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Manifolds without boundary

(Mn, g) a compact Riemannian manifold with

ergodic geodesic flow Gt : T ∗M −0 → T ∗M −0.

Laplacian: ∆g : C∞(M) −→ C∞(M)

Eigenfunctions: ∆gφλj
+λ2

j φλj
= 0, j = 0,1,2, ...

〈φλj
, φλk

〉L2(M) = δk
j .

Quantum Ergodicity (Zelditch, Colin de Verdière)

Let (Mn, g) be ergodic and Op(a) ∈ OpM(S0
cl)

be a zeroth-order pseudodifferenrtial operator.

Then, there exists a density-one subset S ⊂ N

such that

lim
λj→∞;j∈S

〈Op(a)φλj
, φλj

〉 =
∫
S∗M

a(x, ξ) dµL(x, ξ),

where dµL is Liouville measure.



Special case: Ω ⊂ M open,

lim
λj→∞;j∈S

∫
Ω
|φλj

|2dx = vol(Ω).

For a full-density ergodic sequence of eigen-

functions, mass is equidistributed on n-dimensional

submanifolds of M .

A more refined question about eigenfunction

equidistribution is the following

Basic Question: Given (M, g) ergodic, does

quantum ergodicity hold for restrictitons of eigen-

functions to hypersurfaces, H ⊂ M? In partic-

ular, is it true that with uj := φj|H ,

lim
λj→∞;j∈S

1

vol(H)

∫
H
|uj(s)|2dσH(s) = 1?



Our main result answers this question in the

affirmative for generic hypersurfaces, H ⊂ M

Theorem 1 [Zeldtich-T] Let (M, g) be a com-

pact manifold with ergodic geodesic flow, and

let H ⊂ M be a hypersurface. Let φλj
; j =

1,2, ... denote the L2-normalized eigenfunctions

in ∆g. Then, if H has a zero measure of mi-

crolocal symmetry, then there exists a density-

one subset S of N such that for λ0 > 0 and

a(s, τ) ∈ S0
cl(T

∗H)

lim
λj→∞;j∈S

〈OpH(a)φλj
|H , φλj

|H〉L2(H) = ω(a0),

where

ω(a0) =
4

vol(S∗M)

∫
B∗H

a0(y, η) ρH(s, τ) dsdτ,

with ρH(s, τ) := (1− |τ |2)−1/2.

The measure-zero microlocal reflection sym-

metry condition on H is generic. Specific ex-

amples include closed geodesics and geodesic



circles on compact hyperbolic surfaces, M =

H2/Γ.

Microlocal reflection symmetry: H ⊂ M ori-

entable submanifold with two unit normal vec-

tor fields ν± to H. There is the corresponding

decomposition

T ∗HM = T ∗H,+M ∪ T ∗H,−M.

For (s, τ) ∈ B∗H define

ξ±(s, τ) = τ ±
√

1− |τ |2νs ∈ T ∗H,±M.

Given ξ+(s, τ) ∈ T ∗H,+M, follow the geodesic

arc Gt(ξ±(s, τ)) emanating from the two sides

of H until it hits H again at time t = t(s, τ). As-

suming Gt(s, τ) ∈ T ∗H,+M also, we tangentially

project back to B∗H. There are corresponding

return maps:

P±,j : B∗H → B∗H, j ∈ Z

The indices j ∈ Z label the intersection number

of the geodesic with H.



Definition: H ⊂ M has zero measure of mi-

crolocal reflection symmetry if for all (j, k) ∈
Z× Z,∣∣∣{(s, τ) ∈ B∗H; P±,j(s, τ) = P∓,k(s, τ)}

∣∣∣ = 0.

Here | · | denotes symplectic measure on B∗H.

Restriction bounds: General restriction bounds

of Burq-Gérard-Tzvetkov give∫
H
|φλ|H |2dσH = O(λ1/2); (n = 2).

Bound is sharp in general: eg. when H =

{(x, y, z) ∈ S2; z = 0} is equator on sphere, and

φk(x, y, z) = k1/4(x+iy)k highest weight spher-

ical harmonic. Since |x + iy| = 1 when z = 0,

|φk|H |2 = k1/2 and so,∫
H
|φk|H |2dσH ∼k→∞ k1/2.

Theorem 1 improves on these general bounds

in the ergodic case (asymptotic result, not just

upper bound).



Other recent results on eigenfunction restric-

tion bounds (Hassell-Tacy, Sogge, T,...)

Sketch of Proof of Theorem 1: Let γH :

f 7→ f |H be restriction map.

〈OpH(a)φj|H , φj|H〉L2(H)

= 〈OpH(a)γHφj, γHφj〉L2(H)

= 〈γ∗HOpH(a)γHU(t)φj, U(t)φj〉L2(M)

= 〈U(−t)γ∗HOp(a)γHU(t)φj, φj〉L2(M)

= 〈V (t, a)φj, φj〉L2(M)



Upshot:

〈OpH(a)φj|H , φj|H〉L2(H) = 〈V (t, a)φj, φj〉L2(M)
(1)

with

V (t, a) := U(−t)γ∗HOp(a)γHU(t).

Time-average the identity in (1) and get

〈OpH(a)φj|H , φj|H〉L2(H) = 〈VT (a)φj, φj〉L2(M),

(2)

with

VT (a) :=
1

T

∫ ∞

−∞
V (t; a)χ(T−1t) dt. (3)

Here, χ ∈ C∞
0 (R) with

∫∞
−∞ χ(t)dt = 1,



Proposition (Generalized Egorov Theorem

for VT (a)) There is a decomposition

VT (a) = PT (a) + FT (a) + RT (a).

