Caïssan squares: the magic of chess

by George P. H. Styan, McGill University

preliminary version, revised: October 1, 2011

(left panel) Frontispiece from The Poetical Works of Sir William Jones [56] vol. 1 (1810):
[online] at Chess Notes by Edward Winter, (right panel) Saed Jaffrey as Mir, Sanjeev Kumar as Mirza in “Shatranj Ke Khilari” (The Chess Players) [167].
Caïssan squares: the magic of chess by George P. H. Styan, McGill University.

TABLE OF CONTENTS

1. Caïssan magic squares
 1.1 Classic magic squares .. 5
 1.2 Pandiagonal magic squares and magic paths 5
 1.3 Caïssa: the “patron goddess” of chess players 6
 1.4 “Ursus”: Henry James Kesson (b. c. 1844) 11
 1.5 Caïssan beauties and “knight-Nasik” magic squares 12
 1.6 The 8 × 8 Ursus Caïssan magic matrix U 14

2. Some magic matrix properties
 2.2 “4-ply” and the “alternate-couples” property: “4-pac” magic matrices 20
 2.3 “Keyed” magic matrices and the “magic key” 25
 2.4 EP matrices .. 27
 2.5 Checking that an 8 × 8 magic matrix is CSP2-magic 33
 2.6 Checking that an 8 × 8 magic matrix is CSP3-magic 35

3. Many 8 × 8 Caïssan beauties
 3.1 Drury’s 46080 Caïssan beauties ... 36
 3.2 A generalized Cavendish (1894) algorithm for 8 × 8 Caïssan beauties 39

4. 4 × 4 magic matrices
 4.1 Pandiagonal 4 × 4 magic matrices are 4-pac and H-associated 43
 4.2 16th century 4 × 4 magic squares with optional magic sum 43
 4.3 15th century 4 × 4 classic EP Shortrede–Gwalior magic square 45
 4.4 Shortrede’s “rhomboid” property: “rhomboidal” magic matrices 48
 4.5 The Euler algorithm .. 54
 4.5.1 An example due to Joseph Sauveur (1653–1716) 56
 4.5.2 An example due to Murai Chūzen (1708–1797) 57
 4.5.3 An example given by Walter William Rouse Ball (1850–1925) 57
 4.5.4 Bergholt’s “semipandiagonal” magic matrices 58
 4.5.5. The Ollerenshaw magic matrix O 59

5. Four 16 × 16 CSP2-magic matrices ... 61

6. The n-queens problem and 11 × 11 Caïssan magic squares
 6.1 The 11 × 11 Planck matrix P ... 66
 6.2 The 11 × 11 La Loubère–Demiryörs matrix L .. 70

7. The 15 × 15 Ursus Caïssan-magic square ... 73

8. Firth’s “magic chess board” and Beverley’s “magic knight’s tour”
 8.1 The 8 × 8 Firth–Zukertort matrix Z ... 75
 8.2 William A. Firth (c. 1815–1890) and Henry Perigal, Junior (1801–1898) 78
 8.3 Henry Perigal, Junior (1801–1898) and the first 8 × 8 magic knight’s tour 79
 8.4 Johannes Hermann Zukertort (1842–1888) ... 84
 8.5 Kasparov–Karpov World Chess Championship Matches: 1984–1990 82

9. An illustrated bibliography for Caïssan magic squares and related topics
 9.1 Some publications by or connected with “Ursus”: Henry James Kesson (b. c. 1844) ... 90
 9.2 Some publications by or about Andrew Hollingworth Frost (1819–1907) 94
 9.3 Some publications by or about Charles Planck (1856–1935) 96
 9.4 Some publications by or about Pavle Bidev (1912–1988) 100
 9.5 Some other publications about Caïssan magic squares and related topics 103
 9.6 Portrait gallery: Agrippa–Zukertort ... 126
 9.6.1 Portraits TBC ... 141
 9.7 Philatelic gallery
 9.7.1 Philatelic Euler .. 136
 9.7.2 Philatelic Mondrian .. 148
 9.7.3 Philatelic Paracelsus .. 149

9.8 Some resources
 9.8.1 Some philatelic resources ... 150
 9.8.2 Some bio-bibliographic resources ... 151

KEY WORDS AND PHRASES
ABSTRACT
We study various properties of $n \times n$ Caissan magic squares. A magic square is Caissan whenever it is pandiagonal and knight-Nasik so that all paths of length n by a chess bishop are magic (pandiagonal) and by a (regular) chess knight are magic (CSP2-magic). Following the seminal 1881 article [7] by “Ursus” in The Queen, we show that 4-ply magic matrices, or equivalently magic matrices with the “alternate-couplets” property, have rank at most equal to 3. We also show that an $n \times n$ magic matrix M with rank 3 and index 1 is EP if and only if M^2 is symmetric. We identify and study 46080 Caissan beauties, which are pandiagonal and both CSP2- and CSP3-magic; a CSP3-path is by a special knight that leaps over 3 instead of 2 squares. We find that just 192 of these Caissan beauties are EP. An extensive annotated and illustrated bibliography of over 300 items, many with hyperlinks, ends our report. We give special attention to items by (or connected with) “Ursus”: Henry James Kesson (b. c. 1844), Andrew Hollingworth Frost (1819–1907), Charles Planck (1856–1935), and Pavle Bidev (1912–1988). We have tried to illustrate our findings as much as possible, and whenever feasible with images of postage stamps or other philatelic items.

REFERENCES
In Sections 9.1–9.4 we identify some publications by or connected with, respectively, “Ursus”: Henry James Kesson (b. c. 1844), Andrew Hollingworth Frost (1819–1907), Charles Planck (1856–1935), and Pavle Bidev (1912–1988). Some other publications about Caissan magic squares and related topics are listed in Section 9.5 with an associated portrait gallery in Section 9.6. Within Sections 9.1–9.5 references are listed chronologically. We end the report by listing some philatelic resources (Section 9.8) and some bio-bibliographic resources (Section 9.9).

ACKNOWLEDGEMENTS
1. Caïssan magic squares

In this report we study various properties of \(n \times n \) Caïssan magic squares. A magic square is Caïssan whenever it is pandiagonal and knight-Nasik so that all paths of length \(n \) by a chess bishop are magic (pandiagonal) and by a (regular) chess knight are magic (CSP2-magic). We give special emphasis to such squares with \(n = 8 \). Following the seminal 1881 article [7] by “Ursus” in The Queen, we look at involution-associated magic matrices and show that 4-ply magic matrices, or equivalently magic matrices with the “alternate-couplets” property, have rank at most equal to 3. We identify and study 46080 Caïssan beauties, which are pandiagonal and both CSP2- and CSP3-magic; a CSP3-path is by a special knight that leaps over 3 instead of 2 squares. We study the \(n \)-queens problem (1848), the Firth–Zukertort “magic chess board” (1887), and the Beverley “magic knight’s tour” (1848). An extensive illustrated bibliography of over 250 items, many with hyperlinks, ends our report. We give special attention to items by (or connected with) “Ursus”: Henry James Kesson (b. c. 1844), Andrew Hollingworth Frost (1819–1907), Charles Planck (1856–1935), and Pavle Bidev (1912–1988). We have tried to illustrate our findings as much as possible, and whenever feasible with images of postage stamps or other philatelic items.

1.1. Classic magic squares. An \(n \times n \) “magic square” or “fully-magic square” is an array of numbers, usually integers, such that the numbers in all the rows, columns and two main diagonals add up to the same number, the magic sum \(m \neq 0 \). When only the the numbers in all the rows and columns all up to the magic sum \(m \neq 0 \) then we have a “semi-magic square”. The associated matrix \(M \), say, will be called a “magic matrix” and we will assume in this paper that \(\text{rank}(M) \geq 2 \). An \(n \times n \) magic square is said to be “classic” whenever it comprises \(n^2 \) consecutive integers, usually \(1, 2, \ldots, n^2 \) (or \(0, 1, \ldots, n^2 - 1 \)) each precisely once; the magic sum is then \(m = n(n^2 + 1)/2 \) (or \(n(n^2 - 1)/2 \)), and so when \(n = 8 \), the magic sum \(m = 260 \) (or 252). Other names for a classic magic square include natural, normal or pure.

1.2. Pandiagonal magic squares and magic paths. We define an \(n \times n \) magic square to be “pandiagonal” whenever all \(2n \) diagonal “paths” with wrap-around parallel to (and including) the two main diagonals are magic. A “path” here is continuous of length \(n \) (with wrap-around) and with consecutive entries a chess-bishop’s (chess-piece’s) move apart. Our paths all proceed in the same direction. A path is said to be magic whenever its \(n \) elements add up to the magic sum \(m \). In our \(n \times n \) pandiagonal magic square, therefore, all its rook’s and bishop’s (and queen’s, king’s and pawn’s) paths are magic and so it has (at least) \(4n \) magic paths. In a semi-magic square there are \(2n \) magic paths for the rooks (and kings).

Other names for a pandiagonal magic square include continuous, diabolic, Indian, Jaina, or Nasik. The usage here of the word “Nasik” stems from a series of papers by Andrew H. Frost (1865), (1877), (1896)) in which a magic square is defined to be “Nasik”\(^3\).
whenever it is pandiagonal4 and satisfies “several other conditions”. More recent usage indicates that a magic square is Nasik whenever it is (just) pandiagonal. The term “Nasik square” was apparently first defined by Andrew’s older brother, the mathematician Percival Frost (1817–18985) in his “introduction” of the paper by A. H. Frost [20 (1865)]. In that paper [20, p. 94] an \(n \times n\) Nasik square is said to satisfy \(4n\) (not completely specified) conditions as does a pandiagonal magic square.

Andrew H. Frost [29 (1896)] gives a method by which Nasik squares of the \(n\)th order can be formed for all values of \(n\); a Nasik square being defined to be “A square containing \(n\) cells in each side, in which are placed the natural numbers from 1 to \(n\) in such an order that a constant sum \(\frac{1}{2}n(n^2 + 1)\) is obtained by adding the numbers on \(n\) of the cells, these cells lying in a variety of directions denned by certain laws.”

1.3. Caïssa: the “patron goddess” of chess players. The “patron goddess” of chess players was named Caïssa by Sir William Jones (1746–1794), the English philologist and scholar of ancient India, in a poem entitled “Caïssa” [79] published in 1763.

![Figure 1.3.1: (left panel) Illustration of Caïssa, apparently by Domenico Maria Fratto (1669–1763)7. (right panel) Frontispiece from The Poetical Works of Sir William Jones, volume 1 (London, 1810): online at Chess Notes by Edward Winter.](image-url)

4Percival Frost in his introduction to [20 (1865)] by his younger brother Andrew H. Frost, says that “Mr. A. Frost has investigated a very elegant method of constructing squares, in which not only do the rows and columns form a constant sum, but also the same constant sum is obtained by the same number of summations in the directions of the diagonals—— I shall call them Nasik Squares”.

5Andrew H. Frost [29 (1896)] defines a Nasik square to be “A square containing \(n\) cells in each side, in which are placed the natural numbers from 1 to \(n^2\) in such an order that a constant sum \(\frac{1}{2}n(n^2 + 1)\) (here called W) is obtained by adding the numbers on \(n\) of the cells, these cells lying in a variety of directions defined by certain laws.”

6For an obituary of Percival Frost (1817–1898) see [30].

7It seems the artist died in 1763, the year the poem was published.
The first Caïssan magic square that we have found seems to be that presented in 1881 by “Ursus”, who introduces his seminal article in this way:

ONCE UPON A TIME, when Orpheus was a little boy, long before the world was blessed with the “Eastern Question”, there dwelt in the Balkan forests a charming nymph by name Caïssa. The sweet Caïssa roamed from tree to tree in Dryad meditation fancy free. As for trees, she was, no doubt, most partial to the box and the ebony. See Figure 1.3.3.

Mars fell in love with her and a naiad, hearing his love laments, advised:

"Canst thou no play, no soothing game devise,
To make thee lovely in the damsel’s eyes?"

Mars accepts the advice and invents chess:

"He taught the rule that guide the passive game,
And called it Caïssa from the dryad’s name.
Wherefore Albion’s sons, who must its praise confess
Approv’d the play, and nam’d it thoughtfull Chess."

This last piece of false etymology has been responsible for a number of errors about the history of chess.

8 According to Irving Finkel [10], the adjective Caïssan was suggested to “Ursus” (Henry James Kesson) by “Cavendish” (Henry Jones), who originated it. Moreover Ilytyd Nicholl suggests that “Kesson” itself was a nom-de plume, deriving from the site called “Nassek” (Nasik, Nashik) where a contention-producing magic-square had been earlier discovered over a gateway. We do not know of any such magic square.

9 *Buxus* is a genus of about 70 species in the family Buxaceae. Common names include box (majority of English-speaking countries) or boxwood (North America). See also Figure 1.3.3. [324]

10 Ebony is a general name for very dense black wood. In the strictest sense it is yielded by several species in the genus *Diospyros*, but other heavy, black (or dark coloured) woods (from completely unrelated trees) are sometimes also called ebony. Some well-known species of ebony include *Diospyros ebenum* (Ceylon ebony), native to southern India and Sri Lanka, *Diospyros crassiflora* (Gaboon ebony), native to western Africa, and *Diospyros celebica* (Malassar ebony), native to Indonesia and prized for its luxuriant, multi-coloured wood grain. [324]
The warrior—in mufti—took the game to Caïssa, taught her how to play, called it after her name, and, throwing off his disguise, proposed. The delighted Caïssa consented to become Mrs Mars. He spent the honeymoon in felling box trees and ebony ditto, she in fashioning the wood to make tesselated boards and quaint chessmen to send all over the uncivilised world.

Such is our profane version of the story, told so prettily in Ovidian verse by Sir William Jones, the Orientalist. Such is Caïssa, as devoutly believed in by Philidorians as though she were in Lemprière’s Biographical Dictionary. Our Caïssa, however, shall herself be a chessman—we beg her pardon—chesswoman. Like the “queen” in the Russian game, she shall have the power of every man, moving as a king, rook, bishop, or pawn (like the queen in our game), and also as a knight. Caïssa then is complete mistress of the martial board.

Figure 1.3.3: (left panel) White pieces made of boxwood, black piece is ebonized, not ebony; (right) Elephant carvings from Ceylon (Sri Lanka), from ebony, likely Gaboon ebony (Diospyros dendro).

And Ursus [7, (1881)] ends his article in this way:

The idea of the foregoing Caïssan magic squares was suggested partly by the Brahminical squares, that from time immemorial have been used by the Hindoos as talismans; partly by the article [24] by the Rev. A. H. Frost, M.A., of St. John’s College, Camb., on “Nasik Squares,” in No 57 of The Quarterly Journal of Pure and Applied Mathematics” (1877). Our squares are, however, mostly original, as are the methods of construction, though one or two, notably that for the fifteen-square, may by Girtonians and Newnhamites readily be translated into the (mathematically) purer language adopted in Mr. Frost’s able paper.

The epithet “Caïssan” described the distinguishing characteristics of the squares, as the paths include all possible continuous chess moves. We commenced with Caïssa’s mythical history; let us conclude with a few facts less apocryphal. We have alluded to the Brahminical squares. Of these the favorites are the four-square and the eight-square. We have shown that the latter is, from our point of view, the first perfect one; in fact as the Policeman of Penzance would say, “taking one consideration with another”[11] it may be pronounced the best of the lot. Now chaturanga, the great-grandfather of chess, is of unknown antiquity and Duncan Forbes given translations of venerable Sanskrit manuscripts, which describe the pieces, moves, and mode of playing the game. Chaturanga means four arms, i.e., the four parts of an army game—elephants, camels, boats (for fighting on the rivers, Sanskrit roka, a boat, hence rook), and foot-soldiers, the whole commanded by the kaisar or king.

[11]From The Pirates of Penzance, a comic opera in two acts, with music by Arthur Sullivan and libretto by W. S. Gilbert. The opera’s official première was at the Fifth Avenue Theatre in New York City on 31 December 1879.
At first there were four armies, two as allies against two others; afterwards the allies united, one of the kings becoming prime minister with almost unlimited powers, and in the chivalrous west being denominated Queen. We have already noticed that the Russians, who are inveterate chess players, and who probably got their national game direct from the fountainhead, endow their queen with the powers of all the other pieces. So then in the west we have king, queen, bishop (ex-elephant), knight (ex-camel), castle or rook, and pawn, the line soldier on whom, after all, military success depends. Sir William Jones, who wrote “Caïssa” when he was a boy, thinking in Greek, but then little versed in Sanskrit, turned the corrupt Saxon “chess” into the pseudo-classic Caïssa. Strange coincidence, for much later, his admirer, Duncan Forbes, traces “chess”, by such links as the French échecs, English check and checkmate, German schachmatt, to the Persian Shah Met, Shah being their rendering of the Sanskrit or Aryan Kaisar, still retained by Germans, and by Russians in Czar.

Sir William’s Caïssa would pass very well for the feminine of Kaisar; but this is not the coincidence we wish to accentuate. Both “chess” and “Caïssan” squares, under whatever name the reader pleases, have been known in India—the nursery of civilisation—from the remotest antiquity; hence there would seem to be a close connection between them. India is now the greatest possession of the British crown, and our Queen, as everyone knows, bears the masculine title of Kaisar-in-Hind.

The poem “Caïssa” (see Figure 1.3.2 above) by Sir William Jones was based on the poem “Scacchi, Ludus” published in 1527 by the Italian humanist, bishop and poet Marco Girolamo, giving a mythical origin of chess that has become well known in the chess world. As observed by Murray p. 793:

> Vida’s description of the moves and rules, and the game (a Queen’s Gambit), contain nothing of material importance. The name Scacchis, which Vida bestowed upon the nymph who was the means of teaching chess to mankind, has not commended itself to players, and Caïssa, the creation of Sir William Jones (1763), has supplanted it entirely.
Figure 1.3.4: (left panel) Marco Girolamo [Marcus Hieronymus] Vida (c. 1485–1566) [324]; (right panel) Sir William Jones (1746–1794), 250th birth anniversary: India 1997, Scott 1626.

Figure 1.3.5: (left panel) Portable chess board used in postal chess contest: Brazil 1980, Scott 1723 [308]; and (right panel) on cover issued for the 15th anniversary of the “Associação Brasileira de Filatelistas Temáticas (Abrafite) “Caissa”, Patrona do Xadrez, São Paulo, January 4, 1985. [296].

Scott numbers are as published in the Scott Standard Postage Stamp Catalogue [308].
1.4. “Ursus”: Henry James Kesson (b. c. 1844). It seems that the first person to explicitly connect Caïssa with magic squares was “Ursus” in a three-part article entitled “Caïssan magic squares” published in The Queen: The Lady’s Newspaper & Court Chronicle 1881. We believe that this “Ursus” was the nom de plume of Henry James Kesson (b. c. 1844), about whom we know very little. We do know that “Ursus” was a regular contributor to The Queen with a five-part article on “Magic squares and circles” published two years earlier in 1879 and a six-part article on “Trees in rows” in 1880, as well as many double acrostics (puzzles and solutions). Falkener (1892, p. 337) cites work on magic squares by “H. J. Kesson (Ursus)” in The Queen, 1879–1881. Whyld (1978), quoting Bidev (1977), says that the “pioneering work [on Caïssan magic squares] was done about a century ago by a London mathematician named Kesson, who under the pen-name Ursus, wrote a series of articles in The Queen”.

The 1894 book on magic squares by “Cavendish” is dedicated to Henry James Kesson “by his sincere friend, the Author” and it seems that our “Ursus” is the H. J. Kesson, who wrote the words for five “operetta-cantatas for young people” (with music by Benjamin John W. Hancock, 1894a, 1894b, 1894c, 1901a, 1901b) and a booklet on the legend of the Lincoln Imp (1904).

In addition, we believe that this Henry James Kesson is the one listed in the 1851 British Census as age 7, “born in St Pancras”, with father John Kesson, age 40, “attendant at British Museum”. The 1851 Census apparently also stated that the family then (1851) lived at 40 Chichester Place, Grays Inn Lane, St Pancras. As well as Henry James Kesson and his father John, the family then comprised Maria Kesson [John’s wife], then also age 40, born in Finsbury, and children Maria Jane, then age 13, born Islington, Lucy Emma, age 9 and Arnold age 3, both born in St Pancras.

Horn mentions a “[Schoolmaster: Henry James Kesson, Trained Two Years; Certificated First Class. Emily Kesson, Sewing Mistress and General Assistant. ...]” in 1890 in Austrey, a village at the northern extremity of the county of Warwickshire, near Newton Regis and No Man’s Heath, and close to the Leicestershire villages of Appleby Magna, Norton-juxta-Twycross and Orton on the Hill.

Following, we define a magic square to be “Caïssan” whenever it is pandiagonal and all the “knight’s paths” are magic. And so in an $n \times n$ Caïssan magic square, all the $8n$ paths by a chess piece (rook, bishop, knight, queen, king) are magic. The knights we consider here are the regular chess-knights, and we may call such Caïssan squares “regular Caïssan squares”.

15Published from 1864–1922, The Queen: The Lady’s Newspaper & Court Chronicle was started by Samuel Orchard Beeton (1831–1877) and Isabella Mary Beeton née Mayson (1836–1865), and Frederick Greenwood (1830–1909). Isabella Beeton is universally known as “Mrs Beeton”, the principal author of Mrs Beeton’s Book of Household Management, first published in 1861 and still in print.

16“Cavendish” was the nom de plume of Henry Jones (1831–1899), an English author well-known as a writer and authority on card games and who in 1877 founded the “The Championships, Wimbledon, or simply Wimbledon, the oldest tennis tournament in the world and considered the most prestigious”.

17According to a 14th-century legend two mischievous creatures called imps were sent by Satan to do evil work on Earth. After causing mayhem in Northern England, the two imps headed to Lincoln Cathedral where they smashed tables and chairs and tripped up the Bishop. When an angel came out of a book of hymns and told them to stop, one of the imps was brave and started throwing rocks at the angel but the other imp covered under the broken tables and chairs. The angel turned the first imp to stone giving the second imp a chance to escape.

18The book, The Cross and the Dragon is by John Kesson “of the British Museum”. This is probably the John Kesson (d. 1876) who translated Travels in Scotland by J. G. Kohl from German into English and The Childhood of King Erik Menved by B. S. Ingemann from Danish into English. It is just possible that the Scottish novelist, playwright and radio producer Jessie Kesson (1916–1994), born as Jessie Grant McDonald, may be a descendant (in law) since in 1934 she married Johnnie Kesson, a cattleman, living in Abriachan (near Inverness) and then Rothienorman (near Aberdeen).
“Caïssa’s special path” is defined by [7, p. 142 (our part 1/3, page 4/8)] as a special knight’s path where the “special knight” (Caïssa) can move 3 steps instead of 2 (e.g., down 1 and over 3 or up 3 and over 1). We will call such a path Caïssa’s special path of type 3 (CSP3). A “special knight” with paths of type CSP3 is called a “jumping rukh” by [186]: “Most important of all is the fact that the ‘jumping rukh’ which accesses a third square vertically or horizontally, as depicted in the theory of [140] appears here in an astonishing manner despite starting from any square.” The regular knight’s path, therefore, is of type 2 (CSP2).

In his study of a 15 × 15 Caïssan magic square [7, p. 391 (our part 3/3, page 4/9, Fig. R)], which we examine in Section 7 below, Caïssan special paths of types 4, 5, 6, and 7 (CSP4, CSP5, CSP6, CSP7) are (also) considered.

1.5. “Caïssan beauties” and “knight-Nasik” magic squares. The term “knight-Nasik” has been used by (at least) Planck [40, 44, 45], Woodruff [134, 137], Andrews [135], Foster [138], and Marder [147] to mean either a pandiagonal magic square with all 4n regular-knight’s paths of type CSP2 magic, or just a magic square, not necessarily pandiagonal, with all 4n regular-knight’s paths of type CSP2 magic. Ursus (1881) defined a Caïssan magic square to be pandiagonal with all 4n regular-knight’s paths of type CSP2 magic.

The first use of the term “knight-Nasik” that we have found is in Planck [40, p. 17, footnote] where “the well-known” [8 × 8 magic square]

\[
\begin{array}{cc}
4 & 1 \\
1 & 4
\end{array}
\]

(1.5.1)

is said to be “knight-Nasik”. We have not yet been able to identify the magic matrix defined by (1.5.1) but we expect it to be pandiagonal, with all 4n regular-knight’s paths of type CSP2 magic.

We will use the following terminology:

DEFINITION 1.5.1. We define an \(n \times n \) magic matrix, usually classic and 8 × 8, to be

1. “CSP2-magic” when all 4n regular-knight’s paths of type CSP2 and each of length \(n \) are magic,

2. “CSP3-magic” when all 2n special-knight’s paths of type CSP3 and each of length \(n \) are magic,

The bishop’s predecessor in “shatranj” (medieval chess) was the “alfil” (meaning “elephant” in Arabic, “éléphant” in French, “olifant” in Dutch), which could leap two squares along any diagonal, and could jump over an intervening piece. As a consequence, each alfil was restricted to eight squares, and no alfil could attack another. Even today, the word for the bishop in chess is “alfil” in Spanish and “alfiere” in Italian. Whyld [64] mentions the original alfil, and discusses several properties of the 8 × 8 Ursus magic matrix \(U \) (Figure 1.5.1).
No.3942 - Arising from Professor Bidev’s article in July BCM a request has been made for an example of the magic squares to which he refers, and more background. In a paper on the subject, published in *Bonus Socius*, The Hague 1977, Bidev says that the pioneering work was done about a century ago by a London mathematician named Kesson who, under the pen-name Ursus, wrote a series of articles ‘Magic Squares and Caïssan Magic Squares’ in *The Queen*, and he adds that Kesson did not reach the same conclusion because he did not know the original moves of the pieces. The German problemist and chess historian, Johannes Kohetz, investigated around 1918 the connection between chess and magic squares at the dawn of the game, but his work remains unpublished.

The book *From Magic Squares to Chess*, by N.M. Rudin, was published in 1969, and Pavle Bidev’s important *Sah Simbol Kosmova* appeared in 1972. Unfortunately these are both difficult for us because the first is in Russian and the second in Serbo-Croatian, but Bidev provides a good summary in German and a rather shorter one in English. The specimen square comes from Bidev’s book.

The usual properties of a magic square are that each column and file and the two long diagonals total the same number, which on a 8×8 board is 260. This example has many other features. The two squares occupied by the white rooks plus the two occupied by their pawns total the half-constant of 130. The same applies for Black, and again for the corresponding knight, bishop and king plus queen sets of squares. The eight squares available to knights before pawns are moved total 260. The total of all squares covered or occupied by knights in the initial position is 520.

The bishop’s ancestor, the alfil, could move only to the next but one square diagonally, and thus could reach only eight squares on the board, and no two alfiles could meet. Each of these four sets of eight squares totals 260. The four sets of four squares occupied by rooks, knights, bishops, and king plus queen, equal the half-constant. If the king moves through an octagon: Ke1-f2-f3-e4-d4-c3-c2-d1, or, Ke1-f1-g2-g3-f4-e4-d3-d2, the squares total 260, and the same for Black. This short outline barely scratches the surface. Professor Bidev concludes that the moves of the pieces were determined by the properties of the Nasik magic squares.

Figure 1.5.1: Quotes & Queries No. 3942 by K. Whyld.
DEFINITION 1.5.2. We define an $n \times n$ (fully) magic matrix, usually classic and 8×8, to be a

1. “Caïssan magic matrix” when it is pandiagonal (2n magic paths) and CSP2-magic (4n magic paths) and so there are (at least) $8n$ magic paths each of length n in all,

2. “special-Caïssan magic matrix” when it is pandiagonal (2n magic paths) and CSP3-magic (2n magic paths) and so there are (at least) $6n$ magic paths each of length n in all,

3. a “Caïssan beauty” (CB) when it is pandiagonal (2n magic paths), and both CSP2- and CSP3-magic (6n magic paths) and so there are (at least) $10n$ magic paths each of length n in all,

“Cavendish” (1894) defines a Caïssan magic square as one being (just) pandiagonal. Planck (1900), however, citing the “late Henry Jones (Cavendish)”, and we assume referring to the book on magic squares by Cavendish (1894), says that this “nomenclature is of doubtful propriety” and defines a Caïssan magic square as being magic in all regular chess-move paths, with wrap-around. And so such Caïssan magic squares are both pandiagonal with all CSP2 regular-knight’s paths being magic.

Possibly the first person, however, to consider Caïssan magic squares was Simon de la Loubère (1642–1729), a French diplomat, writer, mathematician and poet. From his Siamese travels, he brought to France a very simple method for creating n-odd magic squares, now known as the “Siamese method” or the “de la Loubère method”. This method apparently was initially brought from Surat, India, by a médecin provençal by the name of M. Vincent [77, TBC]. According to Marder [147, p. 5 (1940)] (see also Andrews [135, p. 165 (1917)]), the following words[19] come from the pen of La Loubère:

In these $[8 \times 8]$ squares it is necessary not merely that the summation of the rows, columns and diagonals should be alike, but that the sum of any eight numbers in one direction as in the moves of a bishop or a knight should also be alike.

Andrews [135, p. 165, Fig. 262 (1917)] presents as “an example of one of these squares” the Ursus matrix U given by Ursus [7, p. 142, Fig. D (1881)], see our Figure 1.6.1 below.

19 We have not found any mention of chess in the discussion of magic squares by Simon de La Loubère [77, vol. 2, pp. 227–247 (1693)].
1.6. The 8×8 Ursus Caïssan magic matrix U. The first so-called “Caïssan magic square” (CMS) that we have found is that presented by [7, p. 142, Fig. D] and displayed in our Figure 1.6.1. A magic regular-knight’s path (CSP2) is marked with red circles (left panel) and a magic special-knight’s path of type CSP3 is marked with red boxes (right panel).

![Figure 1.6.1: The 8×8 Caïssan magic square given by [7, p. 142, Fig. D], matrix U with a knight’s path (CSP2) marked with red circles (left panel) and a special-knight’s path (CSP3) marked with red boxes (right panel).](image)

We will denote the “Ursus magic square” in Figure 1.6.1 by the “Ursus magic matrix”

$$U = \begin{pmatrix}
1 & 58 & 3 & 60 & 8 & 63 & 6 & 61 \\
16 & 55 & 14 & 53 & 9 & 50 & 11 & 52 \\
17 & 42 & 19 & 44 & 24 & 47 & 22 & 45 \\
32 & 39 & 30 & 37 & 25 & 34 & 27 & 36 \\
57 & 2 & 59 & 4 & 64 & 7 & 62 & 5 \\
56 & 15 & 54 & 13 & 49 & 10 & 51 & 12 \\
41 & 18 & 43 & 20 & 48 & 23 & 46 & 21 \\
40 & 31 & 38 & 29 & 33 & 26 & 35 & 28
\end{pmatrix} \quad (1.6.1)
We note that the “Ursus magic matrix” U is a “Caïssan beauty” (CB), i.e., pandiagonal ($2n$ magic paths), and both CSP2- and CSP3-magic ($6n$ magic paths) and so there are (at least) $10n$ magic paths each of length n in all. Moreover, U has several other properties, as we will elaborate on below:

1. rank 3 and index 1,
2. keyed with magic key $\kappa = 2688$,
3. all odd powers U^{2p+1} are linear in U,
4. the group inverse $U^#$ is linear in U,
5. U is H-associated, i.e., $U + HUH = 2m\mathbf{E}$, where m is the magic sum 260, \mathbf{E} has all elements equal to $1/8$, and $H = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes I_4$,
6. the Moore–Penrose inverse U^+ is V-associated, and hence fully-magic,
7. 4-pac (4-ply and with the alternate-couplets property),
8. EP, and hence U^2 is symmetric and $U^# = U^+$.

Falkener (1892), citing Frost [20, 21, 24, 28 (1865, 1866, 1877, 1882)] and Ursus [7 (1881)] finds the term “Indian magic square” (see also Pickover [208, pp. 221–222]—“Gwalior square?”) to be more appropriate than “Caïssan magic square” (with Nasik being in India and Sir William Jones’s poem Caïssa set in eastern Europe) and presents the Ursus magic square and gives many properties in addition to it being pandiagonal and CSP2-magic. McClintock [117, pp. 111, 113 (1897)], who apparently does not mention Caïssa, presents two 8×8 magic squares, which we find to be pandiagonal and CSP2-magic.

1.7. Open questions. OPEN QUESTION 1.7.1. Does there exist an 8×8 classic magic matrix with all CSP2 and CSP3 knight’s paths magic but which is not pandiagonal?

OPEN QUESTION 1.7.2. Does there exist an 8×8 classic magic square which is (regular) knight-magic (CSP2) but is not pandiagonal?
2. Some magic matrix properties

A key purpose in this report is to identify various matrix-theoretic properties of Caïssan magic squares.

2.1. "V-associated" magic matrices: “H-associated”, “F-associated”. An important property of $n \times n$ magic matrices involves an $n \times n$ involutory matrix V that is symmetric, centrosymmetric, and has all row totals equal to 1 and defines an involution in that $V^2 = I_n$, the $n \times n$ identity matrix. The matrix A is centrosymmetric whenever $A = FAF$ where $F = F_n$ is the $n \times n$ flip matrix:

$$F = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix}.$$

(2.1.1)

Definition 2.1.1. We define an $n \times n$ magic matrix M with magic sum m to be V-associated whenever

$$M + VMV = 2m\bar{E},$$

(2.1.2)

where all the elements of \bar{E} are equal to $1/n$. Here the involutory matrix V is symmetric, centrosymmetric, and has all row totals equal to 1 and defines an involution in that $V^2 = I_n$, the $n \times n$ identity matrix.

Theorem 2.1.1 [255, p. 21]. The Moore–Penrose inverse M^+ of the V-associated magic matrix M is also V-associated.

The $n \times n$ Ursus magic matrix U with $n = 8$

(2.1.3)

is V-associated with V equal to the $n \times n$ centrosymmetric involutory matrix with $n = 2h$ even

$$H = \begin{pmatrix} 0 & I_h \\ I_h & 0 \end{pmatrix} = F_2 \otimes I_h, \quad h = n/2,$$

(2.1.4)
where

\[\mathbf{F}_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \] (2.1.5)

is the \(2 \times 2\) “flip matrix”. When the order \(n\) is stressed we write \(\mathbf{H}_n\). The Ursus matrix \(\mathbf{U}\) is, therefore, \(\mathbf{H}_8\)-associated or just \(\mathbf{H}\)-associated.

In an \(n \times n\) \(\mathbf{H}\)-associated magic matrix with magic sum \(m\) and \(n = 2h\) even, the pairs of entries \(h = n/2\) apart along the diagonals all add to \(m/4\). And such a matrix is necessarily pandiagonal (YYT-TBC). The converse holds for \(n = 4\) but not for \(n \geq 6\).

THEOREM 2.1.2. An \(\mathbf{H}\)-associated \(n \times n\) magic matrix with \(n\) even is pandiagonal. When \(n = 4\) then a pandiagonal magic matrix is \(\mathbf{H}\)-associated.

THEOREM 2.1.3. An \(\mathbf{H}\)-associated \(8 \times 8\) magic matrix is both special-knight (CSP3) magic and alf'il-magic.

