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6.1. Outline of Lecture

• Perfect matchings in cubic bipartite graphs
• Van der Waerden’s conjecture
• Exponentially many perfect matchings in general regular graphs

6.2. Voorhoeve’s bound on the number of perfect
matchings in cubic bipartite graphs

The goal of this lecture is to show that every k-regular bipartite graph,
as well as every k-regular (k − 1)-edge-connected graph, has exponen-
tially many perfect matchings in terms of the number of vertices.

We start by proving a tight exponential lower bound on m(G) for
bipartite cubic graphs. First, some definitions. For a path v1v2v3v4,
the graph obtained from G by splitting along the path v1v2v3v4 is the
cubic graph G′ obtained as follows: remove the vertices v2 and v3 and
add the edges v1v4 and v′1v

′
4 where v′1 is the neighbor of v2 different

from v1 and v3 and v′4 is the neighbor of v3 different from v2 and v4.
We say that a perfect matching M of G is a canonical extension of a
perfect matching M ′ of G′ if M4M ′ ⊆ E(G)4E(G′), i.e. M and M ′

agree on the edges shared by G and G′.
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Theorem 1 (Voorhoeve). Let G be a bipartite cubic graph on 2n ver-
tices. Then m(G) ≥ 3

2
·
(
4
3

)n
.

Proof. We will show by induction on n that m(G−e) ≥
(
4
3

)n
for every

e ∈ E(G). This implies the theorem. The base case n = 1 is trivial.
For the induction step, fix an edge e = uv ∈ E(G). Let w1 and w2

be the two other neighbors of u. (As we allow parallel edges we think of
the neighborhood of u as a multiset {u,w1, w2}.) Let {u, xi, yi} be the
neighbors of wi for i = 1, 2. Let G1, . . . , G4 be the graphs obtained from
G by splitting along the paths vuw1x1, vuw1y1, vuw2x2 and vuw2y2.

Every perfect matching avoidng e in Gi canonically extends to a
perfect matching avoiding e in G. Let S be the sum of the number
of perfect matchings of Gi avoiding e, for i = 1, . . . , 4. By induction

hypothesis S ≥ 4
(
4
3

)n−3
. On the other hand, a perfect matching M of

G avoiding e is the canonical extension of a perfect matching avoiding
e in precisely three of the graphs Gi, i ∈ {1, 2, 3, 4}. For instance if
w1y1, uw2 ∈ M , then G2 is the only graph (among the four) that does
not have a perfect matching M ′ that canonically extends to M . As a
consequence, there are precisely S/3 perfect matchings containing e in
G, implying the required bound. �

6.3. Van der Waerden’s conjecture.

We have noted before that if B is the biadjacency matrix of a bipartite
graph G then m(G) = perm(B). A matrix is doubly stochastic if it
is non-negative and each row and column sum is equal to 1. If G is
k-regular then 1

k
B is doubly stochastic. Thus lower bounds on perma-

nents of doubly stochastic matrices imply lower bounds on the number
of perfect matchings in regular bipartite graphs. Van der Waerden has
conjectured that the permanent of n × n doubly stochastic matrix is
lower bounded by n!/nn. The bound is achieved when every entry of
the matrix is equal to 1/n. This conjecture has been proved more than
fifty years after it was stated by Falikman and Egorychev.

Note that van der Waerden’s conjecture implies that

m(G) ≥ 3n
n!

nn
≥

(
3

e

)n

for a bipartite cubic graph G on 2n vertices. This is a weaker bound
than that provided by Theorem 1, but is still exponential in n.

For bipartite k-regular graphs Schrijver has proved the following
generalization of Theorem 1. His proof extends Voorhoeve’s ideas, but
is considerably more technical.
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Theorem 2. Let G be a k-regular bipartite grap then

m(G) ≥
(

(k − 1)k−1

kk−2

)n

.

