
Problem Seminar. Fall 2019.

Problem Set 1. Induction.

Classical results.

1. Finitely many lines divide the plane into regions. Show that these regions can be colored
by two colors in such a way that neighboring regions have different colors.

2. An Hadamard matrix is an n× n square matrix, all of whose entries are +− 1 or 1, such
that every pair of distinct rows is orthogonal. In other words, if the rows are considered to
be vectors of length n, then the dot product between any two distinct row-vectors is zero.
Show that there exist infinitely many Hadamard matrices.

3. Prove that any positive integer can be represented as±12±22± . . .±n2 for some positive
integer n and some choice of the signs.

Problems.

1. Putnam 2001. A2. You have coins C1, C2, . . . , Cn. For each k, Ck is biased so that, when
tossed, it has probability 1/(2k+1) of falling heads. If the n coins are tossed, what is the
probability that the number of heads is odd? Express the answer as a rational function of
n.

2. Putnam 2017. A2. Let Q0(x) = 1, Q1(x) = x, and

Qn(x) =
(Qn−1(x))

2 − 1

Qn−2(x)

for all n ≥ 2. Show that, whenever n is a positive integer, Qn(x) is equal to a polynomial
with integer coefficients.

3. IMO 2001. B1. 100 cards are numbered 1 to 100 (each card different) and placed in 3
boxes (at least one card in each box). How many ways can this be done so that if two
boxes are selected and a card is taken from each, then the knowledge of their sum alone
is always sufficient to identify the third box?

4. Putnam 2003. B2. Let n be a positive integer. Starting with the sequence 1, 1
2
, 1
3
, . . . , 1

n
,

form a new sequence of n − 1 entries 3
4
, 5
12
, . . . , 2n−1

n(n−1)
by taking the averages of two

consecutive entries in the first sequence. Repeat the averaging of neighbors on the second
sequence to obtain a third sequence of n− 2 entries, and continue until the final sequence
produced consists of a single number xn. Show that xn ≤ 2

n
.

5. Putnam 2006. B3. Let S be a finite set of points in the plane. A linear partition of S is
an unordered pair {A,B} of subsets of S such that A ∪ B = S, A ∩ B = ∅, and A and
B lie on opposite sides of some straight line disjoint from S (A or B may be empty). Let
LS be the number of linear partitions of S. For each positive integer n, find the maximum
of LS over all sets S of n points.



6. Putnam 1996. A4. Let S be the set of ordered triples (a, b, c) of distinct elements of a
finite set A. Suppose that

(a) (a, b, c) ∈ S if and only if (b, c, a) ∈ S;

(b) (a, b, c) ∈ S if and only if (c, b, a) /∈ S;

(c) (a, b, c) and (c, d, a) are both in S if and only if (b, c, d) and (d, a, b) are both in S.

Prove that there exists a one-to-one function g from A to R such that g(a) < g(b) < g(c)
implies (a, b, c) ∈ S.

7. Putnam 2000. B5. Let S0 be a finite set of positive integers. We define finite sets
S1, S2, . . . of positive integers as follows: the integer a is in Sn+1 if and only if exactly
one of a − 1 or a is in Sn. Show that there exist infinitely many integers N for which
SN = S0 ∪ {N + a : a ∈ S0}.


