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4.1. Outline of Lecture

• Determinants and perfect matchings.
• Pfaffian orientations.

4.2. Determinants and perfect matchings.

In this lecture we examine the possibility of solving the perfect match-
ing problem and evaluating m(G) efficiently using linear algebra, specif-
ically by evaluating determinants. The material presented in the first
section is due to Jim Geelen.

Let G be a bipartite graph with bipartition (R,C) and let
(ze | e ∈ E(G)) be algebraically independent variables. We define a
variant of the biadjacency matrix introduced in Section 1.2, an
R × C-matrix B = (bij), where buv = ze if e = uv, and buv = 0, other-
wise. We call B the bipartite matching matrix of G. For example, let
G be obtained from the complete bipartite graph K3,3 with bipartition
(R,C), where R = {a, b, c} and C = {1, 2, 3}, by deleting the edge c1.
Then the bipartite matching matrix of G is

(1) B =

 za1 za2 za3
zb1 zb2 zb3
0 zc2 zc3

 ,
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Figure 1. A Pfaffian orientation of K4.

and
detB = za1zb2zc3 − za1zb3zc2 − za2zb1zc3 + za3zb1zc2.

More generally, if B is the bipartite matching matrix of a balanced
bipartite graph G then

detB =
∑

M∈M(G)

sgn(M)
∏
e∈M

ze,

where sgn(M) is the sign of the permutation associated with M . In
particular, detM 6= 0 if and only if G has a perfect matching.

For general graphs there also exists a relation between determinants
and perfect matchings. Let G be a simple graph, let D be some ori-
entation of its edges, and let (ze | e ∈ D) be once again a collection of
algebraically independent variables. A V (G) × V (G) skew-symmetric
matrix T = (tuv), called the Tutte matrix of D and introduced by Tutte
in 1947 is defined as follows: tuv = ze and tvu = −ze if e = uv ∈ D, and
zuv = 0 if uv 6∈ E(G). For example, if G = K4 with V (G) = {1, 2, 3, 4}
and D is the orientation shown on Figure 1, then

(2) T =


0 z12 z13 z14
−z12 0 z23 −z42
−z13 −z23 0 z34
−z14 z42 −z34 0

 .

One can check that

detT = (z12z34 + z13z42 + z14z23)
2.

In general, let G be a graph on 2n vertices with V (G) = {1, 2, . . . , 2n},
let D be an orientation of G and let M = {u1v1, u2v2, . . . , unvn} be a
perfect matching of G with uivi ∈ D for 1 ≤ i ≤ n. Define sgnD(M),
the sign of M , to be the sign of the permutation
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(
1 2 3 4 . . . 2n− 1 2n
u1 v1 u2 v2 . . . un vn

)
.

Note that the sign of a perfect matching is well-defined as it does not
depend on the order in which the edges of M are listed. The Pfaffian
of the Tutte matrix of D is defined as

(3) Pf(T ) =
∑

M∈M(G)

sgnD(M)
∏
e∈M

ze.

Exercise 1. Show that detT = (Pf(T ))2.

It follows from Exercise 1 that G has a perfect matching if and only
if T is nonsingular.

Can we develop an efficient algorithm for the perfect matching prob-
lem based on the observations above? One can not efficiently perform
operations on a matrix with indeterminate entries. Instead, we at-
tempt replacing the indeterminates (ze) by particular values. However,
the resulting evaluation of the matrix can become singular. For ex-
ample, if we replace all the variables by 1 then the matrix B in (1)
becomes singular. On the other hand, for the matrix T in (2), we have
Pf(T ) = m(K4). Fortunately, it follows from the following theorem
of Zippel and Schwarz that if G has a perfect matching then a ran-
dom evaluation of its bipartite matching matrix (or its Tutte matrix)
is non-zero with high probability.

Theorem 1. Let p(z1, . . . , zk) be a non-zero polynomial of degree at
most d, and let S be a finite subset of R. If ẑ1, ẑ2, . . . , ẑk are chosen
from S uniformly and independently at random then p(ẑ1, . . . , ẑk) 6= 0
with probability at least 1− d

|S| .

Exercise 2. Prove Theorem 1 by induction on the number of variables.

The following corollary immediately follow from Theorem 1 and
the discussion above. It provides an efficient randomized algorithm for
solving the perfect matching problem.

Corollary 1. Let T be the Tutte matrix corresponding to some ori-
entation of a graph G with a perfect matching. If T̂ is an evaluation
of T with entries chosen uniformly and independently at random from
{1, . . . , |V (G)|} then T̂ is non-singular with probability at least 1

2
.

Note that if G is bipartite then one can replace the Tutte matrix
in Corollary 1 by the bipartite matching matrix.
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4.3. Pfaffian orientations

By (3) and Exercise 1 we can compute m(G) efficiently if we can find
an orientation D of G such that the signs of all perfect matchings in D
are the same. Such an orientation is called Pfaffian. A graph is called
Pfaffian if it admits a Pfaffian orientation.

Let C be an even cycle in G. We say that C is evenly oriented in
D if traversing C we encounter an even number of edges of D oriented
in the direction of the traversal, and oddly oriented otherwise.

Lemma 1. Let M1 and M2 be perfect matchings in a graph G such that
M14M2 consists of a single even cycle C. Let D be an orientation of
G. Then sgnD(M1) = sgnD(M2) if and only if C is oddly oriented in
D.

Proof. Note that exchanging the numbers of two vertices of G changes
the sign of all perfect matchings. Therefore we may assume that the
vertices of C are {1, 2, . . . , 2k} in order, for some integer k. Further
note that reversing orientation of an edge in C changes C from oddly
to evenly oriented and vice versa. This reversal also changes the sign
of exactly one of M1 and M2. It follows that we may also assume that
C is directed. The lemma now follows from the direct computation: C
is evenly oriented and sgnD(M1) 6= sgnD(M2), as

sgn

(
1 2 3 4 . . . 2k − 1 2k
2k 1 2 3 . . . 2k − 2 2k − 1

)
6= sgn

(
1 2 3 4 . . . 2k − 1 2k
1 2 3 4 . . . 2k − 1 2k

)
.

�

A cycle C is said to be M-alternating for a matching M if the edges
in C alternate between edges of M and E(G)−M .

Corollary 2. For an orientation D of a graph G the following are
equivalent.

(a) D is Pfaffian,
(b) every central cycle of G is oddly oriented in D,
(c) every M-alternating cycle of G is oddly oriented in D for some

M ∈M(G).

Exercise 3. Derive Corollary 2 from Lemma 1.

We are now ready to prove the classical theorem of Kasteleyn, which
exhibits a wide and natural class of Pfaffian graphs.

Theorem 2. Every planar graph is Pfaffian.
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Proof. Let G be a planar graph. Fix a drawing of G in the plane.
Given an orientation D of G, we say that a cycle C in G is clockwise
even if traversing C clockwise we encounter an even number of edges
of D oriented in the direction of the traversal, and we say that C is
clockwise odd otherwise. Note that unlike the notion of evenly/oddly
oriented cycles introduced earlier this new notion is well-defined for
odd cycles.

Let D be an orientation of G so that every face of G, except possibly
for the infinite face, is oddly oriented in D. The existence of such an
orientation can be derived by induction on |E(G)|. For the induction
step, we apply induction hypothesis to the graph G−e for some edge e
incident to the infinite face of G, and then orient e so that the unique
non-infinite face of G incident to e is oddly oriented.

Let C be a cycle in G. We claim that C is oddly oriented in D
if and only if the region bounded by C in the plane contains an even
number of vertices of G in its strict interior. Note that the theorem
follows from this claim by Corollary 2, as every region bounded by a
central cycle must contain even number of vertices in its interior.

We verify the claim by induction on the number of edges of G in the
interior of the region bounded by C. The base case holds by the choice
of D. For the induction step, we partition the region bounded by C into
two smaller regions bounded by cycles C1 and C2 respectively. Suppose
that the region bounded by Ci contains ri vertices in its interior, for
i = 1, 2, and that C1 and C2 share k vertices. Applying the induction
hypothesis, one can routinely verify that traversing C in the clockwise
direction one encounters (r1+1)+(r2+1)−(k+1) edges in the direction
of traversal modulo 2. As the region bounded by C contains r1 + r2
vertices in its interior, this finishes the proof of the claim. �

Exercise 4. Show that a matching-covered graph G is Pfaffian if and
only if every brick and brace in the tight cut decomposition of G is
Pfaffian.

Exercise 5. Show that K3,3 is not Pfaffian.


