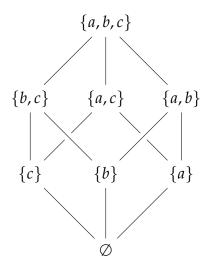
MATH 318 MATHEMATICAL LOGIC Class notes

Notes by: Yue Ru Sun¹

INSTRUCTOR: DR. MARCIN SABOK

McGill University

Last updated: December 15, 2015



¹If you find any error or typo, please notify the author at yue.r.sun@mail.mcgill.ca

Contents

1	Introd	uction	
2	Basic s	set theory	
3	Relatio	ons and functions	
	3.1	Equivalence Relations	
	3.2	Functions and their inverses	
4	Cardir	nality	
5	Propo	sitional Calculus	
	5.1	Boolean functions	
	5.2	Functional Closure	
	5.3	Parsing trees	
	5.4	Switching Circuits	
	5.5	Satisfiability	
6	Boolea	ın algebra	
7	Partial	ly ordered sets	
	7.1	Lattices and Zorn's Lemma	
8	Propositional Calculus, revisited		
	8.1	Syntactical deduction	
	8.2	Completeness of deduction system $D_0 \ldots \ldots \ldots 40$	
9	First-order logic		
	9.1	Languages and models	
	9.2	Application to game theory	
	9.3	Axioms and inference rules	
	9.4	Natural deduction	
	9.5	Zermelo-Fraenkel set theory with the axiom of choice 54	
	9.6	Peano arithmetic	

1 Introduction

These are the class notes of the Mathematical Logic course given by professor Marcin Sabok at McGill University in 2014. There was no required textbook, but a reference:

• "A Mathematical Introduction to Logic" by Herbert B. Enderton

and also a recommended graphic novel:

• "Logicomix: an Epic Search for Truth" by Apostolos Doxiadis and Christos H. Papadimitriou

All errors are responsibility of the author. If you find any error or typo, please notify the author at *yue.r.sun@mail.mcgill.ca*.

2 Basic set theory

In set theory, everything is a set. A set is determined by its elements. Given any set X, we can form the set $\{X\}$.

The empty set : \emptyset . Examples of sets: $\{\emptyset\}$, $\{\{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$.

Extensionality property: two sets are equal iff they have the same elements. The formal axioms of Zermelo-Fraenkl set theory are presented later, in 9.5.

To interpret natural numbers as sets, we adopt the convention

$$0 := \emptyset$$

$$1 := \{\emptyset\}$$

$$2 := \{0, 1\}$$

$$3 := \{0, 1, 2\}$$

$$\vdots$$

$$n := \{0, 1, ..., n - 1\}$$

$$\mathbb{N} := \{0, 1, 2, 3, ...\}$$

Definition. A set *A* is a *subset* of *B*, denoted $A \subseteq B$, if $\forall a \in A, a \in B$.

Example 2.1. $\{0,1\} \subseteq \{0,1,2,3\}$

 $\{2,5\}\subseteq \mathbb{N}$

 $3 \nsubseteq \{3,4\}$

 $3 \subseteq 4$, and also, $3 \in 4$

Operations on sets

- Intersection
- Union
- Difference

$$A \setminus B := \{a \in A : a \notin B\}$$

• Union of a set

$$\bigcup A := \{x \in B : B \in A\}$$

In words, given a set A, $\bigcup A$ is the set consisting of those sets which are elements of some element of A.

Example 2.2. $\{\emptyset\} \cap \{\{\emptyset\}\} = \emptyset$

$$\{\emptyset\} \cup \{\{\emptyset\}\} = \{\emptyset, \{\emptyset\}\}$$
$$\cup \{A, B\} = A \cup B$$

 $\bigcup \mathbb{N} = \mathbb{N}$

Proposition 2.3. For any sets A, B, C,

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

Proposition 2.4. For any sets A, B, C,

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

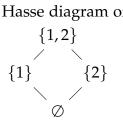
Theorem 2.5. (De Morgan's Laws) For any sets A, B, C,

$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$
$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

Definition. Given any set *A*, its *powerset*, denoted by $\mathcal{P}(A)$, is the set of all subsets of *A*.

Example 2.6. $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$

Hasse diagram of powerset



Definition. Given two sets *A* and *B*, define *ordered pair* (*A*, *B*) so that

 $(A, B) = (A', B') \iff A = A' \text{ and } B = B'$

If A = B, $(A, B) = \{\{A\}, \{A, B\}\}$. If $A \neq B$, $(A, B) = \{\{A\}\}$.

Definition. The Cartesian product of sets A, B, denoted $A \times B$, is the set of all ordered pairs (a, b) such that $a \in A, b \in B$.

Definition. The set-theoretical definition of the set of rational numbers Q is

 $\{(0, (p,q) \in 2 \times (\mathbb{N} \times \mathbb{N}) : \gcd(p,q) = 1, q \neq 0\} \cup \{(1, (p,q) \in 2 \times (\mathbb{N} \times \mathbb{N}) : \gcd(p,q) = 1, q \neq 0\}$

where the binary digit in the first coordinate of the pair is used to indicate the sign of the rational number.

Definition. A *Dedekind cut* of \mathbb{Q} is an order pair (*A*, *B*) with *A*, *B* \subseteq \mathbb{Q} and

- If $a \in A$, $b \in B$, then a < b;
- If $a \in A$, $a' \in \mathbb{Q}$, a' < a, then $a' \in A$;
- If $b \in B$, $b' \in \mathbb{Q}$, b < b', then $b' \in B$;

- $\mathbb{Q} = A \cup B;$
- *A* has no greatest element.

Definition. The *set of real numbers* \mathbb{R} is the set of all Dedekind's cuts of \mathbb{Q} .

Definition. *n*-tuple.

$$(a_1, a_2, a_3, \dots, a_n) := (\cdots ((a_1, a_2), a_3), \dots), a_n)$$

The set $A_1 \times A_2 \times \cdots \times A_n$ consists of all sets of the form $(a_1, a_2, ..., a_n)$ with $a_i \in A_i$, for each $1 \le i \le n$.

3 Relations and functions

Definition. A *relation* on sets $X_1, X_2, ..., X_n$ is any subset $R \subseteq X_1 \times X_2 \times \cdots \times X_n$. A *binary relation* on sets X_1, X_2 is any subset $R \subseteq X_1 \times X_2$.

Definition. A relation *R* is said to be

- *symmetric* if $(x, y) \in R$, then also $(y, x) \in R$.
- *antisymmetric* if $(x, y) \in R$ and $(y, x) \in R$, then x = y;
- *reflexive* if $(x, x) \in R$ for all x.
- *irreflexive* if $(x, x) \notin R$ for all x.
- *transitive* if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$.

If *A* is a finite set enumerated as

$$A = \{a_1, a_2, ..., a_n\}$$

and *R* is a relation on *A*, then we can form matrix M_R of *R*

$$M_R = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

where

$$a_{ij} = \begin{cases} 1 & \text{if } (a_i, a_j) \in \mathbb{R} \\ 0 & \text{if } (a_i, a_j) \notin \mathbb{R} \end{cases}$$

Definition. Given the binary relations *R* and *S* on a set *X*, their *composition* is

$$R \circ S = \{(x, y) \in X^2 : \exists z \text{ such that } (x, z) \in R, (z, y) \in S\}$$

Remark 3.1. If *R*, *S* are relations on set $A = \{a_1, a_2, ..., a_n\}$, and M_R , M_S are matrices of *R* and *S*, then $(a_i, a_j) \in R \circ S$ if and only if the entry $a_{ij} > 0$ in the matrix product $M_R \cdot M_S$.

Definition. Given a binary relation *R* on *X*, its *inverse* is

$$R^{-1} = \{(y, x) \in X^2 : (x, y) \in R\}$$

Exercise 3.2. Check that

- $R = R^{-1}$ if and only if *R* is symmetric.
- $R \cup R^{-1}$ is always symmetric.
- $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$.

Definition. The *transitive closure* of a relation *R* is

$$\operatorname{tr}(R) = R \cup R^2 \cup R^3 \cup \dots = \bigcup_{n \in \mathbb{N}^+} R^n$$

where $R^n = \underbrace{R \circ R \circ \cdots \circ R}_{n \text{ times}}$.

Proposition 3.3. *tr*(*R*) *is the smallest transitive relation containing R.*

Proof. If $(x, y), (y, x) \in tr(R)$, then $(x, y) \in R^n$, $(y, x) \in R^m$ for some $n, m \in \mathbb{N}^+$. Then $(x, z) \in R^n \circ R^m = R^{n+m} \subseteq tr(R)$. This shows tr(R) is indeed a transitive relation. To show it is the smallest, it suffices to note that if *S* is transitive and $R \subseteq S$, then $tr(R) \subseteq S$; It is so since given that *S* is transitive, $S \circ S \subseteq S$, so $R^2 \subseteq S$; similarly $S \circ S \circ S \subseteq S$, so $R^3 \subseteq S$, and so on, thus $tr(R) = \bigcup_{n \in \mathbb{N}^+} R^n \subseteq S$.

A symmetric relation is also called a *graph*. An arbitrary relation is also called a *directed graph*.

In database theory, a database is a relation if

$$R \subseteq X_1 \times X_2 \times \cdots \times X_n$$

X_i's are called *attributes*. The composition of relations often serve as simple SQL query.

Example 3.4. If *R*, *S* are relations, $R \subseteq X \times Y$, $S \subseteq Y \times Z$.

 $\left. \begin{array}{cc} SELECT & R \ x, \ S \ z \\ FROM & R, \ S \\ WHERE & R \ y = S \ y \end{array} \right\} \text{ compute } R \circ S.$

3.1 Equivalence Relations

Definition. A *equivalence relation* is a relation that is reflective, symmetric and transitive.²

Exercise 3.5. Check that the followings are equivalence relations.

• The relation \equiv_k on \mathbb{Z} , $k \in \mathbb{Z}$, defined by

$$x \equiv_k y \text{ iff } k | (x - y)$$

• The relation *E* on \mathbb{R}^2 defined by

$$(x_1, x_2)E(y_1, y_2)$$
 iff $x_1 = y_1$

• The relation E_O on \mathbb{R}

$$xE_Qy$$
 iff $x - y \in \mathbb{Q}$

Exercise 3.6. Show that the followings are <u>not</u> equivalence relations.

• The relation R on \mathbb{R} defined by

$$xRy \text{ iff } x - y \ge 0$$

• The relation *R* on \mathbb{Z} defined by

$$xRy$$
 iff $x = -y$

²When you want to determine whether a given relation is an equivalence relation, just check these three conditions one by one.

• The relation R on \mathbb{R} defined by

$$xRy$$
 iff $x - y \notin \mathbb{Q}$

Definition. If *E* is an equivalence relation on *X* and $x \in X$, the *equivalence class* of *x* is

$$[x]_E = \{a \in X : xEa\}$$

We drop the subscript and write simply [x] when the context is clear.

The *quotient* of *X* by *E* is

$$X/E = \{ [x]_E : x \in X \}$$

Exercise 3.7. Determine the equivalence classes in 3.5.

Proposition 3.8. *If E is an equivalence relation on X and* $x, y \in X$ *, then*

$$xEy \iff [x]_E = [y]_E$$

Proof. Suppose *xEy*, we take $z \in [x]$, *zEx*; by transitivity *zEx*, *xEy* \Rightarrow *zEy*, so $z \in [y]$. So $[x] \subseteq [y]$. Similarly $[y] \subseteq [x]$. For the "if" direction, suppose [x] = [y]. Then $x \in [x] = [y] \Rightarrow x \in [y] \Rightarrow xEy$.

Definition. A *partition* of a set *X* is a set $P \subseteq \mathcal{P}(X)$, such that $\bigcup P = X, \emptyset \notin P$ and if $p_1, p_2 \in P$, then either $p_1 = p_2$ or $p_1 \cap p_2 = \emptyset$.

Proposition 3.9. *If E is an equivalence relation on X, then* $\{[x]_E : x \in X\}$ *is a partition.*

Proof. Clearly $X = \bigcup \{ [x]_E : x \in X \}$; We need to show for $x, y \in X$, either [x] = [y] or $[x] \cap [y] = \emptyset$. If *xEy*, then [x] = [y] by 3.8. If *xEy*, assume $[x] \cap [y] \neq \emptyset$, let $z \in [x] \cap [y]$, but then *xEz*, *zEy*, but transitivity, *xEy*. Contradiction. Thus $[x] \cap [y] = \emptyset$.

Proposition 3.10. *If P* is a partition of a set X, then there exists equivalence relation E on X such that $P = \{[x]_E : x \in X\}$.

Proof. Define *xEy* iff $\exists p \in P$ and $x, y \in P$. Check that *E* is an equivalence relation. To show $P = \{[x]_E : x \in X\}$, we prove a simple lemma first:

Lemma. Fix $p \in P$, if $x \in p$, then $[x]_E = p$. If yEx, then $\exists p' \in P$ with $x, y \in p'$, but $p \cap p' \notin \emptyset$. Since $x \in p \cap p'$, so p = p', hence $y \in P$. This shows $[x]_E \subseteq p$. Conversely if $y \in p$, then *xEy* by definition of *P*, so $y \in [x]$. Thus also $[x]_E \supseteq p$. \Box

Take $p \in P$, let $x \in p$ then $p \in [x]_E$ by lemma. Let $x \in X$, find $p \in P$ such that $x \in p$ and get $[x]_E = p$ by lemma again.

Form equivalence relation from any relation:

If R is a relation on X,

$$E = \operatorname{tr}(Id \cup R \cup R^{-1})$$

is an equivalence relation.

If the relation *T* is symmetric, then $T \circ T$ is symmetric, since $(T \circ T)^{-1} = T^{-1} \circ T^{-1} = T \circ T$. Then $tr(T) = \bigcup_{n \in \mathbb{N}^+} T^n$ is symmetric too.

3.2 Functions and their inverses

Definition. A *function* is a binary relation $f \subseteq A \times B$ such that for any $x \in A$, $\exists ! y \in B$ such that $(x, y) \in f$. Alternatively, we can also define a *function* as a triple (f, A, B) such that $f \subseteq A \times B$ is a function in the previous sense, we write $f : A \to B$, dom(f) = A, range $(f) = \{y \in B : \exists x \in A, f(x) = y\}$.

Definition. For $B' \subseteq B$, the *inverse image* of B' is

$$f^{-1}(B') = \{a \in A : f(a) \in B'\}$$

Definition. The set of functions from *A* to *B*

$$B^A = \{ f \subseteq A \times B : (f : A \to B) \text{ is a function} \}$$

If A = n, B^n is the set of all *n*-sequences of elements of *B*.

Definition. The *restriction* of f to $A' \subseteq A$ is

$$f \upharpoonright A' = \{(a,b) \in A' \times B : f(a) = b\}$$

Definition. If $f : A \to A$ is a bijection and A is finite, then f is also called a *permutation*. We write $f = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_n \end{pmatrix}$ where $b_i = f(a_i)$.³

³The cycle notation can also be used.

Definition. If $f : A \to B$, $g : B \to C$, then their *composition* is⁴

$$gf = \{(a,c) \in A \times C : \exists b \in B, (a,b) \in f, (b,c) \in g\}$$

Definition. Given a function $f : A \to B$ and function $g : B \to A$. *g* is called a *left inverse* of *f* if $gf = id_A$; *g* is called a *right inverse* of *f* if $fg = id_B$.

