Assignment # 2: Turán- and Ramsey-type problems.

Due in class on Thursday, March 29th.

- **1.** Let G be a graph on n vertices for some $n \geq 3$ with $|G| \geq \lfloor \frac{n^2}{4} \rfloor + 1$.
 - a) Show that G contains at least $\lfloor \frac{n}{2} \rfloor$ triangles.
 - b) Show that the bound in a) is tight: For every $n \geq 3$ there exists a graph G on n vertices with $|G| = \lfloor \frac{n^2}{4} \rfloor + 1$ containing exactly $\lfloor \frac{n}{2} \rfloor$ triangles.
- **2.** Let $K_{s,s,s}$ denote the 3-graph, whose vertices can be partitioned into three sets A_1, A_2 and A_3 , such that $|A_i| = s$ for i = 1, 2, 3, and the edges are all the triples $\{x_1, x_2, x_3\}$ such that $x_i \in S_i$ for i = 1, 2, 3. Show that $\pi(K_{s,s,s}) = 0$ for every s.
- **3.** Bollobás. 8.7. Let $K_4^{(3)}$ denote the complete 3-graph on 4 vertices, i.e. the 3-graph isomorphic to $[4]^{(3)}$. Following de Caen (1983), we give an upper bound on $\pi(K_4^{(3)})$. Let $\mathcal{F} \subseteq [n]^{(3)}$ be a hypergraph containing no $K_4^{(3)}$ with $|\mathcal{F}| = m$. For $x, y \in [n]$, $x \neq y$ let

$$A(x,y) := \{ z \in [n] \mid \{x,y,z\} \in \mathcal{F} \},$$

and let $a_{xy} := |A(x,y)|$. Note that if $\{x,y,z\} \in \mathcal{F}$ then $A(x,y) \cap A(y,z) \cap A(z,x) = \emptyset$ and so

$$a_{xy} + a_{yz} + a_{zx} \le 2n - 3.$$

Summing over all edges of \mathcal{F} deduce that

$$\sum_{\{x,y\}\in[n]^{(2)}}a_{xy}^2\leq (2n-3)m.$$

Using convexity of x^2 show that the left hand side is at least $(3m)^2/\binom{n}{2}$ and deduce that $m \leq \frac{2n-3}{9}\binom{n}{2}$ and $\pi(K_4^{(3)}) \leq 2/3$.

4. Let G be a graph with V(G) = [17] and $x, y \in V(G)$ adjacent if and only if

$$(x-y) \mod 17 \in \{\pm 1, \pm 2, \pm 4, \pm 8\}.$$

- a) Show that neither G nor the complement of G contains a K_4 subgraph.
- **b)** Deduce that R(4,4) = 18.
- **5.** Schur's theorem. Show that for every positive integer k there exists a positive integer n satisfying the following. In every coloring of [n] with k colors it is possible to find a triple of (not necessarily distinct) integers x, y, z of the same color so that x + y = z. (*Hint*: Use Ramsey's theorem.)
- **6.** Show that for each $\varepsilon > 0$ there exists N with the following property. For each real $\alpha > 0$ there exist integers q and p such that $1 \le q \le N$ and

$$|q^2\alpha - p| \le \varepsilon.$$

(*Hint*: Use van der Waerden's theorem.)