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HYPERDOCTRINES, NATURAL DEDUCTION AND THE BECK CONDITION 

by ROBERT A. G. SEELY in Ste. Anne de Bellevue, Qukbec (Canada)l) 

0. Introduction 

In  the late sixties F. W. LAWVERE showed that the logical connectives and quanti- 
fiers were examples of the categorical notion of adjointness. In  [9] and [lo] he ampli- 
fied this notion by a more thorough discussion of the structure of a hyperdoctrine, 
which had much of the flavour of intuitionistic logic with equality. In this eontext it 
was natural to “stratify” formulae and proofs according to the free variables occurring 
in them, a procedure later to become standard in categorical logic. (See MAKKAI- 
REYES [12], FOURMAN [l], KOCK-REYES [7], for example.) In  this paper, we make 
the relationship between hyperdoctrines and logic precise, showing that hyperdoctrines 
are naturally equivalent to first order intuitionistic theories with equality, where here 
“theory” is intended to include some proof theoretic structure, and not merely the 
notion of entailment. Moreover, we will show that this equivalence restricts to one 
giving a natural logical interpretation to the BECK (or CHEVALLEY) condition: in a 
given hyperdoctrine, the Beck condition for a pullback diagram is just the condition 
that the corresponding theory “recognizes ” the pull back. 

This work has an obvious relationship to LAMBEK [S], and to SZABO [Zl], but, apart 
from the evident difference in using natural deduction rather than the sequent cal- 
culus, one important variant must be noted. SZABO treats the quantifiers as infinite 
conjunctions and disjunctions, whereas here (following LAWVERE [9]) they are opera- 
tions adjoint to substitution. This avoids any need to refer to infinitary logic, and 
more closely reflects their nature: the adjunctions are explicit in the rules for the 
quantifiers (in either Gentzen system). 

There are also connections between hyperdoctrines and Dialectia interpretations 
(see P. SCOTT [17]) and realizability (see HYLAND, JOHNSTONE, PITTS [5]; note: a 
“tripos” is a po-hyperdoctrine with a generic predicate). We plan to explore these 
connections further in a sequel, particularly with respect to GIRARD’S type theory 
(GIRARD [3]). 

Basics of category theory may be found in MAC LANE [ l l ]  or GOLDBLATT [4]. 

1. First Order Logic 

We base our logic, LPCE, on a natural deduction formulation of intuitionistic, multi- 
sorted, first order predicate calculus with equality. The main modification we must 
introduce (essentially to  be able to allow interpretations with uninhabited sorts) is 

l )  These results are contained in the author’s Ph. D. thesis, SEELY [18]. 
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the “stratifica,tion” of formulae and derivations. So we suppose our language 9 to 
contain : 

sort symbols: X ,  Y ,  8, . . . 
free variables of each sort : x, x’, . . . , y, y‘, . . . , z, . . . 
bound variables of each sort: 6, E ‘ ,  . . . , q ,  7’ , . . . , 5. . . , 
sorted function symbols: f ,  9 ,  . . . 
sorted predicate symbols: P ,  Q ,  . . . 
logical symbols: T, I, A, v, 2 ,  3, V. 

(Among the predicate symbols we assume a binary predicate E x  for each sort X ,  which 
will be interpreted as equality for that sort.) 

To be able to treat functions and predicates as if they were unary, and to simplify 
sorting terms and formulae, we introduce the meta-mathematical notion of “type”: 
a type is a finite sequence (here written as a product) of sorts. So if X ,  Y are sorts, 
then X x Y is a type. The empty sequence of sorts is denoted 1. “ A  fret variable 
of type X x Y ”  is understood to mean a sequence (2, y) of free variables of sorts 
X ,  I’ respectively, and similarly for other terms. The obvious convention gives equality 
predicates for all types: E x x y ( ( x ,  y), (x’, y‘)) iff E x ( x ,  x’) A E,(y, y‘), and so on. 
(Generally we will write z = x’ for Ex(x ,  x ‘ ) . )  

Note that every function and predicate symbol is typed: one type for the sorts of 
t,he arguments, and in addition a function symbol has a type for the sort of its “value”. 
In  the obvious way, this induces an assignment of types to all terms and formulae: 
we write t :  Y + X and say t has domain Y and codomain X to mean that, Y is the 
type giving the sorts of the free variables in t ,  and X is the sort of t .  Similarly we write 