Proposition 3.11. *f* is injective iff it has a left inverse.

Proof. \Rightarrow Write B = range(f) and for $b \in B'$, let a = g(b) be the unique element such that f(a) = b. Next, let $a \in A$ be arbitrary and define $g(b) = a_0$ if $b \notin B'$. Now g is well-defined on B and $gf = id_A$.

 \leftarrow Suppose $gf = id_A$. If $f(a_1) = f(a_2)$ then $a_1 = g(f(a_1)) = g(f(a_2)) = a_2$, so f is injective.

Proposition 3.12. *f* is surjective iff it has a right inverse.

Proof. \Rightarrow Suppose $f : X \to Y$ is surjective, for any $y \in Y, \exists x \in X$ such that f(x) = y, for each $y \in Y$, choose one $x \in X$ with this property and call it g(y). g defined this way satisfies the requirement, $g : Y \to X$, $fg = id_Y$.

⇐ Suppose $fg = id_Y$. For $y \in Y$, note that f(g(y)) = y, so $\exists x (= g(y))$ such that f(x) = y and f is surjective.

Definition. Given $f : A \to B$, we say that $g : B \to A$ is *the inverse* of f if $gf = id_A$ and $fg = id_B$.

Remark 3.13. The inverse of a function is unique. If *f* and *g* both have inverses, then so does their composition fg, $(fg)^{-1} = g^{-1}f^{-1}$.

Proposition 3.14. *If* $f : A \rightarrow B$ *is a function, the followings are equivalent:*

- *f* has an inverse;
- *f* is a bijection;
- f^{-1} (as a relation) is a function.

Proof. Exercise.

Proposition 3.15. *For function* $f : X \to Y$ *and* $A, B \subseteq Y$ *,*

⁴It is also sometimes confusingly written as $f \circ g$ to parallel the notation used in composition of relations $R \circ S$.

- $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B);$
- $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B);$
- $f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B).$

For $A, B \subseteq X$,

• $f(A \cup B) = f(A) \cup f(B).^5$

⁵It does <u>not</u> always hold that $f(A \cap B) = f(A) \cap f(B)$ or $f(A \setminus B) = f(A) \setminus f(B)$. For instance, take $f: x \mapsto x^2, A = \mathbb{R}^-, B = \mathbb{R}^+$, then $f(A \cap B) = f(0) = 0$, but $f(A) \cap f(B) = \mathbb{R}^+ \cap \mathbb{R}^+ = \mathbb{R}^+$.

4 Cardinality

Definition. Two sets *X* and *Y* are said to be *equinumerous*, denoted $X \sim Y$, if there exists a bijection $f : X \to Y$.

Proposition 4.1. 1. For each natural number n, there does not exist an injective function⁶

$$f: n+1 \to n$$

- 2. If *n* and *m* are natural numbers and $n \sim m$, then n = m.
- *3.* $\mathbb{N} \not\sim n$ for any natural number *n*.

Proof. (1) Suppose exists such a function. Let n_0 be the smallest such natural number. Note that $n_0 \neq 0$ because there exists no bijection from $\{\emptyset\}$ to \emptyset .

Let $f_0: n_0 + 1 \rightarrow n_0$ be bijective.

Case 1: $n_0 - 1 \notin \text{range}(f_0)$. Then $f_0 \upharpoonright n_0 : n_0 \to n_0 - 1$ is still bijective, thus contradicts the minimality of n_0 .

Case 2: $n_0 - 1 \in \text{range}(f_0)$. Let *i* be the unique number in $n_0 + 1$ such that $f_0(i) = n_0 - 1$. Construct $g_0 : n_0 \to n_0 - 1$ as follows:

$$g_0(x) = \begin{cases} f_0(x) & \text{if } x < i \\ f_0(x+1) & \text{if } x > i \end{cases}$$

then $g_0 : n_0 \rightarrow n_0 - 1$ is a bijection, again contradicts the choice of n_0 .

(2) Suppose $n \sim m$ and $n \neq m$. Say n < m, then $n + 1 \le m$. Let $f : m \to n$ be a bijection, so $f \upharpoonright n + 1 : n + 1 \to n$ is injective, contradicting (1). (3) Suppose $\mathbb{N} \sim n$ for some natural number n. Let $f : \mathbb{N} \to n$ be a bijection, then

(3) Suppose $\mathbb{N} \sim n$ for some natural number n. Let $f : \mathbb{N} \to n$ be a bijection, then $f \upharpoonright n+1 : n+1 \to n$ is injective. his Contradicts (1) again.

Proposition 4.2. If X is a set, then $\sim \subseteq \mathcal{P}(X) \times \mathcal{P}(X)$ (i.e. for $a, b \in \mathcal{P}(X)$, $a \sim b$ iff there exists a bijection from a to b) is an equivalence relation.

Lemma 4.3. If a < b, c < d are real numbers, then

$$[a,b] \sim [c,d]$$

⁶Recall that from our definition, n is also a set.

Lemma 4.4. For every set X, we have

 $\mathcal{P}(X) \sim 2^X$

where 2^{X} denotes the set of all functions from X to $\{0,1\}$.

Proof. Define $f : \mathcal{P}(X) \to 2^X$, equivalently, $f : \mathcal{P}(X) \to (X \to 2)$ as

$$f(S)(x) = \begin{cases} 0 & \text{if } x \notin S \\ 1 & \text{if } x \in S \end{cases}$$

f is clearly injective. The inverse of *f* is $g : 2^X \to \mathcal{P}(X)$,

$$g(t) = \{x \in X : t(x) = 1\}$$

Check that $f \circ g = id_{2^X}$, $g \circ f = id_{g(x)}$.

Theorem 4.5. (Cantor)

For every set X, there is no surjection from X to $\mathcal{P}(X)$.

Proof. Suppose for the sake contradiction that $f : X \to \mathcal{P}(X)$ is a surjection. Consider

 $Y := \{x \in X : x \notin f(x)\}$

We claim that $Y \notin \operatorname{range}(f)$. If $Y \in \operatorname{range}(f)$ then $Y = f(x_0)$ for some $x_0 \in X$. If $x_0 \notin Y$ then $x_0 \in f(x_0) = Y$. But also, if $x_0 \in Y$ then $x_0 \notin f(x_0) = Y$. Contradiction, so such f does not exist.

Corollary 4.6. For any set X and $X_0 \subseteq X$, $\mathcal{P}(X) \not\sim X_0$.

Proof. If $g : x_0 \to \mathcal{P}(X)$ is a bijection, then let $f : X \to X_0$ be an injection, then $fg : X \to \mathcal{P}(X)$ is surjective, this contradicts Theorem 4.5.

Corollary 4.7. *There does not exist a set of all sets.*

Proof. If X is the set containing all sets, $\mathcal{P}(X) \subseteq X$, contradicting Theorem 4.5 again. \Box By Lemma 4.4, $2^{\mathbb{N}} \sim \mathcal{P}(\mathbb{N})$, we call $2^{\mathbb{N}}$ the *Cantor set*, i.e. the set of all infinite sequence of $\{0, 1\}$.

This is equivalent to the *Cantor ternary set* obtained by removing middle intervals. Each number in [0,1] can be represented uniquely as

$$\sum_{n=1}^{\infty} \frac{i_n}{3^n} : i_n \in \{0, 2\}$$

. Check that there is a bijection $x^{\mathbb{N}} \to C := \{\sum_{n=1}^{\infty} \frac{i_n}{3^n} : i_n \in \{0, 2\}\}$ defined by

$$f(x) = \sum_{n=0}^{\infty} \frac{2x_n}{3^{n+1}}$$
 where $x \in x^{\mathbb{N}}$

Definition. A *topological space* is a pair (X, T) where $T \subseteq \mathcal{P}(X)$ such that

- $\emptyset, X \in T;$
- If $T_1, T_2 \in T$ then $T_1 \cap T_2 \in T$;
- If $T_0 \subseteq T$, then $\bigcup T_0 \in T$.

Remark. The Cantor set $2^{\mathbb{N}}$ is a topological space $U \in T \iff U \subseteq 2^{\mathbb{N}}$, either $U = \emptyset$ or for every $x \in U$, there exists $n \in \mathbb{N}$ such that $\{y \in 2^{\mathbb{N}} : y \upharpoonright n = x \upharpoonright n\} \subseteq U$.

On the ternary Cantor set, there is a topology $U \subseteq C$, it is open if for every $x \in U$ there exists $a < b, x \in (a, b), (a, b) \subseteq U$.

Definition. A set *X* has cardinality *continuum* if *X* is equinumerous with $2^{\mathbb{N}}$.

Theorem 4.8. (*Cantor-Bernstein-Schröder Theorem, abbr. CBS*) If X and Y are sets such that there exist injective functions $f : X \to Y$ and $g : Y \to X$, then $X \sim Y$.

Proof. TO DO

Corollary 4.9. If X and Y are sets such that there exist surjective functions $f : X \to Y$ and $g : Y \to X$, then $X \sim Y$.

Proof. Since *f* and *g* are surjections, they have right inverses f', g'. Now f', g' have left inverses so they are injective. Apply CBS theorem.

Example 4.10. Show that

$$[0, 1] \sim 2^{\mathbb{N}}$$

The function $f : 2^{\mathbb{N}} \to C \subseteq [0, 1]$ defined by

$$f(x_0, x_1, x_2, ...) = \sum_{i=1}^{\infty} \frac{2x_{i-1}}{3^i}$$

is injective. Also we can find an injective function $g : [0,1] \to 2^{\mathbb{N}}$. For any $x \in [0,1]$, choose a binary representation $x = \sum_{i=1}^{\infty} \frac{x_i}{2^i}$, then define g as

$$g(x) \to (x_0, x_1, x_2, \ldots)$$

By CBS Theorem 4.8, [0,1] and $2^{\mathbb{N}}$ are equinumerous.

Example 4.11. Show that

 $[0,1] \sim [0,1)$

We define injective functions:

$$f: [0,1] \rightarrow [0,1)$$
$$x \mapsto x/2$$
$$g: [0,1) \rightarrow [0,1]$$
$$x \mapsto x$$

Apply CBS Theorem 4.8.

Proposition 4.12. *A set X is countable if and only if X is either empty or there exists a surjection from* \mathbb{N} *onto X*.

Proof. The "only if" direction is straight-forward: suppose *X* is countable, then there it is equinumerous with \mathbb{N} or is finite. Construct the surjection when $X \neq \emptyset$. For the "if" direction, \emptyset is countable, assume *X* is infinite an let $f : \mathbb{N}$ to *X* be a surjection. We are going to produce another surjection $g : X \to \mathbb{N}$. By induction, choose arbitrarily $a_n \in X$ such that $a_n \notin \{a_0, a_1, ..., a_{n-1}\}, g(a_n) = n$. Map everything else to 0, since $\{a_0, a_1, ...\}$ may miss some elements of *X*.

Proposition 4.13. If A_n is countable for each $n \in \mathbb{N}$, then $\bigcup_{n \in \mathbb{N}} A_n$ is countable.

Proof. (sketch) For each $n \in \mathbb{N}$, choose surjective function $f_0 : A_n \to \mathbb{N}$, then

$$h: \mathbb{N} \times \mathbb{N} \to \bigcup_{n \in \mathbb{N}} A_n$$

 $(n,m) \mapsto f_n(m)$

is surjective.

Proposition 4.14. Let A, B, C be sets, then

• If $B \cap C = \emptyset$, then $A^{B \cup C} \sim A^B \times A^C$.

•
$$(A^B)^C \sim A^{B \times C}$$
.

Example 4.15.

$$\mathbb{R}^{\mathbb{N}} \sim \mathbb{R}$$

Since $\mathbb{R}^{\mathbb{N}} \sim (2^{\mathbb{N}})^{\mathbb{N}} \sim 2^{\mathbb{N} \times \mathbb{N}} \sim 2^{\mathbb{N}} \sim \mathbb{R}.$

Exercise 4.16. Show that each of

$$\mathbb{Q} imes \mathbb{Q}, \ \mathbb{Z} imes \mathbb{N}, \ \bigcup_{n \in \mathbb{N}} \mathbb{Z}^n$$

is countable.

Show that each of

 $\mathbb{N}^{\mathbb{N}}, \mathbb{Q} \times \mathbb{R}, [0,1]^{\mathbb{N}}$

is uncountable.

Here are a few more exercises (requiring much more creativity to solve!), roughly in increasing order of difficulty:⁷

Exercise 4.17. (Lázár, 1936)

For each $x \in \mathbb{R}$, associate a finite set A(x). A set $I \subseteq R$ is said to be *independent* if for any $x, y \in I, x \notin A(y)$, in other words, $I \cap A(I) = \emptyset$. Show that there exists an uncountable independent set. (Hint⁸)

Exercise 4.18. Can a countably infinite set contain uncountable many nested subsets? (Hint⁹)

Exercise 4.19. (Putnam, 1989)

Can a countably infinite set contain uncountable many subsets whose pairwise intersections are finite? (Hint¹⁰)

⁷These are beyond the level of this course, they are just for fun.

⁸You will need the pigeonhole principle, which basically says if you put an uncountably infinite many pigeons into a countable number of holes, some hole will contain uncountably infinite many pigeons. Now associate an interval J(x) to each pigeon $x \in \mathbb{R}$, the question is, how should you choose these intervals (these are the holes)?

⁹Construct the nested subsets. Index them by real numbers.

¹⁰Construct sets indexed by irrational numbers; for any number, there's a sequence of rational numbers converging to it.

5 Propositional Calculus

Set of variables: $p, q, r, v_1, v_2, ...$; Set of binary connectives: \neq , \lor , \land , \rightarrow , \leftrightarrow .

Definition. *Formulas* are defined on the variables recursively as follows: Each variable *v* is a formula;

If φ_1 and φ_2 are formulas, then so are $\neg \varphi_1, \varphi_1 \lor \varphi_2, \varphi_1 \land \varphi_2, \varphi_1 \rightarrow \varphi_2, \varphi_1 \leftrightarrow \varphi_2$.

Definition. A *truth assignment* is a function $s : V \to \{0,1\}$. If $|V| = n < \infty$, then there are 2^n truth assignments.

Given a truth assignment $s : V \to \{0, 1\}$, the associated *evaluation* of formula is defined as \tilde{s} : Form(V) $\to \{0, 1\}$, inductively as follows:

$$\begin{split} \tilde{s}(v) &= s(v) \text{ if } v \in V \\ \tilde{s}(\neg \varphi) &= 1 - \tilde{s}(\varphi) \\ \tilde{s}(\varphi_1 \lor \varphi_2) &= \max(\tilde{s}(\varphi_1), \tilde{s}(\varphi_2)) \\ \tilde{s}(\varphi_1 \land \varphi_2) &= \min(\tilde{s}(\varphi_1), \tilde{s}(\varphi_2)) \\ \tilde{s}(\varphi_1 \to \varphi_2) &= \begin{cases} 0 & \tilde{s}(\varphi_1) > \tilde{s}(\varphi_2) \\ 1 & \tilde{s}(\varphi_1) \le \tilde{s}(\varphi_2) \\ 1 & \tilde{s}(\varphi_1) \le \tilde{s}(\varphi_2) \\ 1 & \tilde{s}(\varphi_1) = \tilde{s}(\varphi_2) \end{cases} \end{split}$$

Notation. We often write $\varphi[s]$ for $\tilde{s}(\varphi)$.¹¹

Definition. If $|V| = n < \infty$, then for a given formula $\varphi \in Form(V)$, its *truth table* is a function from the set of all 2^n truth assignments to $\{0, 1\}, s \mapsto \varphi[x]$.

