MATH 340: Discrete Structures II. Winter 2017. Due in class on Friday, January 27th.

Assignment #1: Matchings.

1. Stable matching algorithm. Apply the Boy Proposal algorithm to find a stable matching given the preference lists below. Are there any other stable matchings?

$\mathbf{B_1}: G_3 > G_2 > G_1 > G_4 > G_5$
$\mathbf{B_2}: G_2 > G_1 > G_3 > G_5 > G_4$
$\mathbf{B_3}: G_2 > G_5 > G_4 > G_3 > G_1$
${\bf B_4}:G_1>G_3>G_4>G_2>G_5$
${\bf B_5}:G_2>G_3>G_1>G_5>G_4$
$\mathbf{G_1}: B_5 > B_2 > B_1 > B_4 > B_3$
$\mathbf{G_1} : B_5 > B_2 > B_1 > B_4 > B_3$ $\mathbf{G_2} : B_3 > B_1 > B_4 > B_2 > B_5$
$\begin{aligned} \mathbf{G_1} &: B_5 > B_2 > B_1 > B_4 > B_3 \\ \mathbf{G_2} &: B_3 > B_1 > B_4 > B_2 > B_5 \\ \mathbf{G_3} &: B_2 > B_5 > B_4 > B_3 > B_1 \end{aligned}$
$\begin{aligned} \mathbf{G_1} &: B_5 > B_2 > B_1 > B_4 > B_3 \\ \mathbf{G_2} &: B_3 > B_1 > B_4 > B_2 > B_5 \\ \mathbf{G_3} &: B_2 > B_5 > B_4 > B_3 > B_1 \\ \mathbf{G_4} &: B_1 > B_3 > B_4 > B_5 > B_2 \end{aligned}$

2. *Stable roommates.* We wish to pair up an even number of students in a student dormitory. Each student has a preference list over every other potential roommate. Give an example to show that a stable matching need not exist.

3. Edge-coloring. Let G be a (not necessarily bipartite) graph with maximum degree $\Delta > 0$.

- **a)** Show that $\chi'(G) \leq 2\Delta 1$.
- **b)** Suppose that G has a perfect matching M such that $G \setminus M$ is bipartite. Determine $\chi'(G)$ in terms of Δ . Justify your answer.

Reminder: $G \setminus M$ is the graph obtained from G by deleting all the edges of M.

4. Counting matchings. Let G be a graph with bipartition (A, B) such that $A = \{a_1, a_2, \ldots, a_n\}, B = \{b_1, b_2, \ldots, b_{n+1}\}$ and the vertex a_i is adjacent to vertices $b_1, b_2, \ldots, b_{i+1}$ for every $i = 1, 2, \ldots, n$. Show that there are exactly 2^n matchings in G covering A.

5. Kőnig's theorem. Let G be a bipartite graph with bipartition (A, B), such that |A| = |B| = 10, and every vertex of G has degree at least five. Show that G has a perfect matching.

Hint: Show that if X is a vertex cover of G then either $|X \cap A| \ge 5$ and $|X \cap B| \ge 5$, or $A \subseteq X$, or $B \subseteq X$.

6. Matching markets. Consider a matching market with with four buyers (A, B, C, D) and four sellers (X, Y, Z, W), where the valuations of the buyers are listed in the following table.

	Х	Υ	Ζ	W
А	6	4	6	6
В	6	5	7	2
С	4	1	7	5
D	3	1	6	3

Use the method seen in class to find a set of market clearing prices.