: X (or ~ ( 5 ) )  and say p is over X or has type X to mean that the free variables of 
have sorts given by the type X .  (For example, “sentence” = “formula over 1”) .  
A technical point: we want p:X x Y (i.e. v = v (x ,  y)) to mean that the free vari- 
ab1e.s of p are e:cactl:y x, y of sorts X ,  Y ,  and not merely among x, y, Later we will 
uant y and y to have exactly the same free variables when we form, e.g., rp A y. So 
that this is not too restrictive, we must be able to add “dummy” free variables to 
a formula. Perhaps the simplest way to  do this is to add new function symbols to 2’ 
corresponding to projections. (For example n = 7 G ” x Y :  X x Y + X ,  n(r, y) = z; 

formula x, = r2 A x2  = x 3  would actually read E,(nl(x,  , x 2 ,  x3) ,  n2(x, ,  x 2 ,  z3)) A 

A E,(n2(.cc,, x 2 ,  2,): n3(xl, “ c 2 ,  x3)) where z,, n2, n3:  X x X x X -+ X are the 
evident projections. 

The deduction rules and axioms are based on the standard natural deduction for- 
mulation of intuitionistic logic, as given in PRAWTZ [14], [15], with a few modifica- 
t,ions. The basic rules are these: 

1 -  . y  - n:: 1’ + 1 ,  !,.(y) = *, where * is a (the) free variable of type 1. )  Then e.g. the 

(4 ‘p v’ ( A W L  v A  v’ v *  v‘ 
V A T ’  v v‘ 

[vl [v‘l 
( V U L  M ( v l ) R  9’ WE) v v v ‘  Y Y 

M ” v‘ v v #  Y 
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(31) d t )  
3EvW 

We add rules for T and I: 

where q~ is an atomic formula over X different from T, (in (!)) or from I, (in (I)), 
as appropriate. T, , I, are T ,  I with a dummy free variable of type X .  

We add equality rules: 

for any term t :  X + Y ,  T x  (=I) - 
t = t  

s = s’ . . . t = t’ y(s, . . .) t )  
p)(s’, . . . , t ’ )  (=El 

for any atomic formula y over X x . . . x Y ,  and any terms 

s, s‘: X’ -+ x: . . . )  t ,  t’:  1” + Y .  

(We will also denote the evident derived rules by ( ! ) ,  (I), (=E).)  

In all of the rules except (VI) ,  (3E), the premises and conclusion must be formulae 
over the same type. (And so, we may as well require that pl, y be over the same type 
if p A y .  p v y ,  pl =I y are to be wffs.) 

In (VE), R: must not occur in any assumption on which ~ ( a )  depends (this is standard) 
except possibly as a dummy free variable, in which case the dummy occurrences of x 
may be discharged. 

In  (3E), 2 must not occur in 3&1, in v‘, or in any assumption other than p on which 
the upper occurrence of qf depends, except possibly as a dummy variable in the upper 
occurrence of q~’, and the assumptions on which that occurrence depends. in which 
case the dummy occurrences of .T may be discharged. 

Note that we have in effect stratified derivations: a derivation P:r k Q: must have 
all y E T and pl over the same type X :  we say P is over X too. The rules (VI) ,  (3E) 
provide the only way to  change levels, by the discharge of dummy variables. (We will 
not usually explicitly show dummy variables, however; they can be filled in from 
the syntactic rules and the context.) 

v Finally, we denote by (id) the “rule” - (rewriting v) which should be understood 
as being merely the topoccurrence of v. 

Robert
Placed Image
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‘2. Operations on derivations 

As in  SEELY [19], we will be interested in a number of operations on derivations: 
reductions, expansions, and permutations. Most of these are standard, and can I)o 
found in PRAWITZ [14], [151. In addition, we have these new rules: 

( ! Red) P * - (! ) (p the sole assumption of P) p 9  
T X  

T X  

(Strictly, ( !  Red) and (I Red) apply only when p! is atomic and different from Tx 
(respectively I,). If cp is T, (respectively Ix) these reductions will be understood 
to be to the identity derivation. Also, if p is not atomic, the reductions will be to the 
appropriate derived rule.) 