The \(n \times n\) magic matrix \(\mathbf{M}\) with magic sum \(m\) is \(\mathbf{F}\)-associated, whenever

\[\mathbf{M} + \mathbf{FMF} = 2m\mathbf{E}, \] (2.1.6)

where \(\mathbf{F} = \mathbf{F}_n\) is the \(n \times n\) flip matrix:

\[\mathbf{F} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix}, \] (2.1.7)

In an \(n \times n\) \(\mathbf{F}\)-associated magic matrix with magic sum \(m\) the sums of pairs of entries diametrically equidistant from the centre are all equal to \(2m/n\). In the literature an \(\mathbf{F}\)-associated magic square is often called (just) “associated” (with no qualifier to the word “associated”) or “regular” or “symmetrical” (e.g., Heinz & Hendricks [199, pp. 8, 166]).
THEOREM 2.1.4 \cite{214} p. TBC. Suppose that the magic matrix M is F-associated. Then M^2 is centrosymmetric.

Proof. By definition $M + FMF = 2m\bar{E}$, which yields, by pre- and post-multiplication by M that $MFMF = 2m^2\bar{E} - M^2 = FMFM$. Hence $FM^2F = 2m^2\bar{E} - (2m^2\bar{E} - M^2) = M^2$.

THEOREM 2.1.5 (new?). Suppose that the $n \times n$ magic matrix M with magic sum m is H-associated with $n = 2h$ even. Then M^2 and MHM are block-Latin, i.e.,

\[
M^2 = \begin{pmatrix} K_1 & L_1 \\ L_1 & K_1 \end{pmatrix}, \quad MHM = \begin{pmatrix} K_2 & L_2 \\ L_2 & K_2 \end{pmatrix},
\]

(2.1.8)

for some $h \times h$ matrices K_1, K_2, L_1, L_2. Moreover,

\[
K_1 + L_2 = K_2 + L_1 = m^2\bar{E}_h,
\]

(2.1.9)

where \bar{E}_h is the $n \times h$ matrix with all entries equal to $1/h$, with $h = n/2$.

Proof. By definition, $M + HMH = 2m\bar{E}_n$, which pre- and post-multiplied by M, respectively, yields

\[
MHMH = HMHM = 2m^2\bar{E}_n - M^2.
\]

(2.1.10)

Let the $n \times h$ matrices $J_1 = (I_h, 0)'$ and $J_2 = (0, I_h)'$. Then from (2.1.10) we obtain, since $J_2 = HJ_1$, that

\[
J_1'MHMJ_2 = J_2'MHMJ_1 = m^2\bar{E}_h - J_1'M^2J_1 = m^2\bar{E}_h - J_2'M^2J_2,
\]

(2.1.11)

\[
J_1'MHMJ_1 = J_2'MHMJ_2 = m^2\bar{E}_h - J_1'M^2J_2 = m^2\bar{E}_h - J_2'M^2J_1,
\]

(2.1.12)

and our proof is complete.

THEOREM 2.1.6 \cite{203, 249}. Suppose that the $2p \times 2q$ block-Latin matrix

\[
A = \begin{pmatrix} K & L \\ L & K \end{pmatrix},
\]

(2.1.13)

where K and L are both $p \times q$

\[
\text{rank}(A) = \text{rank}(K + L) + \text{rank}(K - L).
\]

(2.1.14)
When the magic matrix M in Theorem 2.1.5 has rank 3 and index 1 then M^2 has rank 3 and from (2.1.8) it follows that $K_1 + L_1$ and $K_1 - L_1$ each have rank at most 3, with $\text{rank}(K_1 + L_1) = 3$ if and only if $L_1 = K_1$, and then $\text{rank}(K_1) = 3$. When, however, M defines a Caïssan beauty with rank 3 and index 1, our findings are that $K_1 + L_1$ has rank 2 and $K_1 - L_1$ has rank 1, and when the Caïssan beauty has rank 3 and index 3, we find that M^2 has rank 2, and that both $K_1 + L_1$ and $K_1 - L_1$ have rank 1. TBC

Motivated by an observation of A. C. Thompson [187 (1994)], see also the “A–D method” used by Planck [46 (1919)], we note that reversing the first $h = n/2$ rows and the first $h = n/2$ columns of an $n \times n$ H-associated magic matrix with $n = 2h$ (even) makes it F-associated and vice versa, since $HT = TF$ and $FT = TH$, where the $n \times n$ involutory “Thompson matrix”

$$T = \begin{pmatrix} F_h & 0 \\ 0 & I_h \end{pmatrix}, \quad h = n/2. \quad (2.1.15)$$

We will refer to this as “Thompson’s trick” and applying it to the Ursus matrix U yields the F-associated “Ursus–Thompson matrix”

which is F-associated but neither pandiagonal nor CSP2-magic.

OPEN QUESTION 2.1.1. Does there exist an 8×8 magic square that is both CSP2-magic and F-associated?
2.2. “4-ply” and the “alternate couplets” property: “4-pac” magic matrices. McClintock (1897) considered \(n \times n \) magic squares with \(n = 4k \) doubly-even that have an “alternate couplets” property.

DEFINITION 2.2.1 (McClintock [117 (1897)]). The \(n \times n \) magic matrix \(M \), with \(n = 4k \) doubly-even, and magic sum \(m \), has the “alternate couplets” property whenever

\[
RM = M_2J'_3
\]

for some \(n \times 2 \) matrix \(M_2 \) with row totals \(\frac{1}{2}m \). The \(2 \times n \) (= \(4k \)) matrix

\[
J'_3 = e'_{2k} \otimes I_2 = (I_2, I_2, \ldots, I_2),
\]

with \(e'_{2k} \) the \(1 \times 2k \) (= \(n/2 \)) vector with each entry equal to 1, and the \(n \times n \) “couplets-summing” matrix

\[
R = \begin{pmatrix}
1 & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 1 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & 1 & 1 \\
1 & 0 & 0 & \cdots & 0 & 1
\end{pmatrix}
\]

THEOREM 2.2.1. Let the \(n \times n \) magic matrix \(M \), with \(n = 4k \) doubly-even, and magic sum \(m \), have the “alternate couplets” property (2.2.1). Then the \(2 \times 2 \) matrix

\[
J'_3M_2 = m \begin{pmatrix}
1 & 1 \\
1 & 1
\end{pmatrix} = \begin{pmatrix}
m & m \\
m & m
\end{pmatrix}.
\]

Proof. We note first that

\[
J'_3R = (e'_{2k} \otimes I_2)R = E_{2,n},
\]

where \(E_{2,n} \) is the \(2 \times n \) matrix with every entry equal to 1, and hence

\[
J'_3RMJ_3 = E_{2,n}MJ_3 = mE_{2,n}(e'_{2k} \otimes I_2) = 4mE_{2,2}.
\]

On the other hand we have

\[
J'_3RMJ_3 = J'_3M_2J'_3 = 4J'_3M_2.
\]

Equating (2.2.6) and (2.2.7) yields (2.2.4) at once.
Planck ([37] (1900))] observed that the magic matrix formed from the Ursus matrix U by flipping (reversing) rows 2–8 is “4-ply”.

DEFINITION 2.2.2 (Planck [37] (1900)). The $n \times n$ magic square with $n = 4k$ doubly-even and magic sum m is “4-ply” whenever the four numbers in each of the n^2 subsets of order 2×2 of 4 contiguous numbers (with wrap-around) add up to the same sum $4m/n = m/k$, i.e.,

$$RMR' = 4m\bar{E} = \frac{m}{k}E,$$

where all the entries of the $n \times n$ matrix E are equal to 1 and $\bar{E} = \frac{1}{n}E$.

THEOREM 2.2.2 (McClintock [117] (1897)). Let M denote an $n \times n$ magic matrix with $n = 4k$ doubly-even. Then M is 4-ply (Definition 2.2.2) if and only if it has the alternate couplets property (Definition 2.2.1).

Proof. If M has the alternate couplets property then from (2.2.1)

$$RM = M_2J_3 = M_2(e'_{2k} \otimes I_2); \quad k = n/4.$$

Postmultiplying (2.2.9) by R' yields (2.2.8)

$$RMR' = 4m\bar{E}$$

at once since the numbers in the rows of M_2 all add to $4m/n = m/k$, and so M is 4-pac.

To go the other way our proof is not quite so quick. With $n = 8$ we define

$$Q_1 = \frac{1}{4} \left(\begin{array}{cccccccc} 3 & 1 & -1 & 1 & -1 & 1 & -1 & -3 \\ -3 & 3 & 1 & -1 & 1 & -1 & 1 & -1 \\ -1 & -3 & 3 & 1 & -1 & 1 & -1 & 1 \\ 1 & -1 & -3 & 3 & 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & -3 & 3 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 & -3 & 3 & 1 & -1 \\ -1 & 1 & -1 & 1 & -1 & -3 & 3 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 & -3 & 3 \end{array} \right) , \quad Q_2 = \left(\begin{array}{cccccccc} 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 \\ -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 \end{array} \right).$$

We postmultiply (2.2.10) by Q_1. Then (2.2.9) follows since $R'Q_1 = Q_2$ and $EQ_1 = 0$.

\begin{align*}
Q_1 &= \frac{1}{4} \begin{pmatrix}
3 & 1 & -1 & 1 & -1 & 1 & -1 & -3 \\
-3 & 3 & 1 & -1 & 1 & -1 & 1 & -1 \\
-1 & -3 & 3 & 1 & -1 & 1 & -1 & 1 \\
1 & -1 & -3 & 3 & 1 & -1 & 1 & -1 \\
-1 & 1 & -1 & -3 & 3 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 & -3 & 3 & 1 & -1 \\
-1 & 1 & -1 & 1 & -1 & -3 & 3 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & -3 & 3
\end{pmatrix}, \\
Q_2 &= \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 \\
-1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 1
\end{pmatrix}.
\end{align*}
DEFINITION 2.2.3. We will say that the \(n \times n \) magic matrix \(M \) with \(n = 4k \) doubly-even is “4-pac”\(^{20}\) whenever (with wrap-around) it is 4-ply (Definition 2.2.2) or equivalently has the alternate couplets property (Definition 2.2.1).

From Theorem 2.2.2 it follows at once, therefore, that if a magic matrix \(M \) is 4-pac then so its transpose \(M' \). An example is the Ursus matrix \(U \) with

\[
U = \begin{pmatrix}
1 & 58 & 3 & 60 & 8 & 63 & 6 & 61 \\
16 & 55 & 14 & 53 & 9 & 50 & 11 & 52 \\
17 & 42 & 19 & 44 & 24 & 47 & 22 & 45 \\
32 & 39 & 30 & 37 & 25 & 34 & 27 & 36 \\
57 & 2 & 54 & 13 & 49 & 10 & 51 & 12 \\
41 & 18 & 43 & 20 & 48 & 23 & 46 & 21 \\
40 & 31 & 38 & 29 & 33 & 26 & 35 & 28
\end{pmatrix}, \quad U_2 = \begin{pmatrix}
17 & 113 \\
33 & 97 \\
49 & 81 \\
89 & 41 \\
113 & 17 \\
97 & 33 \\
81 & 49 \\
41 & 89
\end{pmatrix}, \quad (U')_2 = \begin{pmatrix}
59 & 71 \\
61 & 69 \\
63 & 67 \\
68 & 62 \\
71 & 59 \\
69 & 61 \\
67 & 63 \\
62 & 68
\end{pmatrix}. \quad (2.2.12)
\]

The row totals of \(U_2 \) and \((U')_2\) are all equal to \(m/2 = 130 \) (but \(U_2 \neq (U')_2 \)). The rows of \(RU \) and of \(RU' \) are the sums of successive pairs of rows of \(U \) and of \(U' \) (with wrap-around). These sums “alternate” and are given in “couplets” (pairs) in the corresponding rows of the \(n \times 2 \) matrices \(U_2 \) and \((U')_2\).

When the magic matrix \(M \) is 4-pac then from (2.2.1) we see that \(\text{rank}(RM) \leq 2 \) with equality when \(M \) is classic. Moreover, from Sylvester’s Law of Nullity we find that

\[
\text{rank}(M) \leq \text{rank}(RM) - \text{rank}(P) + n = \text{rank}(RM) + 1 \leq 3 \quad (2.2.13)
\]

since \(\text{rank}(R) = n-1 \) (\(n \geq 4 \)). When \(M \) is classic, then from Drury \cite{232} we know that \(\text{rank}(M) \geq 3 \), and so we have proved

THEOREM 2.2.3. Let \(M \) denote an \(n \times n \) magic matrix with \(n = 4k \) doubly-even. If \(M \) is 4-pac then \(\text{rank}(M) \leq 3 \). When \(M \) is also classic then \(\text{rank}(M) = 3 \).

The converse of Theorem 2.2.3 does not hold. For example, the classic magic matrix \(M_0 \) generated by Matlab has rank 3 but does not have the alternate couplets property and is not 4-ply, but is \(F \)-associated.

\(^{20}\)We choose the term “4-pac”, in part, since “ac” are the initial letters of the two words “alternate couplets”. According to Wikipedia \cite{324} “A ‘sixpack’ is a set of six canned or bottled drinks, typically soft drink or beer, which are sold as a single unit.” In Germany, “Yesterday I had dinner with seven courses!”, “Wow, and what did you have?”, “Oh, a sixpack and a hamburger!” \cite{277}.
If, however, we switch rows and columns 3 and 4, and rows and columns 7 and 8 then M_0 becomes M^*_0, which has the alternate couplets property and is 4-ply, is pandiagonal, and is V-associated with $V = F_4 \otimes I_2$, but M^*_0 is not H-associated. As we will show below (Theorem 2.2.4) a 4-pac magic matrix is necessarily pandiagonal.

DEFINITION 2.2.4 (McClintock [177] (1897), §16, pp. 110–111)). We define an $n \times n$ magic matrix M with $n = 4k$ doubly-even to be “most-perfect”, or “complete” or “complete most-perfect” or “most-perfect pandiagonal” (MMPM) [196, 198, 202, 216, 275], whenever it is

1. pandiagonal,
2. H-associated,
3. 4-ply,
4. and has the alternate-couplets property.

We have already shown that properties (3) and (4) in Definition 2.2.4 are equivalent and we introduced the term 4-pac for this. We have also shown that when n is even then condition (2) implies (1). In our next theorem we show that condition (3) implies (1). It follows, therefore, that an $n \times n$ magic matrix M with $n = 4k$ doubly-even is “most-perfect” whenever it is 4-pac and H-associated. The 8×8 matrix M^*_0 (2.2.14) is 4-pac but not H-associated and the matrix

$$M^*_{0} = \begin{pmatrix}
1 & 62 & 5 & 59 & 2 & 61 & 12 & 58 \\
57 & 14 & 50 & 48 & 9 & 18 & 45 & 19 \\
10 & 27 & 34 & 25 & 54 & 33 & 36 & 41 \\
49 & 30 & 26 & 23 & 52 & 21 & 22 & 37 \\
63 & 4 & 53 & 7 & 64 & 3 & 60 & 6 \\
56 & 47 & 20 & 46 & 8 & 51 & 15 & 17 \\
11 & 32 & 29 & 24 & 55 & 38 & 31 & 40 \\
13 & 44 & 43 & 28 & 16 & 35 & 39 & 42
\end{pmatrix}, \quad (2.2.15)$$

given by Setsuda [283], is H-associated but not 4-pac, and so neither M^*_0 nor $M^*_{0} \otimes I_2$ is “most-perfect”.

$$M^*_0 = \begin{pmatrix}
64 & 2 & 3 & 61 & 60 & 6 & 7 & 57 \\
9 & 55 & 54 & 12 & 13 & 51 & 50 & 16 \\
17 & 47 & 46 & 20 & 21 & 43 & 42 & 24 \\
40 & 26 & 27 & 37 & 36 & 30 & 31 & 33 \\
32 & 34 & 35 & 29 & 28 & 38 & 39 & 25 \\
41 & 23 & 22 & 44 & 45 & 19 & 18 & 48 \\
49 & 15 & 14 & 52 & 53 & 11 & 10 & 56 \\
8 & 58 & 59 & 5 & 4 & 62 & 63 & 1
\end{pmatrix}, \quad (2.2.14)$$
THEOREM 2.2.4 (Pickover [208, p. 73]). A 4-ply magic matrix is necessarily pandiagonal.

To prove Theorem 2.2.4 we note first that the $n \times n$ magic matrix M with magic sum m is pandiagonal whenever

$$\text{tr} S^p M = \text{tr} S^p FM = m = \text{tr} M = \text{tr} FM, \quad p = 1, 2, \ldots, n - 1. \quad (2.2.16)$$

where the “one-step forwards shift” matrix

$$S = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0
\end{pmatrix}. \quad (2.2.17)$$

To prove Theorem 2.2.4, we now use the fact that $S + I = R$, the “couplets-summing” matrix (2.2.3), and Theorem 2.2.1.
2.3. “Keyed” magic matrices and the “magic key”. When at most 3 eigenvalues of the magic matrix are nonzero then there are two eigenvalues in addition to the magic-sum eigenvalue, which add to 0. This observation leads to

DEFINITION 2.3.1 [233, 234]. We define the $n \times n$ magic matrix M with magic sum m to be “keyed” whenever its characteristic polynomial is of the form

$$\det(\lambda I - M) = \lambda^{n-3}(\lambda - m)(\lambda^2 - \kappa),$$

where the “magic key”

$$\kappa = \frac{1}{2}(\text{tr}M^2 - m^2)$$

may be positive, negative or zero.

DEFINITION 2.3.2. The $n \times n$ matrix A has “index 1” whenever $\text{rank}(A^2) = \text{rank}(A)$.

THEOREM 2.3.1 [233, 234]. Suppose that the $n \times n$ keyed magic matrix M has index 1 with magic sum $m \neq 0$ and magic key κ. Then

$$\kappa \neq 0 \iff \text{rank}(M) = 3.$$

DEFINITION 2.3.3. The $n \times n$ index-1 matrix A has a “group inverse” $A^#$ which satisfies the three conditions

$$AA^#A = A, \quad A^#AA^# = A^#, \quad AA^# = A^#A.$$ (2.3.4)

THEOREM 2.3.2 [206, Ex 11, p. 58]. When A has index 1 then the group inverse

$$A^# = A(A^3)^+A,$$ (2.3.5)

where $(A^3)^+$ is the Moore–Penrose inverse of A^3.
THEOREM 2.3.3 [233, 234]. Let the magic matrix M with magic sum $m \neq 0$ be keyed with magic key $\kappa \neq 0$ and index 1. Then M has rank 3 and all odd powers are “linear in the parent” in that

$$M^{2p+1} = \kappa^p M + m(m^{2p} - \kappa^p)\bar{E}; \quad p = 1, 2, 3, \ldots;$$

(2.3.6)

here each element of the $n \times n$ matrix \bar{E} is equal to $1/n$.

Moreover, the group inverse

$$M^\# = \frac{1}{\kappa} M + m \left(\frac{1}{m^2} - \frac{1}{\kappa} \right) \bar{E}.$$

(2.3.7)

is also “linear in the parent”. The right-hand side of (2.3.7) is the right-hand side of (2.3.6) with $p = -1$.

This content is from the book "Caisson Squares: The Magic of Chess" by [Author].

[Page 28]
2.4. **EP matrices.** We now consider EP matrices. We believe that the term EP was introduced by Schwerdtfeger\(^{21}\) [151, p. 130 (1950)]:

An \(n\)-matrix \(A\) may be called an EP \(r\)-matrix if it is a \(P_r\)-matrix and the linear relations existing among its rows are the same as those among the columns. The \(n \times n\) matrix \(A\) is said to be a “\(P_r\)” matrix [151, Th. 18.1, p. 130] whenever there is an \(r\)-rowed principal submatrix \(B_r\) of rank \(r\).

\[
AA^+ = A^+A, \tag{2.4.1}
\]

i.e., whenever \(A\) commutes with its Moore–Penrose inverse [206, Ex. 16, p. 159]. Oskar Maria Baksalary [282, (2011)] notes that the property (2.4.1) may be called “Equal Projectors”, which has the initial letters EP. See also Baksalary, Styan & Trenkler [246, (2009)].

DEFINITION 2.4.1 [170, p. 74]. We define a square matrix to be EP whenever the “Equal Projectors” property (2.4.1) holds.

THEOREM 2.4.1 [206, Th. 4, p. 157]. The \(n \times n\) matrix \(A\) is EP if and only if the group and Moore–Penrose inverses coincide, i.e., \(A^\# = A^+\).

THEOREM 2.4.2 [264, p. TBC]. The \(n \times n\) matrix \(A\) with index 1 is EP if and only if \(AA^+A' = A'\).

THEOREM 2.4.3 (new?). Suppose that the magic matrix \(M\) with magic sum \(m \neq 0\) has rank 3 and index 1. Then \(M\) is EP if and only if \(M^2\) is symmetric.

Proof. From (2.3.7) we know that the group inverse \(M^\#\) is linear in the parent:

\[
M^\# = \frac{1}{\kappa}M + m\left(\frac{1}{m^2} - \frac{1}{\kappa}\right)\bar{E}, \tag{2.4.2}
\]

where the matrix \(\bar{E}\) has every entry equal to \(1/n\). The matrix \(M\) is EP if and only if \(M^\# = M^+\) (Theorem 2.4.1) or equivalently if and only the projectors \(MM^\#\) and \(M^\#M\) are symmetric, and the result follows at once from (2.4.2).

\(^{21}\)Hans Wilhelm Eduard Schwerdtfeger (1902–1990) was Professor of Mathematics at McGill University from 1960–1983.
THEOREM 2.4.3X. Suppose that the \(n \times n \) magic matrix \(M \) with magic sum \(m \neq 0 \) has rank 3 and that \(M^2 \) is symmetric. Then \(M \) has index 1 and is EP (at least when \(n = 4 \)).

Proof. If \(M^2 \) is symmetric then

\[
3 = \text{rank}(M) \geq \text{rank}(M^2) = \text{rank}(M^3) = \cdots
\]

and so \(M^2 \) has rank 1, 2 or 3. Let \(M \) have magic key \(\kappa \). Then \(M^2 \) has 2 eigenvalues equal to \(\kappa \) and the magic eigenvalue \(m^2 \neq 0 \); the other \(n - 3 \) eigenvalues are 0. If \(\kappa \neq 0 \) then \(\text{rank}(M^2) = 3 \) and \(M \) has index 1 and is EP (Theorem 2.4.3) and our theorem is established.

If, however, \(\kappa = 0 \) then \(\text{rank}(M^2) = 1 \). This is impossible when \(n = 4 \) since from Sylvester’s Law of Nullity

\[
3 = \text{rank}(M) \geq \text{rank}(M^2) \geq 2 \text{rank}(M) - n = 6 - n = 2
\]

when \(n = 4 \). More generally for \(n \geq 4 \)

\[
\text{rank}(M^2) = 1 \Rightarrow M^2 = m^2 \bar{E}.
\]

OPEN QUESTION 2.4.3X. Let the \(n \times n \) magic matrix \(M \) have magic sum \(m \neq 0 \) and rank 3. Does there exist such a matrix \(M \) with magic key \(\kappa = 0 \) and \(n \geq 5 \) such that \(M^2 \) satisfies \((2.4.5) \)?
The Ursus matrix \mathbf{U} and its square \mathbf{U}^2 are

$$
\mathbf{U} = \begin{pmatrix}
1 & 58 & 3 & 60 & 8 & 63 & 6 & 61 \\
16 & 55 & 14 & 53 & 9 & 50 & 11 & 52 \\
17 & 42 & 19 & 44 & 24 & 47 & 22 & 45 \\
32 & 39 & 30 & 37 & 25 & 34 & 27 & 36 \\
57 & 2 & 59 & 4 & 64 & 7 & 62 & 5 \\
56 & 15 & 54 & 13 & 49 & 10 & 51 & 12 \\
41 & 18 & 43 & 20 & 48 & 23 & 46 & 21 \\
40 & 31 & 38 & 29 & 33 & 26 & 35 & 28 \\
\end{pmatrix},
\mathbf{U}^2 = \begin{pmatrix}
9570 & 8674 & 9122 & 8226 & 8002 & 7554 & 8450 & 8002 \\
8674 & 9186 & 8354 & 8866 & 7554 & 8386 & 7874 & 8706 \\
9122 & 8354 & 8930 & 8162 & 8450 & 7874 & 8642 & 8066 \\
8226 & 8866 & 8162 & 8802 & 8002 & 8706 & 8066 & 8770 \\
8002 & 7554 & 8450 & 8002 & 9570 & 8674 & 9122 & 8226 \\
7554 & 8386 & 7874 & 8706 & 8674 & 9186 & 8354 & 8866 \\
8450 & 7874 & 8642 & 8066 & 9122 & 8354 & 8930 & 8162 \\
8002 & 8706 & 8066 & 8770 & 8226 & 8866 & 8162 & 8802 \\
\end{pmatrix}
$$

and since \mathbf{U} has rank 3 and index 1, and is keyed with magic key $\kappa = 2688 \neq 0$ it follows, using Theorem 2.4.3, that \mathbf{U} is EP since \mathbf{U}^2 is symmetric. And we note that \mathbf{U}^2 is block-Latin, which also follows since \mathbf{U} is \mathbf{H}-associated (Theorem 2.1.5).

Moreover, using Theorem 2.3.1 we find that the odd powers are all “linear in the parent”:

$$
\mathbf{U}^{2p+1} = 2688^p \mathbf{U} + 260(260^{2p} - 2688^p)\mathbf{E}; \quad p = -1, +1, +2, \ldots
$$

where the 8×8 matrix \mathbf{E} has every entry equal to $1/8$. Since \mathbf{U} is EP, we see (using Theorem 2.3.2) that the group inverse $\mathbf{U}^\#$ coincides with its Moore–Penrose inverse \mathbf{U}^+:

$$
\mathbf{U}^\# = \mathbf{U}^+ = \frac{1}{2688} \mathbf{U} - \frac{4057}{43680} \mathbf{E},
$$

which is (2.4.7) with $p = -1$. We note also that the Ursus matrix \mathbf{U} is 4-pac and \mathbf{H}-associated.

THEOREM 2.4.4 (new?). Suppose that the magic matrix \mathbf{M} is \mathbf{F}-associated and EP. Then the “row-flipped” matrix $\mathbf{F}\mathbf{M}$ is \mathbf{F}-associated and EP if and only if the “column-flipped” matrix $\mathbf{M}\mathbf{F}$ is \mathbf{F}-associated and EP, and \mathbf{M}^2 is bisymmetric, i.e., symmetric and centrosymmetric.

Proof. The row-flipped

$$
\mathbf{F}\mathbf{M} \text{ is EP } \iff \mathbf{F}\mathbf{M}(\mathbf{F}\mathbf{M})^+(\mathbf{F}\mathbf{M})' = (\mathbf{F}\mathbf{M})'
$$

$$
\iff \mathbf{F}\mathbf{M}(\mathbf{F}\mathbf{M})^+\mathbf{M}' = \mathbf{M}'
$$

$$
\iff (2m\mathbf{E} - \mathbf{M}\mathbf{F})(2/m)\mathbf{E} - \mathbf{F}(\mathbf{M})^+\mathbf{M}' = \mathbf{M}'
$$

$$
\iff \mathbf{M}\mathbf{M}^+\mathbf{M}' = \mathbf{M}'
$$

and \mathbf{M} is EP, using Theorems 2.1.4 and 2.4.3. If follows at once from (2.4.1) that \mathbf{M} is EP if and only if $\mathbf{F}\mathbf{M}\mathbf{F}$ is EP and the result then follows since $\mathbf{F}(\mathbf{F}\mathbf{M})\mathbf{F} = \mathbf{M}\mathbf{F}$.

Let M_A denote the Agrippa “Mercury” magic matrix \cite{185} p. 738. Then M_A and the column-flipped $M_A F$ (\cite{220} p. 49, Fig. 3)) are:

$$
M_A = \begin{pmatrix}
8 & 58 & 59 & 5 & 4 & 62 & 63 & 1 \\
49 & 15 & 14 & 52 & 53 & 11 & 10 & 56 \\
41 & 23 & 22 & 44 & 45 & 19 & 18 & 48 \\
32 & 34 & 35 & 29 & 28 & 38 & 39 & 25 \\
40 & 26 & 27 & 37 & 36 & 30 & 31 & 33 \\
17 & 47 & 46 & 20 & 21 & 43 & 42 & 24 \\
9 & 55 & 54 & 12 & 13 & 51 & 50 & 16 \\
64 & 2 & 3 & 61 & 60 & 6 & 7 & 57
\end{pmatrix}, \quad
M_A F = \begin{pmatrix}
1 & 63 & 62 & 4 & 5 & 59 & 58 & 8 \\
56 & 10 & 11 & 53 & 52 & 14 & 15 & 49 \\
48 & 18 & 19 & 45 & 44 & 22 & 23 & 41 \\
25 & 39 & 38 & 28 & 29 & 35 & 34 & 32 \\
33 & 31 & 30 & 36 & 37 & 27 & 26 & 40 \\
24 & 42 & 43 & 21 & 20 & 46 & 47 & 17 \\
16 & 50 & 51 & 13 & 12 & 54 & 55 & 9 \\
57 & 7 & 6 & 60 & 61 & 3 & 2 & 64
\end{pmatrix}
$$

are both F-associated and EP since

\begin{align}
M_A^2 &= \begin{pmatrix}
7330 & 9346 & 9122 & 8002 & 8226 & 8450 & 8226 & 8988 \\
9346 & 7714 & 7874 & 8866 & 8706 & 8354 & 8514 & 8226 \\
9122 & 7874 & 7970 & 8834 & 8738 & 8258 & 8354 & 8450 \\
8002 & 8866 & 8334 & 8098 & 8130 & 8738 & 8706 & 8226 \\
8226 & 8706 & 8738 & 8130 & 8098 & 8834 & 8666 & 8002 \\
8450 & 8354 & 8258 & 8738 & 8844 & 7970 & 7874 & 9122 \\
8226 & 8514 & 8354 & 8706 & 8666 & 7874 & 7714 & 9346 \\
8988 & 8226 & 8450 & 8226 & 8002 & 9122 & 9346 & 7330
\end{pmatrix},
(\text{M}_A F)^2 &= \begin{pmatrix}
9570 & 7554 & 7778 & 8898 & 8674 & 8450 & 8674 & 8002 \\
7554 & 9186 & 9026 & 8034 & 8194 & 8546 & 8386 & 8674 \\
7778 & 9026 & 8930 & 8066 & 8162 & 8642 & 8546 & 8450 \\
8898 & 8034 & 8066 & 8802 & 8770 & 8162 & 8194 & 8674 \\
8674 & 8194 & 8162 & 8802 & 8806 & 8066 & 8384 & 8898 \\
8450 & 8546 & 8642 & 8162 & 8066 & 8930 & 9026 & 7778 \\
8674 & 8386 & 8546 & 8194 & 8034 & 9026 & 9186 & 7554 \\
8002 & 8674 & 8450 & 8674 & 8988 & 7778 & 7554 & 9570
\end{pmatrix}
\end{align}

are both bisymmetric (and, maybe surprisingly, are quite different).

In a pamphlet \cite{91} (1845) describing *A New Method of Ascertaining Interest and Discount*, Israel Newton includes *A Few Magic Squares of a Singular Quantity*. One of these magic squares is 16×16 and dated “September 28, 1844, in the 82nd year of his age” and “containing 4 squares of 8 and 16 squares of 4*. We define this 16×16 magic square by the magic Newton square\cite{221}.\footnote{From Swetz \cite{212} p.117, we note that the Agrippa “Mercury” magic square \cite{185} p. 738, see also Paracelsus TBC, is called the “Jupiter” magic square by Girolamo Cardano (1501–1576) \cite{74} p. TBC.\footnote{There are also 5 more magic squares: 3 are 8×8 and 2 are 4×4.\footnote{We have corrected several typos in the original given by Newton \cite{91}.}}

\begin{align}
N &= \begin{pmatrix}
1 & 254 & 255 & 4 & 121 & 252 & 8 & 133 & 118 & 11 & 247 & 138 & 244 & 113 & 15 & 142 \\
128 & 131 & 130 & 125 & 134 & 6 & 251 & 122 & 137 & 248 & 12 & 117 & 14 & 143 & 241 & 116 \\
132 & 127 & 126 & 129 & 135 & 25 & 250 & 123 & 140 & 245 & 9 & 120 & 141 & 16 & 114 & 123 \\
253 & 2 & 3 & 256 & 124 & 249 & 5 & 136 & 119 & 10 & 246 & 139 & 115 & 242 & 144 & 13 \\
97 & 228 & 158 & 31 & 104 & 155 & 26 & 229 & 107 & 151 & 234 & 22 & 112 & 109 & 146 & 147 \\
\end{pmatrix},
(2.4.15)
\end{align}
Both the Newton matrix N ([2.4.15]) and its column-flipped partner NF are (surprisingly) EP but N is not F-associated (in fact N^+ is not fully-magic). The 16×16 Newton matrix N has rank 13 and index 1 and each of the 4 magic 8×8 submatrices and its 4 column-flipped partners are EP (all with rank 7 and index 1). We will comment on the 16 magic 4×4 submatrices in Section TBC, below, but it seems that none are EP though 15 of them are V-associated.

Deacon Israel Newton (1763–1856) was [124, p. 228] “the inventor of the well-known medical preparations widely known as ‘Newton’s Bitters’, ‘Newton’s Pills’, etc, and sold extensively for many years throughout New England and New York.” Doctor Newton was a thoroughly educated physician, though not in general practice of his profession, and was much respected as a man and a citizen. Besides his medicines, which were valuable, he invented and built a church organ, which was placed in the old first church, and was there used for many years. He was gifted with rare mechanical skill, which he exhibited in many ways to the benefit of mankind. He was a soldier of the Revolution, and the last of those soldiers to die in Norwich, Vermont, at age 93.

Known variously as the Norwich Hotel, Curtis Hotel, The Union House, and the Newton Inn, the Norwich Inn was the first tavern in Vermont to entertain a Chief Executive of the United States. On July 22, 1817, President James Monroe (1758–1831) visited the Inn, and while there, he addressed the townspeople of Norwich and “partook of a dinner, prepared ... in handsome style”. Built by Colonel Jasper Murdock in 1797, the Norwich Inn served as a stagecoach tavern and hostelry. Jasper Murdock’s Alehouse is a Vermont microbrewery at the Norwich Inn with “Consistently good brews made right across the parking lot in their own brew house.”

Figure 2.4.1: (left panel) The Newton Inn, Norwich, Vermont, c. 1850 [91 facing p. 51].
(right panel) The Norwich Inn, Norwich, Vermont, c. 2010: photograph online at The Preservation Trust of Vermont, 142 Church Street, Burlington, Vermont.

25 The Newton–Timmermann Pharmacy is located at 799 Lexington Avenue, New York City.
Figure 2.4.2: Alden Partridge (1785–1854), contemporary of Israel Newton (1763–1856).

Figure 2.4.3: (left panel) James Monroe first-day cover, USA 1958, Scott 1105. (right panel) Jasper Murdock’s “Oh Be Joyful”: photograph online at The Feisty Foodie.
2.5. Checking that an 8×8 magic matrix is CSP2-magic. To check that an 8×8 magic matrix M is CSP2-magic (regular-knight-magic) we check that four 4×4 related matrices are H-associated.

THEOREM 2.5.1. The 32 CSP2-paths in the 8×8 magic matrix M are all magic if and only if the four 4×4 matrices

$$J_1'K_2MJ, \ J_2'K_2MJ, \ J_1'K_2M'J, \ J_2'K_2M'J,$$

(2.5.1)

are all H-associated (and hence pandiagonal). Here the 8×4 matrices

$$J_1 = \begin{pmatrix} I_4 \\ 0 \end{pmatrix}, \ J_2 = \begin{pmatrix} 0 \\ I_4 \end{pmatrix}, \ J = J_1 + J_2 = \begin{pmatrix} I_4 \\ I_4 \end{pmatrix},$$

(2.5.2)

where I_4 is the 4×4 identity matrix, and the “knight-selection matrix”

$$K_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

(2.5.3)

The “knight-selection matrix” K_2 is almost a regular-knight’s move (CSP2) matrix but the “move” (with wrap-around) from row 4 to row 5 is that of a special-knight (CSP3) rather than that of the usual knight (CSP2) in chess.

