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The perfect matching polytope.

2.1. Outline of Lecture

• Polytopes and linear programming.
• The perfect matching polytope in bipartite graphs.
• The perfect matching polytope in general graphs.
• An application: Union of perfect matchings in cubic graphs.

2.2. Linear programming. A reminder.

Linear programming is a very powerful technique, applicable not only
in optimization, but in combinatorial theory. For example, we will
see that König’s theorem (Lecture 1,Theorem 2) is an instance of the
principle of (integral) linear programming duality. In this section, we
remind ourselves of the basic relevant concepts.

Given a collection of vectors v1, v2, . . . .vm ∈ Rn their linear combi-
nation is λ1v1 + λ2v2 + . . . + λmvm ∈ Rn, where λ1, . . . , λm ∈ R. The
linear combination is affine if λ1 + . . . + λm = 1, it is convex if addi-
tionally all λi ≥ 0. The convex hull of a family of vectors is the set of
all convex combinations of vectors in this family. The convex hull of a
finite family of vectors is called a polytope. A classical theorem of Weil
states that every polytope is an intersection of a finite collection of half
spaces. Thus every polytope can be characterized either by a (minimal)
set of vectors whose convex combinations generate this polytope or by
a family of half spaces. The dimension of a polytope is the dimension
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of the affine subspace of Rn generated by it.” A vertex of a polytope P
is a vector which can not be expressed by a convex combination of other
vectors in P . If a polytope is given by a system of linear inequalities
(i.e. as an intersection of half spaces), then every vertex is the unique
solution of a system of equations, obtained by taking a subsystem of
inequalities defining P and replacing them by equalities.

The fundamental problem of linear programming is to find maxi-
mum or minimum of an objective linear function subject to a set of
linear constraints. It can be written as

maximize c · x(1)

subject to x ≥ 0

Ax ≤ b

A dual program is defined by

minimize b · y(2)

subject to y ≥ 0

Aty ≥ c

Theorem 1 (The duality theorem for linear programming). If either
one of the linear programs (1) and (2) has a solution and a finite op-
timum then so does the other, and the optima are equal.

2.3. Fractional matchings in bipartite graphs.

We will identify perfect matchings with vectors in a Euclidean space.
This will allow us to exploit linear algebraic and linear programming
techniques. Let RE(G) be the set of vectors with components indexed by
the edges of the graph G. For a vector w = (w(e) | e ∈ E(G)) ∈ RE(G)

and F ⊆ E(G) define w(F ) :=
∑

e∈F w(e). For a set F ⊆ E(G) define

the characteristic vector χF ∈ RE(G) of F by χF (e) = 1 if e ∈ F , and
χF (e) = 0 otherwise. In particular, we have w(F ) = w · χF for all
F ⊆ E(G) and all w ∈ RE(G). As one additional bit of notation, we
denote ∇(X) for a set X ⊆ V (G) to be the set of edges with one end
in X and another in V (G)−X, that is ∇(X) is the cut separating X
and V (G)−X. For brevity we write ∇(v) instead of ∇({v}) to denote
the set of all edges incident to v.

We define the perfect matching polytope PM(G) of a graph G as
the convex hull of the set {χM |M ∈ M(G)} of characteristic vectors
of perfect matchings of G. Our goal is to describe PM(G) as an in-
tersection of a family of subspaces, preferably in such a way that the
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inequalities defining these subspaces are natural. What linear inequal-
ities are satisfied by characteristic vectors of perfect matchings (and,
therefore, by all vectors in PM(G))? Clearly, for every x ∈ PM(G) we
have x(e) ≥ 0 for every e ∈ E(G), and x(∇(v)) = 1 for every v ∈ V (G).
These two conditions can be written in a more compact form as follows.
The incidence matrix A = (ave)v∈V (G),e∈E(G) of a graph G is a matrix
with rows indexed by vertices of G and columns indexed by edges of
G, where ave = 1, if v is an end of e, and ave = 0, otherwise. Define
the fractional perfect matching polytope of a graph G, as

(3) FPM(G) := {x ∈ RE(G) | x ≥ 0, Ax = 1}.