Example 5.1. $\varphi = p \lor q$

 $\begin{array}{c|ccc} q & p & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 1 \end{array}$

 $\varphi = (p \lor q) \lor \neg q$

¹¹The reason is, $\tilde{s}(\varphi)$ as defined here, is thought as the function \tilde{s} maps the formula φ to a Boolean value; In writing $\varphi[s]$, we think it has "plugging in" the value of the variables as dictated by s into φ , in the same way we evaluate a polynomial, say $1 + x + x^2|_{x \mapsto 2}$.

$$\begin{array}{c|ccc} q & p & 0 & 1 \\ \hline 0 & 1 & 1 \\ 1 & 1 & 1 \\ \end{array}$$

$$\varphi = (p \to q) \to p$$

$$\begin{array}{c|ccc} q & p \\ \hline q & p & 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline 1 & 0 & 1 \\ \end{array}$$

Definition. A formula $\varphi \in \text{Form}(V)$ is a *tautology* if for every truth assignment $s : V \to \{0,1\}$, we have $\varphi[s] = 1$.¹²

Example 5.2. The followings are all tautologies:

Law of excluded middle $p \vee \neg p$ $\neg \neg p \leftrightarrow p$ Double negation $\neg (p \lor q) \leftrightarrow ((\neg p) \land (\neg q))$ De Morgan's Laws $\neg (p \land q) \leftrightarrow ((\neg p) \lor (\neg q))$ $p \lor (q \land r) \leftrightarrow (p \lor q) \land (p \lor r)$ Distributivity Laws $p \land (q \lor r) \leftrightarrow (p \land q) \lor (p \land r)$ $((p \land q) \rightarrow r) \leftrightarrow (p \rightarrow (q \rightarrow r))$ Exportation Law $(\neg p \rightarrow p) \rightarrow p$ Clavius' Law $((p \rightarrow q) \rightarrow p) \rightarrow p$ Pierce's Law

Definition. Two formulas φ_1 and φ_2 are *equivalent*, denoted $\varphi_1 \equiv \varphi_2$ if for every truth assignment *s*, we have

$$\varphi_1[s] = \varphi_2[s]$$

Note that $\varphi_1 \equiv \varphi_2$ if and only iff $\varphi_1 \leftrightarrow \varphi_2$ is a tautology.

Example 5.3. $(p \rightarrow q) \rightarrow p$ is equivalent to *p*.

What is special about the connectives \neg , \land , \lor , \rightarrow , \leftrightarrow ?

Not much. You only need a few of them to express the others. Since

$$p \lor q \equiv \neg(\neg p \land \neg q),$$

¹²These can be verified by checking all truth assignments, despite being long and boring, it's unlike the validity of formulas in first-order logic which is undecidable...

we can remove \lor from all formulas. Similarly using the equivalences,

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

and

$$p \to q \equiv \neg p \lor q$$

we can write any formula in equivalent form using only $\{\neg, \lor\}$, or $\{\neg, \land\}$, or $\{\neg, \rightarrow\}$.

We can also form new connectives, for instance

$$p$$
 NOR $q := \neg (p \lor q)$

Logical connectives are functions from sets of possible truth assignments to $\{0, 1\}$. This leads us to...

5.1 Boolean functions

Definition. An *n*-ary Boolean function is a function from $\{0,1\}^n$ to $\{0,1\}$. Binary Boolean functions such as \lor , \land are called *binary connective*; \neg is *unary*.

Remark 5.4. The variables correspond to *projection function*.

$$\prod_{v_a} : \{0,1\}^V \to \{0,1\}$$
$$\prod_{v_a} (s) = s(v_a)$$

Remark 5.5. The constant functions with values 0 and 1 are treated as 0-ary Boolean function, denoted \perp and \top .

5.2 Functional Closure

Now we define functional closure of a set of Boolean function. Crudely speaking, the functional closure is the set of all Boolean functions that can be obtained from Φ or the identity function by "composition" of union types. If you have encountered the notion of closure before, it is what you would expect; but the formal definition just look terrifying.

Definition. Given a set Φ of Boolean functions, define the following sequence of sets of Boolean functions:

$$\Phi_0 = \Phi \cup \{id, \top, \bot\}$$

For every $f_1, f_2, ..., f_k$, if

$$f_1 : \{0,1\}^{d_1} \to \{0,1\}^{c_1}$$
$$\vdots$$
$$f_k : \{0,1\}^{d_k} \to \{0,1\}^{c_k}$$

with $f_1, ..., f_k \in \Phi_n$, and $d_1, d_2, ..., d_k, c_1, c_2, ..., c_k \in \mathbb{N}$, and

$$g: \{0,1\}^{c_1+c_2+\ldots+c_k} \to \{0,1\}^c$$

with $g \in \Phi_n$ and $c \in \mathbb{N}$; if

$$h: \{0,1\}^d \to \{0,1\}^c$$

 $d \in \mathbb{N}$ is such that $d \ge d_1 \ge \cdots \ge d_k$ and

$$h(P_1, P_2, ..., P_d) = g(f_1(P_{11}, ..., P_{1d_1}), ..., f_k(P_{k1}, ..., P_{kd_k}))$$

for some $P_* \in \{0,1\}$, then $h \in \Phi_{n+1}$.

The *functional closure* of Φ is the set

$$\bigcup_{n\in\mathbb{N}}\Phi_n$$

Example 5.6. The binary connective \land belongs to the functional closure of $\{\lor, \neg\}$, since

$$\wedge(p,q) = \neg(\vee(\neg(p), \neg(q)))$$

in Polish notation.

Here,

$$\forall, \neg \in \Phi_0$$
$$(p,q) \mapsto \lor (\neg(p), \neg(q)) \in \Phi_1$$
$$(p,q) \mapsto \neg(\lor (\neg(p), \neg(q))) \in \Phi_2$$

 \square

Definition. A set Φ of Boolean connectives is *n*-functionally complete or simply *n*-complete if every Boolean function from $\{0,1\}^n$ to $\{0,1\}$ belongs to the functional closure of Φ . A set Φ is functionally complete or complete if Φ is *n*-complete for every $n \in \mathbb{N}$.

Proposition 5.7. *The set* $\{\neg, \lor\}$ *is* 1*-complete and* 2*-complete.*

Proof. Easy check.

Proposition 5.8. If a set Φ of Boolean functions is 1-complete and 2-complete, then it is n-complete for each $n \in \mathbb{N}$.

Proof. By induction on *n*. Base cases are given. Suppose the claim holds for *n*. Let $F : \{0,1\}^{n+1} \rightarrow \{0,1\}$, define $F_0, F_1 : \{0,1\}^n \rightarrow \{0,1\}$ as follows:

$$F_0(P_1, ..., P_n) = F(P_1, ..., P_n, 0)$$

and

$$F_1(P_1, ..., P_n) = F(P_1, ..., P_n, 1)$$

 F_0 and F_1 belong to the functional closure of Φ by induction hypothesis. Now *F* can be written as

$$F(P_1, ..., P_n, P_{n+1}) = (P_{n+1} \land F_1(P_1, ..., P_n)) \lor (\neg P_{n+1} \land F_0(P_1, ..., P_n))$$

Since \land, \lor, \neg belong to the functional closure of $\{\neg, \lor\}$, which in turn belongs to the functional closure of Φ , this shows that Φ is (n + 1)-complete.

Remark 5.9. Can we find an even smaller set of complete binary connectives?

Yes! {NAND} and {NOR} are both complete. You can verify this claim by using 5.8 and checking each of {NAND} and {NOR} is 1-complete and 2-complete.¹³

Truth table for NAND:

$$\begin{array}{c|ccc} q & p & 0 & 1 \\ \hline 0 & 1 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

Truth table for NOR:

¹³NAND is also written as \uparrow , called "Sheffen stroke"; NOR is also written as \downarrow , called "Pierce's arrow". I find these names sound too mythological.

q^{p}	0	1
0	1	0
1	0	0

5.3 Parsing trees

Definition. The *length* of a propositional formula is the number of symbols used in it, including parentheses.

Example 5.10. \neg ((*p*) \land (*q*)) has length 10.

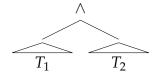
Definition. The *parsing tree* of a formula is defined by induction as follows.

• If φ is a variable, then its parsing tree is

φ

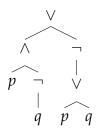
• If $\varphi = \neg \varphi_1$ and the parsing tree of φ_1 is T_1 , then the parsing tree of φ is

• If $\varphi = \varphi_1 \land \varphi_2$ and the parsing tree of φ_1 and φ_2 are respectively T_1 and T_2 , then the parsing tree of φ is



Similarly for other binary connectives.

Example 5.11. The parsing tree of $(p \land (\neg q)) \lor (\neg (p \lor q))$ is



5.4 Switching Circuits

5.5 Satisfiability

Definition. A set Φ of propositional formulas is *satisfiable* if there is a truth assignment *s* such that $\varphi[s] = 1 \forall \varphi \in \Phi$.

Remark 5.12. If $\Phi = \{\varphi\}$, then Φ is satisfiable $\iff \neg \varphi$ is not a tautology; If $\Phi = \{\varphi_1, ..., \varphi_n\}$, then Φ is satisfiable $\iff \{\varphi_1 \land \cdots \land \varphi_n\}$ is not a tautology.

Therefore the following questions are equally difficult:

- determine whether a formula is a tautology;
- determine whether a formula is satisfiable;
- determine whether a finite set of formulas is satisfiable;

Theorem 5.13. (*Compactness Theorem*) ¹⁴

look up Given a set of propositional formulas Φ , the followings are equivalent:

- Φ is satisfiable;
- Every finite subset $\Phi_0 \subset \Phi$ is satisfiable.

Proof. We will prove that the second statement (for now, call Φ "finitely satisfiable") implies the first only for countable set of variables. Note that Form(V)= $\bigcup_{n \in \mathbb{N}} F_n$ is countable, where F_n is the set of formulas of length $\leq n$. For each n, $F_n = \bigcup_{m \in \mathbb{N}} F_n^m$, where F_n^m is the set of formulas of length $\leq n$ using only the variables $\{v_1, ..., v_m\}$, so each F_n^m is finite.

Step 1. We will produce a finitely satisfiable set $\Psi \supseteq \Phi$, such that for every $f \in Form(V)$, either $f \in \Psi$ or $\neg f \in \Psi$. We start by producing a sequence of sets Φ^n such that

- $\Phi^0 = \Phi$, the original set;
- Φ^n is finitely satisfiable;
- Either $f_n \in \Psi$ or $\neg f_n \in \Psi$ for n > 0.

¹⁴As its name suggests, this is related to topology of some space. Turns out it is equivalent to the compactness of the Stone space of the Lindenbaum-Tarski algebra 6.2. That also leads to a much shorter and elegant proof, which you can look up online.

24

Lemma 5.14. If Δ is a finitely satisfiable set of formulas and $\varphi \in Form(V)$, then at least one of $\Delta \cup \{\varphi\}$ or $\Delta \cup \{\neg\varphi\}$ finitely satisfiable.

Proof. Suppose not. Then there exist $\Delta_0 \in \Delta \cup \{\varphi\}$ and $\Delta_1 \in \Delta \cup \{\neg\varphi\}$ that are not finitely satisfiable. Note that $\varphi \in \Delta_0$ and $\neg\varphi \in \Delta_1$. then $\Delta_0 = \{\varphi, \varphi_1, \varphi_2, ..., \varphi_n\}$ and $\Delta_1 = \{\neg\varphi, \varphi_{n+1}, ..., \varphi_m\}$ where $\varphi_i \in \Delta \forall 1 \le i \le m$, and possibly $\varphi_i = \varphi_j$ for some $i \ne j$. Since $\varphi_{i=1}^m \{\varphi_i\} \subseteq \Delta$, there exists a truth assignment *s* such that $\varphi_i[s] = 1$ for all *i*. If $\varphi[s] = 1$, then Δ_0 is satisfiable; if $\varphi[s] = 0$, then Δ_1 is satisfiable; \Box

Let $\Phi^{n+1} = \begin{cases} \Phi \cup \{f_n\} & \text{if it is finitely satisfiable} \\ \Phi \cup \{\neg f_n\} & \text{otherwise} \end{cases}$

where $\{f_1, f_2, ...\}$ is an enumeration of elements of Form(*V*).

Define

$$\Psi = \bigcup_{n \in \mathbb{N}} \Phi^n$$

Claim 1. Ψ is finitely satisfiable.

Proof. Every finite subset of Ψ is contained in some Φ^n .

Claim 2. If $\varphi \lor \psi \in \Psi$ then at least one of $\varphi \in \Psi$, $\psi \in \Psi$ holds.

Proof. Suppose not, then by construction, $\neg \varphi \in \Psi$, $\neg \psi \in \Psi$. But $\{\varphi \lor \psi, \neg \varphi, \neg \psi\}$ is not satisfiable.

Claim 3. If $\varphi \to \psi$ is a tautology and $\varphi \in \Psi$, then $\psi \in \Psi$.

Proof. If $\psi \notin \Psi$, then $\neg \psi \in \Psi$, but $\{\varphi, \neg \psi\}$ is not satisfiable.

Step 2. Define truth assignment $s : V \to \{0, 1\}$.

$$s(v) = \left\{egin{array}{cc} 1 & ext{if } v \in \Psi \ 0 & ext{if } v
otin \Psi \end{array}
ight.$$

Claim 4. $\varphi[s] = 1 \iff \varphi \in \Psi$.

Proof. By induction on length of φ . If φ has length 1, claim holds by definition of *s*. If $\varphi = \neg \psi$, easy check.

If $\varphi = \psi_1 \lor \psi_2$, and if $\varphi \in \Psi$, then by Claim 2, $\psi_1 \in \Psi$ or $\psi_2 \in \Psi$ or both. By the induction hypothesis, $\varphi[s] = \max(\psi_1[s], \psi_2[s]) = 1$; if $\varphi \notin \Psi$, then $\psi_1 \notin \Psi$ and $\psi_2 \notin \Psi$ (otherwise, $\psi_1 \rightarrow \psi_1 \lor \psi_2$ contradicts Claim 3). By the induction hypothesis, $\varphi_1[s] = \varphi_2[s] = 0$, so $\varphi[s] = 0$.

Definition. A formula φ is in *disjunctive normal form* (abbr. DNF) if

$$\varphi = \varphi_1 \lor \varphi_2 \lor \cdots \lor \varphi_n$$

where each $\varphi_i = \varphi_i^1 \wedge \cdots \wedge \varphi_i^{m_i}$, and φ_i^j is either a variable or negation of a variable.

Definition. A formula φ is in *conjunctive normal form* (abbr. CNF) if

$$\varphi = \varphi_1 \wedge \varphi_2 \wedge \cdots \wedge \varphi_n$$

where each $\varphi_i = \varphi_i^1 \lor \cdots \lor \varphi_i^{m_i}$, and φ_i^j is either a variable or negation of a variable.