We recall the Ursus matrix

(2.5.4)

where we have identified a CSP2-magic path in red. We find that
\[
K_2U = \begin{pmatrix}
1 & 58 & 3 & 60 & 8 & 63 & 6 & 61 \\
17 & 42 & 19 & 44 & 24 & 47 & 22 & 45 \\
57 & 2 & 59 & 4 & 64 & 7 & 62 & 5 \\
41 & 18 & 43 & 20 & 48 & 23 & 46 & 21 \\
16 & 55 & 14 & 53 & 9 & 50 & 11 & 52 \\
32 & 39 & 30 & 37 & 25 & 34 & 27 & 36 \\
56 & 15 & 54 & 13 & 49 & 10 & 51 & 12 \\
40 & 31 & 38 & 29 & 33 & 26 & 35 & 28
\end{pmatrix}, \quad K_2U' = \begin{pmatrix}
1 & 16 & 17 & 32 & 57 & 56 & 41 & 40 \\
3 & 14 & 19 & 30 & 59 & 54 & 43 & 38 \\
8 & 9 & 24 & 25 & 64 & 49 & 48 & 33 \\
6 & 11 & 22 & 27 & 62 & 51 & 46 & 35 \\
58 & 55 & 42 & 39 & 2 & 15 & 18 & 31 \\
60 & 53 & 44 & 37 & 4 & 13 & 20 & 29 \\
63 & 50 & 47 & 34 & 7 & 10 & 23 & 26 \\
61 & 52 & 45 & 36 & 5 & 12 & 21 & 28
\end{pmatrix}
\] \((2.5.5) \)

and hence

\[
J_1'K_2UJ = \begin{pmatrix}
9 & 121 & 9 & 121 \\
41 & 89 & 41 & 89 \\
121 & 9 & 121 & 9 \\
89 & 41 & 89 & 41
\end{pmatrix}, \quad J_2'K_2UJ = \begin{pmatrix}
25 & 105 & 25 & 105 \\
57 & 73 & 57 & 73 \\
105 & 25 & 105 & 25 \\
73 & 57 & 73 & 57
\end{pmatrix}
\] \((2.5.6) \)

\[
J_1'K_2U'J = \begin{pmatrix}
58 & 72 & 58 & 72 \\
62 & 68 & 62 & 68 \\
72 & 58 & 72 & 58 \\
68 & 62 & 68 & 62
\end{pmatrix}, \quad J_2'K_2U'J = \begin{pmatrix}
60 & 70 & 60 & 70 \\
64 & 66 & 64 & 66 \\
70 & 60 & 70 & 60 \\
66 & 64 & 66 & 64
\end{pmatrix}
\] \((2.5.7) \)

\(J_1'K_2U'J \) and \(J_2'K_2U'J \) are indeed all \(H \)-associated and pandiagonal and so all 32 regular-knight’s (CSP2) paths are magic.
2.6. **Checking that an 8×8 magic matrix is CSP3-magic.** To check that an 8×8 magic matrix \(M \) is CSP3-magic (special-knight-magic) we compute \(K_3 M \), where the 8×8 CSP3 (special-knight) selection matrix

\[
K_3 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{pmatrix},
\]

(2.6.1)

which we note is symmetric and magic, and commutes with \(H \). This leads to

THEOREM 2.6.1. The 8×8 magic matrix \(M \) is CSP3-magic if and only if \(K_3 M \) is pandiagonal. If \(M \) is also \(H \)-associated then so is \(K_3 M \) and hence \(K_3 M \) is pandiagonal and \(M \) is CSP3-magic.

For example, with the Ursus matrix \(U \) we find that

\[
K_3 U = \begin{pmatrix}
1 & 58 & 3 & 60 & 8 & 63 & 6 & 61 \\
32 & 39 & 30 & 37 & 25 & 34 & 27 & 36 \\
41 & 18 & 43 & 20 & 48 & 23 & 46 & 21 \\
16 & 55 & 14 & 53 & 9 & 50 & 11 & 52 \\
57 & 2 & 59 & 4 & 64 & 7 & 62 & 5 \\
40 & 31 & 38 & 29 & 33 & 26 & 35 & 28 \\
17 & 42 & 19 & 44 & 24 & 47 & 22 & 45 \\
56 & 15 & 54 & 13 & 49 & 10 & 51 & 12
\end{pmatrix},
\]

(2.6.2)

is \(H \)-associated and hence pandiagonal and so \(U \) is special-knight (CSP3) magic. Moreover, \(U \) is \(H \)-associated implies that \(K_3 U \) is \(H \)-associated and pandiagonal directly.
3. Many 8×8 Caïssan beauties (CBs)

We now consider various properties of the 46080 Caïssan beauties (CBs) identified by Drury [272, (2011)] and present (Section 3.2) a generalization of an algorithm given by Cavendish [11, (1894)] for generating Caïssan beauties.

3.1. Drury’s 46080 Caïssan beauties (CBs). We are most grateful to S. W. Drury [272] for identifying 46080 classic magic 8×8 matrices which are Caïssan beauties (CBs), i.e., pandiagonal and both CSP2- and CSP3-magic. Each of these 46080 CBs is classic with entries $0, 1, \ldots, 63$ and magic sum $m = 252$. The lead entry in the top left-hand corner or position $(1,1)$ is 0. Since our magic paths all allow wrap-around we may shift row-blocks and/or column-blocks so that the resulting magic square with the entry $1, 2, \ldots, 63$ (as well as 0) in the top left-hand corner is also a CB. This “translation” property leads to

CLAIM 3.1.1. We claim that there are precisely

$$46080 \times 64 = 2,949,120$$

(3.1.1)

CBs in all.

The 46080 CBs include pairs which are transposes of each other, and pairs which are “double-flips” of each other, i.e., M and FMF. If we exclude these then there are just

$$\frac{46080}{4} = 11520$$

(3.1.2)

8×8 CBs.

From Trump’s Table [236] we find that the actual number (count) of classic magic pandiagonal 8×8 matrices is not known but exceeds the number H of H-associated 8×8 classic magic matrices. This number H is also not known exactly but from [236] we find that, with probability 99%, H lies in the interval

$$ (2.5228 \pm 0.0014) \times 10^{27}. $$

(3.1.3)

CLAIM 3.1.2. We claim that the 46080 CBs [272] are all, in addition to being pandiagonal, CSP2-magic and CSP3-magic,

(1) H-associated,

(2) 4-pac, i.e., 4-ply and with the alternate couplets property, and

(3) all have rank 3 and index 1, and hence all are keyed with magic key $\kappa \neq 0$.

CLAIM 3.1.3. We claim that the 46080 CBs [272] have precisely 960 distinct top rows, with

\[48 = \frac{46080}{960} \] \hspace{1cm} (3.1.4)

CBs per top row.

In Claim 3.1.3 we claimed that there are 48 CBs with each distinct top row. We now claim that these 48 CBs may be generated from any particular starter-CB \(M_A \) as follows. We assume that \(M_A \) is \(H \)-associated and from \(M_A \) we generate \(M_B \) and \(M_C \) as follows:

\[
M_A = \begin{pmatrix}
R1a & R1b \\
R2a & R2b \\
R3a & R3b \\
R4a & R4b \\
\overline{R1}b & \overline{R1}a \\
\overline{R2}b & \overline{R2}a \\
\overline{R3}b & \overline{R3}a \\
\overline{R4}b & \overline{R4}a
\end{pmatrix}, \quad M_B = \begin{pmatrix}
R1a & R1b \\
R2a & R2b \\
R3b & R3a \\
R4b & R4a \\
\overline{R1}b & \overline{R1}a \\
\overline{R2}b & \overline{R2}a \\
\overline{R3}a & \overline{R3}b \\
\overline{R4}a & \overline{R4}b
\end{pmatrix}, \quad M_C = \begin{pmatrix}
R1a & R1b \\
R2b & R2a \\
R3b & R3a \\
R4a & R4b \\
\overline{R1}b & \overline{R1}a \\
\overline{R2}b & \overline{R2}a \\
\overline{R3}b & \overline{R3}a \\
\overline{R4}a & \overline{R4}b
\end{pmatrix}, \hspace{1cm} (3.1.5)
\]

where \(R1a, \ldots, R4b \) are 4-tuples and \(\overline{xxxx} \) = complement of the 4-tuple \(xxxx \) = the 4-tuple 63, 63, 63, 63 minus the 4-tuple \(xxxx \). Then (Claim 3.1.4)

CLAIM 3.1.4. We claim that the 48 CBs with each distinct top row may be generated from \(M_A \) in (3.1.5) by forming \(M_B \) and \(M_C \) and then for each of the three matrices \(M_A, M_B, M_C \) by

(1) switching rows 2 and 6,
(2) switching rows 3 and 7,
(3) switching rows 4 and 8,
(4) reversing rows 2, 3, \ldots, 8.

We note that \(3 \times 2^4 = 48 \).
CLAIM 3.1.5. We claim that of the 46080 CBs \[272\] precisely 192 are EP and that precisely 96 of these have magic key $\kappa = 2688$ and precisely 96 have magic key $\kappa = 8736$.

We claim that of the 46080 CBs, precisely 672 are not EP but have magic key $\kappa = 2688$ and precisely 288 are not EP but have magic key $\kappa = 8736$. In all, therefore, of the 46080 CBs precisely 768 have magic key $\kappa = 2688$, and precisely 384 have magic key $\kappa = 8736$. We note that $768 = 2 \times 384$.

Moreover, we claim that none of these 192 remain EP when the columns are flipped (reversed) and that those CBs with $\kappa = 2688$ when flipped have magic keys

$$\kappa_{2688} = \pm 512, \pm 1024, \pm 1408, \pm 1664, \pm 2048, \pm 2432$$

(3.1.6)

and that those CBs with $\kappa = 8736$ when flipped have magic keys

$$\kappa_{8736} = \pm 256, \pm 1024, \pm 4096, \pm 7648, \pm 7712, \pm 8672.$$

(3.1.7)

Each of these $2 \times 2 \times 6 = 24$ magic keys occurs 8 times ($8 \times 24 = 192$). Moreover the magic keys in (3.1.6) and (3.1.7) satisfy the inequalities

$$|\kappa_{2688}| < 2688, \quad |\kappa_{8736}| < 8736.$$

(3.1.8)

Of the absolute values of the 6 numbers in (3.1.6), we note that 3 are successive powers of 2:

$$512 = 2^9, \quad 1024 = 2^{10}, \quad 2048 = 2^{11},$$

(3.1.9)

and 3 are (almost consecutive) prime multiples of 2^7:

$$1408 = 11 \times 2^7, \quad 1664 = 13 \times 2^7, \quad 2432 = 19 \times 2^7$$

(3.1.10)

but, curiously, $2176 = 17 \times 2^7$ is absent! Of the absolute values of the 6 numbers in (3.1.7), we note that 3 are consecutive even powers of 2:

$$256 = 2^8, \quad 1024 = 2^{10}, \quad 4096 = 2^{12},$$

(3.1.11)

and 3 are prime multiples of 2^5 (the first two consecutive prime multiples)

$$7648 = 239 \times 2^5, \quad 7712 = 241 \times 2^5, \quad 8672 = 271 \times 2^5.$$

(3.1.12)
CLAIM 3.1.6. We claim that the 46080 CBs with the columns flipped are all, in addition to being pandiagonal, CSP2-magic and CSP3-magic,

(1) \(H\)-associated,

(2) 4-pac, i.e., 4-ply and with the alternate couplets property, and

(3) all have rank 3.

And that precisely 1920 (TBC) have index 3 and magic key \(\kappa = 0\) and 46080 − 1920 = 44160 have index 1 and magic key \(\kappa \neq 0\) and that none of these are EP. We recall that all (unflipped) 46080 CBs with 0 in the top-left hand corner have index 1 and magic key \(\kappa \neq 0\) and that precisely 192 of these are EP.

CLAIM 3.1.7. We claim that for each of the 45888 (= 46080 − 192) CBs \(M\) which are not EP that

\[
\text{rank}(M^2 - (M^2)'') = \text{rank}(M^+ - M^#) = 2. \tag{3.1.13}
\]

We recall that a magic matrix \(M\) with rank 3 and index 1 is EP if and only if \(M^2\) is symmetric (Theorem 2.4.3) and if and only if \(M^+ = M^#\) (Theorem TBC).

We recall that the Ursus-Caïssan beauty \(U\) is EP with magic key \(\kappa = 2688\) and when flipped, i.e., \(UF\), has index 1 and magic key \(\kappa = 1408\) (< 2688) but is not EP. Moreover, the MATLAB \(\text{magic}(n)\) algorithm generates EP magic matrices for all \(n = 4k\) doubly even with magic key

\[
\kappa = \frac{n^3(n^2 - 1)}{12}, \tag{3.1.14}
\]

as established by Kirkland & Neumann [189] (1995). The magic key (3.1.14) equals 2688 when \(n = 8\). The EP magic matrix generated by \(\text{magic}(8)\) is \(M_0\) displayed in (2.2.14) above.

OPEN QUESTION 3.1.1. Concerning these 46080 8 \(\times\) 8 Caïssan beauties we would like to know:

(1) Is it possible to "prove" that a Caïssan beauty MUST be 4-pac, \(H\)-associated, and have rank 3 and index 1.

(2) How many Caïssan beauties have the "Franklin" property?

(3) How many Caïssan beauties have the "rhomboid" property?

(4) Are 2688 and 8736 the most popular magic keys for a Caïssan beauty?

(5) What is special about the numbers 2688 and 8736? The MATLAB magic key (3.1.14) equals 2688 when \(n = 8\).
3.2. A generalized Cavendish (1894) algorithm for Caïssan beauties. We now present a matrix representation of a generalized version of the algorithm for a (classic) pandiagonal magic square given for a special case by Cavendish [11] (1894). He defines a Caïssan magic square as (being just) pandiagonal but the algorithm he gives (for just a single special case) yields a Caïssan beauty that has all CSP2- and CSP3-paths magic as well as being pandiagonal. Our generalized Cavendish matrices $C_{s,t,u}$, below, are also Caïssan beauties, and like the Ursus matrix U, are also 4-pac, H-associated, and keyed with rank 3 and index 1. Moreover, the $C_{s,t,u}$ are EP for all values of the “seed parameters” s,t,u.

We define the 2×2 identity and flip matrices and the 1×4 unit (sum) vector

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad F_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad e'_4 = (1 \ 1 \ 1 \ 1)' ,$$

and hence the 2×8 matrices

$$A_1 = \begin{pmatrix} 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \end{pmatrix} = e'_4 \otimes (I_2 - F_2),$$

$$A_2 = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} = e'_4 \otimes F_2.$$

Then for some 4×1 seed vector $s = (a,b,c,d)'$ and some seed scalar t, we define the 8×8 matrix

$$B_{s,t} = A_1 \otimes s + A_2 \otimes te'_4$$

$$= \begin{pmatrix} a & t-a & a & t-a & a & t-a & a & t-a \\ b & t-b & b & t-b & b & t-b & b & t-b \\ c & t-c & c & t-c & c & t-c & c & t-c \\ d & t-d & d & t-d & d & t-d & d & t-d \end{pmatrix}$$

and hence the 8×8 magic “Cavendish matrix”

$$C_{s,t,u} = C(a,b,c,d)'t,u = B_{s,t} + 8B'_{s,t} - uE_8 =$$

$$\begin{pmatrix} 9a - u & t - a + 8b - u & a + 8c - u & t - a + 8d - u & -7a + 8t - u & 9t - a - 8b - u & a + 8t - 3c - u & 9t - a - 8d - u \\ b + 8t - 8a - u & 9t - b - u & b + 8t - 8c - u & 9t - b - 8d - u & b + 8a - u & t + 7b - u & b + 8c - u & t + 7b - 8d - u \\ c + 8a - u & t - c + 8b - u & 9c - u & t - c + 8d - u & c + 8t - 8a - u & 9t - c - 8b - u & -7c + 8t - u & 9t - c - 8d - u \\ d + 8t - 8a - u & 9t - d - 8b - u & d + 8t - 8c - u & 9t - d - 8d - u & d + 8a - u & t - d + 8b - u & d + 8c - u & t + 7d - u \end{pmatrix}$$
Here \(u \) is a second seed scalar and all the entries of the \(8 \times 8 \) matrix \(E_8 \) are equal to 1. The Cavendish matrix \(C_{s,t,u} \) (3.2.5) is a Caisson beauty (pandiagonal with all knight’s paths of types CSP2 and CSP3 magic), though not necessarily classic, but with rank 3 and index 1, and \(H \)-associated, 4-pac, and keyed for any choices of the seed parameters \(s = (a, b, c, d)' , t, u \). The magic key

\[
\kappa(C_{s,t,u}) = 128(t^2 - t(a + b + c + d) + a^2 + b^2 + c^2 + d^2)
\]

(3.2.6)

is independent of the seed scalar \(u \), while the magic sum \(m = 36t - 8u \) is independent of the seed vector \(s = (a, b, c, d)' \). When \(t = 9 \) and \(u = 8 \) then \(m = 260 \), the magic sum for a classic \(8 \times 8 \) magic matrix. And \(C_{s,t,u} \) (3.2.5) becomes the Cashmore beauty \(M(p)_2(b) = (M(p)_1(b))' \), see (3.4) (3.4.16) below.

The singular values of the Cavendish matrix \(C_{s,t,u} \) (3.2.5) are, in addition to the magic sum \(m \), \(4\omega \) and \(32\omega \), while the eigenvalues are the magic sum \(m \), and \(\pm(8\sqrt{2})\omega \), where \(\omega \) is the positive square root of

\[
\omega^2 = t^2 - t(a + b + c + d) + a^2 + b^2 + c^2 + d^2.
\]

(3.2.7)

It follows that that the magic key \(\kappa \) is precisely 8 times the smallest (non-zero and non-magic) eigenvalue of \(CC' \) and that the largest (non-zero and non-magic) eigenvalue of \(CC' \) is precisely 8 times the magic key \(\kappa \).

The Cavendish matrix \(C_{s,t,u} \) (3.2.5) is EP for any choices of the seed parameters \(s = (a, b, c, d)' , t, u \). To establish this it suffices to show that \(C_{s,t,u}^2 \) is symmetric (Theorem 2.4.3). An easy computation shows that, with \(B_{s,t} \) as defined in (3.2.4) above,

\[
C_{s,t,u}^2 = 8(B_{s,t}B_{s,t}' + B_{s,t}'B_{s,t}) + (130t^2 - 72tu + 8u^2)E_8,
\]

(3.2.8)

which is symmetric. To establish (3.2.8) we used the fact that \(B^2 = 2t^2E_8 \).

If \((a, b, c, d) \) is some permutation of \((1, 2, 3, 4) \) then the magic key

\[
\kappa = 128(t^2 - 10t + 30).
\]

(3.2.9)

In our study of 46080 Caisson beauties in Section 4 below we found that just 192 are EP: 96 with \(\kappa = 2688 \) and 96 with \(\kappa = 8736 \). The special key (3.2.9) equals 2688 if and only if \(t = 9 \) or \(t = 1 \). When \(t = 1 \), however, the EP Caisson beauty has magic sum \(m = -28 \) is not classic!

OPEN QUESTION 3.2.1. Are there “nice” values of the seed parameters for which the key (3.2.6) is equal to 8736? (The special key (3.2.9) equals 8736 only when \(t = 5 \pm \frac{1}{2}\sqrt{253} \).)

For his special case, Cavendish (1894) used the seed parameters

\[
s = (1, 2, 3, 4)' , \quad t = 9 , \quad u = 8 ,
\]

(3.2.10)
and found that then

\[
\mathbf{B}_{(1,2,3,4)^*,9} = \begin{pmatrix}
1 & 8 & 1 & 8 & 1 & 8 & 1 & 8 \\
2 & 7 & 2 & 7 & 2 & 7 & 2 & 7 \\
3 & 6 & 3 & 6 & 3 & 6 & 3 & 6 \\
4 & 5 & 4 & 5 & 4 & 5 & 4 & 5 \\
8 & 1 & 8 & 1 & 8 & 1 & 8 & 1 \\
7 & 2 & 7 & 2 & 7 & 2 & 7 & 2 \\
6 & 3 & 6 & 3 & 6 & 3 & 6 & 3 \\
5 & 4 & 5 & 4 & 5 & 4 & 5 & 4
\end{pmatrix}
\]

(3.2.11)

and hence

\[
\mathbf{C}_{(1,2,3,4)^*,9,8} = \begin{pmatrix}
1 & 16 & 17 & 32 & 57 & 56 & 41 & 40 \\
58 & 55 & 42 & 39 & 2 & 15 & 18 & 31 \\
3 & 14 & 19 & 30 & 59 & 54 & 43 & 38 \\
60 & 53 & 44 & 37 & 4 & 13 & 20 & 29 \\
8 & 9 & 24 & 25 & 64 & 49 & 48 & 33 \\
63 & 50 & 47 & 34 & 7 & 10 & 23 & 26 \\
6 & 11 & 22 & 27 & 62 & 51 & 46 & 35 \\
61 & 52 & 45 & 36 & 5 & 12 & 21 & 28
\end{pmatrix} = \mathbf{U}^t,
\]

(3.2.12)

the transpose \(\mathbf{C}' \) of the Ursus matrix \(\mathbf{U} \).
3.3. Cashmore beauties. Cashmore [52 (1907)] discusses “chess magic squares” which he defines as “having constant summation along every chess path”. We interpret this as synonymous to our Caïssan magic squares (pandiagonal and CSP2-magic). He presents two Caïssan magic squares which we define by the Caïssan magic matrices \(C_1 \) and \(C_2 \),

\[
C_1 = \begin{pmatrix}
19 & 41 & 20 & 47 & 22 & 48 & 21 & 42 \\
55 & 14 & 56 & 13 & 50 & 11 & 49 & 12 \\
37 & 26 & 35 & 25 & 36 & 31 & 38 & 32 \\
1 & 60 & 7 & 62 & 8 & 61 & 2 & 59 \\
46 & 24 & 45 & 18 & 43 & 17 & 44 & 23 \\
10 & 51 & 9 & 52 & 15 & 54 & 16 & 53 \\
28 & 39 & 30 & 40 & 29 & 34 & 27 & 33 \\
64 & 5 & 58 & 3 & 57 & 4 & 63 & 6
\end{pmatrix}, \quad C_2 = \begin{pmatrix}
19 & 6 & 27 & 54 & 43 & 62 & 35 & 14 \\
55 & 42 & 63 & 34 & 15 & 18 & 7 & 26 \\
37 & 12 & 21 & 4 & 29 & 52 & 45 & 60 \\
1 & 32 & 49 & 48 & 57 & 40 & 9 & 24 \\
46 & 59 & 38 & 11 & 22 & 3 & 30 & 51 \\
10 & 23 & 2 & 31 & 50 & 47 & 58 & 39 \\
28 & 53 & 44 & 61 & 36 & 13 & 20 & 5 \\
64 & 33 & 16 & 17 & 8 & 25 & 56 & 41
\end{pmatrix},
\]

which are pandiagonal and CSP2-magic, but only half CSP3-magic, in that only the \(n \) forwards but not the \(n \) backwards CSP3-paths are magic. Moreover, is \(C_i \) “semi-\(H \)-associated”

\[
C_i + HC_i = 65E; \quad i = 1, 2.
\]

DEFINITION 3.3.1. A magic matrix \(M \) with magic sum \(m \) is “semi-\(H \)-associated” whenever

\[
M + HM = 2m\bar{E} \quad \text{or} \quad M + MH = 2m\bar{E}.
\]

Suppose that the \(n \times n \) magic matrix \(M \) with \(n = 2k \), even, is partitioned with four \(k \times k \) blocks as

\[
M = \begin{pmatrix}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{pmatrix}.
\]

Then \(M \) is semi-\(H \)-associated whenever either

\[
M_{11} + M_{21} = M_{12} + M_{22} = 2m\bar{E}
\]

or

\[
M_{11} + M_{12} = M_{21} + M_{22} = 2m\bar{E}.
\]

Moreover, \(M \) is \(H \)-associated whenever

\[
M_{11} + M_{22} = M_{12} + M_{21} = 2m\bar{E}.
\]

It is easy to see that both \(C_1 \) and \(C_2 \) satisfy (3.3.4), and so both \(C_1 \) and \(C_2 \) are semi-\(H \)-associated.
THEOREM 3.3.1. Suppose that the magic matrix M is semi-H-associated. Then all positive powers M^q are semi-H-associated. When M has index 1 then M has a group-inverse $M^#$ and all positive powers $(M^#)^q$ are semi-H-associated.

We find that both C_1 and C_2 have rank 5 and index 1 and so both have group inverses. From Theorem 3.3.1 we find that for $C = C_1$ or C_2 all positive powers C^q and $(C^#)^q$ are semi-H-associated.

Bidov [67, Fig. 7 & 8, (c. 1981)] observes that C_1 and C_2 lassen sich natürlich aufrechtmachen und dann entstehen zwei Nasiks der Hauptklasse (may be transformed into Caissan beauties?). by transforming C_1 and C_2 into the umpolarisierte (repolarized) $C_1^{(p)}$ and $C_2^{(p)}$ by shifting the jth row of C_i to the left $j - 1$ entries (with wrap-around), $i = 1, 2; j = 1, 2, \ldots, 8$. We observe that the first row of C_i and the first row of $C_i^{(p)}$ coincide and the diagonal of C_i is the first column of $C_i^{(p)}, i = 1, 2$. We will call $C_i^{(p)}$ the “polarized partner” of $C_i, i = 1, 2$. We have

$$

We find that $C_1^{(p)}$ and $C_2^{(p)}$ are Caïssan beauties, i.e., pandiagonal, CSP2- and CSP3-magic, and in addition both $C_1^{(p)}$ and $C_2^{(p)}$ are

1. H-associated,
2. keyed, with magic key $\kappa = 2496$,
3. 4-pac, and have
4. rank 3, and index 1 but neither $C_1^{(p)}$ nor $C_2^{(p)}$ is EP.

The Cashmore magic matrices C_1 and C_2 both have rank 5 and index 1.

DEFINITION 3.3.2. A magic matrix M is a “Cashmore beauty” whenever M is

1. a Caïssan magic matrix (pandiagonal and CSP2-magic),
2. half CSP3-magic, i.e., the n forwards but not the n backwards CSP3-paths of M are magic, or the n backwards but not the n forwards CSP3-paths of M are magic, and
3. semi-H-associated,
4. the polarized partner $M^{(p)}$ is a Caïssan beauty (pandiagonal, CSP2- and CSP3-magic).

CLAIM 3.3.1. We claim that all positive odd powers C_{2q+1} and $(C_i^\#)_{2q+1}$ are Cashmore beauties, $i = 1, 2; q = 0, 1, \ldots$

Bidov [67, Fig. 19] gives a magic square, our C_3, which he finds to be viermal so schachlich (four times more chesslike) than C_1 and C_2. We find that C_3 is actually less Caïssan in that its polarized partner $C_3^{(p)}$ is not CSP2-magic! And so C_3 is not a Cashmore beauty. We have

$$C_3 = \begin{pmatrix}
50 & 1 & 29 & 46 & 15 & 64 & 36 & 19 \\
30 & 47 & 16 & 60 & 35 & 18 & 49 & 5 \\
12 & 59 & 34 & 17 & 53 & 6 & 31 & 48 \\
33 & 21 & 54 & 7 & 32 & 44 & 11 & 58 \\
55 & 8 & 28 & 43 & 10 & 57 & 37 & 22 \\
27 & 42 & 9 & 61 & 38 & 23 & 56 & 4 \\
13 & 62 & 39 & 24 & 52 & 3 & 26 & 41 \\
40 & 20 & 51 & 2 & 25 & 45 & 14 & 63 \\
\end{pmatrix}, \quad C_3^{(p)} = \begin{pmatrix}
50 & 47 & 34 & 7 & 10 & 23 & 26 & 63 \\
30 & 59 & 54 & 43 & 38 & 3 & 14 & 19 \\
12 & 21 & 28 & 61 & 52 & 45 & 36 & 5 \\
33 & 8 & 9 & 24 & 25 & 64 & 49 & 48 \\
55 & 42 & 39 & 2 & 15 & 18 & 31 & 58 \\
27 & 62 & 51 & 46 & 35 & 6 & 11 & 22 \\
13 & 20 & 29 & 60 & 53 & 44 & 37 & 4 \\
40 & 1 & 16 & 17 & 32 & 57 & 56 & 41 \\
\end{pmatrix}$$

(3.3.8)

Like C_1 and C_2, the Caïssan magic matrix C_3 also has the n forwards but not the n backwards CSP3-paths magic and is semi-H-associated in that C_3 satisfies (3.3.5).
To obtain $C_3^{(p)}$ from C_3 we transpose the procedure used to obtain $C_i^{(p)}$, $i = 1, 2$. We shift the jth column of C_3 up $j - 1$ entries (with wrap-around), $i = 1, 2; j = 1, 2, \ldots, 8$. We observe that the first column of C_3 and the first column of $C_3^{(p)}$ coincide and the main diagonal of C_3 is the first row of $C_3^{(p)}$.

We find that $C_3^{(p)}$ is not CSP2-magic, a surprise! It is, however, like $C_1^{(p)}$ and $C_2^{(p)}$, both pandiagonal and CSP3-magic, and H-associated and keyed. But $C_3^{(p)}$

(1) has magic key $\kappa = 0$,

(2) is not 4-pac, and

(3) has rank 4, and index 3 (and so cannot be EP).

The Caïssan magic matrix C_3 has rank 5 and index 1.
3.4. Generalization of the Cashmore (1907) algorithm. Cashmore [52] (1907) described a procedure (which we believe he used) to generate the magic matrices C_1 and C_2, see (3.3.7) above. We now generalize this method. Let

$$ P_1 = \begin{pmatrix} a & b & c & d \\ \hat{a} & \hat{b} & \hat{c} & \hat{d} \\ b & c & d & \hat{a} \end{pmatrix}, \quad (3.4.1) $$

where $\hat{a} = 9 - a$, $\hat{b} = 9 - b$, $\hat{c} = 9 - c$, $\hat{d} = 9 - d$. To create C_1 and C_2, Cashmore [52] chose

$$ a = 3, \quad b = 1, \quad c = 4, \quad d = 7. \quad (3.4.2) $$

We will assume (at least implicitly) only that a, b, c, d are any positive integers between 1 and 8, inclusive. Let $\hat{P}_1 = 9E - P_1$, where E here is the 4×4 matrix with each entry equal to 1, and

$$ P = \begin{pmatrix} P_1 \\ \hat{P}_1 \\ P_1 \end{pmatrix}, \quad (3.4.3) $$

Let the 8×2 matrix

$$ Q_1 = \begin{pmatrix} q \\ \hat{q} \\ q \end{pmatrix}, \quad \text{where } q = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \quad \text{and } \hat{q} = 9e - q, \quad (3.4.4) $$

and where e here is the 4×1 vector with each entry equal to 1. To create C_1 and C_2, Cashmore [52] chose

$$ x = 3, \quad y = 7, \quad z = 5, \quad t = 1. \quad (3.4.5) $$

We will assume (at least implicitly) only that x, y, z, t are any positive integers between 1 and 8, inclusive. Let the 8×8 matrix

$$ Q = \begin{pmatrix} Q_1 \\ Q_1 \\ Q_1 \\ Q_1 \end{pmatrix}. \quad (3.4.6) $$

Then, using an “Euler-type algorithm” [52], we find the 8×8 magic matrix

$$ M_1 = 8(Q - E) + P = $$

$$ \begin{pmatrix} 8x + a & 64 - 8x + b & 8x + c & 64 - 8x + d & 8x + 1 - a & 73 - 8x - b & 8x + 1 - c & 73 - 8x - d \\ 8y + 8 + d & 73 - 8y - a & 8y + 1 - b & 73 - 8y - c & 8y + 1 - d & 64 - 8y + a & 8y + 8 + b & 64 - 8y + c \\ 8z + 1 - c & 73 - 8z - d & 8z + 8 + a & 64 - 8z + b & 8z + 8 + c & 64 - 8z + d & 8z + 1 - a & 73 - 8z - b \\ 8t + 8 + b & 64 - 8t + c & 8t + 8 + d & 73 - 8t - a & 8t + 1 - b & 73 - 8t - c & 8t + 1 - d & 64 - 8t + a \\ 73 - 8x - a & 8x + 1 - b & 73 - 8x - c & 8x + 1 - d & 64 - 8x + a & 8x + 8 + b & 64 - 8x + c & 8x + 8 + d \\ 73 - 8y - d & 8y + 8 + a & 64 - 8y + b & 8y + 8 + c & 64 - 8y + d & 8y + 1 - a & 73 - 8y - b & 8y + 1 - c \\ 64 - 8z + c & 8z + 8 + d & 73 - 8z - a & 8z + 1 - b & 73 - 8z - c & 8z + 1 - d & 64 - 8z + a & 8z + 8 + b \\ 73 - 8t - b & 8t + 1 - c & 73 - 8t - d & 8t + 8 + a & 64 - 8t + b & 8t + 8 + c & 64 - 8t + d & 8t + 1 - a \end{pmatrix}, \quad (3.4.7) $$

and its polarized partner $M_1^{(p)} =$

$$ \begin{pmatrix} 8x + a & 64 - 8x + b & 8x + c & 64 - 8x + d & 8x + 1 - a & 73 - 8x - b & 8x + 1 - c & 73 - 8x - d \\ 73 - 8y - a & 8y + 1 - b & 73 - 8y - c & 8y + 1 - d & 64 - 8y + a & 8y + 8 + b & 64 - 8y + c & 8y + 8 + d \\ 8z + 8 + a & 64 - 8z + b & 8z + 8 + c & 64 - 8z + d & 8z + 1 - a & 73 - 8z - b & 8z + 1 - c & 73 - 8z - d \\ 73 - 8t - a & 8t + 1 - b & 73 - 8t - c & 8t + 1 - d & 64 - 8t + a & 8t + 8 + b & 64 - 8t + c & 8t + 8 + d \\ 8y + 1 - a & 73 - 8y - b & 8y + 1 - c & 73 - 8y - d & 8y + 8 + a & 64 - 8y + b & 64 - 8y + c & 64 - 8y + d \\ 64 - 8z + a & 8z + 8 + b & 64 - 8z + c & 8z + 8 + d & 73 - 8z - a & 73 - 8z - c & 73 - 8z - b & 8z + 1 - d \\ 8t + 1 - a & 73 - 8t - b & 8t + 1 - c & 73 - 8t - d & 8t + 8 + a & 64 - 8t + b & 8t + 8 + c & 64 - 8t + d \end{pmatrix}. \quad (3.4.8) $$
both have magic sum \(m = 260 \) for all values of the parameters \(a, b, c, d, x, y, z, t \).

To obtain \(M_1^{(p)} \) from \(M_1 \) we shift the \(j \)-th row of \(M_1 \) to the left \(j - 1 \) entries (with wrap-around). We observe that the first row of \(M_1 \) and the first row of \(M_1^{(p)} \) coincide and the diagonal of \(M_1 \) is the first column of \(M_1^{(p)} \).

