $H=\{r=\frac{1}{2}\}$ and can contain semiclassical frequencies $1+cn^{-2/3}$ with

$$\lambda^{-1}\partial_r \phi_{\lambda,n} \approx n^{-1/6} Ai(2^{1/3}z).$$

Sketch of proof of Theorem 1

 \bullet Choose $a^w \in \Psi_h^*$ with principal symbol principal symbol

$$a(x,\xi) = \chi(x_n)\xi_n,$$

• We recall Rellich formula

$$\frac{i}{h} \int_{M_{-}} [-h^{2} \Delta - 1, a^{w}] \phi_{h} \overline{\phi_{h}} dx$$

$$= \int_{H} (h D_{n} a^{w} \phi_{h}) |_{H} \overline{\phi_{h}} |_{H} d\sigma_{H}$$

$$+ \int_{H} (a^{w} \phi_{h}) |_{H} \overline{h} \overline{D_{n}} \overline{\phi_{h}} |_{H} d\sigma_{H}.$$

• It follows that

$$\int_{H} (1+h^2\Delta_H)\phi_h^H \overline{\phi_h^H} d\sigma_H + \int_{H} |\phi_h^{H,\nu}|^2 d\sigma_H = O(1).$$

- In order to bound the Neumann data from above, need to show the first term on the left hand side of (??) is semi-bounded below.
- Use small scale decomposition of T^*H with $\chi_{in}, \chi_{tan}, \chi_{out}$ cutoffs supported in sets $|\sigma| < 1 h^{\delta}, 1 h^{\delta} < |\sigma| < 1 + h^{\delta}, |\sigma| > 1 + h^{\delta}$ respectively, satisfying

$$1 = (\chi_{in})_{h,\delta}^{w} + (\chi_{tan})_{h,\delta}^{w} + (\chi_{out})_{h,\delta}^{w}$$

• Here, we need to choose 2-microlocal scales with $\delta \in (1/2, 2/3)$.

• By Proposition on mass concentration of ϕ_h^H :

$$\int_{H} (1 + h^{2} \Delta_{H}) \phi_{h}^{H} \overline{\phi_{h}^{H}} d\sigma_{H}$$

$$= \int_{H} (1 + h^{2} \Delta_{H}) (\chi_{in})_{h,\delta}^{w} \phi_{h}^{H} \overline{\phi_{h}^{H}} d\sigma_{H}$$

$$+ \int_{H} (1 + h^{2} \Delta_{H}) (\chi_{tan})_{h,\delta}^{w} \phi_{h}^{H} \overline{\phi_{h}^{H}} d\sigma_{H} + O(h^{\infty}).$$

• On the support of χ_{in} , we have $1-|\sigma|^2 \geq h^{\delta}$ and Gårding inequality gives

$$\int_{H} (1 + h^{2} \Delta_{H})(\chi_{in})_{h,\delta}^{w} \phi_{h}^{H} \overline{\phi_{h}^{H}} d\sigma_{H}$$

$$\geq C_{1} h^{\delta} \int_{H} (\chi_{in})_{h,\delta}^{w} \phi_{h}^{H} \overline{\phi_{h}^{H}} d\sigma_{H}.$$

• On the support of χ_{tan} , we have $|1-|\sigma|^2| \le C_2 h^{\delta}$, so that

$$\left| \int_{H} (1 + h^{2} \Delta_{H}) (\chi_{tan})_{h,\delta}^{w} \phi_{h}^{H} \overline{\phi_{h}^{H}} d\sigma_{H} \right|$$

$$\leq C_{2} h^{\delta} \left| \int_{H} (\chi_{tan})_{h,\delta}^{w} \phi_{h}^{H} \overline{\phi_{h}^{H}} d\sigma_{H} \right|.$$

Combining these two estimates,

$$\int_{H} (1 + h^{2} \Delta_{H}) \phi_{h}^{H} \overline{\phi_{h}^{H}} d\sigma_{H}$$

$$\geq C_{1} h^{\delta} \int_{H} (\chi_{in})_{h,\delta}^{w} \phi_{h}^{H} \overline{\phi_{h}^{H}} d\sigma_{H}$$

$$-C_{2} h^{\delta} \left| \int_{H} (\chi_{tan})_{h,\delta}^{w} \phi_{h}^{H} \overline{\phi_{h}^{H}} d\sigma_{H} \right| + O(h^{\infty})$$

$$\geq -C h^{\delta} \int_{H} |\phi_{h}^{H}|^{2} d\sigma_{H},$$

ullet exterior term is $O(h^{\infty})$, so adding it back in is harmless.

 \bullet Use the $\|\phi_h^H\|_{L^2(H)}=O(h^{-1/4})$ bound of Burq-Gérard-Tzvetkov to get

$$\int_{H} (1 + h^2 \Delta_H) \phi_h^H \overline{\phi_h^H} d\sigma_H \ge -Ch^{\delta - 1/2}.$$

ullet Choosing $\delta > 1/2$ gives

$$-Ch^{\delta-1/2} + \int_{H} |hD_{\nu}\phi_{h}|^{2} d\sigma_{H} = O(1)$$

and so,

$$\int_{H} |hD_{\nu}\phi_{h}|^{2} d\sigma_{H} = O(1).$$

ullet Choosing $\delta \sim 2/3$ gives the best estimate

$$||hD_{\nu}\phi_{h}||_{H}^{2} \leq \frac{1}{h} \left| \langle [-h^{2}\Delta_{g}, \chi hD_{n}]\phi_{h}, \phi_{h} \rangle_{M_{H}} \right| + C_{\epsilon}h^{\frac{1}{6} + \epsilon}.$$

• Corollary If (ϕ_h) is QE sequence, then for any $\epsilon > 0$, and $h \in (0, h_0(\epsilon)]$,

$$||hD_{\nu}\phi_{h}||_{H}^{2} \leq |S_{H}^{*}M| + \epsilon.$$

Open problems/questions

• When is it true that for $h < h_0$,

$$||hD_{\nu}\phi_{h}||_{H}^{2} < |S_{H}^{*}M|$$
?

An immediate corollary would be

$$\|\phi_h\|_H^2 \ge C > 0$$

ie. strong unique continuation for the eigenfunction restrictions $\phi_h|_H$.

• Run Rellich with other test operators such as $A(h) = x_n \chi(x_n) h D_n$ with $H = \{x_n = 0\}$ to try to decouple the Dirichlet and Neumann data along H.