A common generalization of Falikman and Egorychev’s theorem and
of Schrijver’s theorem was recently obtained by Gurvits. His proof is
short, although somewhat technical. We will briefly outline it, following
the exposition in the paper “On Leonid Gurvits’s proof for permanents”
by Laurent and Schrijver.

6.4. Exponentially many perfect matchings in gen-
eral regular graphs.

We will review the paper “Exponentially many perfect matchings in
cubic graphs” by Esperet, Kardoš, King, Král’ and Norin. It proves
the conjecture of Lovász and Plummer from mid-1970’s showing the
following.

Theorem 3. There exists a constant ε > 0 such that m(G) ≥ 2ε|V (G)|

for every cubic bridgeless graph G. (ε = 1/3656.)

Problem 1. Does there exist a constant ε > 0 such that in every cubic
graph G with no non-trivial cuts of size at most 3 every edge belongs
to at least 2ε|V (G)| perfect matchings.

Problem 2. What is the optimal value of ε in Theorem 3?

More generally, Lovász and Plummer conjectured the following.

Conjecture 1. For k ≥ 3 there exist constants c1(k), c2(k) > 0 such
that every k-regular (k − 1)-edge connected graph contains at least
c2(k)c1(k)|V (G)| perfect matchings. Furthermore, c1(k)→∞ as k →∞.

A weaker version of Conjecture 1 is implied by Theorem 3.

Theorem 4. There exists a constant ε > 0 such that m(G) ≥ 2ε|V (G)|

for every integer k ≥ 3 and every k-regular (k−1)-edge connected graph
G.

Can we relax the regularity condition somewhat and still obtain
exponential lower bounds on the number of perfect matchings if we
require the graph to be matching-covered? Conjecture 1 was stated
with (k− 1)-edge connectivity condition relaxed to a requirement that
G is matching covered. Unfortunately, this strengthening is false, as a
consequence of the following result of Geelen and Norin.
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Lemma 1. For every integer k ≥ 4 there exist constants c1 and c2 so
that for every N there exists a bipartite graph G with |V (G)| = 2n > N ,
at most c1

√
n vertices of degree k−2, all other vertices of degree k and

m(G) ≤ 2c2
√
n.

Proof. Fix an integer l ≥ k. Let G be a graph with bipartition (A,B),
where A = A1 ∪ A2 ∪ . . . ∪ Al, B = B1 ∪ B2 ∪ . . . ∪ Bl and both of
the unions are disjoint. We further require that |A1| = |Bl| = (k− 1)l,
|B1| = |Al| = (k − 1)l + 1, and |Ai| = |Bi| = l for 1 < i < l. It is
not very difficult to construct a graph G satisfying the following list of
conditions

• The only vertices of G of degree k − 2 belong to A1 and Bl;
• G[Ai, Bi] is 1-regular for every 1 < i < l;
• All the edges between ∪1≤j≤i(Aj ∪ Bj) and the rest of G have

one end in Bi and another in Ai+1;
• G is matching-covered.

Then G[A1, B1] has at most k(k−1)l matchings saturating A1. These
matchings can be extended to a matching saturating A1∪B1 in at most
k ways each. As G[A2, B2] is 1-regular we can extend each matching
uniquely to a matching of G[A1 ∪ A2, B1 ∪ B2] saturating A1 ∪ A2.
Repeating the argument, we obtain

m(G) ≤
(
k(k−1)l

)2 · kl−1,
with the exponent in the bound linear in l. We have

|V (G)| = 2l(l − 2) + 4(k − 1)l + 2

, quadratic in l, and lemma follows. �

Exercise 1. Use Lemma 1 to disprove a strengthening of Conjecture 1
to matching-covered graphs. (Hint: replace vertices of degree k− 2 by
bounded size subgraphs.)

Problem 3. For a fixed integer k consider the family of matching-
covered bipartite graphs on n vertices with minimum degree 3 and
maximum degree k. Improve lower and upper bounds on minimum
value of m(G) among graphs in this family, provided by the dimension
of matching polytope and Lemma 1 respectively.