Moreover, we find the \(8 \times 8 \) magic matrix

\[
M_2 = 8(P - E) + Q =
\]

\[
\begin{pmatrix}
8a - 8 + x & 8b + 1 - x & 8c - 8 + x & 8d + 1 - x & 64 - 8a + x & 73 - 8b - x & 64 - 8c + x & 73 - 8d - x \\
8d - 8 + y & 73 - 8a - y & 64 - 8b + y & 73 - 8c - y & 64 - 8d + y & 8a + 1 - y & 8b - 8 + y & 8c + 1 - y \\
64 - 8c + z & 73 - 8d - z & 8a - 8 + z & 8b + 1 - z & 8c - 8 + z & 8d + 1 - z & 64 - 8a + z & 73 - 8b - z \\
8b - 8 + t & 8c + 1 - t & 8d - 8 + t & 73 - 8a - t & 64 - 8b + t & 73 - 8c - t & 64 - 8d + t & 8a + 1 - t \\
73 - 8a - x & 64 - 8b + x & 73 - 8c - x & 64 - 8d + x & 8a + 1 - x & 8b - 8 + x & 8c + 1 - x & 8d - 8 + x \\
73 - 8d - y & 8a - 8 + y & 8b + 1 - y & 8c - 8 + y & 8d + 1 - y & 64 - 8a + y & 73 - 8b - y & 64 - 8c + y \\
8c + 1 - z & 8d - 8 + z & 73 - 8a - z & 64 - 8b + z & 73 - 8c - z & 64 - 8d + z & 8a + 1 - z & 8b - 8 + z \\
73 - 8b - t & 64 - 8c + t & 73 - 8d - t & 8a - 8 + t & 8b + 1 - t & 8c - 8 + t & 8d + 1 - t & 64 - 8a + t \\
\end{pmatrix}, \quad (3.4.9)
\]

and its polarized partner \(M_2^{(p)} = \)

\[
\begin{pmatrix}
8a - 8 + x & 8b + 1 - x & 8c - 8 + x & 8d + 1 - x & 64 - 8a + x & 73 - 8b - x & 64 - 8c + x & 73 - 8d - x \\
73 - 8a - y & 64 - 8b + y & 73 - 8c - y & 64 - 8d + y & 8a + 1 - y & 8b - 8 + y & 8c + 1 - y & 8d - 8 + y \\
8a - 8 + z & 8b + 1 - z & 8c - 8 + z & 8d + 1 - z & 64 - 8a + z & 73 - 8b - z & 64 - 8c + z & 73 - 8d - z \\
73 - 8a - t & 64 - 8b + t & 73 - 8c - t & 64 - 8d + t & 8a + 1 - t & 8b - 8 + t & 8c + 1 - t & 8d - 8 + t \\
8a + 1 - x & 8b - 8 + x & 8c + 1 - x & 8d - 8 + x & 73 - 8a - z & 64 - 8b + x & 73 - 8c - x & 64 - 8d + x \\
64 - 8a + y & 73 - 8b - y & 64 - 8c + y & 73 - 8d - y & 8a - 8 + y & 8b + 1 - y & 8c - 8 + y & 8d + 1 - y \\
8a + 1 - z & 8b - 8 + z & 8c + 1 - z & 8d - 8 + z & 73 - 8a - z & 64 - 8b + z & 73 - 8c - z & 64 - 8d + z \\
64 - 8a + t & 73 - 8b - t & 64 - 8c + t & 73 - 8d - t & 8a - 8 + t & 8b + 1 - t & 8c - 8 + t & 8d + 1 - t \\
\end{pmatrix}, \quad (3.4.10)
\]

We find that for all choices of \(a, b, c, d \) and \(x, y, z, t \), both \(M_1 \) and \(M_2 \) each have rank 5 and index 1 and are half-\(H \)-associated, and both are Caissan magic matrices (pandiagonal and CSP2-magic) and both are half-CSP3-magic.

The polarized partners \(M_1^{(p)} \) and \(M_2^{(p)} \), however, for all choices of \(a, b, c, d \) and \(x, y, z, t \), each have rank 3 and index 1 and are \(H \)-associated and 4-pac, and both are Caissan beauties (pandiagonal, and CSP2- and CSP3-magic). And so both \(M_1 \) and \(M_2 \) are Cashmore beauties for all choices of \(a, b, c, d \) and \(x, y, z, t \), But, in general, neither \(M_1^{(p)} \) nor \(M_2^{(p)} \) is EP.

If, however, we choose

\[
(\hat{a}) : \quad x = \hat{a} = 9 - a, \quad y = b, \quad z = \hat{c} = 9 - c, \quad t = d,
\]

then \(M_1^{(p)} \) is

\[
\begin{pmatrix}
64 - 7a & 8a - 8 + b & 64 - 8a + c & 8a - 8 + d & 73 - 9a & 8a + 1 - b & 73 - 8a - c & 8a + 1 - d \\
73 - 8b - a & 7b + 1 & 73 - 8b - c & 8b + 1 - d & 64 - 8b + a & 9b - 8 & 64 - 8b + c & 8b - 8 + d \\
64 - 8c + a & 8c - 8 + b & 64 - 7c & 8c - 8 + d & 73 - 8c - a & 8c + 1 - b & 73 - 9c & 8c + 1 - d \\
73 - 8d - a & 8d + 1 - b & 73 - 8d - c & 7d + 1 & 64 - 8d + a & 8d - 8 + b & 64 - 8d + c & 9d - 8 \\
9a - 8 & 64 - 8a + b & 8a - 8 + c & 64 - 8a + d & 7a + 1 & 73 - 8a - b & 8a + 1 - c & 73 - 8a - d \\
8b + 1 - a & 73 - 9b & 8b + 1 - c & 73 - 8b - d & 8b - 8 + a & 64 - 7b & 8b - 8 + c & 64 - 8b + d \\
8c - 8 + a & 64 - 8c + b & 9c - 8 & 64 - 8c + d & 8c + 1 - a & 73 - 8c - b & 7c + 1 & 73 - 8c - d \\
8d + 1 - a & 73 - 8d - b & 8d + 1 - c & 73 - 9d & 8d - 8 + a & 64 - 8d + b & 8d - 8 + c & 64 - 7d \\
\end{pmatrix}, \quad (3.4.12)
\]
and \(M_{2(a)}^{(p)} = H(M_{1(a)}^{(p)})^t H \)

\[
\begin{pmatrix}
7 + a + 1 & 8b - 8 + a & 8c + 1 - a & 8d - 8 + a & 73 - 9a & 64 - 8b + a & 73 - 8c - a & 64 - 8d + a \\
73 - 8a - b & 64 - 7b & 73 - 8c - b & 64 - 8d + b & 8a + 1 - b & 9b - 8 & 8c + 1 - b & 8d - 8 + b \\
8a + 1 - c & 8b - 8 + c & 7c + 1 & 8d - 8 + c & 73 - 8a - c & 64 - 8b + c & 73 - 9c & 64 - 8d + c \\
73 - 8a - d & 64 - 8b - 8d & 73 - 8c - d & 73 - 9d & 8a + 1 - d & 8b - 8 + d & 8c + 1 - d & 9d - 8 \\
8a - 8 + a & 8b + 1 - a & 8c - 8 + a & 8d + 1 - a & 64 - 7a & 73 - 8b - a & 64 - 8b + a & 64 - 7b & 64 - 8b + d \\
8c - 8 + a & 64 - 8c + b & 9c - 8 & 64 - 8c + d & 8a + 1 - a & 73 - 8c - b & 7c + 1 & 73 - 8c - d & 64 - 7d \\
8d + 1 - a & 64 - 8c - b & 73 - 9d & 8d - 8 + a & 64 - 8d + a & 8a + 1 - c & 73 - 9c & 73 - 8d - c & 64 - 7d \\
64 - 7c & 8a - 8 + b & 64 - 8a + c & 8a - 8 + d & 73 - 9a & 8a + 1 - b & 73 - 8a - c & 8a + 1 - d & 73 - 8d - c \\
73 - 8a - a & 7b + 1 & 73 - 8b - c & 8b + 1 - d & 64 - 8b - a & 9b - 8 & 64 - 8b + c & 8b + 1 - d & 73 - 8d - c \\
64 - 8c + a & 8c - 8 + b & 64 - 7c & 8c - 8 + d & 73 - 8c - a & 8c + 1 - b & 73 - 9c & 8c + 1 - d & 73 - 8d - c \\
73 - 8d - a & 8d + 1 - b & 73 - 8d - c & 7d + 1 & 64 - 8d + a & 8d - 8 + b & 64 - 8d + c & 9d - 8 & 73 - 8d - a \\
\end{pmatrix}
\]

Both \(M_{1(a)}^{(p)} \) and \(M_{2(a)}^{(p)} \) are EP for all choices of \(a, b, c, d \). If we choose \(a, b, c, d \) so that \(a + b + c + d = 10 \) then both \(M_{1(a)}^{(p)} \) and \(M_{2(a)}^{(p)} \) have magic key \(\kappa = -2688 \).

If we choose

\[
\hat{b} : \quad x = a, \quad y = \hat{b} = 9 - b, \quad z = c, \quad t = \hat{d} = 9 - d,
\]

then \(M_{1(\hat{b})}^{(p)} = \)

\[
\begin{pmatrix}
9a - 8 & 64 - 8a + b & 8a - 8 + c & 64 - 8a + d & 7a + 1 & 73 - 8a - b & 8a + 1 - c & 73 - 8a - d \\
8b + 1 - a & 73 - 8b & 8b - 8 + c & 73 - 8b - d & 8b - 8 + a & 64 - 7b & 8b - 8 + c & 64 - 8b + d \\
8c - 8 + a & 64 - 8c + b & 9c - 8 & 64 - 8c + d & 8c + 1 - a & 73 - 8c - b & 7c + 1 & 73 - 8c - d & 64 - 7d \\
8d + 1 - a & 64 - 8c - b & 73 - 9d & 8d - 8 + a & 64 - 8d + a & 8a + 1 - c & 73 - 9c & 73 - 8d - c & 64 - 7d \\
64 - 7a & 8a - 8 + b & 64 - 8a + c & 8a - 8 + d & 73 - 9a & 8a + 1 - b & 73 - 8a - c & 8a + 1 - d & 73 - 8d - c \\
73 - 8a - a & 7b + 1 & 73 - 8b - c & 8b + 1 - d & 64 - 8b - a & 9b - 8 & 64 - 8b + c & 8b + 1 - d & 73 - 8d - c \\
64 - 8c + a & 8c - 8 + b & 64 - 7c & 8c - 8 + d & 73 - 8c - a & 8c + 1 - b & 73 - 9c & 8c + 1 - d & 73 - 8d - c \\
73 - 8d - a & 8d + 1 - b & 73 - 8d - c & 7d + 1 & 64 - 8d + a & 8d - 8 + b & 64 - 8d + c & 9d - 8 & 73 - 8d - a \\
\end{pmatrix}
\]

and \(M_{2(\hat{b})}^{(p)} = (M_{1(\hat{b})}^{(p)})^t = C_{s=(a,b,c,d),t=9,u=8} \)

\[
\begin{pmatrix}
9a - 8 & 8b + 1 - a & 8c - 8 + a & 8d + 1 - a & 64 - 7a & 73 - 8b - a & 64 - 8c + a & 73 - 8d - a \\
64 - 8a + b & 73 - 9b & 64 - 8c + b & 73 - 8d - b & 8a + 1 - b & 7b + 1 & 8c - 8 + b & 8d + 1 - b \\
8a - 8 + c & 8b + 1 - c & 9c - 8 & 8d + 1 - c & 64 - 8a + c & 73 - 8b - c & 64 - 7c & 73 - 8d - c \\
64 - 8a + d & 8b + 1 - c & 9c - 8 & 8d + 1 - c & 64 - 8a + c & 73 - 8b - c & 64 - 7c & 73 - 8d - c \\
7a + 1 & 8b + 1 - a & 8c + 1 - a & 8d + 1 - a & 64 - 8b + a & 73 - 9a & 64 - 8b + a & 73 - 8c - a & 64 - 8d + a \\
73 - 8a - b & 64 - 7b & 73 - 8c - b & 64 - 8d - b & 8a + 1 - b & 9b - 8 & 8c + 1 - b & 8d - 8 + b \\
8a + 1 - c & 8b + 1 - c & 7c + 1 & 8d - 8 + c & 73 - 8a - c & 64 - 8b + c & 73 - 9c & 64 - 8d + c \\
73 - 8a - d & 64 - 8d - b & 73 - 8c - d & 64 - 7d & 8a + 1 - d & 8b - 8 + d & 8c + 1 - d & 9d - 8 & 73 - 8d - a \\
\end{pmatrix}
\]

are both EP for all choices of \(a, b, c, d \). Here \(C_{s=(a,b,c,d),t=9,u=8} \) is the Cavendish matrix \((3.2.5)\) with parameters \(s = (a, b, c, d) \), \(t = 9, u = 8 \). The magic key

\[
\kappa(M_{1(\hat{b})}^{(p)}) = \kappa(M_{2(\hat{b})}^{(p)}) = 128(81 - 9(a + b + c + d) + (a^2 + b^2 + c^2 + d^2)) = \kappa_1,
\]

say. We recall that the Cavendish matrix \(C_{s,t,u} \) has magic key \((3.2.6)\)

\[
\kappa(C_{s,t,u}) = 128(t^2 - t(a + b + c + d) + a^2 + b^2 + c^2 + d^2) = \kappa_2,
\]

say. And clearly \(\kappa_1 = \kappa_2 \) when \(t = 9 \).

We now choose \(a = 1 \) so that the lead \((1,1)\) entry of \(M_{1(\hat{b})}^{(p)} = M_{1(\hat{b}),a=1}^{(p)} \) equals 1 to match Drury’s 46080 classic Caissan beauties:
If we then choose, in addition to $a = 1$, the triple

\[
\{b, c, d\} = \{2, 3, 4\}, \{2, 3, 5\}, \{2, 4, 6\}, \{2, 5, 6\}, \{3, 4, 7\}, \{3, 5, 7\}, \{4, 6, 7\} \text{ or } \{5, 6, 7\},
\]

then the magic key (3.4.17) $\kappa = 2688$. We found that precisely 192 of Drury’s 46080 classic Caïssan beauties are EP, with 96 having magic key $\kappa = 2688$. These 96 may be generated from $M^{(p)}_{1(b), a=1}$ by choosing b, c, d equal to one of the 8 choices in (3.4.20), each of which has 6 permutations that leaves $\kappa = 2688$ unchanged. This yields $48 = 8 \times 6$, with the other 48 found by transposition.
When \(a = 1, b = 2, c = 3, d = 4 \) and \(x = 1, y = 7, z = 3, t = 5 \) (and so \((\hat{\hat{b}})\) : holds) then

\[
M_{1(b)}(\hat{\hat{b}}, a=1, b=2, c=3, d=4) = \begin{pmatrix}
1 & 58 & 3 & 60 & 8 & 63 & 6 & 61 \\
16 & 55 & 14 & 53 & 9 & 50 & 11 & 52 \\
17 & 42 & 19 & 44 & 24 & 47 & 22 & 45 \\
32 & 39 & 30 & 37 & 25 & 34 & 27 & 36 \\
57 & 2 & 59 & 4 & 64 & 7 & 62 & 5 \\
56 & 15 & 54 & 13 & 49 & 10 & 51 & 12 \\
41 & 18 & 43 & 20 & 48 & 23 & 46 & 21 \\
40 & 31 & 38 & 29 & 33 & 26 & 35 & 28
\end{pmatrix} = U, \quad (3.4.21)
\]

the Ursus matrix. Moreover,

\[
u^2 = \begin{pmatrix}
9570 & 8674 & 9122 & 8226 & 8002 & 7554 & 8450 & 8002 \\
8674 & 9186 & 8354 & 8866 & 7554 & 8386 & 7874 & 8706 \\
9122 & 8354 & 8930 & 8162 & 8450 & 7874 & 8642 & 8066 \\
8226 & 8866 & 8162 & 8802 & 8002 & 8706 & 8066 & 8770 \\
8002 & 7554 & 8450 & 8002 & 9570 & 8674 & 9122 & 8226 \\
7554 & 8386 & 7874 & 8706 & 8642 & 8354 & 8930 & 8162 \\
8450 & 7874 & 8642 & 8066 & 9122 & 8354 & 8930 & 8162 \\
8002 & 8706 & 8066 & 8770 & 8226 & 8866 & 8162 & 8802
\end{pmatrix} \quad (3.4.22)
\]

is symmetric and block-Latin.

CLAIM 3.4.1. The other 96 of the 192 EP Drury Caïssan beauties all have magic key \(\kappa = 8736 \) and we claim that none of these 96 can be generated by an EP Cashmore beauty. For example, consider the Caïssan beauty

\[
X = \begin{pmatrix}
1 & 62 & 11 & 56 & 43 & 24 & 33 & 30 \\
63 & 4 & 53 & 10 & 21 & 42 & 31 & 36 \\
6 & 57 & 16 & 51 & 48 & 19 & 38 & 25 \\
60 & 7 & 50 & 13 & 18 & 45 & 28 & 39 \\
22 & 41 & 32 & 35 & 64 & 3 & 54 & 9 \\
44 & 23 & 34 & 29 & 2 & 61 & 12 & 55 \\
17 & 46 & 27 & 40 & 59 & 8 & 49 & 14 \\
47 & 20 & 37 & 26 & 5 & 58 & 15 & 52
\end{pmatrix}, \quad (3.4.23)
\]

which is EP with magic key \(\kappa = 8736 \). We believe that there are no values of \(a, b, c, d, x, y, z, t \) so that \(X \) (3.4.23) can be formed from either \(M_1^{(p)} \) \((3.4.8) \) or \(M_2^{(p)} \) \((3.4.10) \). Moreover,

\[
x^2 = \begin{pmatrix}
11306 & 5762 & 10466 & 6266 & 7778 & 8954 & 8618 & 8450 \\
5762 & 10986 & 6522 & 10530 & 8954 & 8098 & 8194 & 8554 \\
10466 & 6522 & 10026 & 6786 & 8618 & 8194 & 9058 & 7930 \\
6266 & 10530 & 6786 & 10218 & 8450 & 8554 & 7930 & 8866 \\
7778 & 8954 & 8618 & 8450 & 11306 & 5762 & 10466 & 6266 \\
8954 & 8098 & 8194 & 8554 & 5762 & 10986 & 6522 & 10530 \\
8618 & 8194 & 9058 & 7930 & 10466 & 6522 & 10026 & 6786 \\
8450 & 8554 & 7930 & 8866 & 10530 & 6786 & 10218
\end{pmatrix}
\]

is symmetric and block-Latin.
When

\[a = 3, \ b = 1, \ c = 4, \ d = 7 \text{ and } \ x = 3, \ y = 7, \ z = 5, \ t = 1 \]

as given in (3.4.2) and (3.4.5), respectively, then we find

\[
M_1 = C_1 = \begin{pmatrix}
19 & 41 & 20 & 47 & 22 & 48 & 21 & 42 \\
55 & 14 & 56 & 13 & 50 & 11 & 49 & 12 \\
37 & 26 & 35 & 25 & 36 & 31 & 38 & 32 \\
1 & 60 & 7 & 62 & 8 & 61 & 2 & 59 \\
46 & 24 & 45 & 18 & 43 & 17 & 44 & 23 \\
10 & 51 & 9 & 52 & 15 & 54 & 16 & 53 \\
28 & 39 & 30 & 40 & 29 & 34 & 27 & 33 \\
64 & 5 & 58 & 3 & 57 & 4 & 63 & 6
\end{pmatrix}, \quad M_2 = C_2 = \begin{pmatrix}
19 & 6 & 27 & 54 & 43 & 62 & 35 & 14 \\
55 & 42 & 63 & 34 & 15 & 18 & 7 & 26 \\
37 & 12 & 21 & 4 & 29 & 52 & 45 & 60 \\
1 & 32 & 49 & 48 & 57 & 40 & 9 & 24 \\
46 & 59 & 38 & 11 & 22 & 3 & 30 & 51 \\
10 & 23 & 2 & 31 & 50 & 47 & 58 & 39 \\
28 & 53 & 44 & 61 & 36 & 13 & 20 & 5 \\
64 & 33 & 16 & 17 & 8 & 25 & 56 & 41
\end{pmatrix},
\]

as obtained by Cashmore [52, Fig. 1, 2 (1907)].

Furthermore,

\[
M_1^{(p)} = C_1^{(p)} = \begin{pmatrix}
19 & 41 & 20 & 47 & 22 & 48 & 21 & 42 \\
14 & 56 & 13 & 50 & 11 & 49 & 12 & 55 \\
35 & 25 & 36 & 31 & 38 & 32 & 37 & 26 \\
62 & 8 & 61 & 2 & 59 & 1 & 60 & 7 \\
43 & 17 & 44 & 23 & 46 & 24 & 45 & 18 \\
54 & 16 & 53 & 10 & 51 & 9 & 52 & 15 \\
27 & 33 & 28 & 39 & 30 & 40 & 29 & 34 \\
6 & 64 & 5 & 58 & 3 & 57 & 4 & 63
\end{pmatrix}, \quad M_2^{(p)} = C_2^{(p)} = \begin{pmatrix}
19 & 6 & 27 & 54 & 43 & 62 & 35 & 14 \\
42 & 63 & 34 & 15 & 18 & 7 & 26 & 55 \\
21 & 4 & 29 & 52 & 45 & 60 & 37 & 12 \\
48 & 57 & 40 & 9 & 24 & 1 & 32 & 49 \\
22 & 3 & 30 & 51 & 46 & 59 & 38 & 11 \\
47 & 58 & 39 & 10 & 23 & 2 & 31 & 50 \\
20 & 5 & 28 & 53 & 44 & 61 & 36 & 13 \\
41 & 64 & 33 & 16 & 17 & 8 & 25 & 56
\end{pmatrix},
\]

and neither \(M_1^{(p)} \) nor \(M_2^{(p)} \) is EP and neither (3.4.11) nor (3.4.14) is satisfied.

OPEN QUESTION 3.4.1. Is there an EP \(M_1^{(p)} \) or \(M_2^{(p)} \) with neither \(\hat{a} : (3.4.11) \) nor \(\hat{b} : (3.4.14) \) satisfied? To answer this it seems we need only check for symmetry of \((M_j^{(p)})^2\), \(j = 1, 2 \).

CLAIM 3.4.2. The magic matrix \(C_3 \) given by Bidev [67, Fig. 19], our (3.3.8), is not a Cashmore beauty and so we claim that there are no values of \(a, b, c, d; \ x, y, z, t \) such that

\[C_3 = M_1' \quad \text{or} \quad M_2'. \]

> Mr. M. Cashmore showed how chess magic squares, i.e. squares of numbers which add up to the same amount along every path across the square in the direction of a rook’s, a bishop’s, or a knight’s move, can be constructed by superposing on each other two types of subsidiary squares, which can be formed by simple rules.

online at the Nature Publishing Group and online at Google Books. Abstract also in the *Report of the Seventy-Fifth Meeting of the British Association for the Advancement of Science: South Africa, August and September 1905*: Transactions of Section A.—Mathematical and Physical Science, Johannesburg (Friday, September 1, 1905), p. 350: full *Report* online at Google Books & in the S2A3 Biographical Database of Southern African Science, online at S2A3. On 1 September 1905 Cashmore read two papers at the joint meeting of the British and South African Associations for the Advancement of Science in Johannesburg. The first dealt with an aspect of recreational mathematics, namely “Chess magic squares”, that is, magic squares having a constant sum along every chess path. The method of construction was given, followed by an investigation into the number of possible chess magic squares, and an explanation of the theory of their construction. Both papers were published in Addresses and papers read at the joint meeting of the British and South African Associations for the Advancement of Science, South Africa, September 1905. In 1906, still a member of the South African Association for the Advancement of Science, Cashmore was living in London. There he showed himself to be not so well-informed about his subject, by publishing a monograph entitled *Fermat’s Last Theorem: proofs by elementary algebra* [Third edition, pub. G. Bell & Sons, London, 1921 (First edition 1916, revised 1918)].
4. 4×4 Magic Matrices

We now discuss some properties of 4×4 magic matrices, which special emphasis on those that have rank 3 and index 1.

4.1. **Pandiagonal 4×4 magic matrices are 4-pac and H-associated.** As we have seen (where? TBC) when $n = 8$ the three properties: (a) 4-pac, (b) H-associated and (c) pandiagonal are not equivalent but when $n = 4$ they are!

THEOREM 4.1.1. Let M be a 4×4 pandiagonal magic matrix. Then M is 4-pac and H-associated.

Proof of Theorem 4.1.1. Let m denote the magic sum of M and \tilde{E} the 4×4 matrix with every entry equal to 1. Then M may be written, in general, as follows \[156, 202, 275\]

$$
M = m\tilde{E} + \begin{pmatrix}
 p + r & -p + s & p - r & -p - s \\
 q - r & -q - s & q + r & -q + s \\
 -p + r & p + s & -p - r & p - s \\
 -q - r & q - s & -q + r & q + s
\end{pmatrix}
$$

(4.1.1)

$$
= \begin{pmatrix}
 a + b + e & c + d + e & a + c & b + d \\
 a + c + d & b & a + b + d + e & c + e \\
 b + d + e & a + c + e & c + d & a + b \\
 c & a + b + d & b + e & a + c + d + e
\end{pmatrix}.
$$

(4.1.2)

Theorem 4.1.1 then follows at once (by inspection) from (4.1.1) or (4.1.2).

The magic key κ of M as defined in in (4.1.1) and (4.1.2) is

$$
\kappa = 8(pr + sq) = 4(ac + cd - bd).
$$

(4.1.3)

When the magic key $\kappa \neq 0$ and the magic sum $m \neq 0$ then the 4×4 magic matrix M has rank 3 and index 1, and hence is EP if and only if M^2 is symmetric (Theorem 2.4.3). We find that with M defined as in (4.1.1) and (4.1.2),

$$
M^2 - (M^2)' = \sigma \begin{pmatrix}
 0 & 1 & 0 & -1 \\
 -1 & 0 & 1 & 0 \\
 0 & -1 & 0 & 1 \\
 1 & 0 & -1 & 0
\end{pmatrix} = T,
$$

(4.1.4)

say, where

$$
\sigma = 4(ps - qr) = 2(ac - ab - de).
$$

(4.1.5)

It follows at once that M is EP if and only if

$$
ps = qr \iff ac = ab + de.
$$

(4.1.6)
4.2. 16th century 4×4 magic squares with optional magic sum. An early method for constructing 4×4 magic squares having any optional magic sum $m = 2a$ is given in Smṛtitattva, the 16th-century encyclopaedia on Hindu Law by the Bengali scholar Raghunandana Bhaṭṭacārya (fl. c. 1520/1570). The magic matrix

$$\mathbf{M}(a) = \begin{pmatrix}
1 & 8 & a-7 & a-2 \\
a-5 & a-4 & 3 & 6 \\
7 & 2 & a-1 & a-8 \\
a-3 & a-6 & 5 & 4
\end{pmatrix}$$

(4.2.1)

has magic sum $m = 2a$, magic key $\kappa = 16a - 136$, and is pandiagonal for all values of a, and hence 4-pac and \mathbf{H}-associated for all values of a (Theorem 4.1.1). When the magic sum $m \neq 0$ and the magic key $\kappa \neq 0$, i.e., $a \neq 0$ or $8\frac{1}{2}(= 136/16)$, then $\mathbf{M}(a)$ has rank 3 and index 1 and is EP if and only if $\mathbf{M}^2(a)$ is symmetric. We find that

$$\mathbf{M}^2(a) - (\mathbf{M}^2(a))^T = \sigma \begin{pmatrix}
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 \\
1 & 0 & -1 & 0
\end{pmatrix} = \mathbf{T},$$

(4.2.2)

as in (4.1.4), but where now

$$\sigma = 4(a-11).$$

(4.2.3)

It follows at once that $\mathbf{M}(a)$ is EP if and only if $a = 11$. But when $a = 11$ the matrix $\mathbf{M}(a)$ is not classic: in fact $\mathbf{M}(a)$ is classic only when $a = 17$. [264]
4.3. 15th century 4×4 classic EP Shortrede–Gwalior magic matrix. We have identified relatively few magic matrices that are EP. Of the 46080 Drury–Caïssan beauties only 192 are EP and of the 880 classic 4×4 magic matrices only 24 are EP. Only one of the 16th-century 4×4 magic squares $M(a)$ (4.2.1) is EP ($a = 11$) but it is not classic. All of these are V-associated and so have a magic Moore–Penrose inverse, but only 8 of the classic 4×4 are pandiagonal (all 46080 Drury–Caïssan beauties are pandiagonal).

The oldest EP classic 4×4 magic matrix may be the “Shortrede–Gwalior magic square” defined by the “Shortrede–Gwalior magic matrix” G in (4.3.1) and discovered in 1841 [90 (1842)] by Robert Shortrede (1800–1866) but dated 1483:

$$G = \begin{pmatrix} 16 & 9 & 4 & 5 \\ 3 & 6 & 15 & 10 \\ 13 & 12 & 1 & 8 \\ 2 & 7 & 14 & 11 \end{pmatrix}, \quad G^2 = \begin{pmatrix} 345 & 281 & 273 & 257 \\ 281 & 313 & 257 & 305 \\ 273 & 257 & 345 & 281 \\ 257 & 305 & 281 & 313 \end{pmatrix}. \quad (4.3.1)$$

The Shortrede–Gwalior magic matrix G has rank 3 and index 1 and is EP since G^2 is symmetric (Theorem 2.4.3). In addition the matrix G is 4-pac, H-associated, and pandiagonal.

The 1842 article [90], which announced the discovery of the Shortrede–Gwalior magic square, is signed by “Captain Shortreede”, who almost surely was Captain (later Major-General) Robert Shortrede (1800–1868), with the extra “e” in “Shortreede” here a typo. From his obituary [100] we find that Robert Shortrede was born on 19 July 1800 in Jedburgh (Scotland, about halfway between Edinburgh and Newcastle Upon Tyne). Having “early evinced unusual aptitude for mathematics ... thinking that India presented ample scope for his talents in that direction, he obtained an appointment to that country”. The magic square defined by G was discovered in 1841 [90] in an old temple in Gwalior (Madhya Pradesh, about 120 km south of Agra).

On an Ancient Magic Square, cut in a Temple at Gwalior. By Captain Shortreede.

As every thing tending to throw any certain light on the antiquities of India has an interest, I send you the following inscription of a Magic Square, which I copied last year from an old temple in the hill fort of Gwalior. It bears the date सूर्य १४४० = A. D. 1483.

The temple is on the northern side of the hill, and at one time it has been a very magnificent edifice, though now it be sorely dilapidated.

There is another and larger ancient temple in the fort, of a peculiar form, which the Musalmans have converted into a Musjid.

If I remember rightly, the Magic Square is cut on the inner side of the northern wall, close to where the excavation has been made. I did not measure the dimensions; but the form is as follows:—

Figure 4.3.1: Comments by “Captain Shortreede” [90 (1842)] about the Shortrede–Gwalior magic square.
Shortrede went to India in 1822 and was appointed to the Deccan Survey. The Deccan Plateau extends over eight Indian states and encompasses a wide range of habitats, covering most of central and southern India. Shortrede was appointed to the Great Trigonometric Survey (GTS) in which he remained until 1845. The GTS was piloted in its initial stages by William Lambton (c. 1753–1823), and later by Sir George Everest (1790–1866). Among the many accomplishments of the GTS was the measurement of the height of the Himalayan giants: Everest, K2, and Kanchenjunga. In 1865, Mount Everest was named in Sir George Everest’s honour, despite his objections. Pandit Nain Singh Rawat (c. 1826–1882; Figure 4.3.3, left stamp) was one of the first of the pundits who explored the Himalayas for the British; Radhanath Sikdar (1813–1870; Figure 4.3.3 right stamp) was an Indian mathematician who, among many other things, calculated the height of Peak XV in the Himalayas and showed it to be the tallest mountain above sea level; Peak XV was later named Mount Everest (Figure 4.3.4, left panel).

Figure 4.3.2: (left panel) The original Shortrede–Gwalior magic square with entries in Sanskrit; (right panel) The fort at Gwalior, India 1984, Scott 1065.

Figure 4.3.3: The Great Trigonometric Survey, India 2004, Scott 2067a.
The Scottish historical novelist and poet Sir Walter Scott, 1st Baronet (1771–1832), was an “old and intimate friend of the Shortrede family” and both Shortrede and Scott studied at the University of Edinburgh.

Figure 4.3.4 (left panel) Mount Everest: India 2003, *Scott* 2008a; (right panel) Sir Walter Scott: Great Britain 1971, *Scott* 653.

Figure 4.3.5: TBC.
4.4. Shortrede’s “rhomboid” property: “rhomboidal” magic matrices.

It will be observed, that the places of the numbers 1, 2, 3, 4, form a rhomboid, as do also 5, 6, 7, 8; 9, 10, 11, 12; 13, 14, 15, 16. It may be remarked also, that the sum of every two alternate numbers taken diagonally is 17: and that all these properties will hold good if the lines be transposed vertically or horizontally in the same order; that is, if the top line be brought to the bottom; or if the left hand vertical line be carried over to the right.

Figure 4.4.1: Shortrede’s comments [90, p. 292 (1842)] “that the places of the numbers 1, 2, 3, 4 form a rhomboid”. And “that the sum of every two alternate numbers taken diagonally is 17” (Dudeney Type I or our H-associated).

Shortrede [90, (1842)] observed (Figure 4.4.1) that the Gwalior magic square defined by

\[
G = \begin{pmatrix}
16 & 9 & 4 & 5 \\
3 & 6 & 15 & 10 \\
13 & 12 & 1 & 8 \\
2 & 7 & 14 & 11
\end{pmatrix}
\] (4.4.1)

is H-associated and that it has a “rhomboid” property— the places of the numbers 1, 2, 3, 4 (bold-face red) in (4.4.1), form a “rhomboid”, as do the numbers 5, 6, 7, 8; 9, 10, 11, 12 and 13, 14, 15, 16. We will say that a magic matrix with such a rhomboid property is “rhomboidal”.

In Wikipedia [324] we find that a “rhomboid” is a parallelogram in which adjacent sides are of unequal lengths and the angles are all oblique (not equal to 90°). A parallelogram with sides of equal length is a “rhombus”; a parallelogram with right-angled corners is a “rectangle” and a rectangle with all sides of equal length is a “square”. A rhombus with acute angle 45° is sometimes called a “lozenge” [280] and a rhombus with acute angle

\[
90^\circ - 2 \tan^{-1}(\frac{1}{2}) = \tan^{-1}(2) - \tan^{-1}(\frac{1}{2}) \approx 37.870^\circ
\] (4.4.2)

is sometimes called a “diamond” [279]. We will adopt the following definition:

DEFINITION 4.4.1. An \(n \times n \) classic (magic) matrix with \(n = 4h \) doubly-even is “rhomboidal” whenever the places of the numbers 1, 2, 3, 4; 5, 6, 7, 8; 9, 10, 11, 12; \ldots; \(n^2 - 3, n^2 - 2, n^2 - 1, n^2 \) form \(n \) “rhomboids”, where a “rhomboid” is defined in the extended sense to include a diamond, lozenge, rectangle, rhombus, or square.
The Shortrede–Gwalior magic matrix \mathbf{G} is rhomboidal (Definition 4.4.1). If we define the distance between any two numbers in \mathbf{G} that are adjacent (either horizontally or vertically) as 1 unit, then the rhomboid defined by the red numbers and the other 3 (similar) rhomboids each have sides of lengths 2 and $\sqrt{5}$ units, and associated acute angle $\tan^{-1}(2) \approx 63.435^\circ$.

It seems that Euclid of Alexandria (fl. 300 BC) was the first to use the term “rhomboid” [153, Def. 22, pp. 188–189]:

Of quadrilateral figures, ... an oblong that which is right-angled but not equilateral; a rhombus that which is equilateral but not right-angled; and a rhomboid that which has its opposite sides and angles equal to one another but is neither equilateral nor right-angled.