T P  
P t = t p?(t) 

d t )  
( = Red) * p?(t) (atomic cp) 

P T 
f = t’ t = t  

* t = t’ 
( =  Exp) Q ( t ,  t ’ )  p Q(4 t )  

p(t, t )  
t ’ )  p!(k t ‘) 

(provided the RHS is a derivation) 

[PI LYl 
P Q R  

(v Perm) v v y  8 8 
P 161 

Y Y 

And a “coherence” rule for equality: 

P 
t = t  p 

(R Coh) - T * t = t  
t = t  
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Remarks .  (1) As shown in SEELY 1191 these permutation rules amount to streng- 
thening PRAWITZ’ v expansion and 3 expansion to : 

1Pl lvl 
PO 

Y V Y  Y V Y  
(v Exp) L Y V Y l  ==. Po Pl p ,  

Pl M V Y  f3 e 

-- 

H H 

(provided the RHS is a derivation) 

PO lP(41 
[3EY(E)1 [ % d E )  I 

p ,  - Po p, 
8 W ( 6 )  8 

(3 Exp) 

0 

(provided the RHS is a derivation). 
(There is a (= Perm) in the same spirit, but we won’t need to refer to it.) 

(2) There are some derived rules of interest: 
In  (= E), some of the terms s‘ may be identical to the corresponding s ,  and, adopt- 

ing the convention that T may be dropped as an assumption whenever it occurs, so 
too can assumptions of the form s = s. 

Some special cases of (=  E) should be noted: for any terms t ,  t’, t” ,  typed X --+ Y ,  
say, t h e  following are (derived) rules: 

T T  
( =  1) 

viz. (= E) 

-- 
t = t ’  t = t  t = t  

t’ = t 

t = t‘ 
t’ = t (S) 

T 
t = t’ t’ = t” (..i ( =  I ) t ’  = t” t = t’ 

viz . (= E) (T) t = t” t = t” 

(In keeping with these notations, we shall also use (R) for ( =  I) and (sub) for (= E)). 

(3) We will be casual in using the meta-notation for types and “terms of a given 
type”. For example, (= E)  will frequently appear as 

t = t ‘  y(t)  
P(f) 

(4) A given theory in LPCE may impose further operations on derivations, in ad- 
dition to  non logical rules. We regard a theory as given by its language, non-logical 
deduction rules, and operations on derivations. 

We define an equivalence relation = on derivations in the natural way: = is the 
smallest equivalence relation making all of the given operations equivalences. Ex- 
plicitly, derivations P ,  P’ are equivalent iff there are derivations P = P ,  , P ,  , . , . , 
Pk = P‘ (k  2 1) so that for each i < k ,  either is obtained from Pi by replacing 
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a subtree of P i  by the result of applying an operation to the subtree, or Pi is obtained 
from Pi+1 this way. 

Three equivalence schema are useful : 

Lemma.  If Qi(t, t‘): t = t’ t- p( t ,  t’) (i = 0, 1 )  are derivations such that &(t, t )  = 
t ‘ )  = Ql(t, t ’ ) ,  for any t ,  t ’ .  

Corol la ry  1.  For any derivations Qi( t ,  t’):  l‘t- t = t’ (i = 0, l) ,  Qo(t, t’) 5 &, ( t ,  t’). 
Corol la ry  2. For any derivations P,  P ,  , P , ,  P ,  there are equivalences: 

= Q1(t ,  t ) ,  for uny t ,  then 

(iii) (= Simp): If (v i s  atomic and) t ,  t‘ appear in a dummy position, (so P i s  a 
derivation of ~ ( t ’ ) )  

Proofs .  The Lemma is an immediate consequence of ( =  Exp). Then Corollary 1 
follows, since t = t is a “terminal object”: there is, up to equivalence, exactly one 
derivation r t- t = t ,  for any I‘. This can be shown directly, via (!  Red) and (IL Coh), 
or by using the methods and results of Q 4. 