As mentioned above, we have PM(G) ⊆ FPM(G) for every graph G.
The exposition of the results in this section follows Lovász and

Plummer’s book “Matching theory”(1986).

Theorem 2. Let A be the incidence matrix of a bipartite graph G.
Then the determinant of every square submatrix of A is equal to 0 or
±1. (Such a matrix A is called totally unimodular.)

Proof. Let B be a k × k submatrix of A. We proceed by induction
on k. If some column of B contains at most one non-zero entry, then
we can decompose detB along this column and proceed by induction.
Thus we may assume that every column of B contains exactly two non-
zero entries (equal to 1) in rows corresponding to different parts of the
bipartition of G. It follows that the sum of rows of B corresponding to
the vertices in one class of the bipartition is equal to the sum of rows
of B corresponding to the vertices in the other class. Thus the rows of
B are linearly dependent and detB = 0. �

Theorem 3. We have

PM(G) = FPM(G),

for every bipartite graph G.

Proof. By Theorem 2, Kramer’s rule and our discussion of vertices of
a polytope above it follows that every vertex of FPM(G) is integral.
It is easy to see that each integral point in FPM(G) is a characteristic
vector of some perfect matching. Thus FPM(G) ⊆ PM(G) and we
have already seen that the reverse inclusion also holds. �

It is known that an optimum of any linear program can be found
in time polynomial in the size of the program. Theorem 3 shows that
the weighted perfect matching problem is solvable in polynomial time
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for bipartite graphs. More precisely, given a vector w ∈ RE(G) one can
find in polynomial time

max
M∈M(G)

∑
e∈M

w(e).

While we concetrate on perfect matchings in these notes a useful
analogue of Theorem 3 holds for general matchings. Define the match-
ing polytope MP(G) as the convex hull of characteristic vectors of
matchings of G. Define by analogue with (3) the fractional matching
polytope as

(4) FM(G) := {x ∈ RE(G) | x ≥ 0, Ax ≤ 1}.
Theorem 4. We have

MP(G) = FM(G),

for every bipartite graph G.

Exercise 1. Show that MP(G) ( FM(G) for every non-bipartite
graph G.

Exercise 2. a) Derive König’s theorem (Lecture 1, Exercise 2) from
Theorem 4 and the duality theorem for linear programming.

b) Formulate and prove a weighted generalization of König’s theo-
rem.

2.4. Edmonds’ perfect matching polytope theorem

As might be deduced from Exercise 1, the description of the inequalities
defining PM(G) for non-bipartite graph G is more complex than that
of FPM(G). However, a celebrated theorem of Edmonds(1965) gives
a useful description.

Theorem 5 (Edmonds’ perfect matching polytope theorem). The poly-
tope PM(G) consist of all vectors x ∈ RE(G) satisfying the following
constraints.

(i): x ≥ 0,
(ii): x(∇(v)) = 1 for every v ∈ V (G),
(iii): x(∇(X)) ≥ 1 for every odd X ⊆ V (G).

Proof. The proof is by induction on |V (G)|. The base case |V (G)| = 0
is trivial. For a vector x ∈ RE(G), we will show that if x satisfies
conditions (i), (ii) and (iii) then x lies in PM(G). Let us first consider
the case that

(*) x(∇(X)) = 1 for some odd X ⊆ V (G) with |X|, |V (G)−X| >
1.
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We define graphs G1 and G2 by replacing all the vertices in X and
in V (G) − X, respectively, by a single vertex. A similar procedure
of cut decomposition will be employed in other circumstances in the
future. Note that x naturally corresponds to vectors x1 ∈ RE(G1) and
x2 ∈ RE(G2), obtained by restriction. The validity of the theorem for
x follows from the induction hypothesis applied to G1 and G2 and the
following exercise.

Exercise 3. Let G, G1 and G2, x, x1, x2 be as above.

a) Show that xi satisfies conditions (i),(ii) and (iii) applied to Gi

for i = 1, 2;
b) Show that if x1 ∈ PM(G1), x2 ∈ PM(G2) then x ∈ PM(G).