![Figure 4.4.2: (left panel) “Rhomboïd with yellow lines” [308]: Netherlands 1994, Scott 851; (right panel) Photograph of Piet Mondrian with two of his paintings in his Paris atelier, c. October 1933 [200, p. 47].](image)

The stamp in Figure 4.4.2 (left panel), which the Scott Catalogue [308] calls “Rhomboid with yellow lines”, features two “rhomboïds” which are actually squares each tilted at 45°. The Dutch Postzegelcatalogus [227] identifies the stamp as “Compositie met gele lijnen” (Composition with yellow lines).

We believe that this stamp is based on the photograph [26] (Figure 4.4.2, right panel) by Charles Karsten of Piet Mondrian (1872–1944) in his atelier in Paris at 26, rue du Départ (near the Gare Montparnasse), c. October 1933. Mondrian’s 1933 painting “Lozenge Composition with Four Yellow Lines” [28] is shown on the left in the stamp and on the upper left in the photograph. Moreover, in the photograph is also shown (lower left) Mondrian’s painting “Composition with Double Line and Yellow”, unfinished. We believe that the original “Lozenge Composition with Four Yellow Lines” painting is in the Gemeentemuseum in The Hague which has a “marvellous series of works by Mondrian, ranging from moody Dutch landscapes to the sparkling Victory Boogie Woogie” [324].

26 Bax [200, p. 47] indicates that this photograph is “Courtesy of Karsten Archives, Nederlands Architectuurninstituut Rotterdam”, while the image of this photograph online is accompanied by a description of the Mondrian/De Stijl exhibition at the Centre Pompidou in Paris (December 2010–March 2011). See also [287].

27 The Dutch painter Pieter Cornelis Mondriaan (1872–1944), changed his name to Piet Mondrian in 1912.

28 Mondrian’s 1933 painting “Lozenge Composition with Four Yellow Lines”, displayed in full colour by Bax [200, p. 241], is apparently the first by Mondrian using coloured lines [324].
Shortrede ended his article [90] p. 293] with a "postscript" (Figure 4.4.3) presenting an arrangement of numbers which includes the magic square defined by G and 4 more magic squares defined by the magic matrices G_2 (boxed in red), $G_3, G_4,$ and $G_5,$ say:

$$G_2 = \begin{pmatrix} 9 & 4 & 5 & 16 \\ 6 & 15 & 10 & 3 \\ 12 & 1 & 8 & 13 \\ 7 & 14 & 11 & 2 \end{pmatrix}; \quad G_3 = \begin{pmatrix} 6 & 15 & 10 & 3 \\ 12 & 1 & 8 & 13 \\ 7 & 14 & 11 & 2 \\ 9 & 4 & 5 & 16 \end{pmatrix}; \quad (4.4.3)$$

$$G_4 = \begin{pmatrix} 1 & 8 & 13 & 12 \\ 14 & 11 & 2 & 7 \\ 4 & 5 & 16 & 9 \\ 15 & 10 & 3 & 6 \end{pmatrix}; \quad G_5 = \begin{pmatrix} 2 & 7 & 14 & 11 \\ 16 & 9 & 4 & 5 \\ 3 & 6 & 15 & 10 \\ 13 & 12 & 1 & 8 \end{pmatrix}. \quad (4.4.4)$$

We recall that a 4×4 H-associated magic matrix is 4-pac (4-ply and with the alternate couplets property) and pandiagonal.

We find that

1. G [4.3.1] has rank 3, index 1 (key $\kappa = 80$), is H-associated, rhomboidal and EP,
2. G_2 has rank 3, index 3 (key $\kappa = 0$), is H-associated, rhomboidal but not EP (index $\neq 1$),
3. G_3 has rank 3, index 1 (key $\kappa = 80$), is H-associated, EP but not rhomboidal,
4. G_4 has rank 3, index 1 (key $\kappa = 80$), is H-associated, rhomboidal but not EP,
5. G_5 has rank 3, index 3 (key $\kappa = 0$), is H-associated, not rhomboidal and not EP (index $\neq 1$)
The magic matrix M_5 (4.4.5) which defines the “Rouse Ball magic square” has rank 3, index 1 (key $\kappa = 48$), is H-associated, rhomboidal but not EP (M_5^2 not symmetric):

$$M_5 = \begin{pmatrix}
15 & 10 & 3 & 6 \\
4 & 5 & 16 & 9 \\
14 & 11 & 2 & 7 \\
1 & 8 & 13 & 12
\end{pmatrix}, \quad M_5^2 = \begin{pmatrix}
363 & 251 & 287 & 255 \\
311 & 295 & 323 & 227 \\
227 & 323 & 295 & 311 \\
255 & 287 & 251 & 363
\end{pmatrix} \quad \text{(4.4.5)}$$

The three magic matrices G_2, G_4 and M_5 are rhomboidal in the same way as G in that each of these four magic matrices has the places of the numbers 1, 2, 3, 4; 5, 6, 7, 8; 9, 10, 11, 12; and 13, 14, 15, 16 forming a rhomboid with each having sides of lengths 2 and $\sqrt{5}$ units, and associated acute angle $\tan^{-1}(2) \approx 63.435^\circ$.

The 8 × 8 “Firth–Zukertort magic matrix”, see (8.1.1) below,

$$Z = \begin{pmatrix}
64 & 21 & 42 & 3 & 37 & 16 & 51 & 26 \\
38 & 15 & 52 & 25 & 63 & 22 & 41 & 4 \\
11 & 34 & 29 & 56 & 18 & 59 & 8 & 45 \\
17 & 60 & 7 & 46 & 12 & 33 & 30 & 55 \\
10 & 35 & 32 & 53 & 19 & 58 & 5 & 48 \\
20 & 57 & 6 & 47 & 9 & 36 & 31 & 54 \\
61 & 24 & 43 & 2 & 40 & 13 & 50 & 27 \\
39 & 14 & 49 & 28 & 62 & 23 & 44 & 1
\end{pmatrix}, \quad \text{(4.4.6)}$$

is rhomboidal in a different (but similar) way. The places of the numbers 1, 2, 3, 4; 5, 6, 7, 8; . . . , 61, 62, 63, 64 each form a rhomboid of two different types, A and B, say, with 8 of each type. The 8 rhomboids of type A with sides of lengths 6 and $\sqrt{17}$ units, and associated acute angle $\tan^{-1}(4) \approx 75.964^\circ$, and the 8 rhomboids of type B with sides of lengths 2 and $\sqrt{17}$ units, all have the same associated acute angle $\tan^{-1}(4) \approx 75.964^\circ$. A rhomboid of type A (e.g., defined by 1,2,3,4 in red) has precisely 3 times the area of one of type B (e.g., defined by 5,6,7,8 in green).

As observed by Jelliss [279] the matrix

$$P = \begin{pmatrix}
27 & 14 & 59 & 44 & 11 & 30 & 63 & 46 \\
58 & 43 & 28 & 13 & 62 & 45 & 10 & 31 \\
15 & 26 & 41 & 60 & 29 & 12 & 47 & 64 \\
42 & 57 & 16 & 25 & 48 & 61 & 32 & 9 \\
1 & 24 & 53 & 40 & 17 & 8 & 49 & 34 \\
56 & 39 & 4 & 21 & 52 & 33 & 18 & 7 \\
23 & 2 & 37 & 54 & 5 & 20 & 35 & 50 \\
38 & 55 & 22 & 3 & 36 & 51 & 6 & 19
\end{pmatrix}, \quad \text{(4.4.7)}$$

which provides a solution to the knight’s tour on an 8 × 8 chessboard, has the “squares and diamonds” property, so may be considered “rhomboidal” in that a square and a diamond are special cases of rhomboids with adjacent sides of equal length (in fact here equal to the length of a regular knight’s move of type CSP2).
The solution defined by \mathbf{P} is apparently the first published solution to the knight’s tour with the “squares and diamonds” property and first appeared in an appendix by “F. P. H.” (full name apparently unknown [279]) to the 6th English edition of Studies of Chess [87, p. 536 (1825)] by François-André Danican Philidor (1726–1795), a French composer who contributed to the early development of the opéra comique, and who was also regarded as the best chess player of his age; Philidor’s book Analyse du jeu des échecs [82] was considered a standard chess manual for at least a century [324]; a Spanish version is illustrated in a stamp from Cuba 1976 (Figure 4.4.4).

As with the Firth–Zukertort magic matrix \mathbf{Z} (4.4.6) there are two types of “rhomboids” in \mathbf{P}, with type A here being a square (e.g., defined by $5, 6, 7, 8$ in green) and type B being a diamond (e.g., defined by $1, 2, 3, 4$ in red). There are 8 squares and 8 diamonds each with sides of length $\sqrt{5}$ units. The diamonds have acute angle $90^\circ - 2 \tan^{-1}(\frac{1}{2}) = \tan^{-1}(2) - \tan^{-1}(\frac{1}{2}) \approx 37.870^\circ$.

The matrix \mathbf{P} is not magic (the first semi-magic knight’s tour was discovered in 1848 and there is no fully-magic knight’s tour, see §8.3 below), though all the column totals are equal to 260, and so \mathbf{P} has an eigenvalue equal to 260. As observed by “F. P. H.” [87, p. 536] the matrix \mathbf{P} has the interesting property that

$$
\mathbf{P} - \mathbf{F} \mathbf{P} \mathbf{F} = 8 \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
\end{pmatrix} = \mathbf{D},
$$

(4.4.8)

say. We note, however, that \mathbf{P} is not \mathbf{F}-associated, in fact $\mathbf{P} + \mathbf{F} \mathbf{P} \mathbf{F}$ is nonsingular. “F. P. H.” [87, p. 535] also gives another solution \mathbf{P}_2, say, to the knight’s tour with the “squares and diamonds” property” and for which $\mathbf{P}_2 - \mathbf{F} \mathbf{P}_2 \mathbf{F} = 2(\mathbf{P} - \mathbf{F} \mathbf{P} \mathbf{F}) = 16\mathbf{D}$.

Figure 4.4.4: François-André Danican Philidor (1726–1795): Cambodia 1994, Cuba 1976, Spain 2009.
It seems that Karl Wenzelides (1770–1852) was the first to publish a semi-magic knight’s tour with the “squares and diamonds property”. We define his tour by the matrix

\[
P_3 = \begin{pmatrix}
2 & 11 & 58 & 51 & 30 & 39 & 54 & 15 \\
59 & 50 & 3 & 12 & 53 & 14 & 31 & 38 \\
10 & 1 & 52 & 57 & 40 & 29 & 16 & 55 \\
49 & 60 & 9 & 4 & 13 & 56 & 37 & 32 \\
64 & 5 & 24 & 45 & 36 & 41 & 28 & 17 \\
23 & 48 & 61 & 8 & 25 & 20 & 33 & 42 \\
6 & 63 & 46 & 21 & 44 & 35 & 18 & 27 \\
47 & 22 & 7 & 62 & 19 & 26 & 43 & 34
\end{pmatrix}
\] (4.4.9)

and note that

\[
P_3 - FP_3F = 32 \begin{pmatrix}
-1 & -1 & 1 & 1 & -1 & 1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 \\
-1 & -1 & 1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 \\
-1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 \\
-1 & 1 & 1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & -1 & -1 & 1 & 1
\end{pmatrix} = 32D_3, \] (4.4.10)

say. We note that the matrix \(D_3\) in (4.4.10) has a similar (but different) pattern to the matrix \(D = P - FPF\) in (4.4.8).

\[28\] Jelliss notes that he learnt from Donald Knuth that Karl Wenzelides, ‘polyhistorian’, is listed in the Biographisches Lexikon des Kaiserrhums Oesterreich as born September 1770 in Troppau (now Opava in the Czech Republic), died 6 May 1852 in Nikolsburg (now Mikulov). He wrote poetry and music, besides works on the Bronze Age, etc; many of his books and letters were in the Troppauer Museum.
4.5. **The Euler algorithm.** Leonhard Euler (1707–1783) published two papers involving Graeco-Latin squares, a short paper [81, (1776)] and a long one [83, (1782)]; see also Klyve & Stemkoski [222]. In [81, (1776)], Euler showed that an $n \times n$ diagonal Graeco-Latin square with typical entry (a,b) can be turned into a classic fully-magic square by the following Euler algorithm:

replace the pair (a,b) with the number $n(a-1)+b$, \hspace{1cm} (4.5.1)

or in matrix notation

replace the pair (A,B) with the matrix $M = n(A - E) + B$, \hspace{1cm} (4.5.2)

where E is the $n \times n$ matrix with each entry equal to 1. And then M defines a classic fully-magic square. We will call the matrices A and B Euler basis matrices.

The Ozanam–Grandin solution [250] to the Magic Card Puzzle is a diagonal Graeco-Latin square.

With this notation, we have the Euler basis matrices:

\[
A = \begin{pmatrix} 1 & 4 & 2 & 3 \\ 3 & 2 & 4 & 1 \\ 4 & 1 & 3 & 2 \\ 2 & 3 & 1 & 4 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 3 & 4 & 2 \\ 4 & 2 & 1 & 3 \\ 2 & 4 & 3 & 1 \\ 3 & 1 & 2 & 4 \end{pmatrix}, \hspace{1cm} (4.5.3)
\]

and so

\[
4(A - E) + B = \begin{pmatrix} 1 & 15 & 8 & 10 \\ 12 & 6 & 13 & 3 \\ 14 & 4 & 11 & 5 \\ 7 & 9 & 2 & 16 \end{pmatrix} = M_1, \hspace{1cm} (4.5.4)
\]

which defines a classic fully-magic square with magic sum 34. We will call M_1 the Ozanam–Grandin magic square. It is interesting to note that here the Euler basis matrix $B = A'$, the transpose of A.

We may compute the Euler basis matrices A and B from the $n \times n$ magic square matrix M by first forming $M - E$ and then expressing its elements to the base n. Specifically, we divide each element of $M - E$ by n and then $A - E$ contains the integer part and $B - E$ the remainder. For example, with the Ozanam–Grandin magic square, $n = 4$ and

\[
M_1 - E = \begin{pmatrix} 0 & 14 & 7 & 9 \\ 11 & 5 & 12 & 2 \\ 13 & 3 & 10 & 4 \\ 6 & 8 & 1 & 15 \end{pmatrix}, \hspace{1cm} (4.5.5)
\]

and so

\[
A - E = \begin{pmatrix} 0 & 3 & 1 & 2 \\ 2 & 1 & 3 & 0 \\ 3 & 0 & 2 & 1 \\ 1 & 2 & 0 & 3 \end{pmatrix} \quad \text{and} \quad B - E = \begin{pmatrix} 0 & 2 & 3 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 3 & 2 & 0 \\ 2 & 0 & 1 & 3 \end{pmatrix}. \hspace{1cm} (4.5.6)
\]

As pointed out by Chu [237] (see also Hodges [238 pp. 150–151]), it is not necessary that the orthogonal pair (A, B) define a diagonal Graeco-Latin square in order that $M = 4(A - E) + B$ be classic fully-magic. Neither of the matrices

\[
A = \begin{pmatrix} 1 & 1 & 4 & 4 \\ 4 & 4 & 1 & 1 \\ 3 & 2 & 3 & 2 \\ 2 & 3 & 2 & 3 \end{pmatrix} \quad \text{or} \quad B = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 4 & 3 & 2 & 1 \end{pmatrix} \hspace{1cm} (4.5.7)
\]
defines a Latin square, though \(A\) and \(B\) are orthogonal to each other. But here

\[
4(A - E) + B = \begin{pmatrix}
1 & 2 & 15 & 16 \\
13 & 14 & 3 & 4 \\
12 & 7 & 10 & 5 \\
8 & 11 & 6 & 9
\end{pmatrix} = M_2 \tag{4.5.8}
\]

is classic fully-magic! We will call \(M_2\) the Chu magic square.

Styan \cite{240} (see also \cite{250}), pointed out that of the 880 magic squares of order 4 \(\times\) 4 precisely 144 yield Euler basis matrices \((A, B)\) which form a diagonal Graeco-Latin square. There are 144 solutions to the Magic Card Puzzle, excluding rotations and reflections, as observed by Dudeney \cite[p. 216]{159}. And every solution to the Magic Card Puzzle is a 4 \(\times\) 4 diagonal Graeco-Latin square.

We will say that an \(n \times n\) matrix is row Latin whenever the numbers 1, 2, \ldots, \(n\) each occur precisely once in every one of the \(n\) rows, column Latin whenever the numbers 1, 2, \ldots, \(n\) each occur precisely once in every one of the \(n\) columns, and diagonal Latin whenever the numbers 1, 2, \ldots, \(n\) each occur precisely once in the two principal diagonals.

In the Chu magic square, the Euler basis matrices

\[
A = \begin{pmatrix}
1 & 1 & 4 & 4 \\
4 & 4 & 1 & 1 \\
3 & 2 & 3 & 2 \\
2 & 3 & 2 & 3
\end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1 \\
4 & 3 & 2 & 1
\end{pmatrix}. \tag{4.5.9}
\]

The matrix \(A\) here is column Latin but neither row nor diagonal Latin, while \(B\) is row Latin, but neither column nor diagonal Latin. Both \(A\) and \(B\) each contain the integers 1, 2, 3, 4 each four times.

We now present examples due to Joseph Sauveur (1653–1716), Murai Chūzen (1708–1797), and Walter William Rouse Ball (1850–1925).
4.5.1. An example due to Joseph Sauveur (1653–1716). The following example given by Joseph Sauveur in 1709/1710 [78, p. 136, §82]:

With the coding as shown and with the two corrections, we find the Euler basis matrices

\[
A = \begin{pmatrix}
1 & 4 & 2 & 3 \\
4 & 1 & 3 & 2 \\
3 & 2 & 4 & 1 \\
2 & 3 & 1 & 4
\end{pmatrix}
\quad \text{and} \quad
B = \begin{pmatrix}
1 & 1 & 4 & 4 \\
4 & 4 & 1 & 1 \\
3 & 3 & 2 & 2 \\
2 & 2 & 3 & 3
\end{pmatrix},
\]

which are orthogonal to each other. The matrix \(A\) is row and column Latin but not diagonal Latin, and the matrix \(B\) is column and diagonal Latin but not row Latin. Moreover,

\[
4(A - E) + B = \begin{pmatrix}
1 & 13 & 8 & 12 \\
16 & 4 & 9 & 5 \\
11 & 7 & 14 & 2 \\
6 & 10 & 3 & 15
\end{pmatrix} = J_3
\]

defines the classic fully-magic square as given by Sauveur [78, p. 136, §82]. We will call \(J_3\) the Sauveur magic matrix.

\[30\] There seem to be 2 typos in the example as published, which we have corrected as shown in Fig. 4.5.2.
4.5.2. An example due to Murai Chūzen (1708–1797). A similar example is given by Mikami [130, p. 292], who refers to Murai Chūzen’s Sampō Dōshimon [84] of 1781. This “was the first occasion [in Japan] of describing a general method for magic squares in a printed work, the writings of his predecessors, Takakazu Seki Kowa (1642–1708), Aoyama[31], Yoshisuke Matsunaga (1692–1744)[32], etc., being all recorded in manuscripts.” [130, p. 291] “For even squares Murai gives only an example, where the arrangement as shown in the figure is indicated without any explanation.” [130, p. 292] The figure given by Murai Chūzen as reported by Mikami [130, p. 292] corresponds to the matrices

\[
A = \begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3 \\
3 & 1 & 4 & 2 \\
4 & 3 & 2 & 1
\end{pmatrix}
\quad \text{and} \quad
B = \begin{pmatrix}
4 & 1 & 1 & 4 \\
3 & 2 & 2 & 3 \\
2 & 3 & 3 & 2 \\
1 & 4 & 4 & 1
\end{pmatrix},
\]

(4.5.12)

which are orthogonal to each other. The matrix \(A \) here is row and column Latin but not diagonal Latin, and the matrix \(B \) here is column and diagonal Latin but not row Latin, just like the example given by Sauveur [78, p. 136, §2] which we just considered. Moreover,

\[
4(A - E) + B = \begin{pmatrix}
15 & 10 & 3 & 6 \\
4 & 5 & 16 & 9 \\
14 & 11 & 2 & 7 \\
1 & 8 & 13 & 12
\end{pmatrix}
= M_4
\]

(4.5.13)

defines a classic fully-magic square. We will call \(M_4 \) the Murai Chūzen magic matrix.

4.5.3. An example given by Walter William Rouse Ball (1850–1925). Our last example is given by W. W. Rouse Ball (1911), starting (apparently) with the 5th edition of Mathematical Recreations and Essays [129, pp. 137, 161 (1911)], [135 pp. 137, 155 (1937)], [152, 163, ?, pp. 193, 208]. In this example the Euler basis matrices

\[
A = \begin{pmatrix}
4 & 3 & 1 & 2 \\
1 & 2 & 4 & 3 \\
4 & 3 & 1 & 2 \\
1 & 2 & 4 & 3
\end{pmatrix}
\quad \text{and} \quad
B = \begin{pmatrix}
3 & 2 & 3 & 2 \\
4 & 1 & 4 & 1 \\
2 & 3 & 2 & 3 \\
1 & 4 & 1 & 4
\end{pmatrix}.
\]

(4.5.14)

The matrix \(A \) here is row and diagonal Latin but not column Latin, and \(B \) is column and diagonal Latin, but not row Latin. The matrices \(A \) and \(B \) are orthogonal to each other and the matrix

\[
4(A - E) + B = \begin{pmatrix}
15 & 10 & 3 & 6 \\
4 & 5 & 16 & 9 \\
14 & 11 & 2 & 7 \\
1 & 8 & 13 & 12
\end{pmatrix}
= M_5
\]

(4.5.15)

defines a classic fully-magic square with magic sum 34. Moreover, \(M_5 \) has the rhomboid property. We will call \(M_5 \) the Rouse Ball magic matrix.

31 We have no information about this “Aoyama”.
32 Yoshisuke Matsunaga (1692–1744) was “a pupil of Seki’s pupil” [193, p. 539].
4.5.4. Bergholt’s “semipandiagonal” magic matrices. Bergholt [128] shows that a “semipandiagonal” 4 × 4 magic matrix can be expressed as the sum of two Latin squares, which Benson & Jacoby [165, p. 111] identify as

\[
L_1 = \begin{pmatrix}
X & Y & Z & T \\
T & Z & Y & X \\
Y & X & T & Z \\
Z & T & X & Y \\
\end{pmatrix}, \quad L_2 = \begin{pmatrix}
x & y & z & t \\
z & t & x & y \\
t & z & y & x \\
y & x & t & z \\
\end{pmatrix}.
\] (4.5.16)

We find that these two Latin squares \(L_1\) and \(L_2\) are both magic matrices and that they are “orthogonal to each other” in that every (capital) letter in \(L_1\) is coupled uniquely with every (lower case) letter in \(L_2\), and so the pair \((L_1, L_2)\) form a Graeco–Latin square.

Benson & Jacoby [165, p. 111] note that the sum \(B_1 + B_2\) generates all 432 semipandiagonal classic 4 × 4 magic squares including the 48 that are pandiagonal, and that these (Dudeney Type I) require

\[
X + T = Y + Z \quad \text{and} \quad x + y = z + t.
\] (4.5.17)

It is easy to see that under the conditions (4.5.17) both \(L_1\) and \(L_2\) are also pandiagonal, \(H\)-associated and 4-pac, and hence so is the sum \(L_1 + L_2\).
4.5.5. The Ollerenshaw magic matrix \mathbf{O}. We saw above using \ref{4.1.2} that a 4×4 pandiagonal magic matrix is always 4-pac and \mathbf{H}-associated. A 4×4 pandiagonal magic matrix is, however, not always EP. The “Ollerenshaw matrix” \mathbf{O} (Figure TBC) is pandiagonal and 4-pac but not EP though both its Moore–Penrose inverse and group inverse are pandiagonal.

If in \ref{4.5.16} we choose $X = 0$, $Y = 4$, $Z = 1$, $T = 5$; $x = 0$, $y = 10$, $z = 2$, $t = 8$, then

$$L_1 + L_2 = \begin{pmatrix} 0 & 14 & 3 & 13 \\ 7 & 9 & 4 & 10 \\ 12 & 2 & 15 & 1 \\ 11 & 5 & 8 & 6 \end{pmatrix} = \mathbf{O},$$

say. The magic matrix \mathbf{O} defines the “Ollerenshaw magic square” given in Figure 4.5.1. The “most-perfect pandiagonal” magic matrix \mathbf{P}_0 given by Trenkler & Trenkler \cite{202} is \mathbf{O} with 1 added to each element. The Ollerenshaw magic matrix \mathbf{O} is 4-pac, \mathbf{H}-associated and pandiagonal; moreover it has index 1 but it is not EP and not rhomboidal.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{ollerenshaw_square.png}
\caption{Dame Kathleen Ollerenshaw (b. 1912) and the “Ollerenshaw magic square”.
}
\end{figure}
We may classify our examples as follows:

1. \(M_1 \) (Ozanam–Grandin) has rank 3, index 1 (key \(\kappa = 80 \)), is \(F \)-associated, not rhomboidal and not EP,
2. \(M_2 \) (Chu) has rank 3, index 1 (key \(\kappa = 40 \)), is not \(V \)-associated, not rhomboidal and not EP,
3. \(J_3 \) (Sauveur) has rank 3, index 1 (key \(\kappa = 128 \)), is not \(V \)-associated, not rhomboidal and not EP,
4. \(M_4 \) (Murai Chüzen) has rank 3, index 1 (key \(\kappa = 160 \)), is not \(V \)-associated, not rhomboidal and not EP,
5. \(M_5 \) (Rouse Ball) has rank 3, index 1 (key \(\kappa = 48 \)), is \(H \)-associated, rhomboidal but not EP.
6. \(O \) (Ollerenshaw) has rank 3, index 1 (key \(\kappa = 64 \)), is \(H \)-associated, not rhomboidal and not EP.

We recall our classification above of the 5 magic matrices defined in Shortrede’s “postscript”:

1. \(G \) \(\{4.3.1\} \) has rank 3, index 1 (key \(\kappa = 80 \)), is \(H \)-associated, rhomboidal and EP,
2. \(G_2 \) has rank 3, index 3 (key \(\kappa = 0 \)), is \(H \)-associated, rhomboidal but not EP (index \(\neq 1 \)),
3. \(G_3 \) has rank 3, index 1 (key \(\kappa = 80 \)), is \(H \)-associated, EP but not rhomboidal,
4. \(G_4 \) has rank 3, index 1 (key \(\kappa = 80 \)), is \(H \)-associated, rhomboidal but not EP,
5. \(G_5 \) has rank 3, index 3 (key \(\kappa = 0 \)), is \(H \)-associated, not rhomboidal and not EP (index \(\neq 1 \))

We recall that a \(4 \times 4 \) \(H \)-associated magic matrix is 4-pac and pandiagonal.
5. Four 16×16 CSP2-magic matrices

Planck (1916, p. 469, Fig. 10) presents a 16×16 magic square and observes that it has 64 CSP2-magic paths (our Figure 5.1). We will denote this magic square by the matrix X_1 and find that, in addition, to it being CSP2-magic it is also 4-pac and hence pandiagonal with rank 3, and is keyed with index 1. Moreover, X_1 is V-associated with $V = I_4 \otimes H_4$, implying that the top left, top right, bottom left, and bottom right 4×4 submatrices are all H-associated and hence pandiagonal.

In 1916, the Editor (Paul Carus) of The Monist reports in [134] vol. 26, pp. 315–316] that Frederic A. Woodruff\[33\] has sent three original [classic] magic squares, one each of orders 8, 12 and 16. Neither of the two smaller squares is CSP2-magic but the 16×16 (our Figure 5.2), which we denote by X_2, is CSP2-magic. Moreover the matrix X_2 is also 4-pac with rank 3, and is keyed with index 1, and is F-associated. In addition, we find that X_1 and X_2 are EP.

OPEN QUESTION 5.1. Does there exist an F-associated 8×8 magic matrix that is pandiagonal and CSP2-magic? We believe that all our 46080 Caïssan beauties are H-associated: a classic H-associated magic matrix cannot also be F-associated. As we just noted above the 16×16 matrix X_2 is pandiagonal and CSP2-magic, as is the 16×16 matrix X_3 due to Woodruff (1917, p. 397, Fig. 725; our Figure 5.3 below).

In a “follow-up” paper, Woodruff [137] p. 397, (1917)] observes that the 16×16 magic square given in his Fig. 725 (our Figure 5.3), which we denote by X_3 can readily be changed into a 4-pac, pandiagonal “balanced, quartered”, and “Franklin” magic square by one transposition, as shown in his Fig. 730 (our Figure 5.4), our matrix X_4. By this change it ceases to be F-associated and CSP2-magic, but acquires other “ornate” features besides becoming a “Franklin” square. From these comments by Woodruff [137] p. 397, (1917)] we conclude, and indeed confirm, that X_3 is CSP2-magic and that X_4 is not.

We define a Franklin square as follows:

DEFINITION 5.1. We define an $n \times n$ magic matrix with magic sum m, usually classic and often 8×8, to be a “Franklin square” and to have the “Franklin property” whenever each of the $4n$ “Franklin-bent diagonals” (with wrap-around) are magic with sum m. The “Franklin-bent diagonals” are paths of n numbers with any of the following shapes and orientations:

![Franklin-bent diagonals diagram]
We assume that the meaning intended by Woodruff [137, p. 397, (1917)] for the term “quartered” means that (at least) all the four corner 8 × 8 submatrices of a 16 × 16 magic matrix are magic, in that the numbers in all the rows, columns and two main diagonals add up to the same magic sum, which is then necessarily half that of the magic sum for the parent 16 × 16 magic matrix. Andrews [135, p. 175, (1917)] uses the term “quartered” in connection with the semi-magic 8 × 8 Beverley matrix B (his Fig. 281, our Figure TBC), which we discuss below in Section TBC, and where the four corner 4 × 4 submatrices are all semi-magic.

We do not know the precise meaning intended by Woodruff [137] for the term “balanced” but suggest that in connection with “quartered” it means that any special (“ornate”) properties that any one of the four corner 8 × 8 submatrices of a 16 × 16 magic matrix may have also hold for the other three.

Andrews [135, ch. XV, pp. 376–414, (1917)] presents 5 articles with the heading “Ornate magic squares” and from these we infer that “ornate magic squares” are “special’ magic squares” like those that are

1. pandiagonal,
2. CSP2-magic,
3. CSP3-magic,
4. 4-pac,
5. V-associated for some involutory matrix V, and/or have
6. the “Franklin property”, i.e., 4n magic “Franklin-bent diagonals”.

Woodruff [137, p. 397] noted that X4 “contains 9 magic subsquares of order 8 × 8, each of which is pandiagonal”. We observe, in addition, that each of these 9 magic submatrices is 4-pac and hence pandiagonal with rank 3. Moreover, each 8 × 8 submatrix is V-associated with \(V = I_4 \otimes F_2 \).

Following the properties given in The Edinburgh Encyclopædia [89, (1830)] of a 16 × 16 magic square (which is not explicitly given there), we find that in X4 there are also 16 magic subsquares of order 4 × 4 and 4 magic subsquares of order 12 × 12, and that these 20 magic subsquares are...
also all 4-pac, and hence pandiagonal with rank 3, and are V-associated with $V = I_{n/2} \otimes F_2$ and, respectively, $n = 4, 12$.

Commenting on the article by Woodruff [137], Andrews [135, p. 404] says that

Woodruff [137, p. 397] presents a remarkable magic [34] such a magic” [his Fig. 725 (our Figure 5.3, matrix X_3)] of order 16 which is pandiagonal, CSP2-magic, 4-pac, and F-associated, a combination of ornate properties which has probably never been accomplished before in this order of square, and it is constructed moreover by a unique method of his own devising.

We confirm that the magic matrix X_3 [Woodruff’s Fig. 725 (our Figure 5.3)] is

(1) pandiagonal and CSP2-magic,

(2) 4-pac,

(3) F-associated, and has

(4) rank 3 and index 1, but not EP,

and that X_4 [Woodruff’s Fig. 730 (our Figure 5.4)] has 29 magic subsquares of orders 4, 8 or 12 and that all these 30 magic matrices (including X_4) are

(1) pandiagonal but not CSP2-magic,

(2) 4-pac,

(3) V-associated with $V = I_q \otimes F_2$, and so each 2×2 “block” is F-associated, but the full 16×16 matrix X_4 is not F-associated; here $q = 2, 4, 6, 8$, half the order of the magic matrix involved: 4, 8, 12, 16, and have

(4) rank 3 and index 1, but not EP, and have

(5) the “Franklin property”, i.e., $4n$ magic “Franklin-bent diagonals”.—TBC

[34] In the literature of the early 20th (or late 19th) century, we have often found “a magic square” to be referred to as just “a magic”.
Figure 5.1: 16 × 16 magic square from Planck [44, p. 469, Fig. 10], Planck matrix X_1.