Similarly, Corollary 2 (i) and (ii) are immediate. To prove (=  Simp), replace t’ by t 
and apply (= Red) to see 

8 3. Hyperdoctrines 

Defin i t ion .  A T-category P is a hyperdoctrine iff 
(0) T has finite products and terminal object 1, 
(1) P is an irdexed category over T (“a T-category”), 
(2) for each object X of T, the fibre P ( X )  is Cartesian closed, and furthermore, 
(3) has finite coproducts and an initial object O x ,  
(4) for each morphism t of T, the “inverse image’.’ functor t* preserves the structure 

(5) P has T-sums and T-products. 
of (Z), (31, 
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As this definition is non-standard, (it differs from that given in LAWVERE [lOj) 
perhaps we should elaborate. This will also allow us to fix notation. The definition of 
an indexed category is standard enough, (although we only suppose finite products in 
the base category, and not arbitrary finite limits). (See PAR~C-SCHUMACHER [13].) The 
point is this: an indexed category is equivalent to a (pseudo)-functor T O P  3 Vat .  
Hence the notation P ( X )  for the “fibre” over X .  The “inverse image” functor t* ,  
for t :  X + Y a morphism of T, is then given as t* = P( t ) :  P(Y) + P ( X ) .  Clauses 
(2) - (4) are straightforward. Clause (5) can be replaced by : 

(5‘) (i) for each t :  X --+ Y in T, t* has adjoints 

z* i t* --In,, 
and 

1 
(5’) (ii) if X ___+ 1’ is a pullback in T, and rp E IP(Y)I, 

then the morphism Z,t*rp 3 t ‘ * & p  is an isomorphism. 

Note that then we can replace 

(4) by: 
(4’) the “inverse image ” functors t* preserve exponentiation. 

(All the rest of the structure of (2) and (3) must be preserved, because of the exist- 
ence of both adjoints.) This is equivalent to 

(4’’) for each t :  X 3 Y in T,  47 E IP(X)I, y E IP(Y)I, the morphism 

, u t * y  A 47) * y A 4 r p  
is an isomorphism. 

Condition (4’) (or (4’’)) is called Frobeniw Reciprocity; condition (5‘) (ii) is called 
Beck condition. Note that the analogous condition for I7 must hold; just consider 
adj oints. 

Some remarks on pullbacks and the Beck condition: Any category with finite pro- 
ducts must have the following types of pullbacks: 

I t  I t x X  
.1 A ,  .1 
Y- + Y x  Y 

X x - x  

B x t  l r x Y  
B x X - B  x Y 

r x t  
A x X - B x  Y 

(4 

where s is the “switch coordinates” isomorphism. 
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Also, given a pullback 

t 
x - Y  

then for any object 2, 

(i) D t x z  x x 2-Y x z 
r x Z (  IY x z 

.1 t ’ x Z  .1 
X‘ x 2- Y’ x z 

(“Preservation under products”) is a pullback. Finally, if 

is a pullback, then so is 

(%D Pt X-Z 

(“ Preservation under composition ’7. 
If we are only interested in the pure logic with equality (and not in any other rules 

a theory in LPCE might introduce), it will suffice if we suppose the Beck condition 
only for the cases (a), (b), (c), and (d), and that it is preserved under the pullback 
formation rules (i), (ii), given above. In fact, some of this is automatic: Beck must 
hold in case (d), since for any isomorphism s ,  (s-’)* = .C,: also Beck must be preserved 
under (ii). (In fact, on most of those occasions we actually use the Beck condition, it 
will be the case that it is preserved under (i) also, (e.g., when the E JP(Y  x Z)l is 
of the form nty, for y E IP(Y)I).) So we need only assert Beck for cases (a), (b), and (c), 
and its preservation under (if. We shall return to this point in 3 8. 

5 4. Construction 1: LPCE 

For any theory T expressed in LPCE, there is a corresponding hyperdoctrine PT 
(over TT).  We’ll construct P T :  = Po for the case of the empty theory T o  (so, insofar 
as PT “is” T ,  the resulting Po “is” LPCE; the more general construction will then 

Hyperdoctrine 
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(I hope) be clear). Objects of To are the types of the language 9. Morphisins of To 
are essentially the terms. (Some technical fiddling is necessary here so that To is a 
category with finite products, but this is straightforward. For details see SEELY [18].) 
For any type X ,  the objects of the fibre over X are formulae whose free variables are 
of type X .  Morphisms of the fibre are proofs (i.e. equivalence classes of derivations)- 
again the domains and codomains are obvious. (For arbitrary T, we can expect to get 
more morphisms in the fibres: this will be the only change. Of course, changing 5? 
will affect T and JPI also.) 

Theorem. Po as con&ucted above i s  a hyperdoctrine. 

Proof. (0) To has by construction all finite products, including the empty pro- 

(1) For a term t :  X + Y ,  we must construct t * :  Po(Y)  -+ P o ( X ) :  this is just “sub- 
stitute t for y”, i.e. t*q is q(t). 

(2) The Cartesian closed structure is given using A for products and 2 for exponen- 
tiation. The deduction rules and definition of equivalence account for the proper 
structure ; this is more or less proven in SEELY [ 19 1.  

duct 1.  

(3) Similarly, v for coproduct and I, for 0, give the required structure. 
(4’) This is trivial by definition of substitution: 

q(t) = q’@) = (p’ = Y ’ )  ( 4 .  
(5’) (i) For t :  X + y, q~ over X .  we define 

ZrqI =,if g f ( t 6  = Y A q ( f ) )  9 n& = d f  

,Zc, II ,  are defined on proofs as follows: suppose y -+ y is a proof over X ,  represented 
by a derivation P. Then Zrp is the proof represented by the derivation: 

= $I =I “(6)). 
B 

UtP is defined similarly. 

These are the required adjoints: we must show, for y over X ,  q over Y ,  bijections: 

Z t y  -+ q (over Y )  q + n t y  (over Y) 
y + t*q (over X )  t*q  -+ y (over X )  ’ 

We do this for I7, the proof for Z is similar. 
33 Ztschr. f .  math. Logik 
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P Given ~ ( y )  3 VE(t6 = y 3 y(5)) over Y ,  with P a derivation in fi, we obtain 
y(t(x)) + y(x) ,  represented by the derivation: 

(ii) V ( W )  
P(t) 

(R) 
v w  = t(4 = y O ) )  T 

(V E) 
t (x)  = t(x) 3 y(x) 

Y ( X )  

P 

t (x)  = t (x)  
(3 E) 

Conversely, given q(t(x))  + y (x )  over X, and P in P, we define a proof 

represented by : 

(iii) (1)  
@) t ( 4  = Y 

P 

(= 1) (1) 

(V 1) 

Y ( 4  

t(x) = Y = y ( 4  
v m  = Y =) r(5)) 

((sub)’ is the suitable derived rule.) It must be checked that these processes are in 
fact well-defined with respect to the equivalence relation, but that this is so should 
be clear from the forms of the above derivations. (This remark will also hold when 
we come to consider the Beck conditions below.) 

Also, we must check that these correspondences do in fact determine an adjunction. 
Perhaps the simplest way is to verify the triangle equalities for the induced natural 
transformations qz: I + t*&, E ~ :  Zct* + I, qn: I + .ITt€*, en: t*nt + I, checking also 
that these are in fact natural transformations. This involves writing out various deriva- 
tions in full, and collapsing and expanding them according to the operations given 
above : we sketch one part of the proof as an example: namely, that the triangle equal- 
ity .ITt~,qntCp = idntv holds for the adjunction t* + U,, for over X. We shall not 
define E ,  q here - the definitions are immediate from the correspondences (ii), (iii) 
above-but when they are written out in full, and when the definition of UtP, for 
a proof P ,  is also written in full, it would be seen that the composition IT,&, . qntv is 
represented by the following derivation (perhaps it should be mentioned that the sub- 
derivation above the topmost occurrence of Vf(t f  = tx z, ~ ( 5 ) )  is the expanded form of 

Y = tx VE(tE = Y = V(5)) (sub), 
v w  = tx = y e ) )  

(a derived rule), that one might expect from the correspendence (iii) above; recall 
that (T) is a special case of (= E) or (sub)): 
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tx' = ta tx = y 
(T) 

cp(x) (3 I) (3) 

We must show this is equivalent to the identity derivation. Straightforward uses of 
(V Red) and (3 Red) give us the normal form of the above: 

T 

VE(tE = y 3 fp(t)) 

tx = y 3 v(2) 
tx = tx tz = y 

tx = y 

dx) 

Finally, (= Exp), (3 Exp), and (V Exp) show this is equivalent to (id) as re- 
quired. 

The other parts of the proof that we have defined an adjunction proceed much like 
this, so we shall omit the rest of the details. 

(5') (ii) As we remarked earlier, there are only three cases we need consider, (For 
il more general theory T, there may be others, but then the axioms and rules of T 
that give rise to further pullbacks will permit a similar proof to go through.) In  fact 
(as the categorist will have suspected from adjointness considerations) one direction 

34* 
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is automatic : for any commutat,ive diagram 

t X - Y  

and any formula p over Y ,  there’s a proof E,.t*cp + t’*Z.Qcp represented by the derivation: 

rx = x’ A q$x) 

rx = x’ 
( A  E) 

(ap) 

(id)‘ (A E) 

1) 

t‘rx = t ’ d  rx = x’ A p ( l x )  

Stlr = t‘x‘ cp(tx) 

(3 1) 

(3 E) 

Stlr = t’X‘ A fp(tZ) 

3E(rE = x’ A cp(tE)) 3q@q = t’x’ A ~ ( q ) )  
3 q ( q  = t‘x’ A ~ ( 7 ) )  

(ap) is a derived rule: if t :  X + I’, so, s, : Z -+ X are terms typed as indicated, (ap) is 
the derivation 

(R) 
so = 8 ,  tu, = ts, 

(sub) 
ts, = t s ,  

(id)’ is either the identity derivation (if st and t’r are identical) or is a derived rule 
(if ( P ) :  t- st = t’r in T): 

P ( X )  

stx = t ’rx t’rx = t ’ d  
(T) sts = t’x‘ 

We give the inverse proofs for pullbacks of types (a), (b); note that type (a) actually 
gives two cases because of its lack of symmetry. Type ( c )  essentially follows from the 
isomorphism Tx 2 (x = 2). in view of a later result, so we will not discuss it here. 
Also, the preservation of the Beck condition under products holds in the logic, so for 
the empty theory our job will be done with type (a) and (b) pullbacks. As for the 
situation for more general theories, this will be more fully discussed in § 8. 

T y p e  ( a )  (i).  A*, Z p + Z ( X ,  t ) *  cp: This is represented by the derivation (I) on 

p. 517. (Recall that the pair notation is a meta-notation, so that (pE), for example, 
is merely a special case of (A E);  and 3(E, q )  y is really 36 3qy. Hence the above use 
of (3 E), for example, actually indicates two such uses. This remark will also cover 
what follows.) 

I X Y  I 
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T y p e  ( a )  ( i i ) .  (t x Y)*Zrp + 2 t*rp: This is represented by the derivation (11) 

T y p e  (b). ( B  x t)* Z v -+ Z ( A  x t)*pl: This is represented by the following 

on p. 517. A ,  <x.O 

r x  Y r x X  derivation (111) : 

(111) 

( A  E) 

(1) 

(A E)  
(ra, y> = (b ,  tx)  A v(a, Y) 

(PW 
<ra, Y> = ( b ,  tx> 

(PE) (R) ~ 

ru = b x = x  y = tx 9(% Y) 

(A 1) 

(3  1) 

(1 ) 

(ra, Y> = (b ,  tx> (1) (A E) T 

(sub) (PI) 
<ru,x> = <b,x) pl(% tx)  

(ru, z> = <by z> A pl(a, tx)  

(3 E) (1) 
%a, 9 )  (<rLy, 9 )  = ( b ,  tx)  A C p b ,  9))  3<& 5 )  ((% 5 )  = <b, x> A Q)(K tE)) 

3<a, 5 )  ((r& 5 )  = <b, x> A cpc.r> tE)) 

(The “dual” case (r x Y)* Z pl -+ Z (r x X)* v follows immediately from this, 
under evident substitutions.) * A 

It must be checked that these are inverse to the morphisms Zrt*rp + t‘*Zsrp (for 
suitable t ,  t’, r ,  s) -this amounts to  writing out the various compositions and reducing 
them to the identity derivations. The details are tedious: we give one example: 

0% .Z pl -+ Z t ( X ,  t)* rp + 0% .Z pl = id. 
t x Y  t X Y  

We must show that the derivation (IV) on p. 519 is equivalent to (id). (We will sup- 
pose q atomic, so that the use of (sub) is correct.) It is not difficult to reduce this to 
its normal form (V) on p.520 ((3 Perm), (3 Red), and  r red)). Using (TCoh), 
(= