
Analysis IV : Assignment 1 Solutions
John Toth, Winter 2013

Exercise 1 The Cantor set C is totally disconnected and perfect.

Proof By construction, C =
∞⋂
n=1

2n⋃
i=1

Cni, where C11 = [0, 1
3
], C12 = [2

3
, 1], C21 = [0, 1

9
], C22 = [2

9
, 3

9
], C23 = [6

9
, 7

9
], C24 =

[8
9
, 1], etc. We have |Cni| = |Cnj| = 1

3n
for every 1 ≤ 1, j ≤ 2n and lim

n→∞
|Cn1| = 0. Notice that the endpoints of the

components Cni belong to the Cantor set.
To show that the Cantor set is totally disconnected, we must show that the only connected subsets are the empty
set or the singletons. It is enough to show that for any x, y ∈ C, x < y, there is z ∈ Cc such that x < z < y, because
then if O is any subset of C containing x and y, we have O = O∩ [0, y)

⋃
O∩ (y, 1], a disjoint union of two nontrivial

open subsets of the topology on O. Choose N such that |CNi| < |x−y|
2

. Then x ∈ CNα and y ∈ CNβ for some α 6= β.
From the construction d(CNα, CNβ) ≥ 1

3N
, so it is obvious that there exists z ∈ Cc with x < z < y. To show that the

Cantor set has no isolated points, let x ∈ C and ε > 0 be given. Choose N such that |CNi| < ε
2
. Then x ∈ CNα for

some α and CNα
⋂
Bε(x) = CNα. Now let y be an endpoint of CNα (if x is itself an endpoint of CNα, take y to be the

other endpoint) : y ∈ C and |x− y| < ε.

Exercise 2 Let E ⊂ Rd be compact and On be the open sets : On = {x : d(x,E) < 1/n}. Then

1. If E is compact then m(E) = lim
n→∞

m(On)

2. However the conclusion is false if E is assumed to be closed and unbounded or open and bounded

Proof

1. On is a decreasing sequence of sets and
∞⋂
n=1

On = {x : d(x,E) = 0} = E. Moreover E bounded implies

m(O1) <∞ so by continuity from above m(E) = lim
n→∞

m(On).

2. A counterexample for the case when E is closed and unbounded would be E = {(n, 0, 0, ..., 0) ∈ Rd : n ∈ N}.
Then m(E) = 0 but m(On) =

∞∑
k=1

m(B 1
n
(k)) =

∞∑
k=1

|B 1
n
(0)| =∞.

A counterexample for the case when E is open and bounded would be the complement of a Cantor-like set Ĉ
having nonzero Lebesgue measure, constructed as follows: Start with the interval [0, 1]. At the kth stage of the
construction one removes 2k−1 centrally situated open intervals each of length lk, chosen small enough so that
∞∑
k=1

2k−1lk < 1. (If lk = 1/3k this construction corresponds to the original Cantor set and the sum equals 1.)

Hence Ĉ =

(
∞⋃
k=1

2k−1⋃
i=1

Ôki

)c

=

(
∞⋃
k=1

Ôk
)c

. Let E =
∞⋃
k=1

Ôk. Then E is open and bounded. The closure of E is

[0, 1] and so m(E) < lim
n→∞

m(On) = 1.
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Exercise 3 Let δ = (δ1, ..., δd) ∈ Rd where each δi > 0. Define the operator (also denoted by δ) δ : Rd −→ Rd

δ : (x1, ..., xd) −→ (δ1x1, ..., δdxd). Then E ⊂ Rd is Lebesgue measurable iff δE is Lebesgue measurable and m(δE) =
δ1...δdm(E).

Remark We follow the definitions m∗(E) = inf{
∞∑
i=1

|Qi| : Qi are cubes and
∞⋃
i=1

Qi ⊃ E} and E is Lebesgue

measurable iff ∀ε > 0 ∃O open, with O ⊃ E and m∗(O \ E) < ε.

Proof As a matrix, δ = diag(δ1, ..., δd) and detδ =
d∏
i=1

δi > 0. So δ is an invertible bounded linear operator.

In particular δ is a homeomorphism. Notice that if Q ⊂ Rd is a cube, Q = [a, b]d, then δQ is the rectangle
[δ1a, δ1b]× ...× [δda, δdb] and |δQ| = detδ |Q|.

If E ⊂ Rd is measurable then ∃ O open, with O ⊃ E and m(O \ E) < ε
detδ

. O \ E is measurable so there are

are cubes {Qi} such that
∞⋃
i=1

Qi ⊃ O \ E and
∞∑
i=1

|Qi| < ε
detδ

. Then δO is open and δO ⊃ δE. Further
∞⋃
i=1

δQi =

δ(
∞⋃
i=1

Qi) ⊃ δ(O \ E) ⊃ δO \ δE. Thus ε > detδ
∞∑
i=1

|Qi| =
∞∑
i=1

m(δQi) =
∞∑
i=1

m∗(δQi) ≥ m∗(
∞⋃
i=1

δQi) ≥ m∗(δO \ δE).

The same argument repeated with δ−1 gives the converse.

Finally, given E measurable, let Qi be cubes such that
∞⋃
i=1

Qi ⊃ E. Then m(δE) ≤ m(δ
∞⋃
i=1

Qi) ≤
∞∑
i=1

m(δQi) =

detδ
∞∑
i=1

|Qi|. Taking the infimum over all collections {Qi} yieldsm(δE) ≤ (detδ)m(E). Repeating the same argument

with δ−1 gives: m(E) = m(δ−1(δE)) ≤ (detδ−1)m(δE) = (detδ)−1m(δE).

Exercise 4 Let A be the subset of [0, 1] which consists of all numbers which don’t have the digit 4 appearing in
their decimal expansion. Then m(A) = 0.
Proof This is similar to the calculation of the measure of the Cantor set. We construct a Cantor-like set as
follows: Start with the interval [0, 1]. At the kth stage of the construction one removes 9k−1 open intervals each of
length 1/10k and situated at four tenths of their respective components. These open intervals are disjoint, hence

m(
∞⋃
k=1

9k−1⋃
i=1

Oki) =
∞∑
k=1

9k−1∑
i=1

m(Oki) =
∞∑
k=1

9k−1

10k
= 1. A =

(
∞⋃
k=1

9k−1⋃
i=1

Oki

)c

and so m(A) = 0.

Exercise 5 (Borel-Cantelli Lemma #1) Let {Ek}∞k=1 be a countable collection of measurable sets in Rd satisfying
∞∑
k=1

m(Ek) <∞. Then m(
∞⋂
n=1

∞⋃
k=n

Ek) = 0.

Remark
∞⋂
n=1

∞⋃
k=n

Ek = {x ∈
∞⋃
k=1

Ek : x belongs to infinitely many Ek}.

Proof Countable unions and countable intersections of measurable sets are measurable, hence E is measurable.
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Let ε > 0 be given an choose N ∈ N such that for all n ≥ N ,
∞∑
k=n

m(Ek) < ε. Then m(
∞⋂
n=1

∞⋃
k=n

Ek) ≤ m(
∞⋃
k=N

Ek) ≤
∞∑
k=N

m(Ek) < ε. Now let ε→ 0.

Exercise 6 There exists a continuous function that maps a Lebesgue measurable set to a non-measurable set.
Proof We take for granted the existence of a non-measurable set A ⊂ [0, 1] (Theorem 3.6 in Stein & Shakarchi).

Recall that the Cantor set C = {
∞∑
k=1

ak
3k

: ak = 0 or 2}. Consider the Cantor-Lebesgue function defined by F : C −→

[0, 1], F :
∞∑
k=1

ak
3k
−→

∞∑
k=1

ak/2
2k

. It is readily seen that F is surjective, based on the observation that every number in

[0, 1] admits a binary expansion
∞∑
k=1

ak
2k
, where ak = 0 or 1. Now we show that F is continuous. Let x =

∞∑
k=1

sk
3k
∈ C

and ε > 0 be given. Choose N so that 1/2N < ε and then let δ = 1/3N . If y =
∞∑
k=1

tk
3k
∈ B1/3N (x) ∩ C, then referring

to the notation in Exercise 1, there exists α such that x and y belong to the same component CNα. Then it must be

that sk = tk for 1 ≤ k ≤ N . Hence |F (x) − F (y)| = |
∞∑

k=N+1

(sk−tk)/2
2k

| ≤
∞∑

k=N+1

1
2k

= 1
2N

< ε and F is continous at x.

Finally the claim is that the function F ′ = F �F−1(A) is a continuous map from a Lebesgue measurable set to a non-
measurable set. The only thing left to prove is that F−1(A) is Lebesgue measurable. But m(F−1(A)) ≤ m(C) = 0.

Exercise 7 There exists a measurable function f and a continuous function Φ so that f ◦ Φ is non-measurable.
Proof Consider a Cantor-like set Ĉ with m(Ĉ) > 0. Such a set is described in part 2 of Exercise 2. We can write

Ĉ =
∞⋂
k=1

2k⋃
n=1

Ĉkn where |Ĉkn| = |Ĉkm| for all 1 ≤ n,m ≤ 2k. Consider also the standard Cantor set C =
∞⋂
k=1

2k⋃
n=1

Ckn. At

each step of the construction we have a bijection Φk :
2k⋃
n=1

Ĉkn −→
2k⋃
n=1

Ckn such that Φk(Ĉkn) = Ckn is a linear function

for all 1 ≤ n ≤ 2k, mapping the left (resp. right) endpoint of Ĉkn to the left (resp. right) endpoint of Ckn. For all
k ≥ 1 we have Φk �2k+1⋃

n=1
Ĉ(k+1)n

= Φk+1 �2k+1⋃
n=1

Ĉ(k+1)n

. In this way the sequence {Φk} induces a bijection Φ : Ĉ −→ C. Let

A ⊂ Ĉ be a non-measurable set (to prove the existence of such a set, mimic the proof of Theorem 3.6 in Stein &
Shakarchi). Let f = χΦ(A), the characteristic (or indicator) function supported on Φ(A). Then f ◦ Φ : Ĉ −→ {0, 1}
is a non-measurable function, since (f ◦ Φ)−1({1}) = A. Note also that although A is not measurable, Φ(A) is
measurable since m∗(Φ(A)) ≤ m∗(C) = 0.
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Exercise 8 Let Γ ⊂ R2 be a curve given by the continuous function y = f(x). Then m(Γ) = 0.
Proof Decompose Γ into Γ =

⋃
n∈Z

Γ ∩ [n, n + 1] × R =
⋃
n∈Z

Γn. It is enough to show that m(Γn) = 0 for all n.

Wlog we show m(Γ0) = 0. Let ε > 0 be given and choose δ > 0 so that |x − y| < 2δ ⇒ |f(x) − f(y)| < ε. Let
N =

⌊
1
δ

⌋
. Then for 0 ≤ i ≤ N , there exists a rectangle Ri of size δ × ε such that Γ0

⋂
[iδ, (i + 1)δ]× R ⊂ Ri. Then

m(Γ0) ≤
N∑
i=0

m(Ri) = (N + 1)δε ≤ (1 + δ)ε. Now let ε→ 0.

Exercise 9 Let ω ∈ [0, 1]. Then ω can be written in the form
∞∑
j=1

aj
2j

where aj = 0, 1. Moreover this expansion is

unique when we restrict to nonterminating series.
Proof (taken from Rodrick Kuate Defo) Let ω ∈ [0, 1). If ω ∈ [0, 1

2
), let a1 = 0 and if ω ∈ [1

2
, 1). Suppose

that aj has been determined for j = 1, 2, ...n − 1. Then ω ∈ [
n−1∑
j=1

aj
2j
,
n−1∑
j=1

aj
2j

+ 1
2n−1 ). If ω ∈ [

n−1∑
j=1

aj
2j
,
n−1∑
j=1

aj
2j

+ 1
2n

),

let an = 0, otherwise let an = 1. Let ωn =
n∑
j=1

aj
2j
. The sequence (ωn)∞n=1 is Cauchy in (R, | · |), since for m > n,

|ωm − ωn| = |
m∑
j=1

aj
2j
−

n∑
j=1

aj
2j
| =

m∑
j=n+1

aj
2j
≤

∞∑
j=n+1

aj
2j

= 1
2n
. Hence the sequence converges to unique element in R. This

element is ω, since by construction, at the nth step |ω − ωn| < 1
2n
. This proves ω = lim

n→∞
ωn =

∞∑
j=1

aj
2j
.

Now suppose ω admits two distinct expansions
∞∑
j=1

aj
2j

=
∞∑
j=1

bj
2j
. Suppose that

∞∑
j=1

aj
2j

is a nonterminating expansion

(by that we mean that there are infinitely many aj’s taking the values 0 and 1). Let k∗ be the smallest integer

such that ak∗ 6= bk∗ . Wlog ak∗ = 1 and bk∗ = 0. Then
∞∑
j=1

aj
2j
−
∞∑
j=1

bj
2j

= 2−k
∗

+
∞∑

j=k∗+1

aj−bj
2j

> 2−k
∗ −

∞∑
j=k∗+1

1
2j

= 0,

where the strict inequality comes from the fact that there is j ≥ k∗ + 1 such that aj = 1, making aj − bj ≥ 0. This
contradiction shows uniqueness for nonterminating series. On the other hand, if ω has a terminating series then it is
the endpoint of one of the intervals in the construction. In this case, ω will admit two distinct representations, both

being terminating series. For example, 1
2

= 0.01...2 =
∞∑
j=2

1
2j

= 0.10...2 =
1∑
j=1

1
2j
.

Notation Given a function f : A −→ R, by {f > α} we mean {x ∈ A : f(x) > α}.
Exercise 10 (Chebyshev’s inequality) Let f : [0, 1] −→ R be a non-negative monotone function.
Then m({f > α}) ≤ 1

α

∫ 1

0
fdx with the integral on the right being the Riemann integral.

Proof Let [a, b] be a finite interval. If f : [a, b] −→ R is monotone then f is Riemann integrable, i.e.
∫ b
a
fdx <∞

(for a proof of this, see for example theorem 7.2.7 in Bartle & Sherbert. In this case the Riemann and Lebesgue
integrals coincide and

∫ b
a
fdx =

∫
[a,b]

fdm. Hence
∫ 1

0
fdx =

∫
[0,1]

fdm ≥
∫

{f>α}
fdm ≥

∫
{f>α}

αdm = αm({f > α}).
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Exercise 11 A gambler has an initial stake of one dollar. Calculate the probability of ruin at times 1, 3 and 5.
Show that the chance of eventual ruin is at least 70%.
Proof (taken from Rodrick Kuate Defo) The idea is the following: the gambler has to bet on the outcome of a
game of which there are 2 possible outcomes (e.g. flipping a coin). If he is right, he wins (W) one dollar, if he is
wrong he loses (L) a dollar. To play the game, he must have an initial stake and he is secretly forced to play the game
until he is ruined. After the 1st iteration, the sample space, or the collection of all possible events is {{W}, {L}}.
The probability of each event being the same, P({W}) = P({L}) = 1/2. After the 2nd iteration, the sample space
is {{WW}, {LL}, {WL}, {LW}} and each event has probability of 1/4. In the kth iteration there are 2k possible
events each with probability 1/2k. At the kth iteration of the game, set Rk = 1 if the gamer wins and Rk = −1 if he
loses. For example if ω is the event {WWL}, then R1(ω) = 1, R2(ω) = 1, R3(ω) = −1. The amount money made

after N iterations is SN(ω) =
N∑
k=1

Rk(ω). Given an initial stake of x, the probability of ruin after N iterations equals

P({ω : Sk(ω) > −x for all 1 ≤ k < N, SN(ω) = −x})
There is a connection between measure theory and probability. Consider the interval [0, 1] and write each ω ∈ [0, 1]
as ω = 0.ω1ω2ω3..., with ωi ∈ {0, 1}. We associate the event {W} with the set {ω ∈ [0, 1] : ω1 = 1} = [1

2
, 1], {L}

with the set {ω ∈ [0, 1] : ω1 = 0} = [0, 1
2
], {WL} with the set {ω ∈ [0, 1] : ω1 = 1, ω2 = 0} = [1

2
, 3

4
], etc. Thus

P({W}) = m([1
2
, 1]) = 1/2, P({L}) = m([0, 1

2
]) = 1/2, P({WL}) = m([1

2
, 3

4
]) = 1/4. Define Rk(ω) = 2ωk − 1 and

SN(ω) =
N∑
k=1

Rk(ω). Then the probability of ruin after N iterations equals

m({ω ∈ [0, 1] : Sk(ω) > −x for all 1 ≤ k < N, SN(ω) = −x})
• The probability of ruin after time 1 is given by P({R1 = −1}) = 1/2.

Recall the notation: P({R1 = −1}) = P({ω : R1(ω) = −1}).

• The probability of ruin after time 3 is given by P({Sk > −1 for all 1 ≤ k < 3, S3 = −1}). Since it is game
over at time 3 but not before, it is clear that in this event he must win on the first iteration and lose on the 3rd
iteration. Thus S3(ω) = 1 +R2(ω)− 1 = −1⇒ R2(ω) = −1. This event is {WLL} and has probability 1/8.

• The probability of ruin after time 5 is given by P({Sk > −1 for all 1 ≤ k < 5, S5 = −1}). Again we know
that R1(ω) = 1 and R5(ω) = −1, i.e. ω1 = 1 and ω5 = 0. Also notice that the overall number of times
the gamer loses is once more than the number of times he wins. If R2(ω) = −1, this forces R3(ω) = 1 and
R4(ω) = −1. If R2(ω) = 1, this forces R3(ω) = −1 and R4(ω) = −1. So the probability of ruin after time 5 =
P({WLWLL}) + P({WWLLL}) = 2 1

32
.

• The probability that he is eventually ruined is

m({ω ∈ [0, 1] : ∃N such that Sk(ω) > −1 for all 1 ≤ k < N, SN(ω) = −x})

= m(
∞⋃
N=1

{ω ∈ [0, 1] : such that Sk(ω) > −1 for all 1 ≤ k < N, SN(ω) = −x})

=
∞∑
N=1

m({ω ∈ [0, 1] : such that Sk(ω) > −1 for all 1 ≤ k < 2N + 1, S2N+1(ω) = −x})

because the sets are disjoint and because SN(ω) = −1 is not possible when N is even. The probability of ruin
after time 7 is ≥ P({WLWLWLL}) +P({WWWLLLL}) = 2 1

128
. Hence the probability that he is eventually

ruined is ≥ 1
2

+ 1
8

+ 2 1
32

+ 2 1
128
≥ 0.7.

v