Figure 5.2: 16 × 16 magic square from Woodruff [134, p. 316, Fig. 3], Woodruff matrix X_2.
Figure 5.3: Fig. 725 from Woodruff [137, p. 397], Woodruff matrix X_3.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>192</td>
<td>97</td>
<td>229</td>
<td>41</td>
<td>152</td>
<td>73</td>
<td>295</td>
<td>113</td>
<td>208</td>
<td>17</td>
<td>175</td>
<td>89</td>
<td>232</td>
<td>57</td>
<td>136</td>
</tr>
<tr>
<td>2</td>
<td>125</td>
<td>193</td>
<td>33</td>
<td>167</td>
<td>59</td>
<td>343</td>
<td>56</td>
<td>137</td>
<td>16</td>
<td>177</td>
<td>12</td>
<td>209</td>
<td>40</td>
<td>153</td>
<td>72</td>
<td>249</td>
</tr>
<tr>
<td>3</td>
<td>133</td>
<td>60</td>
<td>229</td>
<td>92</td>
<td>173</td>
<td>20</td>
<td>203</td>
<td>116</td>
<td>240</td>
<td>76</td>
<td>149</td>
<td>44</td>
<td>221</td>
<td>100</td>
<td>189</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>652</td>
<td>69</td>
<td>156</td>
<td>37</td>
<td>279</td>
<td>109</td>
<td>180</td>
<td>1.3</td>
<td>140</td>
<td>53</td>
<td>220</td>
<td>85</td>
<td>164</td>
<td>29</td>
<td>196</td>
<td>125</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>187</td>
<td>172</td>
<td>219</td>
<td>46</td>
<td>147</td>
<td>78</td>
<td>243</td>
<td>118</td>
<td>203</td>
<td>22</td>
<td>171</td>
<td>94</td>
<td>297</td>
<td>62</td>
<td>131</td>
</tr>
<tr>
<td>6</td>
<td>163</td>
<td>298</td>
<td>87</td>
<td>106</td>
<td>83</td>
<td>338</td>
<td>51</td>
<td>142</td>
<td>11</td>
<td>182</td>
<td>107</td>
<td>214</td>
<td>35</td>
<td>158</td>
<td>67</td>
<td>289</td>
</tr>
<tr>
<td>7</td>
<td>130</td>
<td>63</td>
<td>286</td>
<td>95</td>
<td>170</td>
<td>23</td>
<td>202</td>
<td>119</td>
<td>242</td>
<td>78</td>
<td>146</td>
<td>47</td>
<td>214</td>
<td>103</td>
<td>186</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>250</td>
<td>69</td>
<td>139</td>
<td>34</td>
<td>213</td>
<td>106</td>
<td>183</td>
<td>10</td>
<td>143</td>
<td>50</td>
<td>239</td>
<td>82</td>
<td>167</td>
<td>76</td>
<td>199</td>
<td>125</td>
</tr>
<tr>
<td>9</td>
<td>135</td>
<td>58</td>
<td>231</td>
<td>90</td>
<td>175</td>
<td>18</td>
<td>207</td>
<td>114</td>
<td>247</td>
<td>79</td>
<td>151</td>
<td>42</td>
<td>223</td>
<td>98</td>
<td>191</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>350</td>
<td>71</td>
<td>154</td>
<td>59</td>
<td>210</td>
<td>111</td>
<td>178</td>
<td>15</td>
<td>138</td>
<td>55</td>
<td>239</td>
<td>87</td>
<td>162</td>
<td>31</td>
<td>184</td>
<td>122</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>150</td>
<td>89</td>
<td>222</td>
<td>43</td>
<td>150</td>
<td>75</td>
<td>246</td>
<td>115</td>
<td>206</td>
<td>19</td>
<td>174</td>
<td>91</td>
<td>230</td>
<td>59</td>
<td>134</td>
</tr>
<tr>
<td>12</td>
<td>130</td>
<td>185</td>
<td>50</td>
<td>163</td>
<td>86</td>
<td>235</td>
<td>59</td>
<td>139</td>
<td>16</td>
<td>179</td>
<td>110</td>
<td>211</td>
<td>38</td>
<td>133</td>
<td>70</td>
<td>231</td>
</tr>
<tr>
<td>13</td>
<td>132</td>
<td>67</td>
<td>285</td>
<td>93</td>
<td>172</td>
<td>21</td>
<td>204</td>
<td>117</td>
<td>244</td>
<td>77</td>
<td>148</td>
<td>45</td>
<td>250</td>
<td>101</td>
<td>188</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>253</td>
<td>68</td>
<td>137</td>
<td>36</td>
<td>213</td>
<td>108</td>
<td>187</td>
<td>12</td>
<td>141</td>
<td>52</td>
<td>237</td>
<td>86</td>
<td>165</td>
<td>28</td>
<td>197</td>
<td>123</td>
</tr>
<tr>
<td>15</td>
<td>183</td>
<td>104</td>
<td>217</td>
<td>48</td>
<td>145</td>
<td>80</td>
<td>241</td>
<td>120</td>
<td>201</td>
<td>24</td>
<td>160</td>
<td>90</td>
<td>285</td>
<td>64</td>
<td>189</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>121</td>
<td>200</td>
<td>25</td>
<td>168</td>
<td>81</td>
<td>290</td>
<td>49</td>
<td>144</td>
<td>9</td>
<td>164</td>
<td>105</td>
<td>216</td>
<td>33</td>
<td>160</td>
<td>63</td>
<td>250</td>
</tr>
</tbody>
</table>

Figure 5.4: Fig. 730 from Woodruff [137, p. 397], Woodruff matrix X_4.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>16</th>
<th>13</th>
<th>4</th>
<th>5</th>
<th>12</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>10</th>
<th>6</th>
<th>5</th>
<th>14</th>
<th>15</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>135</td>
<td>69</td>
<td>294</td>
<td>41</td>
<td>172</td>
<td>111</td>
<td>248</td>
<td>73</td>
<td>208</td>
<td>17</td>
<td>175</td>
<td>89</td>
<td>252</td>
<td>57</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>151</td>
<td>266</td>
<td>33</td>
<td>168</td>
<td>39</td>
<td>216</td>
<td>9</td>
<td>144</td>
<td>45</td>
<td>198</td>
<td>105</td>
<td>290</td>
<td>25</td>
<td>160</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>132</td>
<td>5</td>
<td>220</td>
<td>93</td>
<td>172</td>
<td>85</td>
<td>244</td>
<td>117</td>
<td>206</td>
<td>77</td>
<td>149</td>
<td>47</td>
<td>223</td>
<td>101</td>
<td>188</td>
<td>61</td>
</tr>
<tr>
<td>4</td>
<td>253</td>
<td>185</td>
<td>104</td>
<td>37</td>
<td>212</td>
<td>83</td>
<td>180</td>
<td>13</td>
<td>180</td>
<td>53</td>
<td>236</td>
<td>109</td>
<td>136</td>
<td>29</td>
<td>196</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>151</td>
<td>54</td>
<td>219</td>
<td>96</td>
<td>171</td>
<td>118</td>
<td>245</td>
<td>78</td>
<td>202</td>
<td>28</td>
<td>147</td>
<td>102</td>
<td>221</td>
<td>62</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>126</td>
<td>257</td>
<td>31</td>
<td>163</td>
<td>36</td>
<td>211</td>
<td>18</td>
<td>133</td>
<td>59</td>
<td>179</td>
<td>110</td>
<td>255</td>
<td>30</td>
<td>155</td>
<td>70</td>
<td>195</td>
</tr>
<tr>
<td>7</td>
<td>135</td>
<td>2</td>
<td>233</td>
<td>90</td>
<td>173</td>
<td>97</td>
<td>247</td>
<td>118</td>
<td>207</td>
<td>79</td>
<td>151</td>
<td>18</td>
<td>231</td>
<td>91</td>
<td>191</td>
<td>51</td>
</tr>
<tr>
<td>8</td>
<td>233</td>
<td>122</td>
<td>167</td>
<td>34</td>
<td>215</td>
<td>82</td>
<td>145</td>
<td>10</td>
<td>183</td>
<td>50</td>
<td>259</td>
<td>106</td>
<td>159</td>
<td>26</td>
<td>189</td>
<td>66</td>
</tr>
<tr>
<td>9</td>
<td>150</td>
<td>7</td>
<td>218</td>
<td>92</td>
<td>170</td>
<td>47</td>
<td>242</td>
<td>119</td>
<td>207</td>
<td>79</td>
<td>146</td>
<td>83</td>
<td>226</td>
<td>103</td>
<td>186</td>
<td>63</td>
</tr>
<tr>
<td>10</td>
<td>250</td>
<td>172</td>
<td>102</td>
<td>39</td>
<td>210</td>
<td>87</td>
<td>138</td>
<td>15</td>
<td>175</td>
<td>55</td>
<td>234</td>
<td>111</td>
<td>159</td>
<td>31</td>
<td>199</td>
<td>71</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>154</td>
<td>91</td>
<td>222</td>
<td>43</td>
<td>179</td>
<td>115</td>
<td>246</td>
<td>75</td>
<td>206</td>
<td>19</td>
<td>150</td>
<td>99</td>
<td>230</td>
<td>59</td>
<td>190</td>
</tr>
<tr>
<td>12</td>
<td>133</td>
<td>65</td>
<td>266</td>
<td>39</td>
<td>168</td>
<td>83</td>
<td>214</td>
<td>11</td>
<td>142</td>
<td>51</td>
<td>182</td>
<td>107</td>
<td>238</td>
<td>87</td>
<td>138</td>
<td>67</td>
</tr>
<tr>
<td>13</td>
<td>133</td>
<td>4</td>
<td>221</td>
<td>92</td>
<td>173</td>
<td>34</td>
<td>245</td>
<td>116</td>
<td>205</td>
<td>76</td>
<td>149</td>
<td>30</td>
<td>229</td>
<td>100</td>
<td>189</td>
<td>60</td>
</tr>
<tr>
<td>14</td>
<td>253</td>
<td>124</td>
<td>103</td>
<td>36</td>
<td>213</td>
<td>84</td>
<td>191</td>
<td>12</td>
<td>181</td>
<td>52</td>
<td>237</td>
<td>108</td>
<td>137</td>
<td>28</td>
<td>187</td>
<td>68</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>129</td>
<td>96</td>
<td>217</td>
<td>48</td>
<td>169</td>
<td>120</td>
<td>241</td>
<td>80</td>
<td>201</td>
<td>24</td>
<td>145</td>
<td>14</td>
<td>225</td>
<td>64</td>
<td>183</td>
</tr>
<tr>
<td>16</td>
<td>128</td>
<td>249</td>
<td>40</td>
<td>161</td>
<td>81</td>
<td>208</td>
<td>16</td>
<td>137</td>
<td>56</td>
<td>177</td>
<td>112</td>
<td>233</td>
<td>32</td>
<td>163</td>
<td>72</td>
<td>193</td>
</tr>
</tbody>
</table>
6. The n-queens problem and 11×11 Caïssan magic squares

The n-queens problem concerns the placement of n queens on an $n \times n$ chessboard so that no two are en prise, i.e., no two attack one another, and the maximum number is 8 for the usual 8×8 chessboard \[?\]. This problem was apparently first considered for 8 queens on an 8×8 chessboard by \[93\] and answered by \[95\]. The numbers of different ways that n queens can be so arranged on an $n \times n$ chessboard are given in Sloane’s sequence A000170 \[262\]:

$$1, 0, 0, 2, 10, 4, 40, 92, 352, 724, 2680, \ldots$$

and so there are 92 different ways for $n = 8$ queens to be so placed on an 8×8 chessboard and 2680 different ways for $n = 11$ queens on an 11×11 chessboard.

6.1. The 11×11 Planck matrix P. An 11×11 magic square was presented by \[37\] p. 97, Fig. I giving 11 completely disjoint solutions for the 11-queens problem on an 11×11 chessboard. One of these solutions is to place the 11 queens in the square shown in Fig. 6.1 in positions 1, 2, \ldots, 11 (red boxes), a second solution places the 11 queens in positions 12, 13, \ldots, 22, and so on, providing 11 completely disjoint solutions in all.

Moreover Planck \[37\] noted that 11×11 is the smallest such arrangement that is, in addition, a “Caïssan magic square”, a pandiagonal magic square in which all knight’s paths in the same direction (with wraparound) are magic (magic sum 671). We call such paths “magic knight’s paths”.

We have not found any other such 11×11 Caïssan magic square which has embedded therein 11 completely disjoint solutions to the 11-queens problem. And none at all for $n > 11$.

Figure 6.1: Special-Caïssan 11×11 magic square from \[37\] p. 97, Fig. I, with two special-knight’s (CSP3) move magic paths indicated by red circles (left panel) and red boxes (right panel).
Figure 6.1.2: Special-Caïssan 11 × 11 magic square from [37, p. 97, Fig. I], with 11 solutions to the 11-queens problem, one solution indicated with red boxes (left panel); and a magic knight’s path (CSP2) with red circles (right panel).

We denote the magic square in Fig. 6.1.2 by the Planck matrix

\[
P = \begin{pmatrix}
40 & 6 & 93 & 59 & 25 & 112 & 78 & 55 & 21 & 108 & 74 \\
32 & 119 & 85 & 51 & 17 & 104 & 70 & 36 & 2 & 89 & 66 \\
13 & 100 & 77 & 43 & 9 & 96 & 62 & 28 & 115 & 81 & 47 \\
5 & 92 & 58 & 24 & 111 & 88 & 54 & 20 & 107 & 73 & 39 \\
118 & 84 & 50 & 16 & 103 & 69 & 35 & 1 & 99 & 65 & 31 \\
116 & 76 & 42 & 8 & 95 & 61 & 27 & 114 & 80 & 46 & 12 \\
91 & 57 & 23 & 121 & 87 & 53 & 19 & 106 & 72 & 38 & 49 \\
83 & 49 & 15 & 102 & 68 & 34 & 11 & 98 & 64 & 30 & 117 \\
75 & 41 & 7 & 94 & 60 & 26 & 113 & 79 & 45 & 22 & 109 \\
56 & 33 & 120 & 86 & 52 & 18 & 105 & 71 & 37 & 3 & 90 \\
\end{pmatrix},
\]

which we will call the 11 × 11 Planck-CMM, and which is nonsingular, and F-associated in that all the elements of the matrix \(P + FPF \) are equal, where \(F \) here is the 11 × 11 flip matrix. It follows that \(P^{-1} \) is also F-associated and hence magic with magic sum \(\text{tr}P^{-1} = \text{tr}FP^{-1} = 1/\text{tr}P = 1/671 \). As noted by Planck [37] the matrix \(P \) is pandiagonal but we find, however, that the inverse \(P^{-1} \) is not pandiagonal!
A simple knight’s-path (CSP2) solution to the 11-queens problem on an 11×11 chessboard was given [183, Fig. 1], see our Figure 6.3. We represent this solution by the simple knight’s path (CSP2) selection matrix K:

$$K = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{pmatrix} \quad \text{(6.1.2)}$$
We find that the 11×11 Planck magic matrix P is Caïssan since both KP and PK' are pandiagonal:

We note that the magic path marked with red circles in Fig. 6.1.2 (right panel) is the main diagonal of the matrix KP in (6.1.3).
6.2. The 11×11 La Loubère–Demirörs matrix L. We now consider an 11×11 classic magic square constructed by the method of La Loubère35 (Fig. 6.2.1, left panel) and (right panel) an 11×11 magic Latin square with solutions to the 11-queens problem constructed therefrom by [183] Fig. 2, 4, see our Figure 6.2.2.

![Figure 6.2.1: (left panel) 11 × 11 classic magic square and (right panel) an 11 × 11 magic Latin square with solutions to the 11-queens problem [183] Fig. 2, 4.]

We denote the 11×11 classic magic square (Fig. 6.2.1, left panel) by the matrix

$$ L = \begin{bmatrix}
68 & 81 & 94 & 107 & 120 & 1 & 14 & 27 & 40 & 53 & 66 \\
80 & 93 & 106 & 119 & 11 & 13 & 26 & 39 & 52 & 65 & 67 \\
92 & 105 & 118 & 10 & 12 & 25 & 38 & 51 & 64 & 77 & 79 \\
104 & 117 & 9 & 22 & 24 & 37 & 50 & 63 & 76 & 78 & 91 \\
116 & 8 & 21 & 23 & 36 & 49 & 62 & 75 & 88 & 90 & 103 \\
7 & 20 & 33 & 35 & 48 & 72 & 85 & 98 & 101 & 112 & 4 \\
19 & 32 & 34 & 47 & 60 & 73 & 86 & 99 & 102 & 114 & 6 \\
31 & 44 & 46 & 59 & 72 & 85 & 98 & 100 & 113 & 5 & 18 \\
43 & 45 & 58 & 71 & 84 & 97 & 110 & 112 & 4 & 17 & 30 \\
55 & 57 & 70 & 83 & 96 & 109 & 111 & 3 & 16 & 29 & 42 \\
56 & 69 & 82 & 95 & 108 & 121 & 2 & 15 & 28 & 41 & 54
\end{bmatrix} \quad (6.2.1) $$

with the element in the $(11, 3)$ position corrected to 82 from 72.

35Simon de La Loubère (1642–1729), a French diplomat, writer, mathematician and poet. De la Loubère brought to France from his Siamese travels a very simple method for creating n-odd magic squares, known as the “Siamese method” or the “de La Loubère method”, which apparently was initially brought from Surat, India by a médecin provençal by the name of M. Vincent. [324]
We find that L is nonsingular, and F-associated and so L^{-1} is also F-associated and hence magic. Moreover, L is pandiagonal and in addition we find that the inverse L^{-1} is pandiagonal! Furthermore we find that L is Caïssan in that both KL and LK' are pandiagonal, but that L^{-1} is not Caïssan!

We denote the 11×11 magic Latin square in Fig. 6.2.1 (right panel) by the matrix

\[
Q_3 = \begin{bmatrix}
2 & 4 & 6 & 8 & 10 & 1 & 3 & 5 & 7 & 9 & 11 \\
3 & 5 & 7 & 9 & 11 & 2 & 4 & 6 & 8 & 10 & 1 \\
4 & 6 & 8 & 10 & 1 & 3 & 5 & 7 & 9 & 11 & 2 \\
5 & 7 & 9 & 11 & 2 & 4 & 6 & 8 & 10 & 1 & 3 \\
6 & 8 & 10 & 1 & 3 & 5 & 7 & 9 & 11 & 2 & 4 \\
7 & 9 & 11 & 2 & 4 & 6 & 8 & 10 & 1 & 3 & 5 \\
8 & 10 & 1 & 3 & 5 & 7 & 9 & 11 & 2 & 4 & 6 \\
9 & 11 & 2 & 4 & 6 & 8 & 10 & 1 & 3 & 5 & 7 \\
10 & 1 & 3 & 5 & 7 & 9 & 11 & 2 & 4 & 6 & 8 \\
11 & 2 & 4 & 6 & 8 & 10 & 1 & 3 & 5 & 7 & 9 \\
1 & 3 & 5 & 7 & 9 & 11 & 2 & 4 & 6 & 8 & 10
\end{bmatrix}, \quad (6.2.2)
\]

which we find is also nonsingular, Caïssan and F-associated. And so the inverse Q_3^{-1}

\[
Q_3^{-1} = \frac{1}{726} \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 67 & -65 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 67 & -65 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 67 & -65 \\
1 & 1 & 1 & 67 & -65 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 67 & -65 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
-65 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 67 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 67 & -65 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 67 & -65 \\
1 & 1 & 1 & 1 & 1 & 67 & -65 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 67 & -65 & 1 & 1 & 1 & 1 & 1 & 1 \\
67 & -65 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}, \quad (6.2.3)
\]

is also F-associated and hence magic. Moreover we find that Q_3^{-1} is Caïssan!
We note that

$$KQ_3^{-1} = \frac{1}{726} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 67 & -65 \\ 1 & 1 & 1 & 1 & 67 & -65 & 1 & 1 & 1 \\ 1 & 67 & -65 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 67 & -65 & 1 \\ 1 & 1 & 1 & 67 & -65 & 1 & 1 & 1 & 1 \\ 67 & -65 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 67 & -65 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 67 & -65 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \quad (6.2.4)$$

and

$$Q_3^{-1}K' = \frac{1}{726} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & -65 & 1 & 1 & 1 & 1 \ 1 & 1 & 1 & -65 & 1 & 1 & 1 & 1 & 67 & 1 \ 1 & 1 & -65 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \ 1 & -65 & 1 & 1 & 1 & 1 & 1 & 67 & 1 & 1 \ -65 & 1 & 1 & 1 & 1 & 1 & 67 & 1 & 1 & 1 \ 1 & 1 & 1 & 1 & 1 & 67 & 1 & 1 & 1 & 1 \ 1 & 1 & 1 & 67 & 1 & 1 & 1 & 1 & -65 & 1 \\ 1 & 67 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 67 & 1 & 1 & 1 & 1 & 1 & -65 & 1 & 1 & 1 \end{pmatrix}. \quad (6.2.5)$$

are both pandiagonal.
7. The 15 × 15 Ursus Caïsson-magic square

Ursus [7] (1881) gives a 15 × 15 special-Caïsson magic square constructed from the “seed matrix”

\[D = \begin{pmatrix} 8 & 0 & 13 \\ 5 & 12 & 4 \\ 11 & 7 & 3 \\ 10 & 2 & 9 \\ 1 & 14 & 6 \end{pmatrix}, \]

(7.1)

which is “semi-magic” in that the 5 row-totals are all equal to 21 and the 3 column totals are all equal to 35, with 5 × 21 = 3 × 35 = 105. Moreover, if we delete rows 2 and 4 then we obtain

\[D^* = \begin{pmatrix} 8 & 0 & 13 \\ 11 & 7 & 3 \\ 1 & 14 & 6 \end{pmatrix}, \]

(7.2)

which is magic, with the numbers in all rows, columns and the two main diagonals adding to 21.

Let \(E_{p,q} \) denote the \(p \times q \) matrix with every entry equal to 1. Then the 15 × 15 matrix

\[U_{15} = 15E_{3,5} \otimes X + E_{5,3} \otimes X' + E_{15,15} \]

(7.3)

with characteristic polynomial

\[\det(\lambda I - U_{15}) = \lambda^{10}(\lambda - 1695)(\lambda^2 - 13050)(\lambda^2 - 49950), \]

(7.4)

and so we interpret \(U_{15} \) to be “double-keyed” [255] with magic keys 13050 and 49950. Moreover \(U_{15} \) is F-associated and hence its Moore-Penrose inverse \(U_{15}^+ \) is F-associated and so is magic. Furthermore \(U_{15} \) has rank equal to 5 and index equal to 1 and is EP and so its group inverse \(U_{15}^# \) and Moore-Penrose inverse \(U_{15}^+ \) coincide.
To see that U_{15} is special-Caïssan of type CSP4, it suffices to show that both UQ and QU are pandiagonal, where U is the CSP4-selection matrix

$$s = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{pmatrix}.$$

(7.5)

We find that $SU_{15} =$

$$\begin{pmatrix}
129 & 6 & 207 & 131 & 2 & 204 & 126 & 12 & 206 & 122 & 9 & 201 & 132 & 11 & 197 \\
16 & 223 & 98 & 18 & 225 & 91 & 28 & 218 & 93 & 30 & 211 & 103 & 23 & 213 & 105 \\
164 & 35 & 139 & 160 & 37 & 149 & 155 & 34 & 145 & 157 & 44 & 140 & 154 & 40 & 142 \\
174 & 111 & 57 & 176 & 107 & 54 & 171 & 117 & 56 & 167 & 114 & 51 & 177 & 116 & 47 \\
76 & 193 & 68 & 78 & 195 & 61 & 88 & 188 & 63 & 90 & 181 & 73 & 83 & 183 & 75 \\
134 & 5 & 199 & 130 & 7 & 209 & 125 & 4 & 205 & 127 & 14 & 200 & 124 & 10 & 202 \\
151 & 43 & 143 & 153 & 45 & 136 & 163 & 38 & 138 & 165 & 31 & 148 & 158 & 33 & 150 \\
84 & 186 & 72 & 86 & 182 & 69 & 81 & 192 & 71 & 77 & 189 & 66 & 87 & 191 & 62 \\
121 & 13 & 203 & 123 & 15 & 196 & 133 & 8 & 198 & 135 & 1 & 208 & 128 & 3 & 210 \\
159 & 36 & 147 & 161 & 32 & 144 & 156 & 42 & 146 & 152 & 39 & 141 & 162 & 41 & 137 \\
166 & 118 & 53 & 168 & 120 & 46 & 178 & 113 & 48 & 180 & 106 & 58 & 173 & 108 & 60 \\
89 & 185 & 64 & 85 & 187 & 74 & 80 & 184 & 70 & 82 & 194 & 65 & 79 & 190 & 67
\end{pmatrix}.$$

(7.6)

and that $U_{15}s =$

$$\begin{pmatrix}
129 & 2 & 206 & 132 & 6 & 204 & 122 & 11 & 207 & 126 & 9 & 197 & 131 & 12 & 201 \\
76 & 195 & 63 & 83 & 193 & 61 & 90 & 183 & 68 & 88 & 181 & 75 & 78 & 188 & 73 \\
159 & 32 & 146 & 162 & 36 & 144 & 152 & 41 & 147 & 156 & 39 & 137 & 161 & 42 & 141 \\
16 & 225 & 93 & 23 & 223 & 91 & 30 & 213 & 98 & 28 & 211 & 105 & 18 & 218 & 103 \\
134 & 7 & 205 & 124 & 5 & 209 & 127 & 10 & 199 & 125 & 14 & 202 & 130 & 4 & 200 \\
84 & 182 & 71 & 87 & 186 & 69 & 77 & 191 & 72 & 81 & 189 & 62 & 86 & 192 & 66 \\
166 & 120 & 48 & 173 & 118 & 46 & 180 & 108 & 53 & 178 & 106 & 60 & 168 & 113 & 58 \\
164 & 37 & 145 & 154 & 35 & 149 & 157 & 40 & 139 & 155 & 44 & 142 & 160 & 34 & 140 \\
121 & 15 & 198 & 128 & 13 & 196 & 135 & 3 & 203 & 133 & 1 & 210 & 123 & 8 & 208 \\
89 & 187 & 70 & 79 & 185 & 74 & 82 & 190 & 64 & 80 & 194 & 67 & 85 & 184 & 65 \\
174 & 107 & 56 & 177 & 111 & 54 & 167 & 116 & 57 & 171 & 114 & 47 & 176 & 117 & 51 \\
151 & 45 & 138 & 158 & 43 & 136 & 165 & 33 & 143 & 163 & 31 & 150 & 153 & 38 & 148 \\
\end{pmatrix}.$$

(7.7)

are both pandiagonal.
8. Firth’s “Magic Chess Board” and Beverley’s “Magic Knight’s Tour”

Our motivation in this section is the one-page “article” (Figure 8.1.1) entitled “The Magic Chess Board, invented by W. Firth, dedicated to Dr. Zukertort” [sic], included at the end of the rare booklet [111] entitled The Magic Square by “W. A. Firth”, published in 1887. We believe that this “W. A. Firth” is William A. Firth (d. 1890) and that this “Dr. Zukertort” is Johannes Hermann Zukertort (1842–1888).

8.1. The 8 × 8 Firth–Zukertort magic matrix. Firth’s one-page “article” (Figure 8.1.1) concerns an 8 × 8 magic square, which we define by the “Firth–Zukertort magic matrix”

\[
Z = \begin{pmatrix}
64 & 21 & 42 & 3 & 37 & 16 & 51 & 26 \\
38 & 15 & 52 & 25 & 63 & 22 & 41 & 4 \\
11 & 34 & 29 & 56 & 18 & 59 & 8 & 45 \\
17 & 60 & 7 & 46 & 12 & 33 & 30 & 55 \\
10 & 35 & 32 & 53 & 19 & 58 & 5 & 48 \\
20 & 57 & 6 & 47 & 9 & 36 & 31 & 54 \\
61 & 24 & 43 & 2 & 40 & 13 & 50 & 27 \\
39 & 14 & 49 & 28 & 62 & 23 & 44 & 1
\end{pmatrix}.
\] (8.1.1)

Firth showed (Figure 8.1.1) that if the top left, top right, lower left and lower right 4 × 4 squares are stacked then they form a “magic cube”. An n × n × n magic cube is the 3-dimensional equivalent of an n × n magic square, with the sum of the numbers in each row, each column, each “pillar” and the four main “space diagonals” equal to the same magic number. For more about magic cubes see, e.g., Benson & Jacoby [?] and Heinz & Hendricks [199].

We find that Z is F-associated and so its Moore–Penrose inverse \(Z^+\) is F-associated and hence magic. But Z is neither pandiagonal nor CSP2-magic. However, Z has rank 5, index 1 and is EP and hence Z has a group inverse \(Z^\#\) and this coincides with the Moore–Penrose inverse \(Z^+\). The characteristic polynomial is

\[
\det(\lambda I - Z) = \lambda^3(\lambda - 260)(\lambda^4 - 2, 129, 920)
\] (8.1.2)

and so Z is keyed with the single “magic key of degree 2”

\[
\kappa_2 = \frac{1}{4}(\text{tr}Z^4 - m^4) = 2, 129, 920
\] (8.1.3)

and hence powers \(Z^{4p+1}\) are linear in the parent Z and so are all F-associated and EP. We find that

\[
Z^{4p+1} = \kappa_2^pZ + m(m^4 - \kappa_2^p)\bar{E}, \quad p = 1, 2, \ldots
\] (8.1.4)

with magic sum \(m = 260\) and where \(\bar{E}\) has every element equal to 1/8. When \(p = 1\) (8.1.4) becomes

\[
Z^5 = \kappa_2Z + m(m^4 - \kappa_2)\bar{E}; \quad m = 260, \quad \kappa_2 = 2, 129, 920.
\] (8.1.5)

36Many thanks to Christian Boyer for alerting us to this booklet and to Jani A. Virtanen for finding a copy for us.
For the Ursus matrix \mathbf{U}, we have in parallel

$$\mathbf{U}^5 = \kappa^2 \mathbf{U} + m(m^4 - \kappa^2)\mathbf{E}; \quad m = 260, \quad \kappa_1 = 2688, \quad (8.1.6)$$

where the single “magic key of degree 1”

$$\kappa_1 = \kappa = \frac{1}{2}(\text{tr}\mathbf{U}^2 - m^2) = 2688. \quad (8.1.7)$$

Since \mathbf{Z} is EP we find that the Moore–Penrose and group inverses coincide and that $(8.1.4)$ holds with $p = -1, -2, \ldots$, and so, e.g., with $p = -1$

$$(\mathbf{Z}^+)^3 = (\mathbf{Z}^{\#})^3 = \frac{1}{\kappa_2} \mathbf{Z} + m \left(\frac{1}{m^4} - \frac{1}{\kappa_2} \right) \mathbf{E}. \quad (8.1.8)$$

Firth dedicated his “Magic Chess Board” to “Dr. Zukertort”, almost certainly the chess master Johannes Hermann Zukertort (1842–1888), who was one of the leading world chess players for most of the 1870s and 1880s37 and who lost $7\frac{1}{2}–12\frac{1}{2}$ to Wilhelm Steinitz (1836–1900) in the 1886 inaugural World Chess Championship (played in New York, St. Louis and New Orleans). We know of no other distinguished chess player or chess Grandmaster38 associated with a magic square (or magic cube or magic chessboard). The unnamed “most distinguished chess-player in England” who made the “greatest magic square extant” reported by William Beverly \textit{sic} in 1889, see Figure 8.3.2 below, might well have been Zukertort, who died in London in 1888: Steinitz left England in 1883 and moved to New York, where he lived for the rest of his life.

37 Many thanks to Tõnu Kollo for alerting us to this fact.

38 The title Grandmaster is awarded to strong chess players by the Fédération Internationale des Échecs (FIDE) or World Chess Federation. Apart from “World Champion”, Grandmaster is the highest title a chess player can attain. The earliest use of the term “Grandmaster” may have been in 1907 in the Ostend tournament when the term “Großmeister” was used, though informally, it was apparently used already in 1838 by the newspaper \textit{Bell’s Life in London, and Sporting Chronicle} in its chess column; \textit{Bell’s Life} was a British weekly sporting paper published as a pink broadsheet between 1822 and 1886. 324
Figure 8.1.1: “The Magic Chess Board, invented by W. Firth, dedicated to Dr. Zukertort”, published at the end of the book entitled The Magic Square by W. A. Firth (1887).
8.2. William A. Firth (c. 1815–1890) and Henry Perigal, Junior (1801–1898). We know very little about “W. A. Firth” but note that the title page of The Magic Square says “W. A. Firth, B. A., Cantab., late scholar of Emmanuel College, Cambridge, and mathematical master of St. Malachy’s College, Belfast.” The preface is signed with the address “31 Hamilton Street, Belfast” and it seems to us, therefore, almost certain that our “W. A. Firth” is the “William A. Firth” who died on 12 September 1890, since from the Public Record Office of Northern Ireland, we find that “The Will of William A. Firth, late of Belfast, Mathematical Professor, who died on 12 September 1890 at same place was proved at Belfast by Margaret Firth of Hamilton-street Belfast, Widow, one of the Executors.” We do not know, however, when he was born or even when he got his B. A. degree from Emmanuel College, Cambridge. We believe this “W. A. Firth” is the “William Firth”, whose book entitled Solutions to the mathematical questions in the examination for admission to the Royal Military Academy was published in London, July 1879.

In addition, we believe that our “W. A. Firth” is the “Mr. William A. Firth (Whiterock, Belfast)” who with “Mr. Henry Perigal were balloted for and duly elected” members of the Quekett Microscopical Club on 22 July 1881. Henry Perigal, Junior (1801–1898), was an English amateur mathematician best known for his elegant dissection proof of Pythagoras’s theorem, a diagram of which is carved on his gravestone. Perigal also discovered a number of other interesting geometrical dissections and, though employed modestly for much of his life as a stockbroker’s clerk, was well known in British scientific society.

Figure 8.2.1: (from left to right) St Malachy’s College, Belfast; statue of St Malachy; Henry Perigal, Junior; John Thomas Quekett.

39. The Royal Military Academy Sandhurst (RMAS), commonly known simply as Sandhurst, is the British Army officer initial training centre. The Academy’s stated aim is to be: “the national centre of excellence for leadership.”

40. The Quekett Microscopical Club, named after the English microscopist and histologist John Thomas Quekett (1815–1861), was founded in 1865 and is dedicated to optical microscopy, amateur and professional.

41. “Henry Perigal’s body was cremated and the ashes buried in the churchyard of the Church of St. Mary and St. Peter in Wennington, Essex (about 15 miles east of central London).” For an obituary of Henry Perigal, see [?].
8.3. **Henry Perigal, Junior (1801–1898) and the first magic knight’s tour.** Henry Perigal, Junior, introduced (on 29 March 1848) the article entitled “On the magic square of the knight’s march”, by William Beverley [sic], and published in *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, vol. 33, no. 220, pp. 101–105 (August 1848) [92]; this article included what is apparently the first “magic knight’s tour”, see Figure 8.4.1.

Figure 8.3.1: Excerpts from “On the magic square of the knight’s march”, by William Beverley [sic], introduced by H. Perigal, Jun., and published in *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, vol. 33, no. 220, pp. 101–105 (August 1848) [92].
The Greatest Magic Square Extant.

BY WILLIAM BEVERLY.

In view of the great interest that is manifested in that mysterious subject, the magic square, we present what is probably the finest and the most perfect example extant. It was made by the most distinguished chess-player of England.

<table>
<thead>
<tr>
<th>280</th>
<th>280</th>
<th>280</th>
<th>280</th>
<th>280</th>
<th>280</th>
<th>280</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>52</td>
<td>58</td>
<td>28</td>
<td>43</td>
<td>54</td>
</tr>
<tr>
<td>48</td>
<td>23</td>
<td>42</td>
<td>44</td>
<td>53</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>31</td>
<td>46</td>
<td>49</td>
<td>25</td>
<td>8</td>
<td>55</td>
<td>49</td>
</tr>
<tr>
<td>50</td>
<td>3</td>
<td>22</td>
<td>16</td>
<td>56</td>
<td>41</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>29</td>
<td>9</td>
<td>24</td>
<td>59</td>
<td>58</td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>34</td>
<td>61</td>
<td>40</td>
<td>57</td>
<td>10</td>
</tr>
<tr>
<td>63</td>
<td>14</td>
<td>17</td>
<td>26</td>
<td>21</td>
<td>12</td>
<td>59</td>
</tr>
<tr>
<td>18</td>
<td>35</td>
<td>64</td>
<td>13</td>
<td>60</td>
<td>37</td>
<td>22</td>
</tr>
</tbody>
</table>

This square illustrates the Knight’s Tour over the chess-board, in the game of chess, in which the knight plays to every square on the board, and touches it but once.

Every line of figures running up and down sums up 280.

Every line of figures running right and left sums up 280.

Divide the board into four quarters; then the rows and files of each quarter will sum up 180.

Divide the board into sixteen equal parts; the numbers that compose each sixteenth part will sum up 120.

It also follows that any sixteenth portion of the board, added to any other sixteenth portion, will sum up 240.

It also follows that any half row or file, added to any other half row or file, in the entire square, will sum up 240.

Take the files of numbers running up and down; the four central numbers of the file will sum up 120; and so of course the four remaining or outer numbers will sum up 120.

These are only some of the wonderful properties of this mysterious square. This is really a magic square; and in comparison, the ordinary square by this name sinks into insignificance.

Figure 8.3.2: “The greatest magic square extant” by William Beverly [sic], published in The Bizarre: Notes and Queries, vol. 6, no. 1, pp. 224–225 (January 1889).
This “semi-magic” square (neither of the two main diagonals add to the magic sum) was republished in 1889 as being “made by the most distinguished chess player of England” in the short article entitled “The greatest magic square extant” by William Beverly [sic], published in *The Bizarre: Notes and Queries*, vol. 6, no. 1, pp. 224–225 (January 1889) [92], see Figure 8.3.2. According to Jelliss [280]:

The first magic knight’s tour was composed in 1847 by a certain William Beverley, whose address was given as 9 Upper Terrace, Islington (London). *The Dictionary of National Biography* (Supplement 1901) has an extensive entry for William Roxby Beverley (born at Richmond, Surrey 1814?, died at Hampstead, London, 17 May 1889) who is probably the knight’s tour Beverley, though our evidence for this is purely circumstantial (i.e., he was in the right area of London at the right time). He was a scene painter and designer of theatrical effects, and travelled round the country quite a lot in the course of this work. He is recorded as being in London from 1846 onwards, working at the Princess’s Theatre, the Lyceum, Covent Garden and Drury Lane, and exhibited water colours at the Royal Academy. William Roxby Beverley had three older brothers, Samuel, Henry and Robert. Henry Roxby Beverley (1796–1863) controlled the Victoria Theatre, London for a short time, and died at 26 Russell Square, the house of his brother Mr William Beverley the eminent scene painter. (This address is currently an Annex of Birkbeck College, University of London.) Their father William Roxby (1765–1842) was an actor-manager and adopted Beverley as a stage name, after his home town, the old capital of the East Riding of Yorkshire. Upper Terrace no longer exists; it was that part of Upper Street where Islington Town Hall now stands. I could not trace Beverley’s name there in the census records for 1851.