Example 5.15. *p*, $p \lor q$ are in both DNF and CNF.

Theorem 5.16. For every formula Φ , there are φ^{CNF} in CNF and φ^{DNF} in DNF such that $\varphi \equiv \varphi^{CNF} \equiv \varphi^{DNF}$;

Proof. (Sketch)

By induction on length of φ . Base cases of length 1 (φ is a variable) and length 2 (φ the negation of a variable) hold. Since { \neg , \lor } forms a complete set of Boolean functions, any formula φ can be expressed using the connectives \neg , \lor , we have two cases to consider:

Case 1. If $\varphi = \neg \psi$ for some ψ , just apply De Morgan's Law 5.2 on ψ^{CNF} or ψ^{DNF} .

Case 2. If $\varphi = \psi_1 \lor \psi_2$, then $\varphi^{DNF} = \psi_1^{DNF} \lor \psi_2^{DNF}$.

For CNF, take

$$\psi_1^{CNF} \vee \psi_2^{CNF} = (\psi_1^1 \wedge \dots \wedge \psi_1^n) \vee (\psi_2^1 \wedge \dots \wedge \psi_2^m) = \bigwedge_{i,j} (\psi_1^i \vee \psi_2^j)$$

where we applied the Distributivity Law 5.2 at the last step.

Given a Boolean function $f : \{0,1\}^n \to \{0,1\}$, how do we find a propositional formula φ that realizes f? i.e. for any $s \in \{0,1\}^n$, $f(s) = 1 \iff \varphi[s] = 1$.

Answer: Use DNF form, let $s_1, s_2, ..., s_k$ be all $s \in \{0, 1\}^n$ such that $\varphi(s) = 1$. For s_i , let $\varphi_i = \alpha_1^i \wedge \cdots \wedge \alpha_n^i$ where

$$\alpha_j^i = \begin{cases} v_j & \text{if } s_i(v_j) = 1\\ \neg v_j & \text{otherwise} \end{cases}$$

Finally write $\varphi := \varphi_1 \lor \varphi_2 \lor \cdots \lor \varphi_k$.

Example 5.17. Let f be given by the table

$$\begin{array}{c|cccc} v_1 & v_2 & 0 & 1 \\ \hline \dots & 0 & 0 & 1 \\ 1 & 1 & 1 \end{array}$$

Then we have

$$\begin{aligned} s_1 &= (0,1) & \varphi_1 &= \neg v_1 \wedge v_2 \\ s_2 &= (1,0) & \varphi_2 &= v_1 \wedge \neg v_2 \\ s_3 &= (1,1) & \varphi_3 &= v_1 \wedge v_2 \end{aligned}$$

so that

$$\varphi = \varphi_1 \lor \varphi_2 \lor \varphi_3 = (\neg v_1 \land v_2) \lor (v_1 \land \neg v_2) \lor (v_1 \land v_2)$$

6 Boolean algebra

Definition. A *Boolean algebra* is a tuple $(B, +, \cdot, -, 0, 1)$ where $+, \cdot$ are functions from B^2 to B, - is a function from B to B, and $0, 1 \in B$, and $\forall a, b, c \in B$,

$$\begin{array}{ll} a \cdot (b + c) = (a \cdot b) + (a \cdot c) & a + b = b + a & a + 0 = a \\ a + (b \cdot c) = (a + b) \cdot (a + c) & a \cdot b = b \cdot a & a + 1 = 1 \\ a \cdot (b \cdot c) = (a \cdot b) \cdot c & a + (-a) = 1 & a \cdot 0 = 0 \\ a + (b + c) = (a + b) + c & a \cdot (-a) = 0 & a \cdot 1 = a \end{array}$$

Example 6.1. Given a set X, ($\mathcal{P}(X)$, \cup , \cap , c , \emptyset , X), where c denotes the complement, is a Boolean algebra. Every finite Boolean algebra is a subalgebra of this type.

Example 6.2. Let *V* be the set of variables. Let \equiv be the equivalence relation on Form(*V*), so $\varphi \equiv \psi$ iff $\varphi \leftrightarrow \psi$ is a tautology. Let $LT(V) = (Form(V)/_{\equiv}, \lor, \land, \neg, \top, \bot)$ where

$$\begin{split} \top &= [v_1 \vee \neg v_1]_{\equiv} \\ \bot &= [v_1 \wedge \neg v_1]_{\equiv} \\ [\varphi]_{\equiv} \vee [\psi]_{\equiv} &= [\varphi \vee \psi]_{\equiv} \\ [\varphi]_{\equiv} \wedge [\psi]_{\equiv} &= [\varphi \wedge \psi]_{\equiv} \\ \neg [\varphi]_{\equiv} &= [\neg \varphi]_{\equiv} \end{split}$$

This is called the *Lindenbaum-Tarski algebra*.

Theorem 6.3. (*Idempotent Law*) If $(B, +, \cdot, -, 0, 1)$ is a Boolean algebra, for $a \in B$, we have

$$a + a = a, a \cdot a = a$$

Proof.

$$a + a = a \cdot 1 + a \cdot 1 = a \cdot (1 + 1) = a \cdot 1 = a.$$

 $a \cdot a = (a + 0) \cdot (a + 0) = a + (0 \cdot 0) = a + 0 = a.$

Remark 6.4. The Boolean algebra is *self-dual* in the sense that if an equality φ is satisfied in the Boolean algebra, then the equality φ' obtained by exchanging + and \cdot and exchanging 0 and 1 is also satisfied.

Lemma 6.5. (*Absorption Law*) If $(B, +, \cdot, -, 0, 1)$ is a Boolean algebra, $\forall a, b \in B$,

$$a \cdot (a+b) = a$$
, $a + (a \cdot b) = a$

Proof.

$$a \cdot (a+b) = (a+0) \cdot (a+b) = a \cdot (0+b) = a+0 = a$$

By Remark 6.4, $a + (a \cdot b) = a$ also holds.

Lemma 6.6. If $(B, +, \cdot, -, 0, 1)$ is a Boolean algebra, for $a \in B$, $\exists ! b \in B$ such that $a \cdot b =$ 0, a + b = 1. Denote it -a.

Proof. Clearly -a satisfies the equations by axioms, suppose a' and a'' such that

$$a' \cdot a = a'' \cdot a = 0, \quad a' + a = a'' + a = 0,$$

then

$$a' = a' \cdot 1 = a' \cdot (a + a'') = a' \cdot a + a' \cdot a'' = 0 + a' \cdot a'' = a' \cdot a''$$

and

$$a'' = a'' \cdot 1 = a'' \cdot (a + a') = a'' \cdot a + a'' \cdot a = 0 + a'' \cdot a' = a'' \cdot a'$$

therefore a' = a''.

Proposition 6.7. *If* $(B, +, \cdot, -, 0, 1)$ *is a Boolean algebra, then* $\forall a, b \in B$ *,*

$$-(a+b) = (-a) \cdot (-b)$$
$$-(a \cdot b) = (-a) + (-b)$$

Proof. . Using the axioms, we have

$$(a+b) + (-a) \cdot (-b) = ((a+b) + (-a)) \cdot ((a+b) + (-b)) = (1+b) \cdot (1+a) = 1 \cdot 1 = 1$$

$$(a+b) \cdot (-a) \cdot (-b) = (a \cdot (-a) \cdot (-b)) + (b \cdot (-a) \cdot (-b)) = (0 \cdot (-b)) + (0 \cdot (-a)) = 0 + 0 = 0$$

Now result follows from Lemma 6.6.

from Lemma 6.6 0110

Remark 6.8. If φ and ψ are propositional formulas built using \lor , \land and $\varphi \leftrightarrow \psi$ is a tautology, then $a_{\varphi} = a_{\psi}$ is satisfied in all Boolean algebra, where a_{φ}, a_{ψ} are obtained from φ, ψ by substituting + for \lor , \cdot for \land , - for \neg .

Definition. A binary relation is a *partial order* if it is reflexive, antisymmetric and transitive. A partially ordered set is called a *poset*.

Definition. The Boolean algebra(B, +, \cdot , -, 0, 1) has a natural partial order \leq defined as

 $a \leq b$ if $a \cdot b = a$

Proposition 6.9. *If* $(B, +, \cdot, -, 0, 1)$ *is a Boolean algebra, then* $\forall a, b \in B$ *,*

$$a \cdot b = a \iff a + b = b$$

Proof. Using the Absorption Law 6.5, $\Rightarrow a + b = (a \cdot b) + b = b,$ $\Leftarrow a \cdot b = a \cdot (a + b) = a.$

Proposition 6.10. *The relation* \leq *defined on Boolean algebra*(B, +, \cdot , -, 0, 1) *above is indeed a partial order.*

Proof. • Reflexivity: $a \cdot a = a$ by the Idempotent Law 6.3;

- Antisymmetry: if $a \le b, b \le a$ then $a = a \cdot b = b \cdot a = b$;
- Transitivity: a + b = a, b + c = b then a + c = (a + b) + c = a + (b + c) = a + b = a. \Box

Remark 6.11. $0 \le a \le 1$ for every element *a* in a Boolean algebra.

Definition. An element *a* of a Boolean algebra($B, +, \cdot, -, 0, 1$) is called an *atom* if $\nexists b \in B$ such that

$$b \leq a, b \neq 0, b \neq a$$

Equivalently, we can define an atom to be an element that is minimal along the nonzero elements, or alternatively, an element that *covers* 0. A *coatom* is an element covered by 1.

Definition. A Boolean algebra with no atom is said to be *atomless*.¹⁵ A Boolean algebra in which every element is the join of atoms below it is said to be *atomic*.

Proposition 6.12. If $(B, +, \cdot, -, 0, 1)$ is a Boolean algebra, and $a, b, c \in B$ are such that $a \leq c, b \leq c$ then $a + b \leq c$.

Proof.

$$(a+b) \cdot c = a \cdot c + b \cdot c = a + b$$

¹⁵For instance, the Boolean algebra generated by left half-closed intervals is infinite and atomless.

Example 6.13. Atoms in LT(V)

Assume |V| > 1. Is $[p]_{\equiv}$ an atom in LT(*V*)? No, since $[(p \land q)]_{\equiv} \leq [p]_{\equiv}$ as $(p \land q) \land p = (p \land q)$. Extending this idea, we infer that if *V* is finite, say $V = \{v_1, v_2, ..., v_n\}$, then the atoms of LT(*V*) are of the form $[a_1 \land a_2 \land ... \land a_n]_{\equiv}$ where a_i is either v_i or $\neg v_i$ of each $1 \leq i \leq n$.

If *V* is infinite, then if φ is any formula $\varphi \not\equiv \bot$, and $v \in V$ is a variable that does not appear in φ , then $[\varphi \land v]_{\equiv} \leq [\varphi]_{\equiv}$, so LT(*V*) does not contain an atom.

Proposition 6.14. If $(B, +, \cdot, -, 0, 1)$ is a finite Boolean algebra, then for any $b \in B, b \neq 0$, there exists an atom $a \in B$ such that $a \leq b$.

Proposition 6.15. *If* $a, b \in B$, $a \neq b$ are atoms, then $a \cdot b = 0$.

Definition. Given Boolean algebras *A* and *B*, a function $f : A \rightarrow B$ is a *homomorphism* if

$$f(0_A) = f(0_B)$$

$$f(1_A) = f(1_B)$$

$$f(-_Aa) = -_Bf(a)$$

$$f(a +_A b) = f(a) +_B f(b)$$

$$f(a \cdot_A b) = f(a) \cdot_B f(b)$$

If *f* is also a bijection, then *f* is an *isomorphism*. We often denote $A \simeq B$.

Lemma 6.16. If $y \in B$ and $Y := \{a \in X : a \le y\}$, then $y = +Y := +_{a \in Y}a\}$.

Proof. Let $Y = \{y_1, y_2, ..., y_k\}$, we want $y_1 + y_2 + \cdots + y_k = y$. Since $y_i \le y \ \forall i, y_1 + y_2 + \cdots + y_k \le y$ by 6.12. Note that $y = y \cdot (y_1 + y_2 + \cdots + y_k) + y \cdot (-(y_1 + y_2 + \cdots + y_k))$. Let $b = -(y_1 + y_2 + \cdots + y_k)$. If $b \ne 0$, let $a \le b$ be an atom, so $a \le b \le y$ and $a = y_i$ for some *i*.

Now applying De Morgan's Law, $a = a \cdot b = y_i \cdot y \cdot (-(y_1 + y_2 + \dots + y_k)) = y \cdot (-y_1) \cdot \dots \cdot (y_i) \cdot (-y_i) \cdot \dots \cdot (y_k) \leq 0$, contradicting that *a* is an atom. Thus b = 0, so $y = y \cdot (y_1 + y_2 + \dots + y_k)$ thus $y \leq y_1 + y_2 + \dots + y_k$, y = +Y.

Theorem 6.17. If $(B, +, \cdot, -, 0, 1)$ is a finite Boolean algebra, then there exists a finite set X such that B is isomorphic to $(\mathcal{P}(X), \cup, \cap, {}^{c}, \emptyset, X)$.¹⁶

¹⁶More generally, a Boolean algebra is isomorphic to the powerset of some set X equipped with the usual set-theoretic operations iff it is complete and atomic. This theorem says that every finite Boolean algebra is complete and atomic.

Corollary 6.18. Any finite Boolean algebra has size 2^n for some $n \in \mathbb{N}$.

Proposition 6.19. The Lindenbaum-Tarski algebra on a countably infinite set of variables is countably infinite.

Proof. Exercise.

7 Partially ordered sets

Recall that a binary relation is a *partial order* if it is reflexive, antisymmetric and transitive. A partially ordered set is called a *poset*.

Definition. Let (P, \leq) be a poset, an element $a \in P$ is called

- maximal if $\nexists b \in P$, $b \neq a$, $b \geq a$;
- minimal if $\nexists b \in P$, $b \neq a$, $b \leq a$;
- greatest if $a \ge b, \forall b \in P$;
- smallest if $a \leq b, \forall b \in P$.

Remark.

- If a greatest (or smallest) element exists, it is unique;
- A greatest (resp. smallest) element is maximal (resp. minimal).
- Atoms are the minimal elements in $(B \setminus \{0\}, \leq)$.

Definition. Let $X \subseteq P, b \in P$ is an *upper bound* of X if $b \ge a, \forall a \in X$; b is the *supremum* (also called *join*) of X if b is the smallest upper bound of X. Similarly, $b \in P$ is an *lower bound* of X if $b \le a, \forall a \in X$; b is the *infimum* (also called *meet*) of X if b is the greatest upper bound of X.

Example. Consider the poset (\mathbb{Q}, \leq) and $X := \{q \in \mathbb{Q} : q \leq \sqrt{2}\}$. *X* has an upper bound but it does not have a supremum.

Definition. A subset *C* of poset (P, \leq) is a *chain* if $(C, \leq |_{C \times C})$ is linear.

Definition. A subset *A* of poset (P, \leq) is an *antichain* if for every distinct $x, y \in A$, we have $x \nleq y$, i.e. *x* and *y* are incomparable. Thus any antichain can intersect any chain in at most one element.

Example.

- (\mathbb{R}, \leq) is a linear order, thus any subset of \mathbb{R} is a chain.
- $(P(X), \subseteq)$ is not a linear order if $|X| \ge 2$.