Thus the theorem holds for all x satisfying condition (*). For a vec-
tor x ∈ RE(G) define the support of x by suppx := {e ∈ E(G) | x(e) 6=
0}. We proceed by induction on | suppx|. Define G′ := G[suppx] to
be the graph induced by edges in suppx.

Claim: G′ has a perfect matching.

Proof. If not then by Tutte’s matching theorem (Lecture 1, Theorem
3) there exists a set X ⊆ V (G) such that co(G

′ − X) > |X|. Let
Y1, Y2, . . . , Yk be the vertex sets of the odd components of G′ − X.
Then x(∇(Yi)) ≥ 1 for 1 ≤ i ≤ k by (iii). It follows that

|X| (ii)=
∑
v∈X

x(∇(v))
(i)

≥
k∑

i=1

x(∇(Yi)) ≥ k > |X|,

a contradiction, finishing the proof of the claim. �

Let M be a perfect matching of G′. If x = χM , the theorem holds.
Otherwise, consider

x′ :=
x− εχM

1− ε
,

where 0 < ε < 1 is chosen maximum so that x′ ≥ 0 and x′(∇(X)) ≥ 1
for every odd X ⊆ V (G). The condition (*) is not satisfied for x, M is
contained in suppx and x 6= χM , implying that such ε exists. Further,
x′ satisfies conditions (i), (ii) and (iii). Either | suppx′| < | suppx| or
(*) holds for x′. It follows from the induction hypothesis that x′ ∈
PM(G). Finally, x = (1− ε)x′ + εχM, and thus x ∈ PM(G). �

Exercise 4. Let G be a (k−1)-edge connected k-regular graph on even
number of vertices for some integer k ≥ 1. Show that 1

k
∈ PM(G).
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2.5. Unions of perfect matchings in cubic graphs

The material in this section follows the paper with the same title by
Tomáš Kaiser, Daniel Král’ and the author (2006).

A well-known conjecture of Berge and Fulkerson states that every
bridgeless cubic graph contains a family of six perfect matchings cov-
ering each edge exactly twice:

Conjecture 1. Every cubic bridgeless graph G contains six perfect
matching M1, . . . ,M6 such that each edge of G is contained in precisely
two of the matchings.

The following version of Conjecture 1 due to Berge has recently
been shown to be equivalent to Conjecture 1 by Mazzuocolo.

Conjecture 2. Every cubic bridgeless graph G contains five perfect
matchings M1, . . . ,M5 such that each edge of G is contained in at least
one of the matchings.

Exercise 4 for k = 3 can be used to prove a much weaker bound.

Theorem 6. The edges of a cubic bridgeless graph G on 2n vertices
can be covered by at most log3/2(3n) + 1 perfect matchings.

Proof. By Exercise 4 there exist perfect matchings M1, . . . ,Mk ∈
M(G) so that a convex combination λ1χM1 + λ2χM2 + . . . + λkχM1

is identically 1/3. Consider a probabilistic distribution on M(G) so
that P[M = Mi] = λi for 1 ≤ i ≤ k. Let l = blog3/2(3n) + 1c perfect
matchings be independently chosen from this probability distribution.
Then the probability that a given edge is not in any of the chosen
perfect matchings is (2/3)l. It now follows from the union bound that
with positive probability every edge is covered. �

In the remainder of this section we investigate the maximum pos-
sible size of the union of a given number of perfect matchings in a
bridegeless cubic graph. More precisely, we study, for k ∈ {2, 3}, the
numbers

mk = inf
G

max
M1,...,Mk

|
⋃

iMi|
|E(G)|

,

where the infimum is taken over all bridgeless cubic graphs G, and
M1, . . . ,Mk range over all perfect matchings of G. Note that Conjec-
ture 2 asserts that m5 = 1.

The Petersen graph P10 (see Figure 1) has 15 edges and 6 distinct
perfect matchings. It can be checked that any two distinct perfect
matchings of P10 have precisely one edge in common and that the
intersection of any three distinct perfect matchings is empty. Simple
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Figure 1. The Petersen graph

counting then shows that m2 ≤ 3/5 and m3 ≤ 4/5. We provide bounds
on m2 and m3. Next exercise provides an auxiliary result used in the
proof.