We note that William Roxby Beverley died in 1889 the year in which the magic knight’s tour was republished (by William Beverly [sic]).

We will denote “magic square of the knight’s march” = “greatest magic square extant” by the semi-magic matrix B, which we find has rank 5 and index 1 but is not double-keyed like the Firth–Zukerort matrix Z. Moreover, B is not pandiagonal, not CSP2-magic, not V-associated (though B^+ is semi-magic), and not 4-pac. The Beverley-matrix B does, however, have a “semi-alternate-couplets property” with the “Beverley-couplets matrix” $B_c = RB$

\[
B = \begin{pmatrix}
1 & 30 & 47 & 52 & 5 & 28 & 43 & 54 \\
48 & 51 & 2 & 29 & 44 & 53 & 6 & 27 \\
31 & 46 & 49 & 4 & 25 & 8 & 55 & 42 \\
50 & 3 & 32 & 45 & 56 & 41 & 26 & 7 \\
33 & 62 & 15 & 20 & 9 & 24 & 39 & 58 \\
16 & 19 & 34 & 61 & 40 & 57 & 10 & 23 \\
63 & 14 & 17 & 36 & 21 & 12 & 59 & 38 \\
18 & 35 & 64 & 13 & 60 & 37 & 22 & 11
\end{pmatrix}, \quad B_c = RB = \begin{pmatrix}
49 & 81 & 49 & 81 & 49 & 81 & 49 & 81 \\
79 & 97 & 51 & 33 & 69 & 61 & 61 & 69 \\
81 & 49 & 81 & 49 & 81 & 49 & 81 & 49 \\
83 & 65 & 47 & 65 & 65 & 65 & 65 & 65 \\
49 & 81 & 49 & 81 & 49 & 81 & 49 & 81 \\
79 & 33 & 51 & 97 & 61 & 69 & 69 & 61 \\
81 & 49 & 81 & 49 & 81 & 49 & 81 & 49 \\
19 & 65 & 111 & 65 & 65 & 65 & 65 & 65
\end{pmatrix},
\]

(8.3.1)

where R is the “couplet-summing” matrix (2.2.3). It is interesting to observe that rows 1 and 5 of B_c are the same and with “alternate couplets” as are rows 3 and 7, which are just rows 1
and 5 shifted one to the right (with wrap-around). We find that B_c has rank 4 and index 3 with
\[\text{rank}(B_c^3) = \text{rank}(B_c^4) = 2. \]
Moreover,
\[
B_c^3 = 260^3E + 2^6
\]
where E is the 8×8 matrix with every entry equal to 1. The “Beverley-couplets matrix” $B_c = RB$ is semi-magic with two nonzero eigenvalues, the magic sum 520 ($= 2 \times 260$) and 36.

Beverley [92 (1848)] observed, see also Andrews [135, p. 175 (1917)] and Falkener [8, p. 325 (1892)], that the Beverley-matrix B is “quartered” in the sense that the four corner 4×4 submatrices are all semi-magic. Furthermore, Beverley [92] noted that the numbers in sixteen 2×2 submatrices—the four 2×2 submatrices of each of these four corner 4×4 submatrices all add to 130, half the magic sum 260 of the full matrix B. In fact the numbers in thirty-five 2×2 submatrices of B add to 130, as indicated by the thirty-five elements equal to 130 in the “Beverley-double-couplets matrix” $B_{dc} = RBR'$

\[
B_{dc} = RBR' = \begin{pmatrix}
130 & 130 & 130 & 130 & 130 & 130 & 130 & 130 \\
176 & 148 & 84 & 102 & 130 & 122 & 130 & 148 \\
130 & 130 & 130 & 130 & 130 & 130 & 130 & 130 \\
148 & 112 & 112 & 130 & 130 & 130 & 130 & 148 \\
130 & 130 & 130 & 130 & 130 & 130 & 130 & 130 \\
112 & 84 & 148 & 158 & 130 & 138 & 130 & 140 \\
130 & 130 & 130 & 130 & 130 & 130 & 130 & 130 \\
84 & 176 & 176 & 130 & 130 & 130 & 130 & 84
\end{pmatrix}
\]

For example, the 130 in row 4, column 5 of B_{dc} means that the numbers (56, 41; 9, 24) in the 2×2 submatrix of B defined by rows 4 and 5 and columns 5 and 6 add to 130.

Let a chess knight make a tour on an $n \times n$ chessboard whose squares are numbered from 1 to n^2 along the path of the knight (Figure 8.3.3). Then the tour is called a “magic knight’s tour” if the resulting arrangement of numbers is a magic square. If the resulting matrix is “semi-magic”, i.e., just the rows and columns sum to the magic sum, then we have a “semi-magic knight’s tour”. When the two main diagonals also sum to the magic number, then we have a “fully-magic knight’s tour”. Beverley’s magic knight’s tour on an 8×8 chessboard is semi-magic. In fact there is no fully-magic knight’s tour on an 8×8 chessboard, as shown by an exhaustive computer enumeration of all possibilities by the international team of Günter Stertenbrink, Jean-Charles Meyrignac, and Hugues Mackay in 2003 (after 61.40 days of extensive computation). For more about the magic knight’s tour see, e.g., Jelliss [280].

![First semi-magic knight's tour (Dan Thomasson 2001)](image1)

![Stamp for “8th National Sports Week”: Indonesia 1973, Scott 847.](image2)

Figure 8.3.3: (left panel) first semi-magic knight’s tour (Dan Thomasson 2001); (right panel) stamp for “8th National Sports Week”: Indonesia 1973, Scott 847.
8.4. Johannes Hermann Zukertort (1842–1888). Johannes Hermann Zukertort was born on 7 September 1842 in Lublin, Congress Poland, the Polish state created on 3 May 1815 by the Congress of Vienna as part of the political settlement at the end of the Napoleonic Wars. Zukertort said that his mother was the Baroness Krzyjanowska (Krzyżanowska)\(^{42}\). According to the biography of Zukertort by Domański & Lissowski\(^{219}\), he enrolled on 29 April 1861 at the University of Breslau (then in Prussia, now Wrocław in Poland) to study medicine; he later claimed that he had completed his degree, but this has been disputed—apparently his name was removed from the list of students on 9 February 1867 since he had not fulfilled all the requirements for the degree; nevertheless, he was later addressed with the title “Dr.” In Breslau he met the German chess master Adolf Anderssen (1818–1879) and fell in love with chess. This new passion with chess did not prevent Zukertort from distinguishing himself in other ways. He became fluent in a wide range of languages (perhaps as many as 14). He fought for Prussia against Austria, Denmark, and France; was once left for dead on the battlefield; and was decorated for gallantry 9 times; and he was noted as a swordsman and marksman. He was an accomplished pianist and, for a while, a music critic.\(^{324}\)

According to\(^{219}\), on 17 April 1797 the Prussian Kaiser Francis II (Erwählter Römischer Kaiser Franz II) (1768–1835), who was the last Holy Roman Emperor (ruling from 1792–1806) decided that all Jews, in addition to the surname each of them already had if any (Jews living in the border regions of Poland at that time did not have surnames) should choose themselves an additional family name. However, the German-speaking officials often influenced the choices. Around 1804 some Austrian official in Lublin gave Moszko Lejbow, who was the grand father of our Johannes Hermann, Zukertort as the last name. What the reason was for this choice is not known, i.e., there is no information as to whether Moszko Lejbow was selling or baking sweet things, etc.

Johannes Hermann Zukertort died on 20 June 1888 from a cerebral haemorrhage. after playing a chess game in Simpson’s Divan (in London on The Strand near the Savoy Hotel, now the restaurant Simpson’s in the Strand). “Samuel Reiss’s Grand Cigar Divan, which opened in 1828, soon became a thriving coffee house, almost a club, among London gentlemen with members paying one guinea a year for use of the facilities. Patrons smoked, read their newspapers at leisure, and played chess while reclining on divans. Right from its early years the house was a popular recreational chess venue, and games of chess were even frequently played against other local coffee houses, with runners hired to deliver each move as it was made.

In 1848, Reiss joined forces with the caterer John Simpson to expand the premises, renaming it ‘Simpson’s Grand Divan Tavern’. It was soon established as one of the top London restaurants noted for using solely British produce: sirloins of beef and saddles of mutton, served from silver-topped trolleys (some of which are still in use today), and carved at the table for each individual guest. It became an established attraction and patrons included Charles Dickens, William Gladstone, and Benjamin Disraeli. Just as Wimbledon is considered the home of tennis and Lord’s the home of cricket, Simpson’s can justifiably claim the equivalent title for chess.”\(^{324}\)

\(^{42}\)Presumably this lady was not Tekla Justyna Krzyjanowska, the mother of the famous Polish composer and virtuoso pianist Frédéric François Chopin (1810–1849), who had 3 sisters but no brothers.
Leading chess master of German-Polish-Jewish origin. He is most famous for playing in the inaugural World Chess Championship match from 11 January to 29 March 1886, losing to Wilhelm Steinitz 12½-7½. The matches were played in New York, St. Louis and New Orleans. After this defeat, Zukertort's health suffered and he was a greatly weakened player for the remaining two years of his life. Zukertort died on 20 June 1888 in London from a cerebral haemorrhage after playing a game in Simpson's Divan—now Simpson's in the Strand.

Figure 8.4.1: (left panel) Simpson’s Divan in “The Good Old Days” [?, p. 3]; (right panel) portrait of Zukertort in the early 1880s.[24]

Figure 8.4.2: Souvenir sheet for “Les grands maîtres des échecs”: Chad 1982, Scott 433B.

Chad (French: Tchad), officially known as the Republic of Chad, is a landlocked country in central Africa. It is bordered by Libya to the north, Sudan to the east, the Central African Republic to the south, Cameroon and Nigeria to the southwest, and Niger to the west.
The only stamps that we have found that are associated with Zukertort are a souvenir sheet for “Les grands maîtres des échecs” from Chad 1982 (Figure 4.3) and a pair of stamps from the Central African Republic 1983 (Figure 4.4)\(^{44}\).

There is a portrait of Zukertort in the selvage of the souvenir sheet in Figure 8.4.2, which shows a single stamp with a portrait of Steinitz. Zukertort is shown in the selvage between Emanuel Lasker (1868–1941) and Howard Staunton (1810–1874) at the top centre, and proceeding anti-clockwise there are also portraits of Mikhail Moiseyevich Botvinnik (1911–1995), Tigran Vartanovich Petrosian\(^{45}\) (1929–1984), José Raúl Capablanca y Graupera (1888–1942), Viktor Lvovich Korchnoi (b. 1931), and Anatoly Yevgenyevich Karpov (b. 1951). This souvenir sheet was part of a set of nine stamps (Chad 1982, Scott 427–433, 433A, 433B) which featured Capablanca, Karpov, Korchnoi, and Staunton as well as François-André Danican Philidor (1726–1795), Paul Charles Morphy (1837–1884), Boris Vasilievich Spassky (b. 1937), and Robert James “Bobby” Fischer (1943–2008), who are not shown in the selvage of the souvenir sheet (Figure 8.4.3).

There are many stamps which honour Steinitz, including the one shown in the souvenir sheet from Chad displayed in Figure 8.4.2. The only stamps per se that we have found associated with Zukertort are two (Figure 4.4) from a set issued by the Central African Republic in 1983. According to Edwards & Lubianiker\(^{252}\) the chess position shown on the 300F stamp (Figure 8.4.3, right panel) is from the ninth game of the 1886 Steinitz–Zukertort championship match though the portrait there is of Boris Spassky; this game (with Zukertort white) was played on 10 February 1886; the complete game may now be replayed \([\text{online}]\). The 5F stamp (Figure 4.4, left panel) shows a portrait of Steinitz together with a position which derives from a game by Spassky played in 1953, nearly 50 years after Steinitz died. Presumably the intent was to put the Steinitz–Zukertort chess position on the 5F stamp and the Spassky chess position on the 300F stamp!

\(^{44}\)The only stamp associated with Zukertort that is listed in the 1999 Second Edition of Collect Chess on Stamps\(^{2}\) is the 300F stamp from the Central African Republic shown in Figure 8.4.2 (right panel).

\(^{45}\)Spelled “Petrossian” on the souvenir sheet.

Figure 8.5.1: Souvenir sheet for the 1st Kasparov–Karpov World Chess Championship Match, Moscow 1984–1985: Democratic People’s Republic of Korea: 1986, Scott 2549.
We find it very interesting that on 21–24 September 2009 just a few days before these words were first written [254] there took place in Valencia a rematch between Karpov, whose portrait is shown in the selvage in Figure 8.4.2 (the last portrait proceeding anti-clockwise from Zukertort) and Garry Kasparov (b. 1963: Garry Kimovich Weinstein), who won 9–3. This event took place exactly 25 years after the two players’ legendary encounter at the World Chess Championship Match in Moscow 1984, which ended without result. After a few months break, the match continued in 1985 (in Moscow) with Kasparov winning with a score of 13–11, see Figure 8.5.1.

Figure 8.5.2: (left panel) 2nd Kasparov–Karpov World Championship Match, London & Leningrad 1986: Armenia 1996, Scott 537 (from a booklet pane of four stamps), and (right panel) souvenir sheet for the 4th Kasparov–Karpov World Championship Match, New York & Lyon 1990: Guinea 1992, Scott 1195.

Figure 8.5.3: Souvenir sheet with three stamps for the 3rd Kasparov–Karpov World Championship Match, Sevilla 1987: Surinam 1987, Scott 796.
The Second World Chess Championship Match between Kasparov and Karpov took place in 1986, hosted jointly in London and Leningrad; Kasparov won 12½–11½. The position shown in the stamp (Figure 8.5.2, left panel) is from the 22nd game (Kasparov white), which was played on 3 October 1986; the complete game [252] may now be replayed online. There were just two more World Chess Championship Matches between Kasparov and Karpov: the Third in Sevilla 1987 (Figure 8.5.2), which ended in a draw with a score of 12–12, but Kasparov kept the title. The Fourth (and last) World Chess Championship Match between Kasparov and Karpov (Figure 8.5.2, right panel) was held in New York and Lyon in 1990, and again Kasparov won 12½–11½. Shown in the selvage of the souvenir sheet in Figure 8.5.2 (right panel) are portraits of chess masters Johann Jacob (János Jakab) Löwenthal (1810–1876) and Pierre Charles Fournier de Saint-Amant (1800–1872), as well as of Lasker and Staunton, whose portraits are also in the selvage of the Chad souvenir sheet featured in Figure 8.4.2.
9. An illustrated bibliography on Caïssan magic squares and some related topics

9.1. Some publications by or connected with “Ursus”: Henry James Kesson (b. c. 1844).

The Queen, The Lady’s Newspaper & Court Chronicle, vol. 70, p. 142 (August 6, 1881).
REFERENCES

[1] [1844-Scotland] *Travels in Scotland*, by J. G. Kohl [Johann Georg Kohl (1808–1878)], translated from the German *Reisen in Schottland* into English by John Kesson (d. 1876), With notes by the translator, in correction or elucidation of Mr. Kohl’s observations, pub. Bruce and Wyld, London, 1844. [online at Google Books.]

The chapters on .. Magic Squares,” which finish the volume, though of interest in some respects, are disfigured by inaccuracies which impair their value. The definition of a magic square is wrong. It is defined to be “a square, the cells of which add up to the same amount, whichever way they are taken” (p. 269). The perpendicular and horizontal bands, and the diagonal of a magic square, afford a constant summation, and in more perfect squares, some other paths also. But this is not in “whichever way they are taken”. It is impossible to construct a square which is magic in all given paths. Again, to form odd squares, “place the first number immediately below the centre, then place the others, one by one, in a diagonal line, inclining to the right” (p. 271). It is immaterial whether the inclination is right or left. The only effect is to reverse the position of the terms of the series. Then,

46We conjecture that Henry James Kesson was born c. 1844 and that the translator John Kesson (d. 1876) was his father.
when discussing Indian squares, Mr. Falkener remarks (p. 388) that Mr Kesson, who has treated of these squares in The Queen, says the name Caisan squares was given to them by Sir William Jones. Mr Kesson says nothing of the kind: that gentleman knows better than anyone else that the adjective “Caisan” was suggested to him by “Cavendish”, who originated it. Caissa is Sir William Jones’s fanciful goddess of chess, and as Indian squares, when perfect, include all the rooks’, knights’ and bishops’ paths, that is the paths of all the chess pieces, — the name Caisan is very appropriate (p. 338). And (pp. 338, 339), Mr Falkener observes that a Caisan square of eight (sixty-four cells), is not so perfect in all its paths as one of ten (one hundred cells). A Caisan square of a hundred cells is impossible of construction.

The review in The Field [reviewer not identified] is lengthy and hostile, and greatly upset the author [Falkener], indeed it formed the subject of correspondence between Falkener and Iltyd Nicholl, the editor [48] of The Field [49]. From this letter it is clear that the reviewer, who attacked Falkener very vigorously, was the “Mr Kesson” who had written articles on Magic Squares in 1879–1881 referred to by Falkener in his book, pp. 337–338. Nicholl, evidently an experienced editor, wrote consolingly (probably not for the first time in his career): “... you must take comfort in the thought that to be found fault with at such length is in itself a compliment. Probably your work has forestalled something of a similar nature which Mr Kesson himself contemplated, and that is an offence which some people can never forgive.”

According to Iltyd Nicholl, “Kesson” was a nom de plume, deriving from the site called “Nassek,” where a contention-producing magic-square had been earlier discovered over a gateway.

“To Henry James Kesson [b. c. 1844], this book is cordially dedicated by his sincere friend, the Author.” “The solution of the Eight queens’ Problem by Magic Squares is believed to be new. That such a solution is possible was simultaneously suspected by Mr. Kesson and the Author. As regards the solution given, the Author desires to state that it is due to an analysis made by Mr. Kesson; all the Author claims respecting it is the mode of arrangement.” [pp. xi–xii]

47 The first use of Caisan squares by “Cavendish” that we have found is in the 1894 book II, published 13 years after the seminal article by “Ursus” [7]. Cavendish’s The Pocket Guide to Chess [4] was first published in 1878–TBC.
48 According to Wikipedia 324, Frederick Toms was editor of The Field from 1888–1899.
49 The Field, The Country Gentleman’s Newspaper is the world’s oldest country and field sports magazine, published continuously since 1853. 324
50 Presumably this Nassek = Nasik? We do not know of any magic square been discovered over a gateway in Nasik. We find it interesting that “Kesson” is “Nassek” (almost) backwards but we doubt if “Kesson” is a nom de plume.
The Lincoln Imp [16]; Lincoln Cathedral: Montserrat 1978, Scott 387.

Report for Austrey School in Warwickshire for 1890: “Discipline is very well maintained. The children read unusually well, in a natural voice and with good intonation. Handwriting also deserves praise; Spelling very fair, as is the mechanical Arithmetic. The first and second standards know their tables well, but the third and upwards should solve easy problems and do better in mental arithmetic. English fails, parsing being poor in the fourth standard. The school has been much improved by the addition of a class room, improvement of play-ground, etc. More pictures are needed. Considering that the children live near the school, the attendance should be much more regular than it is.”

Surviving a deprived, institutionalised childhood in the workhouse of Inverness, Jessie Kesson took on a huge variety of jobs in London and became a skilled social worker as well as a respected and accomplished writer.

Austrey is a village at the northern extremity of the county of Warwickshire, near Newton Regis and No Man’s Heath, and close to the Leicestershire villages of Appleby Magna, Norton-juxta-Twycross and Orton on the Hill.
9.2. Some publications by or about Andrew Hollingworth Frost (1819–1907).

![Figure 9.2.1: (left panel) Percival Frost (1817–1898), (centre) Andrew Hollingworth Frost (1819–1907), (right) Nasik (Nashik) and the Godavari River.](image)

The Cambridge Mathematical Journal and its successors, The Cambridge and Dublin Mathematical Journal, and The Quarterly Journal of Pure and Applied Mathematics, were a vital link in the establishment of a research ethos in British mathematics in the period 1837–1870. From the beginning, the tension between academic objectives and economic viability shaped the often precarious existence of this line of communication between practitioners. Utilizing archival material, this paper presents episodes in the setting up and maintenance of these journals during their formative years. “The Cambridge Mathematical Journal and its descendants: the linchpin of a research community in the early and mid-Victorian age” [210].

Mr. A. Frost, however, has investigated a very elegant method of constructing squares, in which not only do the rows and columns form a constant sum, but also the same constant sum is obtained by the same number of summations in the directions of the diagonals—the square being moved in the direction of the sides till the opposite sides are in contact, in order to supply a number of figures in the direction parallel to the diagonal equal to the number of figures in the aide. In this kind of square (an example of which is here given (2),) the whole number of summations is four times the number of figures in the side. I will now briefly mention the principal steps by which Mr. A. Frost obtained his general method of construction; and, in order to distinguish the squares which he has investigated from the ordinary magic squares, I shall call them Nasik Squares, and his cubes Nasik Cubes.

[52]Portrait in 1870, from the Church Mission Society archives; via Christian Boyer [32].

[53]Nasik is in the northwest of Maharashtra state (180 km from Mumbai and 220 km from Pune), India, and India Security Press in Nasik is where a wide variety of items like postage stamps, passports, visas, and non-postal adhesives are printed: photograph of Nasik [online] at nashikchandi.com
The object of this paper is to give a method by which Nasik squares of the nth order can be formed for all values of n; a Nasik square being defined to be “A square containing n cells in each side, in which are placed the natural numbers from 1 to n∗ in such an order that a constant sum \(\frac{1}{2}n(n^2 + 1)\) (here called W) is obtained by adding the numbers on n of the cells, these cells lying in a variety of directions defined by certain laws.”
9.3. Some publications by or about Charles Planck (1856–1935).

Figure 9.3.1: Charles Planck, c. 1903 [39] (left panel), c. 1897 [35] (right panel).

Figure 9.3.2: (left panel) Edward Nathan Frankenstein (1840–1913) [36, p. 233]; (centre & right panels) Benjamin Glover Laws (1861–1931) [36, p. 129], [324]; William Symes Andrews (1847–1929), “Pioneer electrical engineer and former associate” of Thomas Alva Edison (1847–1931) [143]; Mali 2009 [308].

'The Chess Problem” discussion by C. Planck, pp. 1–80, followed with Problems by H. J. C. Andrews (pp. 83–116), by E. N. Frankenstein (pp. 119–150), by B. G. Laws (pp. 153–206), and by C. Planck (pp. 209–261). “Coauthors” of Charles Planck are Henry John Clinton Andrews (1828–1887), and

[34] [1888-Planck/EMC] “Magic squares, cubes, and quadrics—magic square for 1888—oddly even roots—answer to “W.T.P.” (Query 64688)—Nasik and ply-squares” by Charles Planck (article signed “C. Planck” [sic]), The English Mechanic and World of Science, vol. 47, no. 1199, p. 60 (March 16, 1888): GHC CPK-17. Whole volume 47 online (601 pp., 140.9 mb) at Google Books, GHC EMC47.pdf.

Article # [28511], signed C.P. (identified as C. Planck by Andrews [135, p. 363]).

Unsigned biography of Charles Planck with a portrait.

Letter to the Editor concerning the number of 5 × 5 magic squares estimated by [123] published on March 13, 1902; Planck’s letter is dated March 15, 1902.

Untitled, unsigned biography of Charles Planck with a portrait.

Article signed “W. S. Andrews, Schenectady, N. Y.” but footnote at end of title: “This article has been compiled almost entirely from correspondence received by the writer from Dr. Planck, and in a large part of it the text of his letters has been copied almost verbatim. Its publication in present form has naturally received his sanction and endorsement. W. S. A.” Article starts with “We are indebted to Dr. C. Planck for a new and powerful method for producing magic squares ...”.

[48] [1935b-Planck/obit-BMJ] “Charles Planck, M.A., M.R.C.S., L.R.C.P.”, *The British Medical Journal*, vol. 1, no. 3886, p. 1344 (June 29, 1935): online at JSTOR, GHC CPK-05b; also online at Highwire Press and online at PubMed Central.

Unsigned obituary of Charles Planck indicating that he was born in “Dhiapore” [sic], India “while his father was serving in the Indian Medical Service”. For more about “Dhiapore” see [273].

55“The British Journal of Psychiatry was originally founded in 1853 as The Asylum Journal and was known as the The Journal of Mental Science from 1858 to 1963. The complete archive of contents between 1855 and 2000 is now available online.”

Figure 9.4.1: (left panel) Igalo, Croatia (where apparently Bidev lived); (right panel) Royal Library, The Hague (where many of Bidev’s publications are available).

56Bonus Socius is the earliest known collection of chess problems, written in the 13th century by Nicolas de Nicolai of Lombardy. Includes chess problem, c. 1266, from Bonus Socius: online at Puzzles: a chess lesson written by Joe Hurd. “The first composed chess problem was by the caliph Mutasim Billah of Baghdad around 840 A.D. The earliest known European collections of chess problems were copied at the English monasteries of Abbotsbury and Cerne Abbey in Dorset around 1250. In 1295 Nicholas de St. Nicholai wrote the Bonus Socius, the first great compilation of chess problems”: online at Chess.com. Good companion (Bonus socius); XIIIth century manuscript collection of chess problems; Author: James F Magee; R. Biblioteca nazionale centrale (Florence, Italy). Publisher: Florence, Printed by the Tipografia Giuntina, 1910. OCLC 225173 TBC-ILL. Notes: “The manuscript has been wrongly attributed to Nicholas St. Nicholai. cf. p. 6.”

57Meindert Niemeijer (1902-1987) was a Dutch chess composer, generous patron and collector of chess literature. His library formed the basis of one of the greatest collections of chess books in the world.”

58Igalo is in Croatia, near Dubrovnik, and is where former Yugoslav leader Josip Broz Tito (1892-1980) had his summer villa.

[70] [1986-Bidev/Stammt] Stammt Schach aus Alt Indien oder China? Teil I, Deutsch, Teil II, Englisch = Did chess originate in China or India: chess and magic squares by Pavle Bidev, Selbstverlag, Igalo 1986, iii, [i], 304, 88 pp. 302 pages in German and 88 pages in English. [“Expounds his theories about origin of chess related to 8 × 8 magic squares.”]. OCLC 22604668, copy at the Cleveland Public Library and at the Koninklijke Bibliothek, ’s-Gravenhage [Royal Library, The Hague] Request number XSB 742. NA-ILL. KB2. Apparently includes (pp. 24, 46–48, 82–85]] reprint of Cashmore (1907) [52].

9.5 Some other publications about Caîssan magic squares and related topics

[73] [1533-Agrippa] *De occulta philosophia libri tres*, by Henrici Cornelii Agrippae ab Nettesheym, pub. Soter, Köln, July 1533. TBC 139

[74] [1539-Cardano] *Practica arithmetice et mensurandi singularis: in qua que preter alias coniminentur, versus pagina demonstrabit* by Hieronimi C. Cardani medico mediolanensis. pub. Mediolani : Io. Antonins Castellioneus medidani imprimebat, impensis Bernardini Calusci, 312 pp., 1539. [McGill C266p 1539 (By Consultation) Osler.] TBC 32, 140

[75] [1567-Paracelsus] *Archidoxa Magica*, attributed to Paracelsus [Theophrastus Bombastus von Hohenhiem (1493–1541)]. TBC 32, 162

[79] [1763-Jones/Caîssa] “Caissa, or The game at chess, a poem” by Sir William Jones, written in the year 1763. In Sir William Jones’s *Poems* [80, pp. 149–170]: GHC Jones-1772-Caissa. See also 257. 7, 116 129 134 140 146

[80] [1772-Jones/Poems] *Poems, consisting chiefly of translations from the Asiatick languages, to which are added two essays: I. On the poetry of the Eastern nations. II. On the arts, commonly called imitative*, by Sir William Jones, pub. Oxford University Press, 1772: online (249 pp., 6.2 mb) at Google Books: GHC Jones-1772.pdf. See also 79, 257. 116 117 129 134 140

and in *Euleri Opera Omnia, Series I: Opera Mathematica*, vol. I.7, pp. 291–392. Translated from French into English as “Investigations on a new type of magic square” by Andie Ho & Dominic Klyve (working draft, 70 pp., ©2007), online open-access (with commentary and references) in The Euler Archive. 67

[91] [1844/1845-Newton] *A New Method of Ascertaining Interest and Discount, at various rates, both simple and compound, and of interest on indorsements: also a few magic squares of a singular quality*, by Israel Newton, of Norwich, Vt., pub. E. P. Walton and Sons, printers, Montpelier VT, 16 pp., 1845. [Author = Deacon Israel Newton (1763–1856) was 124 p. 228] “the inventor of the well-known medical preparations widely known as ‘Newton’s Bitters’, ‘Newton’s Pills’, etc, and sold extensively for many years throughout New England and New York”. GHC from American Antiquarian Society Library, Worcester MA (via Haston Library, Franklin VT). Includes 6 magic squares (pp. 15–16: NewtonMagic-opt): “By I. Newton, Sept. 28, 1844, in the 82d year of his age.” One magic square is 16 × 16 2.4.15. 32, 33, 121

“I. Wie viele Steine mit der Wirksamkeit der Dame können auf das im Uebrigen leere Brett in der Art aufgestellt werden, dass keiner den andern angreift und deckt,, und wie müssen sie aufgestellt werden?

“SCHACHZEITUNG, 1848, 3rd year, Berlin, Veit & Comp. Max Lange’s copy with the title page copied in his hand and boldly signed by him on endpaper before the title page. paper excellent, but pp 401 to 433 lacking. Content fine except for a few underlinings in colored pencil. US$495?- online at Caissa Editions Bookstore Dale A. Brandreth, Box 151, Yorklyn, DE 19736 USA dbrandreth3 (at) comcast (dot) net.”

“The eight-queens problem was posed again by Franz Nauck in the more widely read, Illustrirte Zeitung (Leipzig), in its issue of June 1, 1850. Four weeks later Nauck presented 60 different solutions. In the September issue he corrected himself and gave 92 solutions but he did not offer a proof that there are not more.” [251, p. 269]

Short statement of the \(n\)-queens problem in two parts: (1) Give a solution, and (2) How many solutions are there? Possibly the first such statement published. Author surely is François-Joseph Lionnet (1805–1884) [102], but maybe F. J. “E.” Lionnet (E = Eustache ?) [261].

963. 1° Écrire les \(n\) premiers nombres entiers 1, 2, 3, \ldots, \(n\), sur une même ligne, de telle sorte que la différence entre deux quelconques de ces nombres ne soit pas égale à celle de leurs rangs sur cette ligne;

2° Combien le problème admet-il de solutions?

Sur un échiquier composé de \(n^2\) cases, placer \(n\) reines de manière qu’aucune d’elles ne soit en prise par l’une des \((n – 1)\) autres est la même question posée en d’autres termes. (LIONNET.)

[103] [1873/1874-Carpenter] “The eight queens problem, or how to place eight queens upon the board without being en prise”, by Geo. E. Carpenter, Brownson’s Chess Journal, Dubuque (Iowa), vol. 5, no. 35 ff. (1873 & 1874): see also Carpenter [120, (1900)]. [#305 in Ahrens [139, vol. 2].] TBC 121, 154

[109] [1879-Firth/Solutions] Solutions to the mathematical questions in the examination for admission to the Royal Military Academy, by William Firth, BA (Cambridge) [sic], pub. Harington, London, 38 pp., 1879. 91

[111] [1887-Firth/Magic Square] The Magic Square, by W. A. [sic] Firth, printed by R. Carswell & Son, Belfast, 19 pp. & 3 folded sheets in pocket inside back cover (including “The Magic Chess Board, invented by W. Firth, dedicated to Dr. Zukertort, pub. Jas. Wade, Covent Garden, 1887. (See Figure TBC.) [Title page says “W. A. Firth, B. A., Cantab., late scholar of Emmanuel College, Cambridge, and mathematical master of St. Malachy’s College, Belfast.”)] [88, 91, 153, 154]

[112] [1889-Beverley/Beverley] “The greatest magic square extant” by William Beverly [sic], The Bizarre: Notes and Queries, vol. 6, no. 1, pp. 224–225 (January 1889): GHC Beverley-complete. [Same 8 × 8 semi-magic square as given by Beverley [92 (1848)]. Author may be William Roxby Beverley (c. 1814–1889).] [93, 117, 154]

[113] [1890-Firth/will]: “The will of William A. Firth, late of Belfast, Mathematical Professor, who died on 12 September 1890 at same place was proved at Belfast by Margaret Firth of Hamilton-street Belfast, Widow, one of the Executors.” Retrieved online from the Department of Culture, Arts and Leisure, Public Record Office of Northern Ireland, 66 Balmoral Avenue, Belfast BT9 6NY, Northern Ireland: online access not available on 6 May 2011. [91]

[115] [1895-Cavendish/Whist Table] The Whist Table: A Treasury of Notes on the Royal Game, by “Cavendish,” C. Mossop, A. C. Ewald, Charles Hervey, and other distinguished players, to which is added “Solo Whist and tsp rules”, by Abraham S. Wilks, the whole edited by “Portland” (J. Hogg), pub. Charles Scribner’s Sons, New York, 1895: online Google eBook. GHC WhistTable.pdf. [Frontispiece: Portrait of “Cavendish”.] [141]

[120] [1900-Carpenter] “On the N queens problem, Or how to place N queens on a board of N squares on a side so that no queen shall interfere with the action of any other” (published in 7 parts: February–September 1900, 50 pp.), by Geo. E. Carpenter (signed: Tarrytown, New York) [George Edward Carpenter (b. 1844)], The British Chess Magazine, vol. 20, no. 2, pp. 42–48 (February 1900); no. 4, pp. 133–137 (April 1900); no. 5, pp. 181–183 (May 1900); no. 6, pp. 223–225 (June 1900); no. 7, pp. 264–267 (July 1900); no. 8, pp. 300–304 (August 1900); no. 9, pp. 344–364 (September 1900): GHC Carpenter-best, online at Google Books: GHC BCM-v20. [Builds on [104, 119]. see also Carpenter [103] (1873/1874)]. Portrait in Brentano’s Chess Monthly, TBC.

Original article unsigned but a footnote on p. 447 says “A discourse delivered at the Royal Institution on Friday evening, February 14, by Major P. A. MacMahon, F.R.S."

[124] [1905-Norwich] A History of Norwich, Vermont (Published by Authority of the Town) with portraits and illustrations, by M. E. Goddard [Merritt Elton Goddard] & Henry V. Partridge [Henry Villiers Partridge], pub. The Dartmouth Press, Hanover NH., 276 pp., 1905: online at Google Books, GHC (335 pp., 7.2mb) A_history_of_Norwich_Vermont.pdf. [Norwich University is a private university now located in Northfield VT. The university was founded in 1819 at Norwich VT as the American Literary, Scientific and Military Academy by military educator and former superintendent of West Point, Captain Alden B. Partridge (1785–1854), the father of co-author Henry Villiers Partridge (1839–1920) and a contemporary of Israel Newton (1763–1856) 91L. 33 117 150 154

“It is proved that it is impossible to combine on the same board more than six sets of queens satisfying the conditions of the problem.” See also [132].