• The operator PT (a) ∈ Op(S0
cl) with

σ(PT (a)) =
1

T

∫ ∞

−∞
G∗

ta χ(T−1t)dt,

• FT (a) is a zeroth order FIO with canonical

relation

ΓT = { (x, ξ, x′, ξ′) ∈ T ∗M × T ∗M : ∃t ∈ (−T, T ) :

expx tξ = expx′ tξ
′ = s ∈ H,

Gt(x′, ξ′) = rHGt(x, ξ), |ξ| = |ξ′| },

where, rH : T ∗HM → T ∗HM is normal reflec-

tion in H.



• RT (a) has tangential operator wavefront.

It has no bearing on the QER results for

eigenfunctions and we ignore it here.

Variance Estimates: Proof of Theorem 1

To prove QER, one needs to show that

1

N(λ)

∑
j:λj≤λ

∣∣∣〈VT (a)φj, φj〉L2(M) − ω(a)
∣∣∣2 = o(1),

(4)

as λ → ∞. Ignoring RT (a), from the Egorov

decompostion VT (a) = PT (a) + FT (a),

1

N(λ)

∑
j:λj≤λ

∣∣∣〈VT (a)φj, φj〉L2(M) − ω(a)
∣∣∣2

≤
2

N(λ)

∑
j:λj≤λ

∣∣∣〈PT (a)φj, φj〉L2(M) − ω(a)
∣∣∣2

+
2

N(λ)

∑
j:λj≤λ

∣∣∣〈FT (a)φj, φj〉L2(M)

∣∣∣2 .



By usual QE, the pseudodifferential variance
term

1

N(λ)

∑
j:λj≤λ

∣∣∣〈PT (a)φj, φj〉L2(M) − ω(a)
∣∣∣2 = o(1).

By Cauchy-Schwarz,

1

N(λ)

∑
λj≤λ

∣∣∣〈FT (a)φj, φj〉L2(M)

∣∣∣2

≤
1

N(λ)

∑
λj≤λ

〈FT (a)∗FT (a)φj, φj〉L2(M).

It suffices to prove that

1

N(λ)

∑
λj≤λ

〈FT (a)∗FT (a)φj, φj〉L2(M) = o(1)

(5)
as λ →∞.

FIO Weyl law: Let F : C∞(M) → C∞(M) be
a homogeneous FIO of order zero with canoni-
cal relation ΓF = graph(κF ), κF : T ∗M → T ∗M



symplectic. An old result of Zelditch says that

lim
λ→∞

1

N(λ)

∑
j:λj≤λ

〈Fφλj
, φλj

〉 =
∫
ΓF∩∆T∗M

σ∆(F )dµL.

(6)

The integral on the RHS of (6) is over the

intersection of the canonical relation ΓF of F

with the diagonal of T ∗M × T ∗M and dµL is

Liouville Measure. The right side of (6) is

zero unless the intersection has dimension m =

dimM , i.e. it sifts out the ‘pseudo-differential

part’ of F .

Apply (6) with

F = FT (a)∗FT (a).

By wavefront calculus,

|ΓF ∩∆T ∗M×T ∗M | = 0 ⇐⇒

H satisfies zero measure microlocal reflection

symmetry condition.



Manifolds with boundary

Theorem 2 [Zelditch-T] Let M ⊂ Rn be a

piecewise-smooth billiard with totally ergodic

billiard flow and let H ⊂ int(M) be a smooth in-

terior hypersurface satisfying the measure zero

microlocal reflection condition. Let φλj
; j =

1,2, ... denote the L2-normalized Neumann eigen-

functions in Ω. Then, there exists a density-

one subset S of N such that for a(s, τ) ∈ S0
cl(T

∗H),

lim
λj→∞;j∈S

〈OpH(a)φλj
|H , φλj

|H〉L2(H) = ω(a0).

• Similar results for Dirichlet eigenfunctions

with suitable limiting measures ω(a0).

• Method of proof is simliar to case ∂M = ∅
but is more complicated. Since the wave

operator U(t) is complicated when ∂M 6= ∅



in [Zelditch-T] we use potential layers in-

stead. Microlocal analysis is then semiclas-

sical (inhomogeneous) and the correspond-

ing semiclassical FIO Weyl law is more com-

plicated than in the homogeneous case.



Quantum ergodic restriction for Cauchy

data

Instead of Dirichlet data DDH := (φλ|H) con-

sider (normalized) Cauchy data

CDH(φλ) : (φλ|H , λ−1∂νφλ|H). (7)

Theorem 3 [Zelditch-T, Christianson-Hezari-

Zelditch-T] Let H ⊂ M be any interior hyper-

surface. Then, there exists a measure dµ∞ on

B∗H so that along a subsequence of eigenval-

ues of density one we have,

〈Opλ((1− |τ |2)a(s, τ))φλ|H , φλ|H〉

+λ−2〈Opλ(a(s, τ))∂νHφλ|H , ∂νHφλ|H〉

=
∫
B∗H 2(1− |τ |2)adµ∞ + o(1).

(8)



Remarks:

• Cauchy data result holds for all interior hy-

persurfaces H. No microlocal reflection

symmetry assumption required.

• In the case of Cauchy data: Quantum Unique

Ergodicity (QUE)

=⇒ Quantum Ergodic Restriction (QER)

in Theorem 3 for all eigenfunctions φλj
; j =

1,2, ...


