Erdés-Stone theorem for graphs with chromatic number 2 and
3.

In this note we will prove a special case of the Erdés-Stone theorem, which
in full generality completely determines the Turan density for all graphs. A
graph H is k-colorable if there exists a function ¢ : V(H) — [k] so that
c(v) # c(w) for every pair of adjacent vertices v,w € V(H). The chromatic
number x(H) of H is the minimum positive integer k such that H is k-

colorable.

Theorem 1. [Erdds-Stone, 1946] For every graph H with at least one edge
we have

X(H) —2

X(H)—1

Note that the construction which is used to show that 7(K;) > % implies

that m(H) > igg;:f for every graph H. Thus it suffices to establish the lower

bound on the Turdn density. We will prove this lower bound for graphs H
with x(H) =2 and x(H) = 3.

w(H) =

Let K, , denote the complete balanced bipartite graph on 2r vertices, that is
V(K,,) = VUV, |Vi| = |Vo| = r, and vyvy € E(K,,) for every v; € 1}
and vy € V5. The complete balanced 3-partite graph K, ., is defined similarly
with [V(EKyp)| = 37, V(Kopy) = Vi UVa UVa, [Vi] = V| = Vil = r, and
vv; € E(K,,,) forall v; € V; and v; € Vj for 4,5 € {1,2,3},i # j. It is easy
to see that a graph H satisfies x(H) < 2 if and only if H is a subgraph of K, ,
for some r, and, similarly, x(H) < 3 if and only if H is a subgraph of K, ,
for some r. Therefore to establish Theorem 1 in the cases we are interested
in it suffices to show that 7(K,,) = 0 and n(K,,,) = 1/2 for every positive

integer 7. The next lemma establishes the first of these identities.

For a graph G and a vertex v € V(G) let N(v) denote the neighborhood of

v, that is the set of vertices of G adjacent to v.



Lemma 2. For every positive integer r and every € > 0 there exists ng > 0
so that every graph G with n := |V(G)| > ng and E(G) > en? has K, as a
subgraph.

Proof. Note that it suffices to show that there exist distinct vertices vy, vs, ..

v, € V(G) such that

c

‘N(U1>QN(U2)Q...QN(’0T)‘ 27".
We will show that for an appropriate choice of ng one has

Z IN(v1) N N(vy)N...N N(v.)| >rn'.

The lemma will follow by averaging. For some constant ¢, depending only

on r we have
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as desired. n

The next technical lemma will allow us to prove m(K,,,) = 0 amplifying the

result of Lemma 2. The proof is left as an exercise.

Lemma 3. Let H be a fized s-graph of order k. Show that for every e > 0
there exists 0 > 0 and ng > 0 with the following properties. If G is an s-graph
of order n > ng with |G| > (w(H) +¢)(7) then at least 6(}) subsets of V(G)

of size k induce an s-graph containing H.



In this note we will only use Lemma 3 when H is a 2-graph. Let K;f , denote
a graph on r + 2 vertices with two of the vertices adjacent two each other

and all the remaining vertices, and no other edges.
Lemma 4. 7(K3,) =1/2.

Proof. Suppose for a contradiction that 7(K73,) > 1/2 + 2¢ for some ¢ > 0.
Let 6 and ng be chosen to satisfy Lemma 3 for H = K3 and . Let n' :=
max{ng,4r/d} and let G be a graph of order n > n’ with |G| > (1/2+¢)(}).
By Lemma 3, G contains at least ¢ (g) > 3r (Z) triangles, where the inequality
holds by the choice of n'. It follows that some edge of G belongs to at least r
triangles. Thus G contains a copy of Ky,.. It follows that m(KJ,) <1/2+-¢,

contradicting the choice of ¢. [
Lemma 5. (K, ,,) =1/2.

Proof. The proof follows the pattern of the proof of Lemma 4.

Suppose for a contradiction that m(K,,,) > 1/2 + 2¢ for some ¢ > 0. Let
0 and ny be chosen to satisfy Lemma 3 for H = K;r and . Let n' be
sufficiently large, which will be chosen implicitly later, depending on §,ng
and r, so that n’ > ng, in particular. Let G be a graph of order n > n’/ with
Gl > (1/2+¢)(3).

For {v1,vs,...,0v,} CV(G), let en(vy,v9,...,v,) denote the number of edges
of G joining pairs of vertices in N(v;) N N(ve) N...N N(v,). By Lemma 3,

we have

Z en(vy,v v)>£ " >5_77J2n
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It follows that ey (vi, vy, ..., v,) > on?/r* for some {vi,vs,...,v,} C V(G).
We now apply Lemma 2 with §/r* instead of ¢ and we assume that n’ has
been chosen large enough to satisfy the conclusion of this lemma. It now

follows that N(v;) N N(ve) N...N N(v,) contains a copy of K,,. Thus G



contains a copy of K, ,,. It follows that 7(K,,,) < 1/2 + ¢, contradicting
the choice of €. ]