- { \emptyset , {1}, {1,2}} is a chain in $P({1,2})$.
- {{1}, {2,3}, {2,4}} is an antichain in $P({1,2,3,4})$.¹⁷

Definition. Given a poset (P, \leq) , the *width* of (P, \leq) is the maximum number of elements in an antichain of *P*.

Theorem 7.1. (Dilworth)

If (P, \leq) is a finite poset of width w, then there exist chains $C_1, C_2, ..., C_w$ such that $P = \bigsqcup_{i=1}^w C_i$.

Proof. By induction on the size of *P*. Base case |P| = 0 or 1 trivial.

Induction step, assume claim holds for |P| < n. Let (P, \leq) be a poset of size n. Let $a \in P$ be maximal. Let k denote the width of $P' := P \setminus \{a\}$, so there are disjoint chains $C_1, C_2, ..., C_k$ covering P'. For each $i \leq k$, let x_i be the maximal element in C_i that belongs to an antichain of size k.

Claim that $\{x_1, x_2, ..., x_k\}$ is an antichain. Suppose on the contrary $x_i \le x_j$. Let A_j be an antichain of size k in P' such that $x_j \in A_j$. Let $y \in A_j \cap C_i$, so $y \le x_i$ by the choice of x_i . By transitivity, $y \le x_i \le x_j$, then y and x_j are distinct comparable elements in A_j , contradicting A_j is an antichain.

Case 1: *a* is not comparable with any x_i ; then $\{a, x_1, ..., x_k\}$ is an antichain and $P = \{a\} \sqcup C_1 \sqcup \cdots \sqcup C_k$, so width of *P* is k + 1.

Case 2: *a* is comparable with any x_i , so $x_i \le a$. Let $C = \{a\} \sqcup \{y \in C_i : y \le x_i\}$. Consider $P'' := P \setminus C$, P'' cannot contain an antichain of size *k* because x_i was the greatest element of C_i that belongs to an antichain of size *k*, so the width of P'' is k - 1. Let $C'_1, ..., C'_{k-1}$ be disjoint chains covering P''. Then $P = C \sqcup C'_1 \sqcup \cdots \sqcup C'_{k-1}$ and the width of *P* is *k*.

Definition. Given a poset (P, \leq) , the *height* of (P, \leq) is the maximum number of elements in a chain of *P*.

Theorem 7.2. $(Mirsky)^{18}$

The height of a finite poset (P, \leq) *equals the smallest number of antichains into which* P *can be partitioned.*

Proof. For any element *x*, consider the chains having *x* as their greatest element. Let N(x) denote the size of the largest of these chains. Then each set $N^{-1}(i)$ is an antichain,

¹⁷The largest antichain in $(P(X), \subseteq)$ is the largest Sperner family, which has size $\binom{|X|}{||X|/2|}$

¹⁸The dual of Dilworth's theorem. Not covered in this course.

and they partition *P* into a number of antichains equal to the size of the largest chain. \Box

7.1 Lattices and Zorn's Lemma

Definition. A poset (L, \leq) is called a *lattice* if every finite subset of *L* has a supremum and an infimum. Equivalently, (L, \leq) is a *lattice* if every two-element subset has a supremum and an infimum.

Example. Every linearly ordered set is a lattice.

Example. Every Boolean algebra is a lattice, since $\sup(a, b) = a + b$.

Non-Example. $(\{\{1\}, \{2\}\}, \subseteq)$ is not a lattice.

Definition. A poset (L, \leq) is called a *complete lattice* if every subset of *L* has a supremum.

Example. (\mathbb{R} , \leq) and ([0, 1), \leq) are complete lattices.

Claim 7.3. *Let* (P, \leq) *be a poset. The followings are equivalent:*

- (P, \leq) is a complete lattice;
- Every subset of *P* has an infimum;
- Every subset of P has a supremum and an infimum.

Proof. $2 \Rightarrow 1$. Let $X \subseteq P$, consider $Y = \{p \in P : p \text{ is an upper bound of } X\}$, then inf $Y = \sup X$. $1 \Rightarrow 3$. Analogous. $3 \Rightarrow 2$. Trivial.

Theorem 7.4. (*Knaster-Tarski*) If (L, \leq) is a complete lattice and $f : L \to L$ is order-preserving, i.e. $x \leq y \Rightarrow f(x) \leq f(y)$, then f has a fixed point. ¹⁹

Proof. Let $X = \{x \in L : f(x) \le x\}$. Let $x_0 = \inf X$, thus $x_0 \le x \forall x \in X$. Then by monotonicity of f and definition of X, $f(x_0) \le f(x) \le x$, so $f(x_0)$ is a lower bound of X and $f(x_0) \le x_0$. Applying f once again, we obtain $f(f(x_0)) \le f(x_0)$, thus $f(x_0) \in X$. Also $x_0 \le f(x_0)$ by definition of x_0 . Thus $f(x_0) = x_0$, i.e. x_0 is a fixed point of f.

¹⁹The set of fixed points of f is also a complete lattice

Lemma 7.5. Let (P, \leq) be a poset such that every chain in P has a supremum, and let $f : P \to P$ be such that for every $x \in P$, $x \leq f(x)^{20}$, then f has a fixed point.

Proof. First note that \emptyset is a chain and $\sup \emptyset$ is the smallest element of *P*. Call it *a*. Define $\mathscr{A} = \{A \subseteq P : a \in A, x \in A \Rightarrow f(x) \in A, \text{chain } L \subseteq A \Rightarrow \sup L \in A\}.$

Now we show through the series of claims that $A_0 = \bigcap \mathscr{A}$ is a chain and $A_0 \in \mathscr{A}$. Then take any element $x \in A_0$, the chain $x \leq f(x) \leq f(f(x)) \leq \dots$ has a supremum in A_0 . This supremum is a fixed point of f.

Claim 1: $A_0 \in \mathscr{A}$.

Proof. Clearly $a \in A_0$. If $x \in A_0, x \in A \ \forall A \in \mathscr{A}$, so $f(x) \in A$, thus $f(x) \in A_0$. Similarly, if the chain $L \subseteq A_0$, then $L \subseteq A \ \forall A$, so $\sup L \in A \ \forall A$, thus $\sup L \in A_0$. The set A_0 satisfies the three criteria, thus $A_0 \in \mathscr{A}$.

Claim 2: A_0 is a chain.

Proof. Consider $B = \{x \in A_0 : (y < x, y \in A_0) \Rightarrow f(y) \le x\}$. For $x \in B$, let $B_x = \{z \in A_0 : z \le z \text{ or } f(x) \le z\}$. If we show that $A_0 = B = B_x$ for every $x \in A$, then A_0 is a chain, since if $x, y \in A_0$, then either $y \le x$ or $x \le f(x) \le y$, thus x and y are comparable. \Box

Claim 3: If $x \in B$, then $B_x \in \mathscr{A}$. Consequently, $A_0 = B_x$ for every $x \in A_0$.

Proof. Clearly $a_0 \in B_x$. Suppose $z \in B_x$, we want $f(x) \in B_x$. Case 1, $z \le x$, then either $(z = x, \text{ so } f(z) = f(x) \in B_x)$ or $(z < x, \text{ then } f(z) \le x \in B$, thus again $f(z) \in B_x$). Case 2, f(x) < z, but also $z \le f(z)$, so $f(x) \le f(z)$. Suppose $L \subseteq B_x$ is a chain. If every $l \in L$ is such that $l \le x$, sup $L \le x$, then sup $L \in B_x$. if for some $l \in L$, $f(x) \le l \le \sup L$, then clearly $L \in B_x$. Since $B_x \subseteq A_0$ and $A_0 := \bigcap \mathscr{A}$, we have $A_0 = B_x$.

Claim 4: $B \in \mathscr{A}$. Thus $B = A_0$.

Proof. Clearly $a_0 \in B$. Suppose $x \in B$, i.e. $y < x \Rightarrow f(y) \le x$. If y < f(x), then $y \le x$ by Claim 3, thus $f(y) \le x \le f(x)$. If y = x, then $f(y) \le f(x)$, so $x \in B \Rightarrow f(x) \in B$, i.e. *B* is closed under function application. Now take any chain $L \subseteq B$. Let $y < \sup L$, then $\exists l \in L$ such that $l \nleq y$, so y < l since by

Claim 3, $A_0 = B_l$. Since $l \in B$, $f(y) \le l \le \sup L$, this shows $\sup L \in B$. Thus $B \in \mathscr{A}$, and $B = A_0$.

²⁰Such f is said to be *progressive*

Axiom of Choice (abbr. AC)

If X is a nonempty family of sets such that $\emptyset \notin X$ then $\exists f : X \to \bigcup X$ such that for every $a \in X, f(a) \in a$.

Lemma 7.6. If (P, \leq) be a poset such that every chain in P has an supremum, then P has a maximal element.

Proof. Suppose not. For each $x \in P$, define $A_x = \{y \in P : y > x\}$. Using AC, we have a function $f : P \to P, f(x) \in A_x$, thus $x \leq f(x)$. By Lemma 7.5, f has a fixed point, contradicting absence of a maximal element.

Theorem 7.7. (*Hausdorff maximal principle*) For any poset (P, \leq) , there exists a maximal chain in *P*.

Proof. Consider $S := (\{C \subseteq P : C \text{ is a chain}\}, \subseteq)$. We will show any chain in *S* has a supremum.

Let C be a chain in S, we have $\bigcup C \subseteq P$. Take arbitrary $x, y \in \bigcup C$, then $\exists C_1, C_2 \in C$ such that $x \in C_1$, $y \in C_2$. Since C is a chain, C_1 and C_2 are comparable. Wlog, assume $C_1 \subseteq C_2$, then $x, y \in C_2$; since C_2 is a chain, x, y are comparable. Therefore $\bigcup C$ is a chain, and $\bigcup C = \sup C \in S$. By Lemma 7.6, S has a maximal element, which corresponds to a maximal chain in P.

Theorem 7.8. (*Kuratowski-Zorn Lemma*)²¹

If (P, \leq) *is a poset such that every chain in P has an upper bound, then P has a maximal element.*

Proof. Let $C \subseteq P$ be a maximal chain, its existence is guaranteed by 7.7. Let *b* be an upper bound of *C*. Note that $b \in C$ since otherwise $C \cup \{b\}$ would be a larger chain. If $\exists c$ such that c > b, then again $C \cup \{c\}$ would be a larger chain, contradicting maximality of *C*. Therefore *b* is a maximal element in *P*.

Corollary 7.9. For any poset (P, \leq) , there exists a linear order \preccurlyeq on P that extends \leq , i.e. $(\leq \subseteq \preccurlyeq \subseteq P)$.

Proof. Consider $S := (\{R \subseteq P \times P : R \text{ is a poset and } \leq \subseteq R\}, \subseteq).$

Claim 1: Any chain C in S has an upper bound in S.

²¹What's sour, yellow, and equivalent to the Axiom of Choice? Zorn's lemon.

Proof. We will show that $\bigcup C$ is a poset containing \leq . Assume $\bigcup C \neq \emptyset$, otherwise \leq is an upper bound. Clearly, $\bigcup C$ contains \leq since any element of C contains \leq . Showing $\bigcup C$ is a poset is just a routine check:

- $\bigcup C$ is reflexive since each $R \in C$ was;
- If *x* is related to *y*, and *y* is related to *x* in $\bigcup C$, then *x* is related to *y* in *R*₁, and *y* is related to *x* in *R*₂ for some *R*₁, *R*₂ $\in C$. Since *C* is a chain, wlog, *R*₁ \subseteq *R*₂, thus x = y by antisymmetry property of *R*₂, thus $\bigcup C$ is also antisymmetric;
- If *x* is related to *y*, and *y* is related to *z* in $\bigcup C$, then *x* is related to *y* in R_1 and *y* is related to *x* in R_2 for some $R_1, R_2 \in C$. Since *C* is a chain, wlog, $R_1 \subseteq R_2$, so by transitivity of R_2 , *x* is related to *z* in R_2 , thus *x* is related to *z* in $\bigcup C$.

Therefore $\bigcup C \in S$ and it is an upper bound of C^{22} .

Claim 2: A maximal element in *S* is a linear order.

Proof. Suppose *R* is a poset in *P* which is not linear, so $\exists x, y \in P$ such that xKy, yKx. Let $R' = R \cup \{(a,b) : aRx, yRb\}^{23}$. By this construction, xR'y but xKy, so $R \subsetneq R'$, i.e. *R* is not maximal; i.e. a maximal element in *S* has to be a linear order.

By Kuratowski-Zorn Lemma 7.8 and Claim 1, *S* has a maximal element; by Claim 2, this maximal element is a linear order. \Box

Definition. A poset (P, \leq) is *well-founded* if every non-empty set of *P* has a minimal element.

Definition. A poset (P, \leq) is a *well-order* if it is well-founded and linear.

Example. \mathbb{N} is well-ordered. $(\mathbb{N} \cup \{\omega\}, \leq \cup \{(n, \omega) : n \in \mathbb{N}\})$ is also well-ordered.

Example. Any finite linear order is well-ordered.

Non-Example. (\mathbb{Q}, \leq) and (\mathbb{R}_+, \leq) are not well-ordered.

Theorem 7.10. (Well-ordering theorem)

Assuming the Axiom of Choice, for any set X, there exists a well-order on X.

²²In fact, $\bigcup C = \sup C$, just as in 7.7.

²³Again, one should check that R' is indeed a poset. Note that $\{a \in P : aRx\} \cap \{b \in P : yRb\} = \emptyset$.

Definition. A poset (T, \leq) is a *tree* if $|T| \geq 1$ and for every $t \in T$, $\{s \in T : s \leq t\}$ is well-ordered by \leq .

Definition. Given a tree (T, \leq) and $t \in T$, we say that $t' \in T$ is an *immediate successor* of t if $t \leq t', t \neq t'$ (for simplicity, we also write t < t') and t' is minimal in $\{s \in T : t \leq s\}$.

Lemma 7.11. If (T, \leq) is a tree, then for every $t \in T$, either $\{s \in T : t < s\}$ is empty or there exists an immediate successor of t.

Proof. Suppose $\{s \in T : t < s\}$ is non-empty. Choose any $t'' \in T$ such that t < t''. Look at the set $A := \{s \in T : t < s \le t''\}$. This is a subset of $\{s \in T : s \le t''\}$, hence there is a minimal element of A, this element is an immediate successor of t'.

Definition. Given a tree (T, \leq) , an *infinite branch* in T is a sequence $(t_0, t_1, t_2...)$ such that t_0 is the least element of T, and t_{i+1} is an immediate successor of t_i for all $i \leq 0$.

Definition. A tree (T, \leq) is *finitely branching* if for every $t \in T$, the set of immediate successors of *t* is finite.

Theorem 7.12. (*König's Lemma*) *If* (T, \leq) *is an infinite finitely branching tree, then there exists an infinite branch in T*.

Proof. By construction. Let $T =: T_0$ be infinite and finitely branching, and let t_0 be the least element of T. Inductively choose $t_n \in T$, such that t_{n+1} is an immediate successor of t_n and the set $T_{n+1} := \{t \in T_n : t_{n+1} \le t\}$ is infinite.

8 Propositional Calculus, revisited

Given a propositional formula $\varphi \in Form(V)$, we write

 $\models \varphi$

if φ is a tautology.

More generally, given a set Γ of formulas, write²⁴

 $\Gamma \vDash \varphi$

if for every truth assignment *s*, $\gamma[s] = 1$ for every $\gamma \in \Gamma$ implies $\varphi[s] = 1$.

8.1 Syntactical deduction

Definition. A deduction system for propositional logic consists of

- a set *A* of propositional formulas, called *axioms*;
- a set of finite sequences $(\varphi_1, ..., \varphi_n, \varphi_{n+1})$, written $\frac{\varphi_1, ..., \varphi_n}{\varphi_{n+1}}$, called *deduction rules*.

We will consider deduction system for propositional logic where all the deduction rules are of the form, $\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$, called *modus ponens*.

In this section, we will use only the connectives $\{\neg, \rightarrow\}$, since this set is functionally complete, there is no compelling reason to use more.

Definition. A *formal proof* or *inference* in a deduction system *D* from the set of formulas Γ is a sequence of formulas $\varphi_1, \varphi_2, ..., \varphi_n$ such that for each $i \leq n$, either

- φ_i is an axiom of *D*;
- $\varphi_i \in \Gamma$;
- there are $i_1, i_2, ..., i_k < i$ such that $\frac{\varphi_{i_1}, ..., \varphi_{i_k}}{\varphi_i}$ is a deduction rule.

²⁴read " Γ semantically entails φ " or " Γ tautologically implies φ "

Definition. We write $\Gamma \vdash_D \varphi^{25}$ if there exists a proof $\varphi_1, ..., \varphi_n$ in *D* from Γ such that $\varphi_n = \varphi$.

Definition. A deduction system *D* for propositional logic is *sound* if for every formula φ and set of formulas Γ , $\Gamma \vdash_D \varphi \Rightarrow \Gamma \vDash \varphi$.²⁶

Proposition 8.1. *If D is a deduction system with only modus ponens as inference rule, then D is sound iff all axioms are tautologies.*

Proof. Suppose *D* is sound. Clearly $\vdash_D \varphi$ for every axiom φ , then $\models \varphi$ by soundness, meaning φ is a tautology.

For the reverse direction, let all axioms be tautologies. Suppose $\Gamma \vdash_D \varphi$, let $\varphi_1, \varphi_2, ..., \varphi_n$ be a proof of φ . We show by induction on *i*, where $1 \le i \le n$, that $\Gamma \vDash \varphi_i$.

Base case, φ_1 must be an axiom of Γ , so $\Gamma \vDash \varphi_1$. For the induction step, suppose $\Gamma \vDash \varphi_j \forall j < i$. If φ_i is an axiom, then we are done; otherwise there exist j, k < i such that $\varphi_k = (\varphi_j \rightarrow \varphi_i)$, i.e. φ_i is obtained from φ_j and φ_k by modus ponens. By the induction hypothesis, $\Gamma \vDash \varphi_j$ and $\Gamma \vDash \varphi_k$, so we let *s* be any truth assignment with $\gamma[s] = 1 \forall \gamma \in \Gamma$, then $\varphi_j[s] = 1$ and $(\varphi_j \rightarrow \varphi_i)[s] = 1$, so we get $\varphi_i[s] = 1$, which means $\Gamma \vDash \varphi_i$. Therefore $\Gamma \vDash \varphi_n$, and *D* is sound.

Definition. A deduction system *D* for propositional logic is *complete* if for every formula φ and set of formulas Γ , $\Gamma \vdash_D \varphi \Leftrightarrow \Gamma \vDash \varphi$

8.2 Completeness of deduction system D_0

Now we will state a few simple lemmas and use them to show that an example deduction system 8.6 is complete.

Lemma 8.2. A concatenation of two formal proofs is a formal proof.

Lemma 8.3. If $\varphi_1, \varphi_2, ..., \varphi_n$ is a formal proof and i < n, then $\varphi_1, \varphi_2, ..., \varphi_i$ is a formal proof.

Lemma 8.4. *If* $\Gamma \subseteq \Gamma'$ *and* $\Gamma \vdash \varphi$ *, then* $\Gamma' \vdash \varphi$ *.*

Lemma 8.5. If $\Gamma \vdash \varphi$, then there exists a finite $\Gamma_0 \subseteq \Gamma$ such that $\Gamma_0 \vdash \varphi$.²⁷

²⁵read " Γ syntactically entails φ " or " Γ entails φ " or " Γ proves φ "

²⁶If a deduction system is not sound, then one can prove false statements - so such a deduction system would be worthless.

 $^{^{27}}$ Compare this lemma with the Compactness theorem 5.13.

Example 8.6. Consider the deduction system D_0 with only modus ponens as inference rule and the following axioms²⁸:

(A1)
$$\varphi \to (\psi \to \varphi)$$

(A2) $\varphi \to (\psi \to \chi) \to ((\varphi \to \psi) \to (\varphi \to \chi))$

(A3) $(\neg \varphi \rightarrow \psi) \rightarrow ((\neg \varphi \rightarrow \neg \psi) \rightarrow \varphi)$

(A3') $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$

The axioms A3 and A3' are equivalent. For simplicity, we write $\Gamma \vdash \varphi$ for $\Gamma \vdash_{D_0} \varphi$.

Theorem 8.7. D_0 is complete.

Lemma 8.8. In D_0 , $\vdash \varphi \rightarrow \varphi$ for every φ .

Proof. From A1, $\varphi \to (\varphi \to \varphi)$; From A1, $\varphi \to ((\varphi \to \varphi) \to \varphi)$; From A2, $\varphi \to ((\varphi \to \varphi) \to \varphi) \to ((\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi))$; By modus ponens, $(\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi)$; By modus ponens again, $\varphi \to \varphi$.

Lemma 8.9. In D_0 , $\{\varphi\} \vdash \psi \rightarrow \varphi$ for every φ and ψ .

Proof. From $\{\varphi\}$, we have φ ; From A1, we have $\varphi \to (\psi \to \varphi)$; By modus ponens, $\psi \to \varphi$ as desired.

Theorem 8.10. (*Deduction Theorem*) If Γ is a set of formulas and φ , ψ are formulas, then

$$\Gamma \cup \{\varphi\} \vdash \psi \iff \Gamma \vdash \varphi \to \psi$$

Proof. \Leftarrow If $\varphi_1, \varphi_2, ..., \varphi_n$ is a formal proof from Γ of $\varphi_n = (\varphi \to \psi)$, then $\varphi_1, \varphi_2, ..., \varphi_n, \varphi, \psi$ is a formal proof from $\Gamma \cup \{\varphi\}$ of ψ .

⇒ Suppose $\Gamma \vdash \varphi \rightarrow \psi$, let $\varphi_1, \varphi_2, ..., \varphi_n$ be a proof of ψ from $\Gamma \cup \{\varphi\}$. By induction on $i \leq n$, we show that $\Gamma \vdash \varphi \rightarrow \varphi_i$. Base case, by Lemma 8.9, $\{\varphi_1\} \vdash \varphi \rightarrow \varphi_1$, since φ_1 is either an axiom or an element of $\Gamma, \Gamma \vdash \varphi \rightarrow \varphi_1$ by Lemma 8.4.

²⁸Check that all these axioms are tautologies

Now suppose $\Gamma \vdash \varphi \rightarrow \varphi_j$ for all j < i. If φ_i is an axiom or element of Γ , then we are done. Otherwise φ_i is obtained by modus ponens from φ_j , $\varphi_k = (\varphi_j \rightarrow \varphi_i)$, where j, k < i, and by induction hypothesis, $\Gamma \vdash \varphi \rightarrow \varphi_j$ and $\Gamma \vdash \varphi \rightarrow (\varphi_j \rightarrow \varphi_i)$. By A2, we have $\varphi \rightarrow (\varphi_j \rightarrow \varphi_i) \rightarrow ((\varphi \rightarrow \varphi_j) \rightarrow (\varphi \rightarrow \varphi_i)) =: \chi$. Now if P_1 is a proof of $\varphi \rightarrow \varphi_j$ from Γ , and P_2 is a proof of $\varphi \rightarrow (\varphi_j \rightarrow \varphi_i)$ from Γ , then $P_1, P_2, \chi, (\varphi \rightarrow \varphi_j) \rightarrow (\varphi \rightarrow \varphi_i), \varphi \rightarrow \varphi_i$ is a proof of φ_i from Γ , thus $\Gamma \vdash \varphi \rightarrow \varphi_i$.

Lemma 8.11. For every φ, ψ ,

$$\{\varphi, \neg \varphi\} \vdash \psi \text{ and } \{\neg \varphi\} \vdash \varphi \rightarrow \psi.$$

Proof. From the set of formulas $\{\varphi, \neg \varphi\}$, we have $\neg \psi \rightarrow \varphi$, since by Lemma 8.9 $\{\varphi\} \vdash \psi \rightarrow \varphi$. Similarly we have $\neg \psi \rightarrow \neg \varphi$, again by Lemma 8.9.

From A3, $(\neg \psi \rightarrow \varphi) \rightarrow ((\neg \psi \rightarrow \neg \varphi) \rightarrow \psi)$; by modus ponens, $(\neg \psi \rightarrow \neg \varphi) \rightarrow \psi$; applying modus ponens agains, we get ψ . The second statement in this Lemma follows from Theorem 8.10.

Definition. A set of formulas Γ is *consistent* if $\exists \psi$ such that $\Gamma \nvDash \psi$. A set of formulas Γ is *inconsistent* if $\forall \psi$, $\Gamma \vdash \psi$.

Lemma 8.12. *If* Γ *is inconsistent, then there exists a finite* $\Gamma_0 \subseteq \Gamma$ *which is inconsistent.*

Proof. Fix Γ and φ . Since Γ is inconsistent, $\Gamma \vdash \varphi$ and $\Gamma \vdash \neg \varphi$. By Lemma 8.5, there exists finite $\Gamma_0, \Gamma_1 \subseteq \Gamma$ such that $\Gamma_0 \vdash \varphi$ and $\Gamma_1 \vdash \neg \varphi$. Since $\Gamma_0 \cup \Gamma_1 \vdash \varphi$ and $\Gamma_0 \cup \Gamma_1 \vdash \neg \varphi$, by Lemma 8.4 and Lemma 8.11, $\{\varphi, \neg \varphi\} \vdash \psi$, thus $\Gamma_0 \cup \Gamma_1 \vdash \psi$. Therefore $\Gamma_0 \cup \Gamma_1$ is an inconsistent finite subset of Γ .

Lemma 8.13. *If* $\Gamma \cup \{\neg \varphi\}$ *is inconsistent, then* $\Gamma \vdash \varphi$ *. If* Γ *is consistent, then at least one of* $\Gamma \cup \{\varphi\}$ *or* $\Gamma \cup \{\neg \varphi\}$ *is consistent.*

Proof.

 $\begin{array}{ll} \Gamma \cup \{\neg \varphi\} \vdash \neg (\varphi \rightarrow \varphi) & \text{using A3'} \\ \Gamma \vdash \neg \varphi \rightarrow \neg (\varphi \rightarrow \varphi) & \text{by Deduction Theorem 8.10} \\ (\neg \varphi \rightarrow \neg (\varphi \rightarrow \varphi)) \rightarrow ((\varphi \rightarrow \varphi) \rightarrow \varphi) & \text{using A3'} \\ \Gamma \vdash ((\varphi \rightarrow \varphi) \rightarrow \varphi) & \text{by modus ponens} \\ \vdash \varphi \rightarrow \varphi & \text{by Lemma 8.8} \\ \Gamma \vdash \varphi & \text{by modus ponens} \end{array}$

If $\Gamma \cup \{\neg \varphi\}$ is inconsistent, then $\Gamma \vdash \varphi$, so $\Gamma \cup \{\varphi\}$ is consistent.

Lemma 8.14. If Γ is consistent, then there exists a consistent set Δ such that $\Gamma \subseteq \Delta$ and for every formula φ either $\varphi \in \Delta$ or $\neg \varphi \in \Delta$.

Proof. Consider the set $P := \{S \subseteq Form(V) : Sis consistent and <math>\Gamma \subseteq S\}$. Consider the relation of inclusion \subseteq on P so (P, \subseteq) is a poset.

Claim 1: if $\Delta \in P$ is a maximal element, then for every φ either $\varphi \in \Delta$ or $\neg \varphi \in \Delta$.

Proof. If $\Delta \cup \{\neg \varphi\}$ is consistent, then $\Delta \cup \{\neg \varphi\} \in P$, so $\Delta \cup \{\neg \varphi\} = \Delta$ by the maximality of Δ , hence $\neg \varphi \in \Delta$. If $\Delta \cup \{\neg \varphi\}$ is inconsistent, by Lemma 8.13, $\Delta \vdash \varphi$, so $\Delta \cup \{\varphi\}$ is consistent, thus $\varphi \in \Delta$.

Now use Zorn's Lemma 7.8 to show that *P* contains a maximal element.

Claim 2: Every chain *C* has an upper bound in *P*.

Proof. Suppose $C \neq$, otherwise Γ is an upper bound. Clearly $\bigcup C$ contains Γ and s for every $s \in C$. If $\bigcup C$ is not consistent, then $\bigcup C \vdash \psi$ and $\bigcup C \vdash \neg \psi$ for some ψ . By 8.12, there exists a finite $T \subseteq \bigcup C$ so that $T \vdash \psi$ and $T \vdash \neg \psi$. Then there exists $c_1, c_2, ..., c_n \in C$ such that $T \subseteq c_1 \cup c_2 \cup ... \cup c_n$. Since C is a chain, without loss of generality c_n is the greatest among $c_1, c_2, ..., c_n$. So $c_n \vdash \psi$ and $c_n \vdash \neg \psi$, contradicting $c_n \in P$. Therefore $\bigcup C$ is an upper bound of C.

Theorem 8.15. (*Completeness Theorem*)

- Γ is satisfiable $\iff \Gamma$ is consistent.
- $\Gamma \vdash \varphi \iff \Gamma \vDash \varphi$.

Proof. The "only if" direction follows from soundness 8.1. For the "if" direction, suppose Γ is consistent. We construct a truth assignment satisfying all formulas of Γ. By lemma 8.14, there exists a consistent set $\Delta \supseteq \Gamma$ and for every φ either $\varphi \in \Delta$ or $\neg \varphi \in \Delta$.

Let
$$s(v) = \begin{cases} 1 & \text{if } v \in \Delta \\ 0 & \text{if } v \notin \Delta \end{cases}$$

We claim that s satisfies all formulas in Δ . By induction on the length of formula φ that

$$\varphi[s] = 1 \text{ if } \varphi \in \Delta \text{ and } \varphi[s] = 0 \text{ if } \varphi \notin \Delta.$$

Base case trivial.

- If $\varphi = \neg \psi$ for some ψ , then claim follows from assumption on ψ .
- Say $\varphi = \psi \rightarrow \chi$.
 - If $\varphi[s] = 0$, then $\psi[s] = 1$ and $\chi[s] = 0$. So by induction hypothesis $\psi \in \Delta$ and $\chi \notin \Delta$. If $\varphi \in \Delta$ then by modus ponens $\chi \in \Delta$, contradiction. Thus $\varphi \notin \Delta$ as desired.
 - If $\varphi[s] = 1$, then $\psi[s] = 0$ and $\chi[s] = 1$. In the first case, $\psi \notin \Delta$, so $\neg \psi \in \Delta$; by Lemma 8.11, $\neg \psi \vdash \psi \rightarrow \chi$, so $\varphi = \psi \rightarrow \chi \in \Delta$. In the second case, $\chi \in \Delta$. By Lemma 8.8, $\chi \vdash \psi \rightarrow \chi$, so again $\varphi = \psi \rightarrow \chi \in \Delta$.

Therefore *s* satisfies all formulas in Δ .

For the second claim, suppose for a contradiction that $\Gamma \nvDash \varphi$, then $\Gamma \cup \{\neg \varphi\}$ is consistent by Lemma 8.13, which means $\Gamma \cup \{\neg \varphi\}$ is satisfiable by the first claim, thus there exists a truth assignment *s* satisfying $\Gamma \cup \{\neg \varphi\}$, implying $\Gamma \nvDash \varphi$.

9 First-order logic

9.1 Languages and models

Definition. A *model* or *structure* is a tuple $M = (A, f_1, ..., f_k, P_1, ..., P_n, C_1, ..., C_l)$ where A is a nonempty set, called the *universe* of M, sometimes denoted ||M|| and

- each f_i is a function such that $f_i : A_i^{r_i} \to A$ for some $r_i > 0$;
- each P_i is a relation such that $P_i \subseteq A_i^{s_i}$ for some $s_i > 0$;
- each C_i is an element of A known as a constant.

If n = 0, i.e. there are no relations, then *M* is called an *algebraic structure*. If k = 0, i.e. there are no functions, then *M* is called an *relational structure*.

Example 9.1. For any nonempty set A, (A, \in) is a structure with one binary relation \in , namely the set-theoretic inclusion relation.

Example 9.2. A poset (P, \leq) is a relational structure.

Example 9.3. A Boolean algebra $(B, +, \cdot, {}^{c}, 0, 1)$ is an algebraic structure, where $+, \cdot, {}^{c}$ are the functions and 0, 1 are the constants.

How to talk about models:

Definition. A *language* is a tuple $L = (f_1, ..., f_k, P_1, ..., P_n, C_1, ..., C_l)$, where each f_i, P_i, C_i is called a symbol of the language, equipped with an *arity* function $a : \{f_1, ..., f_k, P_1, ..., P_n\} \rightarrow \mathbb{N}^+$.²⁹

Definition. Given a model $M = (A, f_1, ..., f_k, P_1, ..., P_n, C_1, ..., C_l)$ and a language $L = (f_1, ..., f_{k'}, P_1, ..., P_{n'}, C_1, ..., C_{l'})$, we say that M is an *L*-structure/model for L if k = k', n = n', l = l' and each $f_i : A^{a(f_i)} \to A$ and each $P_i \subseteq A^{a(P_i)}$.

Example 9.4. Let $L = \{R\}$ where *R* is a binary relation symbol, then (P, \leq) and (A, \in) are *L*-structures.

To speak language *L*, we need

 $^{^{29}}$ A function or relation of arity *n* is said to be *n-ary*. Unary is the common name for 1-ary, and binary is the common name for 2-ary, because they sound much better.

- symbols of the language
- logical symbols
 - connectives $\land, \lor, \rightarrow, \leftrightarrow, \neg$
 - quantifiers \exists, \forall
- auxiliary symbols
 - parentheses
 - commas
- variables *x*, *y*, *z*, ...
- equality symbol =

Definition. Terms are defined inductively:

- Any constant symbol is a term;
- Any variable symbol is a term;
- If τ₁, τ₂, ..., τ_n are terms and *f* is a function symbol of arity *n*, then *f*(τ₁, τ₂, ..., τ_n) is a term;
- Nothing else is a term.

A *constant term* is a term that does not contain any variables.

Interpretation of constant terms in a structure:

If τ is a constant term in *L* and *M* is a *L*-structure, then interpretation of τ in *M*, denoted τ^{M} , is defined by induction as follows:

- If $\tau = C_i$, then $\tau^M = C_i$ as well;
- If $\tau = f_i(\tau_1, \tau_2, ..., \tau_n)$, then $\tau^M = f_i^M(\tau_1^M, \tau_2^M, ..., \tau_n^M)$.

Definition. *Formulas* in *L* are also defined inductively: ³⁰

• If τ_1 and τ_2 are terms, then $\tau_1 = \tau_2$ is a formula;

³⁰In some texts, these are called *well-formed formulas*; for us, a formula is always well-formed.

- If $\tau_1, \tau_2, ..., \tau_n$ are terms and *P* is an *n*-ary relation then $P(\tau_1, \tau_2, ..., \tau_n)$ is a formula;
- If φ and ψ are formulas, then $\varphi \land \psi$, $\varphi \lor \psi$, $\varphi \rightarrow \psi$, $\varphi \leftrightarrow \psi$, $\neg \varphi$ are formulas;
- If *v* is a variable and φ is a formula, then $\exists v \ \varphi$ and $\forall v \ \varphi$ are formulas;
- Nothing else is a formula.

Example 9.5. Let $L = \{-, \leq\}$, where - is a unary function and \leq is a binary function. Then -(x) and -(-x) are terms, and $x \leq -(y)$, $\forall x \exists y \ x \leq -(y)$ are formulas.

Definition. The set of *free occurrences* of variables in a formula φ is defined by induction:³¹

- If φ is atomic, then all occurrences of variables are free;
- If $\varphi = \varphi_1 \land \varphi_2$ or $\varphi_1 \lor \varphi_2$ or $\varphi_1 \rightarrow \varphi_2$ or $\varphi_1 \leftrightarrow \varphi_2$ or $\neg \varphi_1$, then the set of free occurrences of variables in φ are those of φ_1 and ³² those of φ_2 .
- If φ = ∃x φ' or ∀x φ', the set of free occurrences of variables in φ are those of φ', except for the occurrence of x.

Definition. *Substitution.* If *t* is a term and *x* is a variable, $\varphi(t/x)$ denotes the formula with all free occurrences of *x* replaced with *t*.

We use the notation $\varphi(x_1, ..., x_n)$ if all free occurrences of variables in φ are occurrences of the variables $x_1, ..., x_n$.

Example 9.6.

$$\varphi(x, y) = (\forall x \ x \le y) \land (\exists y \ \forall z \ x < y + z)$$

Definition. A substitution is *correct* if no variable of t becomes bounded in $\varphi(t/x)$.³³

Example 9.7. Let t = v + x, then

$$\varphi(t/y) = (\forall x \ x \le x + v) \land (\exists y \ \forall z \ x < y + z)$$

is not a *correct* substitution.

³¹If you know about λ -calculus, this definition and the ones below are exactly what you would expect them to be.

³²Natural language "and", meaning the union of the two sets involved

³³This is the terminology introduced in class. Some texts only allow for substitution when it is "correct"; in other words, we can perform this substitution only if *t* is free to substitute for *x* in φ .

Definition. A sentence is a formula without free variables.

Definition. Suppose *M* is a *L*-structure, the language L(M) is the language $L \cup \{a : a \in M, a \text{ is a constant}\}$.

Interpretation of constant terms of L(M) in M:

- If τ is a constant term of L(M)
 - If τ is a constant *c* of *L*, then $\tau^M = c^M$;
 - If $\tau = a$ for some constant *a* of *M*, then $\tau^M = a$;
- If $\tau = f(\tau_1, \tau_2, ..., \tau_n)$, then $\tau^M = f^M(\tau_1^M, \tau_2^M, ..., \tau_n^M)$.

Definition. If *M* is an *L*-structure and φ is an *L*(*M*)-sentence,

$$M \vDash \varphi$$

is defined by induction as follows:

• If φ is atomic,

-
$$\varphi = (t_1 = t_2), M \vDash \varphi \text{ if } t_1^M = t_2^M;$$

- $\varphi = P(t_1, ..., t_n), M \vDash \varphi \text{ if } P^M(t_1^M, ..., t_n^M);$

- If $\varphi = \varphi_1 \land \varphi_2$, $M \vDash \varphi$ if $(M \vDash \varphi_1 \text{ and } M \vDash \varphi_2)$. Similarly for other connectives.
- If $\varphi = \forall x \ \varphi'(x)$, $M \vDash \varphi$ if for all constants $a \in M$, $M \vDash \varphi'(a/x)$.
- If $\varphi = \exists x \ \varphi'(x)$, $M \vDash \varphi$ if there exists a constant $a \in M$ such that $M \vDash \varphi'(a/x)$.

Convention. If $\varphi = \varphi(x_1, ..., x_n)$, then $\overline{\varphi} := \forall x_1, ..., x_n \ \varphi(x_1, ..., x_n)$, and it is called the *universal closure* of φ . We say $M \vDash \varphi$ if $M \vDash \overline{\varphi}$.

Definition. We say φ is a *valid L*-formula if for every *L*-structure *M*, $M \vDash \varphi$. Given a set Γ of *L*-formulas, $\Gamma \vDash \varphi$ if for every *L*-structure *M*, $(\forall \gamma \in \Gamma M \vDash \gamma \Rightarrow M \vDash \varphi)$.

9.2 Application to game theory

Consider a two-player game in which players I and II alternatively choose their moves. Let *M* be the set of all possible moves, and we assume that each game ends after a given finite number of moves. If *M* is finite, the game is finite iff each play (one instance of the game) is finite.

Let *n* be the number of moves in a game *G*. A winning condition for player I is a subset $A_I \subseteq M^n$, and similarly, a winning condition for player II is a subset $A_{II} \subseteq M^n$; we assume that there is no draw, thus $A_I \sqcup A_{II} = M^n$.

A winning strategy for player I is a function

$$s_I: \bigcup_{k: \text{even } k \le n} M^k \to M$$

so that for every sequence $(m_1, m_2, ..., m_n) \in M^n$, if $m_k = s_I(m_1, ..., m_{k-1})$ for each k odd then $(m_1, ..., m_n) \in A_I$.

A winning strategy for player II is a function

$$s_{II}: \bigcup_{k: \text{odd } k \le n} M^k \to M$$

so that for every sequence $(m_1, m_2, ..., m_n) \in M^n$, if $m_k = s_{II}(m_1, ..., m_{k-1})$ for each k even then $(m_1, ..., m_n) \in A_{II}$.

Clearly it is impossible for both players to have a winning strategy, but we can say more:

Theorem 9.8. In any finite two-player game, one of the players has a winning strategy.

Proof. Consider the language *L* consisting of one *n*-ary relation *R*. Let *M* be the *L*-structure with A_I being the interpretation of *R*. Consider the sentence

$$\sigma = \exists x_1 \forall x_2 \exists x_3 \dots Q x_n \ R(x_1, \dots, x_n)$$

where *Q* is \exists if *n* is odd and *Q* is \forall is *n* is even. Observe that if $M \vDash \sigma$ then player I has a winning strategy; if $M \nvDash \sigma$ then

$$M \vDash \forall x_1 \exists x_2 \forall x_3 \dots Q' x_n \neg R(x_1, \dots, x_n)$$

where Q' is \forall if *n* is odd and *Q* is \exists is *n* is even. In this case, player II has a winning strategy.

9.3 Axioms and inference rules

Axioms.

(A0) All instances of tautologies of propositional logic

(A1) $(\forall x (\varphi \rightarrow \psi)) \rightarrow (\varphi \rightarrow \forall x \psi)$ if *x* does not occur free in φ ;

- (A2) $\forall x \ \varphi \rightarrow \varphi(t/x)$ if *t* is a term and $\varphi(t/x)$ is a correct substitution;
- (A3) x = x for all variable x, $(x = y) \rightarrow (t(x/z) = t(y/z))$ where t is a term and the substitution is correct; $(x = y) \rightarrow (\varphi(x/z) = \varphi(y/z))$ where φ is an *L*-formula and the substitution is correct;

Inference rules.

(modus ponens) $\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$

(\forall -rule) $\frac{\varphi}{\forall x \ \varphi}$, also called *the generalization rule*

Let From(*L*) denote the set of *L*-formulas. Define $\exists x \ \varphi := \neg \forall x \neg \varphi$.

Proposition 9.9. This proof system is sound, i.e. for any language L and an L-formula φ , if $\vdash \varphi$ then φ is valid.

Proposition 9.10. $\vdash (\forall x \ \varphi) \rightarrow (\exists x \ \varphi)$ for every formula φ with one free variable x.

Proof.

$$\begin{array}{ll} \alpha 1 & \forall x \ \varphi(x) \rightarrow \varphi(y/x) \\ \alpha 2 & \forall x \ \neg \varphi(x) \rightarrow \neg \varphi(y/x) \\ \alpha 3 & \alpha 2 \rightarrow (\forall x \ \neg \varphi(x) \rightarrow \neg \varphi(y/x)) \\ \alpha 4 & \forall x \ \neg \varphi(x) \rightarrow \neg \varphi(y/x) \\ \alpha 5 & \alpha 1 \rightarrow (\alpha 4 \rightarrow ((\forall x \ \varphi) \rightarrow (\exists x \ \varphi))) \\ \alpha 6 & \alpha 4 \rightarrow ((\forall x \ \varphi) \rightarrow (\exists x \ \varphi)) \\ \alpha 7 & (\forall x \ \varphi) \rightarrow (\exists x \ \varphi) \end{array}$$

by A2, *y* is a variable not appearing in φ by A2, *y* is a variable not appearing in φ by the contrapositive law in A0, by modus ponens on $\alpha 3, \alpha 2$ by A0, we have $(p \rightarrow q) \rightarrow (q \rightarrow r) \rightarrow (p \rightarrow r)$ by modus ponens on $\alpha 1, \alpha 5$ by modus ponens on $\alpha 4, \alpha 6$ **Proposition 9.11.** *For any formula* φ *,* $\varphi \vdash \overline{\varphi}$ *and* $\overline{\varphi} \vdash \varphi$ *.*

Proof. $\varphi \vdash \overline{\varphi}$ by the \forall -rule. By A2, $\vdash \overline{\varphi} \rightarrow \varphi(x/x)$, so $\overline{\varphi} \vdash \varphi$ by modus ponens.

We also have the analogues of some theorems and lemmas from propositional logic:

Theorem 9.12. (*Deduction Theorem*) If Γ is a set of *L*-formulas and φ , ψ are *L*-formulas, then

 $\Gamma \cup \{\varphi\} \vdash \psi \iff \Gamma \vdash \varphi \to \psi$

Lemma 9.13. *If* $\Gamma \cup \{\neg \varphi\}$ *is inconsistent, then* $\Gamma \vdash \varphi$ *.*

Theorem 9.14. (*Completeness Theorem for first-order logic, Gödel* 1930)³⁴ *If* φ *is an L-sentence and* Γ *is a set of L-sentences, then*

 $\Gamma \vdash \varphi \iff \Gamma \vDash \varphi$

In particular, Γ is consistent $\iff \Gamma$ has a model.³⁵

Proof. (by L. Henkin) The "only if" direction follows from soundness. For the "if" direction, fix the language *L*, assume it's countable, then Form(*L*) is countable as well. Let $\{c_n : n \in \mathbb{N}\}$ be a set of new constants, i.e. not appearing in *L*.

Let $L' = L \cup \{c_n : n \in \mathbb{N}\}$, let $S := \{\varphi_n(x) : n \in \mathbb{N}\}$ be the set of all L'-formulas which has one free variable, they do not need to have the same free variable, we just use x for whatever the free variable is. Pick a bijective increasing function $f : \mathbb{N} \to \mathbb{N}$ such that $c_{f(n)}$ does not appear in $\{\varphi_1(x), ..., \varphi_n(x)\}$. Define $S_n = S \cup \{\exists x \ \varphi_i(x) \to \varphi_i(c_{f(i)}/x)\}^{36}$. Note that by definition,

$$S \subseteq S_1 \subseteq S_2 \subseteq ... \subseteq S_\infty := \bigcup_{n \in N} S_i$$

For each $n \in \mathbb{N}$, S_n is consistent. Otherwise, choose the smallest n such that S_n is not consistent, then $S_{n-1} \vdash \neg(\exists x \ \varphi_n(x) \rightarrow \varphi_n(c_{f(n)}/x))$, equivalently, $S_{n-1} \vdash \exists x \ \varphi_n(x)$ and $S_{n-1} \vdash \neg \varphi_n(c_{f(n)})$. Since $c_{f(n)}$ does not occur in S_{n-1} , we can apply the \forall -rule, and get $S_{n-1} \vdash \forall x \neg \varphi_n(x)$. Since $\exists x \psi$ is equivalent to $\neg \forall x \neg \psi$, $S_{n-1} \vdash \neg \forall x \neg \varphi_n(x)$ and

³⁴Not to be confused with the even more famous Gödel's Incompleteness Theorem 9.24

³⁵Meaning there exists an *L*-structure *M* such that $M \vDash \gamma \ \forall \gamma \in \Gamma$.

³⁶The formulas $\exists x \ \varphi_i(x) \rightarrow \varphi_i(c_{f(i)}/x)$ are called *Henkin axioms*.

Apply Zorn's Lemma 7.8, let $S' \supseteq S_{\infty}$ be a maximal consistent set of *L*'-sentences. Given *S*', we define an *L*'-structure *M* from *S*' as follows:

Consider the equivalent relation \sim defined on $C = \{c_n : n \in \mathbb{N}\}$ as $c_n \sim c_m$ if $S' \vdash c_n = c_m$. Let $M = C/_{\sim} = \{[c_n] : n \in \mathbb{N}\}$. Given $L = \{R_1, ..., R_k, f_1, ..., f_l, \text{ constants } C\}$, then

$$R_j^M([c_1], ..., [c_n]) \text{ if } S' \vdash R_j(c_1, ..., c_n)$$
$$f_j^M([c_1], ..., [c_n]) = [c_m] \text{ if } S' \vdash f_j(c_1, ..., c_n) = c_m$$
$$c_j^M = c_j$$

Claim 1. For an term *t* in *L*', there exists an *n* such that $S' \vdash t = c_n$.

Claim 2. For any *L*'-sentence φ , $M \vDash \varphi \iff S \vdash \varphi$. *Proof:* By induction on the length of φ . Exercise.

The deduction system studied so-far in this section is an example of *Hilbert-style system*. Let's briefly take a look at another proof-system:

9.4 Natural deduction

The objects that we prove are so-called *sequents*, which have form

 $\Delta \vdash \alpha$

where Δ is a set of formulas. For propositional logic, there is only one axiom,

 $\Delta, \alpha \vdash \alpha$

For first-order logic, one adds the following rules:

$\forall x \ \varphi \vdash \varphi(t/x)$	Rule of universal specification
$\frac{\psi \vdash \varphi}{\psi \vdash \forall x \ \varphi}$	Rule of universal generalization
$\overline{\varphi(t/x)\vdash \exists x \ \varphi(x)}$	Rule of existential generalization
$\frac{\varphi \vdash \psi}{\exists x \ \varphi \vdash \psi(x)}$	Rule of existential specification

Theorem 9.15. *If* Γ *is a set of sentences and* φ *is a sentence, then* $\Gamma \vdash \varphi$ *is a sequent provable in the natural deduction system if and only if* $\Gamma \vdash \varphi$ *is provable in the Hilbert system.*

Definition. Given a set *A* of *L*-sentences, the set of *consequences* is

$$Con(A) := \{ \sigma \in Sent(L) : A \vdash \sigma \}$$

Definition. A set *T* of *L*-sentences is called a *theory* if T = Con(T). A theory *T* is *complete* if for each sentence σ , either $\sigma \in T$ or $\neg \sigma \in T$. Note that *T* is complete iff it is maximal consistent.

Definition. If T = Con(A), then A is said to be a set of *axioms* for T.

Definition. Given two sentences σ , τ and a set of sentences T, we say that σ is T-equivalent to τ , denoted $\sigma \equiv_T \tau$, if $T \vdash \sigma \leftrightarrow \tau$.

We simply write \equiv for \equiv_{\emptyset} .

Definition. Given a set of sentences *T*, the Lindenbaum-Tarski algebra of *T* is defined as the set $\{[\sigma]_{\equiv_T} : \sigma \in \text{Sent}(L)\}$ with the same operations as in 6.2, with

$$0 = [\forall x \ x \neq x]_{\equiv_T}$$
 and $1 = [\exists x \ x = x]_{\equiv_T}$

We denote this as LT(*T*); if $T \neq \emptyset$, it is call the *Lindenbaum-Tarski algerbra of first-order logic*.

Definition. A sentence σ is in *prenex normal form* if

$$\sigma = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \ \varphi(x_1, x_2, \dots, x_n)$$

where each Q_i is either a \exists or \forall and φ does not contain any quantifiers.

Example 9.16.

$$\forall x \forall y \exists z \ (x < y \land z = x) \land (\exists t \ t > y)$$

is not in prenex normal form;

$$\forall x \forall y \exists z \exists t \ (x < y \land z = x) \land (t > y)$$

is in prenex normal form;

Theorem 9.17. For any sentence σ , there exists a sentence σ' such that $\sigma \equiv \sigma'$ and σ' is in prenex normal form.

Proof. Let σ' be obtained from σ by changing the variables to new ones such that no variable appears more than once after a quantifier and moving all quantifiers to the front without switching order, then $\sigma \equiv \sigma'$ follows from the Completeness Theorem since any model satisfying σ also satisfies σ' and vice-versa.

Definition. Given a model *M*, a subset $A \subseteq M$ is *definable*³⁷ if there exists a formula $\varphi(x)$ with one free variable *x* such that

$$A = \{a \in M : M \vDash \varphi(a/x)\}$$

Similarly, a relation $B \subseteq M$ is *definable* if there exists a formula $\varphi(x_1, ..., x_n)$ with *n* free variables $x_1, ..., x_n$ such that

$$B = \{(a_1, ..., a_n) \in M^n : M \vDash \sigma(a_1/x_1, ..., a_n/x_n)\}$$

9.5 Zermelo-Fraenkel set theory with the axiom of choice

Language $L = \{\in\}$.

1. Axiom of extensionality

$$\forall x \forall y \; (\forall z \; (z \in x \leftrightarrow z \in y) \to x = y)$$

2. Axiom of regularity

$$\forall x [\exists a \ (a \in x) \to \exists y \ (y \in x) \land \neg \exists z \ (z \in y \land z \in x)]$$

³⁷By cardinality consideration, "almost all" subsets of \mathbb{N} are not definable.

3. Axiom schema of specification

Given a formula $\varphi(x, z, w_1, ..., w_n)$,

$$\forall z \forall w_1, ..., \forall w_n \exists y \forall x \ (x \in y \leftrightarrow (x \in z \land \varphi))$$

4. Axiom of pairing

$$\forall x \forall y \exists z \ (x \in z \land y \in z)$$

5. Axiom of union

$$\forall F \exists A \forall Y \forall x \ ((x \in Y \land Y \in F) \to x \in A)$$

6. Axiom schema of replacement

Given a formula $\varphi(x, z, w_1, ..., w_n)$, let $\exists ! y \varphi$ denote $(\exists y \varphi) \land ((\forall x \forall z \varphi(x) \land \varphi(z)) \rightarrow x = z)$.

$$\forall A \forall w_1, ..., \forall w_n [\forall x \ x \in A \to \exists ! y \ \varphi \to \exists B \forall x \ (x \in A \to \exists y \ (y \in B \land \varphi))]$$

7. Axiom of infinity

Let S(w) denote $w \cup \{w\}$,

$$\exists X \ (\in X \land \forall y \ (y \in X) \in S(y) \in X)$$

8. Axiom of powerset

Let $z \subseteq x$ denote $\forall y \ y \in z \rightarrow y \in x$,

$$\forall x \exists y \forall z \ (z \subseteq x \to z \in y)$$

9.6 Peano arithmetic

 $L_{PA} = \{+, \cdot, S, 0, <\}; L_{PE} = L_{PA} \cup \{\exp\}$

Axioms.

1. $xS = yS \rightarrow x = y$ 2. $xS \neq 0$

3.
$$x + 0 = x$$

4. $x + yS = (x + y)S$
5. $x \cdot 0 = 0$
6. $x \cdot (yS) = x \cdot y + y$
7. $x \le 0 \rightarrow x = 0$
8. $x \le yS \rightarrow (x \le y \lor x = yS)$
9. $x \le y \lor y \le x$
10. $x^0 = 0$
11. $x^{yS} = x^y + x$

Induction schema:

$$[Z(0) \land (\forall x \ A(x) \to A(xS))] \to \forall x \ A(x)$$

The theory generated by these axioms is called *Peano arithmetic*, abbreviated PA.

Definition. A set $A \subseteq N$ is *arithmetic* if it is definable in \mathbb{N} .

Write EXP for the set of all finite sequences of symbols of L_{PE} except those starting with the symbol *S*. For $n \in \mathbb{N}$, we write \overline{n} to mean $0 \underbrace{SS...S}_{n-\text{many }S}$.

For an expression $\sigma = a_1 \cdots a_n$, we will associate a natural number called the *Gödel num*ber of σ , denoted $g(\sigma)$ in base 19 as follows:

Use this table to assign a unique Gödel number to each individual symbol.

Symbol *s* 0 S + · exp $\leq = x$ ' $\perp \exists \forall \neg \rightarrow \land \lor$ () # Number *g*(*s*) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 where # plays the role of a white space to separate formulas, and ' is for creating variables *x*, *x*', *x*'' etc.

Then for the expression σ , $g(\sigma) := (g(a_1) \cdots g(a_n))_{19}$, i.e. the Gödel number of an expression is the concatenate of the code number g(.) of its symbols in base 19.

Example 9.18. For $\sigma = x + (x)'$, $g(\sigma) = (7 \ 2 \ 16 \ 7 \ 17 \ 8)_{19}$.

Example 9.19. $g(\bar{n}) = g(\underbrace{0SS...S}_{n-\text{many }S}) = (\underbrace{011...1}_{n-\text{many }1's})_{19}.$

Let * denote concatenation of numbers in base 19.

Proposition 9.20. The following relations are arithmetic.

- 1. *x* is a power of 19, abbr. $Pow_{19}(x)$ $\exists y \ x = \overline{19}^y$
- 2. *y* is the smallest power of 19 bigger than *x* $Pow_{19}(x) \land (x < y) \land \forall z \ (Pow_{19}(z) \land x < z) \rightarrow y < z.$
- 3. $y = 19^x$ $(x = 0 \land y = \overline{19}) \lor (x \neq 0 \land S(x, y))$
- 4. z = x * y $\exists u \exists v \ u = 19^{length(y)} \land (v = u \cdot x \land z = v + y)$

5.
$$z = x_1 * ... * x_n$$

Diagonalization.

Definition. Given a set $A \subseteq \mathbb{N}$, we say that γ is a Gödel sentence for *A* if

$$\gamma$$
 is true $\iff g(\gamma) \in A$

We write E_n for the expression whose Gödel number is n. Given $m \in \mathbb{N}$, write $E_n(m)$ for $\forall x \ (x = \overline{m}) \rightarrow E_n$.

Consider the following function, $\gamma(n, m)$ is defined to be the Gödel number of $E_n(m)$. **Proposition 9.21.** $\gamma(\cdot, \cdot)$ *is arithmetic* (*i.e.* $\gamma(x, y) = z$ *is arithmetic*).

Proof.

$$z = g(\forall) * g(x) * g(() * g(x) * g(=) * g(y) * g(\rightarrow) * g(n) * g())$$

Consider the function $d(\cdot)$ defined as d(n) := r(n, n). For $A \subseteq \mathbb{N}$, denote $A^* := d^{-1}(A)$. If *A* is arithmetic, then so is A^* .

Theorem 9.22. (*Tarski's undefinability theorem,* 1936)

The set T of Gödel numbers of sentences which are true in \mathbb{N} is not arithmetic.

Proof. (sketch) Suppose for a contradiction that *T* is arithmetic so it is defined by some formula t(x). Its complement $\mathbb{N}\setminus T$ is also arithmetic and defined by $\neg t(x)$, so then $\mathbb{N}\setminus T$ is a Gödel sentence. Contradiction.

Proposition 9.23. *The set of sentences P provable in PE is arithmetic.*

The set of true statements *T* in number theory is beyond the arithmetic hierarchy, so $P \subsetneq T$.

Theorem 9.24. (*Gödel's First Incompleteness Theorem*) *PA is not complete.*

Theorem 9.25. (Gödel's Second Incompleteness Theorem)

 $PA \nvDash Con(PA)$

Index

antichain, 32 arity, 45 atom and coatom, 29 axiom of choice, 36, 54 axioms, 53 of propositional logic, 41 of Zermelo-Fraenkel set theory, 54 Boolean algebra, 27 Boolean function, 19 Cantor set, 13 Cantor's theorem, 13 Cantor-Bernstein-Schröder Theorem, 14 cardinality, 12 continuum, 14 Cartesian product, 4 chain, 32 Compactness Theorem, 23 completeness, 40 Completeness Theorem, 43, 51 conjunctive normal form, 25 consistency, 42 countability, 15, 16 De Morgan's Laws, 4, 18

Dedekind cut, 4 deduction system, 39 deduction theorem, 41, 51 definable set, 54 Dilworth's theorem, 33 disjunctive normal form, 25

equinumerous, 12

equivalence, 53 equivalence relation, 7, 8, 12 first-order language, 45 formula equivalence, 18 first-order, 46 propositional, 17 valid, 48 free variable, 47 function, 9 composition of, 10 inverse of, 10 functional closure, 20, 21

Gödel's Incompleteness Theorem, 58 game theory, 49 Gödel number, 56

Hausdorff maximal principle, 36

König's Lemma, 38 Knaster-Tarski theorem, 34

lattice, 34 complete, 34 Lindenbaum-Tarski algebra, 27, 31 of first-order logic, 53

meet, join, 32 Mirsky's theorem, 33 model, 45 modus ponens, 39, 50

natural deduction, 52

operations on sets, 3 partial order on boolean algebra, 29 partially order set, 29, 32 partition, 8 Peano arithmetic, 56 permutation, 9 powerset, 4, 12, 13, 30 prenex normal form, 53 relation, 5 binary, 5 composition of, 6 database, 7 satisfiability, 23 sentence, 48 sequent calculus, 52 soundness, 40 SQL query, 7 substitution, 47 tautology, 18 theory complete, 53 transitive closure, 6 truth assignment, 17 truth table, 17 well-order, 37 Well-ordering theorem, 37 winning strategy, 49 Zorn's Lemma, 36