Problem Solving Seminar Fall 2021. Problem Set 3: Inequalities.

Classical results.

1. **AM-GM.** For any non-negative real numbers x_1, x_2, \ldots, x_n ,

$$\sqrt[n]{x_1x_2\dots x_n} \le \frac{x_1+x_2+\dots+x_n}{n}.$$

2. Cauchy-Schwarz. For any real $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n$,

$$(x_1y_1 + x_2y_2 + \ldots + x_ny_n)^2 \le (x_1^2 + x_2^2 + \ldots + x_n^2)(y_1^2 + y_2^2 + \ldots + y_n^2).$$

3. **Jensen.** For any convex function f and any real x_1, x_2, \ldots, x_n ,

$$f\left(\frac{x_1+x_2+\ldots+x_n}{n}\right) \le \frac{f(x_1)+f(x_2)+\ldots+f(x_n)}{n}.$$

Problems.

1. Show that

$$\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n-1}{2n} < \frac{1}{\sqrt{2n+1}}$$

2. **Putnam 2003.** A2. Let a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n be nonnegative real numbers. Show that

$$(a_1 a_2 \cdots a_n)^{1/n} + (b_1 b_2 \cdots b_n)^{1/n} \le [(a_1 + b_1)(a_2 + b_2) \cdots (a_n + b_n)]^{1/n}.$$

3. Putnam 2004. B2. Let m and n be positive integers. Show that

$$\frac{(m+n)!}{(m+n)^{m+n}} < \frac{m!}{m^m} \frac{n!}{n^n}.$$

- 4. **USA 1997.** A set of n > 3 real numbers has sum at least n and the sum of the squares of the numbers is at least n^2 . Show that the largest positive number is at least 2.
- 5. **IMO 1994.** Let m and n be positive integers. Let a_1, a_2, \ldots, a_m be distinct elements of $\{1, 2, \ldots, n\}$ such that whenever $a_i + a_j \leq n$ for some i, j (possibly the same) we have $a_i + a_j = a_k$ for some k. Prove that:

$$\frac{a_1 + a_2 + \ldots + a_m}{m} \ge \frac{n+1}{2}.$$

- 6. **Putnam 2003. A4.** Let a, b, c, A, B, C be real, a, A non-zero such that $|ax^2 + bx + c| \le |Ax^2 + Bx + C|$ for all real x. Show that $|b^2 4ac| \le |B^2 4AC|$.
- 7. Putnam 2003. B6. Show that

$$\int_0^1 \int_0^1 |f(x) + f(y)| \ dx \ dy \ge \int_0^1 |f(x)| \ dx$$

for any continuous real-valued function f on [0, 1].