
Erdős-Stone theorem for graphs with chromatic number 2 and

3.

In this note we will prove a special case of the Erdős-Stone theorem, which

in full generality completely determines the Turán density for all graphs. A

graph H is k-colorable if there exists a function c : V (H) → [k] so that

c(v) 6= c(w) for every pair of adjacent vertices v, w ∈ V (H). The chromatic

number χ(H) of H is the minimum positive integer k such that H is k-

colorable.

Theorem 1. [Erdős-Stone, 1946] For every graph H with at least one edge

we have

π(H) =
χ(H)− 2

χ(H)− 1
.

Note that the construction which is used to show that π(Kt) ≥ t−2
t−1 implies

that π(H) ≥ χ(H)−2
χ(H)−1 for every graph H. Thus it suffices to establish the lower

bound on the Turán density. We will prove this lower bound for graphs H

with χ(H) = 2 and χ(H) = 3.

Let Kr,r denote the complete balanced bipartite graph on 2r vertices, that is

V (Kr,r) = V1 ∪ V2, |V1| = |V2| = r, and v1v2 ∈ E(Kr,r) for every v1 ∈ V1

and v2 ∈ V2. The complete balanced 3-partite graph Kr,r,r is defined similarly

with |V (Kr,r,r)| = 3r, V (Kr,r,r) = V1 ∪ V2 ∪ V3, |V1| = |V2| = |V3| = r, and

vivj ∈ E(Kr,r,r) for all vi ∈ Vi and vj ∈ Vj for i, j ∈ {1, 2, 3}, i 6= j. It is easy

to see that a graph H satisfies χ(H) ≤ 2 if and only if H is a subgraph of Kr,r

for some r, and, similarly, χ(H) ≤ 3 if and only if H is a subgraph of Kr,r,r

for some r. Therefore to establish Theorem 1 in the cases we are interested

in it suffices to show that π(Kr,r) = 0 and π(Kr,r,r) = 1/2 for every positive

integer r.The next lemma establishes the first of these identities.

For a graph G and a vertex v ∈ V (G) let N(v) denote the neighborhood of

v, that is the set of vertices of G adjacent to v.



Lemma 2. For every positive integer r and every ε > 0 there exists n0 > 0

so that every graph G with n := |V (G)| ≥ n0 and E(G) ≥ εn2 has Kr,r as a

subgraph.

Proof. Note that it suffices to show that there exist distinct vertices v1, v2, . . . ,

vr ∈ V (G) such that

|N(v1) ∩N(v2) ∩ . . . ∩N(vr)| ≥ r.

We will show that for an appropriate choice of n0 one has∑
{v1,...,vr} ⊆V (G)

|N(v1) ∩N(v2) ∩ . . . ∩N(vr)| ≥ rnr.

The lemma will follow by averaging. For some constant cr depending only

on r we have∑
{v1,...,vr}⊆V (G)

|N(v1) ∩N(v2) ∩ . . . ∩N(vr)| =
∑

w∈V (G)

(
|N(w)|
r

)

≥
∑

w∈V (G)

(
1

r!
degr(w)− cr degr−1(w)

)

≥ 1

r!

 ∑
w∈V (G)

degr(w)

− crnr
≥ n

r!

(∑
w∈V (G) deg(w)

n

)r

− crnr

≥ n(εn/2)r

r!
− crnr ≥ rnr,

as desired.

The next technical lemma will allow us to prove π(Kr,r,r) = 0 amplifying the

result of Lemma 2. The proof is left as an exercise.

Lemma 3. Let H be a fixed s-graph of order k. Show that for every ε > 0

there exists δ > 0 and n0 > 0 with the following properties. If G is an s-graph

of order n ≥ n0 with |G| ≥ (π(H) + ε)
(
n
s

)
then at least δ

(
n
k

)
subsets of V (G)

of size k induce an s-graph containing H.



In this note we will only use Lemma 3 when H is a 2-graph. Let K+
2,r denote

a graph on r + 2 vertices with two of the vertices adjacent two each other

and all the remaining vertices, and no other edges.

Lemma 4. π(K+
2,r) = 1/2.

Proof. Suppose for a contradiction that π(K+
2,r) ≥ 1/2 + 2ε for some ε > 0.

Let δ and n0 be chosen to satisfy Lemma 3 for H = K3 and ε. Let n′ :=

max{n0, 4r/δ} and let G be a graph of order n ≥ n′ with |G| ≥ (1/2 + ε)
(
n
2

)
.

By Lemma 3, G contains at least δ
(
n
3

)
≥ 3r

(
n
2

)
triangles, where the inequality

holds by the choice of n′. It follows that some edge of G belongs to at least r

triangles. Thus G contains a copy of K+
2,r. It follows that π(K+

2,r) ≤ 1/2 + ε,

contradicting the choice of ε.

Lemma 5. π(Kr,r,r) = 1/2.

Proof. The proof follows the pattern of the proof of Lemma 4.

Suppose for a contradiction that π(Kr,r,r) ≥ 1/2 + 2ε for some ε > 0. Let

δ and n0 be chosen to satisfy Lemma 3 for H = K+
2,r and ε. Let n′ be

sufficiently large, which will be chosen implicitly later, depending on δ, n0

and r, so that n′ ≥ n0, in particular. Let G be a graph of order n ≥ n′ with

|G| ≥ (1/2 + ε)
(
n
2

)
.

For {v1, v2, . . . , vr} ⊆ V (G), let eN(v1, v2, . . . , vr) denote the number of edges

of G joining pairs of vertices in N(v1) ∩ N(v2) ∩ . . . ∩ N(vr). By Lemma 3,

we have ∑
{v1,...,vr}⊆V (G)

eN(v1, v2, . . . , vr) ≥
δ

r2

(
n

r + 2

)
≥ δn2

r4

(
n

r

)
.

It follows that eN(v1, v2, . . . , vr) ≥ δn2/r4 for some {v1, v2, . . . , vr} ⊆ V (G).

We now apply Lemma 2 with δ/r4 instead of ε and we assume that n′ has

been chosen large enough to satisfy the conclusion of this lemma. It now

follows that N(v1) ∩ N(v2) ∩ . . . ∩ N(vr) contains a copy of Kr,r. Thus G



contains a copy of Kr,r,r. It follows that π(Kr,r,r) ≤ 1/2 + ε, contradicting

the choice of ε.