“Four years ago [127] proved that it is impossible to combine on the same board more than six sets of queens satisfying the conditions of the problem. A much simpler proof of this may be of interest.”

This is probably the most famous chess book ever written and is certainly the most influential chess book ever written. Paul Rudolf von Bilguer (1815–1840) was a German chess master and chess theoretician from Ludwigslust, Mecklenburg-Schwerin. He was regarded as one of the strongest chess players in the world when he lived. Tragically, Bilguer died on 16 September 1840 just before reaching his 25th birthday, so his great promise was never realized except though this book. Von Der Lasa continued his work and it was published in 1843. Bilguer is listed as the sole author and Von Der Lasa appears only as the author of the Introduction, but it is widely believed that much of the work was by Von Der Lasa, especially because of other contributions by Von Der Lasa to chess literature later on.

[134] [1916-Woodruff/Editor] “Four-ply pandiagonal associated magic squares”, by “Editor” [Paul Carus], *The Monist: A Quarterly Magazine Devoted to the Philosophy of Science*, vol. 26, pp. 315–316. [“Frederic A. Woodruff has sent us three original magic squares, …; apparently not reprinted in *Magic Squares and Cubes* WSA-1917.”] 13, 74, 77

“Author” is William Symes Andrews (1847–1929); “other writers”, in addition to Charles Planck, are Charles Albert Browne, Jr., (1870–1947), Paul Carus (1852–1919), Lorraine Screven Frierson (1861–1936), H. M. Kingery, D. F. Savage, Harry A. Sayles, Frederic A. Woodruff (b. 1855), and John Worthington.

Lorraine Screven Frierson (1861–1936) was a noted conchologist but we know very little about the other “other writers”.
Magic Squares and Cubes, outside front cover from reprints by (left to right) [133]: Dover (1960), Cosimo Classics (2004). [?]: Nabu (2010).

[140] [1918-Kohtz] Unpublished investigation by Johannes Kohtz cited by [64].

[144] [1930-Kraitchik] La mathématique des jeux ou Récréations mathématiques, by M. Kraitchik [Maurice Kraitchik (1882–1957)], pub. Imprimerie Stevens Frères, Brussels, 1930. [Translated into English and revised as Kraitchik [173]. Borrowed via ILL from Queen’s University, Kingston, Ontario.]

[148] [1941-Marder2] Magic squares of the Fifth and Seventh Orders, a new application of the method used by Claude Gaspar Bachet de Mezeriac : the second of a series of four papers describing the technique of Leonhard Euler applied to the Lahireian method of forming magic squares of all sizes under the general title “The Intrinsic Harmony of Number”, by Clarence C. Marder, pub. Edmond Byrne Hackett, The Brick Row Book Shop, New York. 1941. GHC: MarderKA2-opt.

[150] [1941-Marder4] The Auxiliary Square: used with four or more identical magic squares to construct the larger sizes from 10 × 10 to 64 × 64 : the last of a series of four papers under the general title “The Intrinsic Harmony of Number”, by Clarence C. Marder, pub. Edmond Byrne Hackett, The Brick Row Book Shop, New York. 1941. GHC: MarderKA4-opt.

“Ranging from ancient Greek and Roman problems to modern applications and techniques, this book features 250 lively puzzles and problems, with solutions. Both beginners and advanced mathematicians will appreciate its variety of numerical pastimes, which include unusual historic problems from medieval European, Arabic, and Hindu sources.”

60This remarkable paper presents a history of the work on 4 × 4 magic squares. Over 300 years ago Frénicle listed all 880 of the 4 × 4 magic squares, which he found by exhaustive search. (One supposes that besides exhausting the possibilities, Frénicle was a bit exhausted, too.) Besides presenting a history, this paper also presents a much more analytical construction of the squares. In fact, two different methods are used. The paper concludes with a complete list of the 880 magic squares set down in an order that takes structure into account. [Review by D. A. Klarner, MR703622 (84i:05031)].
Configuring N mutually nonattacking queens on an $N \times N$ chessboard is a classical problem that was first posed over a century ago. Over the past few decades, this problem has become important to computer scientists by serving as the standard example of a globally constrained problem which is solvable using backtracking search methods. A related problem, placing the N-queens on a toroidal board, has been discussed in detail by Pólya and Chandra. Their work focused on characterizing the solvable cases and finding solutions which arrange the queens in a regular pattern. This paper describes a new divide-and-conquer algorithm that solves both problems and investigates the relationship between them. The connection between the solutions of the two problems illustrates an important, but frequently overlooked, method of algorithm design: detailed combinatorial analysis of an overconstrained variation can reveal solutions to the corresponding original problem.
Group inverses of \(M \)-matrices associated with nonnegative matrices having few eigenvalues”, by Stephen J. Kirkland & Michael Neumann, *Linear Algebra and its Applications*, vol. 220, no. 181–213 (15 April 1995); online at ScienceDirect. my file = 95KirklandNeumann-LAA95-opt

61“This book gives a method of construction and enumeration of all pandiagonal magic squares of a class known as ‘most-perfect’. Pandiagonal magic squares have the integers in all rows, all columns and all diagonals adding to the same sum. Most-perfect squares, as well as being pandiagonal, have two additional characteristics: integers come in complementary pairs along the diagonals and the integers in any 2 \(\times \) 2 block of four add to the same sum. This is the first time that a method of construction has been found for a whole class of magic squares. A one-to-one correspondence is established between these most-perfect squares and reversible squares which can be readily constructed. Formulae are given for the enumeration of all most-perfect squares.” Review by Rong Si Chen: MR1702253 (2000d:05024).

[204] [2002-Bezzel/bio] “Max Friedrich Wilhelm Bezzel”, by Hans Siegfried: online at Schachclub Ansbach; GHC Bez-bio, undated c. 2002, 3 pp. 139

[212] [2004-Sloan] “Ashtapada and Indian cosmology, Oriental chess, the origins of chess: was chess invented in India?”, by Sam Sloan, online at Pakistani Defence Forum, GHC Sloan-best, 18 pp.

To Talk of Many Things: An Autobiography is a remarkable account of a remarkable life. This story covers two world wars and the near sixty years that followed in a life dominated by mathematics and public service. Profoundly deaf from birth, Dame Kathleen has never seen her condition as an obstacle. She traveled widely through Europe between the wars, was a wartime don at Somerville College, Oxford, served on national education committees from the 1950s onwards, has been at various times on the Boards of the Royal Northern College of Music, Manchester Polytechnic and Lancaster and Salford Universities and in the 1990s chased total eclipses of the sun around the world. A former Lord Mayor and Freeman of the City of Manchester, Dame Kathleen writes compellingly of her greatest enthusiasm—mathematics. The publication of her work on Magic Squares and her presidency of the Institute of Mathematics have been high points in a long and distinguished career.

[226] [2006-Heindorf/Stijl] “Expressionism - De Stijl (1917–1932)”, website by Ann Mette Heindorf, revised 16 October 2006. [Includes images of several stamps by Mondrian including “Composition with Yellow Lines” [sic].] GHC Heindorf/Stijl. 146

“In this article, we show how to construct pairs of orthogonal pandiagonal Latin squares and panmagic squares from certain types of modular \(n\)-queens solutions. We prove that when these modular \(n\)-queens solutions are symmetric, the panmagic squares thus constructed will be associative, where for an \(n \times n\) associative magic square \(A = \{a_{ij}\}\), for all \(i\) and \(j\) it holds that \(a_{ij} + a_{n+i-1,n+j-1} = c\) for a fixed \(c\).”

“Deals with board games, their history and development. This book includes three chapters on the games of the ancient Near East, most notably ‘The Royal Game of Ur’. It describes the beginnings of Chess and its introduction into western Europe.”

[232] [2007-Drury/no rank2] “There are no magic squares of rank 2”, by S. W. Drury, Personal communication, August 2007. 24

[234] [2007-Styan/St. John’s-2] “Some comments on magic matrices with at most 3 non-zero eigenvalues”, by George P. H. Styan, Revised (and shortened) version of the invited talk [233], beamer file online at McGill, my file YYT-SSC2 (4.8 mb, 42 pp), September 18, 2007. 27, 28

[236] [2007-TrumpTable] “How many magic squares are there? Results of historical and computer enumeration,” by Walter Trump, online Nürnberg, ©2001-11-01 (last modified: 2007-04-20). 38

[237] [2007-Chu] Personal communication from Ka Lok Chu to George P. H. Styan, 17 December 2007. 67

[240] [2008-WCLAM] “Some comments on diagonal Graeco-Latin squares and on the “Euler-algorithm” for magic squares, illustrated with playing cards and postage stamps,” by George P. H. Styan, Contributed talk at The 2008 Western Canada Linear Algebra Meeting (WCLAM), at the University of Manitoba, Winnipeg, 31 May 2008. 68

“In this paper we survey known results for the n-queens problem of placing n nonattacking queens on an n × n chessboard and consider extensions of the problem, e.g., other board topologies and
dimensions. ... Along with the known results for n-queens that we discuss, we also give a history of the problem. In particular, we note that the first proof that n nonattacking queens can always be placed on an $n \times n$ board for $n > 3$ is by E. Pauls [107], rather than by W. Ahrens [139, p. TBC] who is typically cited. We have attempted in this paper to discuss all the mathematical literature in all languages on the n-queens problem.

[256] [2010-solution] Photograph of a solution to the 8-queens problem [93], by George P. H. Styan, December 2010. GHC My8queens.

[257] [2010-Caissa/ChessDryad] “CAISSA (pronounced ky-é-sah) or The Game at Chess; a Poem” (written in the year 1763, by Sir William Jones): online at ChessDryad/California Chess History website, November 2010: GHC Caissa-Dryad (12 pp.) gives the full poem; see also [79, 80].

“... And fair Caissa was the damsel nam’d. Mars saw the maid; with deep surprize he gaz’d, ... And still he press’d, yet still Caissa frown’d; ...”

[258] [2010-PLS1] “Comments on 4 \times 4 philatelic Latin squares”, by Peter D. Loly & George P. H. Styan, Chance: A Magazine for People Interested in the Analysis of Data, vol. 23, no. 1, pp. 57–62 (February 2010): online at ASA (with images in colour) and preprint (14 pp., with images in colour): online at McGill.

[260] [2010-Shanghai] “Magic generalized inverses: with special emphasis on involution-associated magic matrices and the Jingdezhen–Hyderabad (Queen Mary) magic square”, by George P. H. Styan, talk presented (by Ka Lok Chu for George P. H. Styan) at the 19th International Workshop on Matrices and Statistics, Shanghai, China, June 5, 2010: beamer file (23 pp.) modified on May 2, 2011: online at McGill. See also extended beamer file (33 pp.) including Householder–associated magic matrices: Shanghai-beamer-2may11b in folder Shanghai-beamer.

“This paper currently (April 16, 2010) contains 324 references (originally in BibTeX format) to articles dealing with or at least touching upon the well-known n-queens problem. The literature is not totally clear about the exact article in which the n-queens problem is first stated, but the majority of the votes seems to go to [93].”

[262] [2010-Sloane/OEIS] “Integer sequences” website maintained by The OEIS Foundation Inc. Last modified December 1, 2010. 79

[264] [2010-Styan/Pohle] “Some comments on old magic squares illustrated with postage stamps” by George P. H. Styan, Invited talk presented in The Frederick V. Pohle Colloquium in the History of Mathematics, hosted by the Department of Mathematics & Computer Science at Adelphi University, Garden City NY, 13 October 2010: beamer file online at McGill, my file Pohle-beamer-27oct10-opt (64 pp). 29, 57, 150

CAISSAN SQUARES: THE MAGIC OF CHESS: October 1, 2011

(31 May 2010), and in press for publication in its Proceedings (Antonella Cupillari, ed.), preprint (25 pp., with images in colour) online at McGill, file last edited on 31 October 2010. [ISSN 0825-5924. Talk and article builds upon the two articles by Loly & Styan in Chance [258, 259].]

[272] [2011-Drury/46080] “List of 46080 Caïssan magic squares: pandiagonal and CSP2- and CSP3-magic”, Personal communication from S. W. Drury to George P. H. Styan, 6 February 2011. [In Maple format: online plain text and online pdf (12,023 pp., 13.6mb) at McGill. 38, 39, 40, 41]

[277] [2011-seven] “Yesterday, in Germany, I had dinner with seven courses!”, “Wow, and what did you have?”, “Oh, a sixpack and a hamburger!” Personal communication from Götz Trenkler to George P. H. Styan, March 26, 2011. [278] [2011-Jelliss/LinksKTN] “Knight’s Tour Notes Index”, compiled by George Peter Jelliss, 2000–2011, online 2 pp., GHC. Transferred to this ‘Mayhematics’ site February–March 2011. [Table of contents with links to many articles by Jelliss related to the knight’s tour.]

[279] [2011-Jelliss/SquaresDRM] “Squares and Diamonds, and Roget’s Method”, by George Peter Jelliss, online at Mayhematics, 7 pp., GHC Transferred to this ‘Mayhematics’ site February–March 2011. [61]

[280] [2011-Jelliss/History] “History of Magic Knight’s Tours,” by George Peter Jelliss: online at Mayhematics, 12 pp., GHC Transferred to this ‘Mayhematics’ site February–March 2011. [66, 94, 95, 119]

[281] [2011-Mondrian/green] “A Post about Green, dedicated to Mondrian”, [5 theories] observed and recorded by Mary Addison Hackett: online April 2011. [161]
[282] [2011-EP/OMB] “EP matrices have Equal Projectors”, Personal communication from Oskar Maria Baksalary, via Götz Trenkler, to George P. H. Styan, 2011-date TBC. 29

[283] [2011-Setsuda] “8 × 8 Symmetrical and/or Pan-Magic Squares by Mr. [Kanji] Setsuda”, on Mutsumi Suzuki’s Magic Squares online at Drexel University, Philadelphia, accessed through Suzuki 284 on 2 May 2011. 25, 152

[284] [2011-Suzuki] “Magic squares”, by Mutsumi Suzuki: online at Drexel University, Philadelphia, accessed on 2 May 2011. [“These pages were written by Mutsumi Suzuki and until his retirement in 2001, were available through his site in Japan. It is the Math Forum’s pleasure to host these pages so that the mathematical community can continue to enjoy all of the information presented by Mr. Suzuki on the topic of magic squares.”] 137

[287] [2011-Mondrian] “Philatelic Mondrian”, by Oskar Maria Baksalary & George P. H. Styan, research article in preparation, last updated on 24 May 2011. 62

Caïssan squares: the magic of chess
George P. H. Styan¹

¹ McGill University, Canada, email:styan@math.mcgill.ca

Keywords: alternate couplets property, bibliography, Caïssa, EP, 4-ply, involution-associated magic matrices, involutionary matrix, knight-Nasik, magic key, most-perfect, pandiagonal, philatelic items, postage stamps, rhomboid, “Ursus”.

We study various properties of $n \times n$ Caïssan magic squares. A magic square is Caïssan whenever it is pandiagonal and knight-Nasik, so that all paths of length n by a chess bishop are magic (pandiagonal) and by a (regular) chess knight are magic (CSP2-magic).

Following the seminal 1881 article [4] by “Ursus” in The Queen, we show that 4-ply magic matrices, or equivalently magic matrices with the “alternate-couplets” property, have rank at most equal to 3. We also show that an $n \times n$ magic matrix M with rank 3 and index 1 is EP if and only if M^2 is symmetric. We identify and study 46080 Caïssan beauties—Caïssan magic squares which are also CSP3-magic: a CSP3-path is made by a special knight that leaps over 3 instead of 2 squares. We find that just 192 of these Caïssan beauties are EP. We generalize an algorithm given by Cavendish [2:(1894)] for generating Caïssan beauties and find these are all EP. We also study the n-queens problem first posed with $n = 8$ by Bezzel [1:(1848)] and the Firth–Zukertort “magic chess board” due to Firth [3:(1887)].

An extensive annotated and illustrated bibliography of over 300 items, many with hyperlinks, ends our report. We give special attention to items by (or connected with) “Ursus”: Henry James Kesson (b. c. 1844), Andrew Hollingworth Frost (1819–1907), Charles Planck (1856–1935), and Pavle Bidev (1912–1988). We have tried to illustrate our findings as much as possible, and whenever feasible with images of postage stamps or other philatelic items.

References

9.6 Portrait Gallery: Agrippa–Bondi

Agrippa [73], Andrews [135], Ball [129] [145] [152] [164],
Bellavitis [98], Ben-Israel [206], Bennett [127], Benson [165] [?],
Bezzel [93] [201], Bilguer [133], Bondi [171].
He aquí un resumen de su carrera como ajedrecista:

No ganó grandes torneos, pero siempre jugó brillantemente. Buen ejemplo fue su partida contra Víctor Korchnoi con ocasión de su primera olimpiada en La Habana.

Su encuentro con Bobby Fischer cuya genialidad admiró a lo largo de los años, fue uno de los más importantes de su vida.

La deposición del título mundial de Fischer, nunca fue aceptada por Calvo, ni por su amigo Fernando Arrabal.

Calvo, a través de un riguroso artículo, puso en duda la legitimidad de la sucesión. El Presidente de la FIDE, Florencio Campomanes, le declaró “persona non grata”, un procedimiento único y escandaloso, que contribuyó a dividir más si cabe el mundo del ajedrez.

Al final de su camino vital, Calvo descubrió la historia.

Una de sus especialidades fue el libro de juegos escrito en la Edad Media por Alfonso el Sabio, 1283; escribió una obra importante sobre la “Repetición de Amores y Arte de Axedres” de Luis Lucena, y se ocupó intensa y críticamente en las teorías sobre el origen del ajedrez.

Una pasión intelectual y tardía, fue la dedicación de Calvo a la relación del juego de ajedrez con los cuadrados mágicos, aquellas composiciones extrañas (y espantosas) de cifras, en las que la adición de las cifras en sentido vertical, horizontal y diagonal siempre resulta la misma suma.

Una peculiaridad es el cuadrado mágico de Safadi, de la Edad Media, que llamó la atención de Calvo cuando estudiaba la obra de Johannes Kohtz:
Portrait Gallery: “Cavendish”–Euclid

“Cavendish” [Henry Jones] 11 15 211, Coxeter 161 164, Demirörs 182 183, Dickens 192, Donkersteeg 261, Dudeney 159, Edison 143,
Euclid (2) 153.
Portrait Gallery: Finkel–Percival Frost

Euler [§9.7.1], Everest [TBC], Finkel [231][10], Fox [151],
Frankenstein [36], Franklin (2a) [147][241],
Franklin (2b), Andrew Frost [§9.2], Percival Frost [30].
Portrait Gallery: Gauß–Golombek

Gauß (4) [96],
Glaisher (2) [104], Golombek
“Thorold Gosset (1869–1962) was an English lawyer and an amateur mathematician. In mathematics, he is noted for discovering and classifying the semiregular polytopes in dimensions four and higher. According to Coxeter [161] after attaining his law degree in 1895 and having no clients, Thorold Gosset amused himself by attempting to classify the regular polytopes in higher dimensional (greater than three) Euclidean space” [24]

“William Sealy Gosset (1876–1937) is famous as a statistician, best known by his pen name ‘Student’ and for his work on Student’s t-distribution. Born in Canterbury, England to Agnes Sealy Vidal and Colonel Frederic Gosset, he attended Winchester College before reading chemistry and mathematics at New College, Oxford. On graduating in 1899, he joined the Dublin brewery of Arthur Guinness & Son.” [21]
"Champagne Gosset, founded in 1584, is one of the oldest champagne houses of the Champagne region in north-eastern France. It was founded when Jean Gosset, a grape grower in Ay, left a vineyard to Pierre Gosset who began to export wine under his name. Typical for this era in Champagne, Gosset initially produced still wines, mainly reds. Today’s Gosset incorporates a winery in Ay which belonged to King Francis I of France, who enjoyed these red Ay wines."
Portrait Gallery: Günther–Sir William Jones

Harvey Denis Heinz was born in Edmonton, Alberta, Canada on the 31st of August 1930, the oldest of 5 boys and one girl, and moved to Vancouver, British Columbia at age 10. He entered the printing industry at age 15 as an apprentice paper ruler. At that time, unknown to him, it was already a dying industry. On his semi-retirement in 1991, he was the only paperuler still operating from Toronto west, and probably the only one in all of Canada.

He was always interested in mathematical puzzles and especially number patterns. He was also interested in electronics and became an amateur radio operator in 1948, building all his own equipment. In 1956, Harvey married Erna Goerz and they subsequently had two sons, Randal and Gerald. In 1958, he designed EDRECO (EDucational RElay COmputer), and after obtaining about 5 tons of obsolete equipment from the local telephone company, started a computer club of senior high school students. Several units of the computer were built and operating successfully, the most notable being the arithmetic logic unit (ALU).

In 1973, Harvey was suddenly out of job, so decided to work part-time at his trade and concentrate on bringing some of his electronic games to market. During this time, he attended many free engineering seminars on computer circuits. He also took several technical courses at the local Institute of Technology by brazenly writing prerequisite exams. By 1977, he realized his plans were not practical, so he and wife Erna started a printer trade bookbindery. By 1983 sons Randy and Gerry were both involved with the company and it was starting to grow. At that time the boys bought a half interest in the company so they could participate in this growth. In 1991 Harvey and Erna sold them the other half interest and semi-retired. Now Harvey had time to get back to his hobbies. Building electronic hardware was now replaced by operating computers. This fit in perfect with his interest in number patterns! He was now able to investigate all sorts of patterns that previously he has just wondered about.

Heinz major accomplishments in number patterns:
- Found all solutions for magic stars orders 6 to 11 (by computer exhaustion)
- The world's first bimagic cube of order 25

In 2003, I was pleased to dedicate to him my bimagic hypercubes, the first known bimagic "tesseracts".

He had Parkinson's Disease, and passed away in Victoria, Vancouver Island, B.C., Canada on the 7th of July 2007.

Golombek [168], Günther [109], Hartwig [236], Heindorff [226, 301, 302], Heinz [199], Hendricks [199], Heydebrand & Lasa [133], Jacoby [165, ?], de Jaenisch [99], Jelliss [273, 280], Sir William Jones [79].
Portrait Gallery: Klarner–Linde

Karpov [§8.5], Kasparov [§8.5], Klarner [177, 174], Kosters [261], Laws [39], Lincoln Imp [16], Linde [106].
Portrait Gallery: Lionnet–Lucas

Gravestone in the Cimetière Montparnasse, Paris: online photograph by G. Freihalter, August 20, 2010.

To complete the set, there are also first day covers of both issues.

This is from Togo. I don’t know whether this is a “real” postage stamp or an example of that cash-generating sticky paper which some governments, nations and entrepreneurs produce.

I think there is another Mondrian-related stamp issued by Libya or Liberia, but I have never found a copy. Philatelists do not seem to be very good at answering emails from Mondrian enthusiasts trying to pick their brains.

(25th May 2002)

Here’s the Liberian stamp, at last, sent by a kind contributor and fellow collector. I must find the real thing.

And there are others in the set - see here.

Well I’ve managed to find a set, but I only got the picture on the right, not the portrait. Keep looking.
Portrait Gallery: Partridge–Quekett

Paracelsus [§9.7.3], Partridge [124], Pasles [241], Perigal [118, 201], Peters [99], Philidor [87], Pickover [208], Planck [§9.3], Pohle [264], Pólya [111], Quekett [§8.1].
Portray Gallery: Ray and The Chess Players

Available on DVD (Kino on Video, New York, 2006) at McGill PN1997 S18787, GHC: “The short-story irony of two nawabs playing interminable games of chess while their domestic domains crumble, and of a king wrapped up in his aesthetic pursuits while his territory is threatened by British expansionism,” from flyer online at DVDBeaver, Mississauga, Ontario, GHC CPK-25b.

Review by Kathleen C. Fennessy: amazon.com DVD US$26.99: Written, composed, and directed by Indian master Satyajit Ray (Pather Panchali), The Chess Players presents a stylized world in which the landed gentry lounge about, endlessly pulling on hookahs and engaging in the "king of games." Outside their gilded doors, the order that allows them this luxury—let alone their marriages—is crumbling. They couldn’t be more oblivious. As the narrator notes, "Mr. Meer and Mr. Mirza are only playing at warfare. Their armies are pieces of ivory. Their battlefield: a piece of cloth." Set in 1856 Lucknow, the noblemen (Saeed Jaffrey and Sanjeev Kumar) are situated in one of the few Indian territories not ruled by Britain’s East India Company.

The British, meanwhile, are also playing a game of chess, and equally oblivious Oudh ruler Nawab Wajid Ali Shah (Amjad Khan) is the king they intend to capture. Forthright General Outram (Sir Richard Attenborough, Ghandi), assisted by the more culturally erudite Captain Weston (Tom Alter), is the man charged with the task. It shouldn’t be difficult: Like Meer and Mirza, Wajid would prefer to relax—to write poetry, to fly kite—rather than to rule. Along the way, Oudh will fall, but the chess will continue. Based on a story by Munshi Premchand, The Chess Players was Ray’s most elaborate production. It was also his first in Hindi (with English) and its frames are filled with music, dance, opulent pageantry, and humorous banter—even a lively animated sequence. Behind the attractive façade, however, lies a lament for lost opportunities.
Portrait Gallery: Schumacher–Sprague

Schumacher [96], Schwerdtfeger [151],
Scott [324], Setsuda [268, 283],
Shenk [225], Sprague [119].
Portrait Gallery: Swetz–Zukertort

Swetz [242], Trump [236], Tyson [185], Vida [324], Weisstein [266], Whyld [61], Yalom [218], Zlobec [270], Zukertort [111] [219].
9.6.1: Portraits TBC

(1) Wilhelm Ernst Martin Georg Ahrens (1872–1927) [121, 139]
(2) Ernest Bergholt (1856–1925) [128]
(3) William Roxby Beverley (c. 1814–1889) [92, 112]
(4) William Beverley [92], William Beverly [112]
(6) George Edward Carpenter (b. 1844) [103, 120][63]
(7) M. Cashmore [52]
(8) William A. Firth (c. 1815–1890) [111]
(9) Lorraine Screven Frierson (1861–1936) [135]
(10) Thorold Gosset (1869–1962) [132]
(11) H. M. Kingery [135]
(12) Jasper Murdock (fl. 1797) [124]
(13) Franz Nauck [95]
(14) Israel Newton (1763–1856) [124]
(15) E. Pauls [107]
(16) D. F. Savage [135]
(17) Harry A. Sayles [135]
(18) Major-General Robert Shortrede (1800–1866) [90, 100]
(19) “Ursus” [Henry James Kesson (b. c. 1844)] [§§1, 9.1]
(20) Frederic A. Woodruff (b. 1855) [135]
(21) John Worthington [135]

63 Portrait apparently in Brentano’s Chess Monthly, c. 1900.
9.7 Philatelic Gallery

9.7.1 Philatelic Euler

Euler [31, 239]: German Democratic Republic 1950, 1957, 1983 (Scott 58, 353, 2371), Switzerland 1957, 2007 (Scott B267, 1257), USSR 1957 (Scott 1932).
Guinea-Bissau 2009, Euler with “Grandes Físicos”:
Michael Faraday, James Prescott Joule, Isaac Newton, Galileo Galilei.
Sakhalin Island 2010 (local mail), Euler with Michael Faraday, Sigmund Freund, Galileo Galilei.
Sakhalin Island 2010 (local mail).
9.7.2 Philatelic Mondrian

Netherlands 1983, 1992 [251], 1994 (Scott 652, 807, 850, 851, 852);
Liberia 1997 [310] pp. 100–101] (Scott 1276a, 1276b); Togo 1999 (Scott 1889f).
9.7.3 Philatelic Paracelsus

Germany 1949, 1993 (Scott B311, 1817),
USSR 1993 (envelope),
Austria 1991 (Scott 1546), Hungary 1989 (Scott 3214), Switzerland 1993 (Scott 928).
9.8 Some resources

9.8.1 Some philatelic resources

[289] [CanadaPost/keyword] online search by keyword in the Canadian Postal Archives Database, Library and Archives Canada, Ottawa.

[290] [CanadaPost/year] online search by year in the Canadian Postal Archives Database, Library and Archives Canada, Ottawa.

[294] [Chess/Rose] online “Chess on Stamps” website by Colin Rose, sponsored by the Theoretical Research Institute.

[295] [CoolStamps] website by Greg & Paulette Caron.

[296] [Delcampe] online auction website for collectibles: Soignies (near Mons), Belgium.

[297] [eBay] eBay.com online auction and shopping website.

[298] [Espoo/StPetersburg] Philatelic Service of St.Petersburg Ltd, Kannusillankatu 10, 02770, Espoo, Finland; e-mail: info@stspb.ru mobile in Finland: +358-468110755 mobile in Russia: +7-921-9062415 fax in Russia: +7-812-3123245 online.

[299] [France/Phil-Ouest] online Phil-Ouest : Les timbres de France et les oblitérations de l’Ouest … et d’ailleurs website for postage stamps from France and associated postmarks.

[300] [Groth/WWF] online Groth AG: WWF Conservation Stamp Collection website, Gewerbestrasse 19, Unterägeri (near Zürich), Switzerland.

[301] [Heindorff/ArtHistory] “Welcome to Art History on Stamps”, by Ann Mette Heindorff [302]: website that describes the development of art history through times as illustrated on postage stamps, giving at the same time an overview of selected artists and their works representative for a given style. 146

[303] [Marlen] online Marlen Stamp & Coins Ltd., 156 B Middle Neck Road, Great Neck, NY 11021.

[304] [McLean] online B. McLean Stamps for Collectors, P.O. Box 323, Ellon, Aberdeenshire AB41 7YA, Scotland.

[305] [Miller/Images] online “Images of Mathematicians on Postage Stamps” website by Jeff Miller, Gulf High School, New Port Richey, Florida.

64. [“Before Ann Mette Heindorff died she handed over her website to Jørgen Jørgensen, the president of the Danish Thematic Association, who will maintain Heindorff’s Web pages for the future.” online]
9.8.2 Some bio-bibliographic resources

[311] [Amazon.com] [online] started as an online bookstore, but soon diversified. 65

[312] [AMICUS] [online] Canadian national catalogue shows the published materials held at Library and Archives Canada and also those located in over 1300 libraries across Canada.

[313] [Copac] [online] is a British academic, and specialist Library Catalogue. 66

[314] [Current Index to Statistics] [online] database published by the Institute of Mathematical Statistics and the American Statistical Association that contains bibliographic data of articles in statistics, probability, and related fields.

[315] [Google books] [online] Advanced Book Search. 67

[316] [Google Image Search] [online] search service created by Google that allows users to search the Web for image content.

[317] [HathiTrust] [online] is a very large scale collaborative repository of digital content from research libraries including content digitized via the Google Books project and Internet Archive digitization initiatives, as well as content digitized locally by libraries. 68

[318] [JSTOR] provides [online] full-text searches of digitized back issues of several hundred well-known journals, dating back to 1665 with the Philosophical Transactions of the Royal Society.

[319] [KBH] [online] Koninklijke Bibliothek, ’s-Gravenhage [Royal Library, The Hague]. 69

65 Amazon.com is a US-based multinational company, headquartered in Seattle, Washington. It started as an online bookstore, but soon diversified, selling DVDs, CDs, MP3 downloads, computer software, video games, electronics, apparel, furniture, food, and toys.

66 Union catalogue which provides free access to the merged online catalogues of many major university research libraries in the United Kingdom and Ireland, plus an increasing number of specialist libraries and the British Library, the National Library of Scotland and the National Library of Wales.

67 Google Books (previously known as Google Book Search and Google Print) is a service from Google that searches the full text of books that Google has scanned, converted to text using optical character recognition, and stored in its digital database.

68 HathiTrust was founded in October 2008 by the thirteen universities of the Committee on Institutional Cooperation and the University of California. The partnership includes over 50 research libraries across the United States and Europe, and is based on a shared governance structure. Costs are shared by the participating libraries and library consortia. The repository is administered by Indiana University and the University of Michigan. The Executive Director of HathiTrust is John Price Wilkin, who has led large-scale digitization initiatives at the University of Michigan since the mid 1990s.

69 Found 33 items by or about Pavle Bidev at KBH on 20 March 2011.
[320] [KVK online] Karlsruher Virtueller Katalog (KVK) is an book search engine administered by the library of the Karlsruhe Institute of Technology (KIT).

[321] [MacTutor online] History of Mathematics archive, Created by John J. O'Connor & Edmund F. Robertson, School of Mathematics and Statistics, University of St Andrews, Scotland.

[322] [MathSciNet online] Mathematical Reviews: journal and online database published by the American Mathematical Society that contains brief synopses (and occasionally evaluations) of many articles in mathematics, statistics and theoretical computer science.

[323] [McGill/MUSE online] Classic Library Catalogue MUSE at McGill University, Montréal.

[324] [Wikipedia online] the free encyclopedia that anyone can edit. Text available under the Creative Commons Attribution-ShareAlike License; Wikipedia is a registered trademark of the Wikimedia Foundation.

[325] [WorldCat online] union catalog which itemizes the collections of 71,000 libraries in 112 countries, which participate in the Online Computer Library Center (OCLC) global cooperative.

[326] [Z-MATH/Zbl online] Zentralblatt MATH is an service providing reviews and abstracts for articles in pure and applied mathematics, published by Springer Science+Business Media.

GPHS/October 1, 2011

70KVK searches a large number of catalogs of research libraries in Germany, Austria, and Switzerland, as well as several important national libraries in other countries, and some large commercial catalogs.

71The service was founded in 1931 by Otto Neugebauer as Zentralblatt für Mathematik und ihre Grenzgebiete. The service reviews more than 2,300 journals and serials worldwide, as well as books and conference proceedings. Zentralblatt MATH is now edited by the European Mathematical Society, FIZ Karlsruhe, and the Heidelberg Academy of Sciences. The Zentralblatt database also incorporates the 200,000 entries of the earlier similar publication Jahrbuch ber die Fortschritte der Mathematik, 1868–1942, added in 2003.
\[
\mathbf{M}_{1(b), a=1}^{(p)} = \begin{pmatrix}
1 & 56 + b & c & 56 + d & 8 & 65 - b & 9 - c & 65 - d \\
8 b & 73 - 9 b & 8 b + 1 - c & 73 - 8 b - d & 8 b - 7 & 64 - 7 b & 8 b - 8 + c & 64 - 8 b + d \\
8 c - 7 & 64 - 8 c + b & 9 c - 8 & 64 - 8 c + d & 8 c & 73 - 8 c - b & 7 c + 1 & 73 - 8 c - d \\
8 d & 73 - 8 d - b & 8 d + 1 - c & 73 - 9 d & 8 d - 7 & 64 - 8 d + b & 8 d - 8 + c & 64 - 7 d \\
57 & b & 56 + c & d & 64 & 9 - b & 65 - c & 9 - d \\
72 - 8 b & 7 b + 1 & 73 - 8 b - c & 8 b + 1 - d & 65 - 8 b & 9 b - 8 & 64 - 8 b + c & 8 b - 8 + d \\
65 - 8 c & 8 c - 8 + b & 64 - 7 c & 8 c - 8 + d & 72 - 8 c & 8 c + 1 - b & 73 - 9 c & 8 c + 1 - d \\
72 - 8 d & 8 d + 1 - b & 73 - 8 d - c & 7 d + 1 & 65 - 8 d & 8 d - 8 + b & 64 - 8 d + c & 9 d - 8
\end{pmatrix}
\]