Exercise 5. Let G be a graph, let w ∈ PM(G) and let c ∈ RE(G).
Then G has a perfect matching M such that

c · χM ≥ c ·w.

Moreover, there exists such a perfect matching M that contains exactly
one edge of each odd cut C with w(C) = 1.

Theorem 7. The value of m2 is 3/5, and 0.771 ≈ 27/35 ≤ m3 ≤ 4/5.

Proof. Fix a cubic bridgeless graph G. Define w1 ∈ RE(G) to have
the value 1/3 on all edges e ∈ E(G). By Exercise 4, w1 ∈ PM(G).
Note that w1(C) = 1 for each 3-cut C of G. Hence, by Exercise 5 there
exists M1 ∈M(G) intersecting each 3-cut in a single edge.

We now use M1 to define the following vector w2 ∈ RE(G):

w2(e) =

{
1/5 if e ∈M1,
2/5 otherwise.

We verify that w2 ∈ PM(G): the conditions (i) and (ii) of Theorem 5
clearly hold. Let C be an odd cut of G. The size of C is odd and it is
at least three. If C is a 3-cut, then w2(e) = 1/5 for exactly one of the
edges e contained in C and w2(e) = 2/5 for the remaining two edges.
If the size of C is five or more, then w2(C) ≥ 5 · 1/5 = 1. Hence, the
condition (iii) also holds.
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For each e ∈ E(G), set c2(e) = 1 − χM1(e). By Lemma 5, there
exists a perfect matching M2 such that

c2 · χM2 ≥ c2 ·w2 =
2

5
· 2

3
|E(G)| = 4

15
|E(G)| .

Since c2 · χM2 is just |M2 \M1|, it follows that

|M1 ∪M2| = (
1

3
+

4

15
) · |E(G)| = 3

5
|E(G)| .

We conclude that m2 = 3/5.
It remains to establish a lower bound on m3. Note that if C is

a 5-cut contained in M1, then w2(C) = 1. Hence, by Exercise 5, we
may assume that if C is a 5-cut contained in M1, then |C ∩M2| = 1.
Similarly, M2 contains exactly one edge of each 3-cut. We now consider
the following vector w3 ∈ RE(G):

w3(e) =

 1/7 if e ∈M1 ∩M2,
2/7 if e ∈ (M1 ∪M2) \ (M1 ∩M2),
3/7 otherwise.

Again, we verify that w3 ∈ PM(G). The conditions (i) and (ii) hold
trivially. Let us consider an odd cut C of G. If C is a 3-cut, then
it contains exactly one edge e1 contained in M1 and exactly one edge
e2 contained if M2. If e1 = e2, then w3(C) = 1/7 + 2 · 3/7 = 1. If
e1 6= e2, then w3(C) = 2 · 2/7 + 3/7 = 1. If C is a 5-cut that is not
fully contained in M1, then |C ∩M1| ≤ 3 (recall that C is an odd cut).
Hence, w3(C) ≥ 3 · 1/7 + 2 · 2/7 = 1. If C ⊆M1, then |C ∩M2| = 1 by
the choice of M2. We infer that w3(C) ≥ 1/7 + 4 · 2/7 > 1. Finally, if
the size of C is seven or more, then w3(C) ≥ 7 · 1/7 = 1. We conclude
that w3 is a fractional perfect matching of G.

Set c3(e) = 1 − χM1∪M2(e). By Lemma 5, there exists a perfect
matching M3 such that

c3 · χM3 = |M3 \ (M1 ∪M2)| ≥
3

7
· |E \ (M1 ∪M2)| = c3 ·w3 .

Consequently,

|M1 ∪M2 ∪M3| = |M1 ∪M2|+ |M3 \ (M1 ∪M2)|

≥ 3

5
|E(G)|+ 3

7
· 2

5
|E(G)| = 27

35
|E(G)| .

We infer that m3 ≥ 27/35. �

Problem 1. Is it possible to refine the proof of Theorem 7 to improve
the bound on m3? What lower bound on m4 can be derived using
similar methods?


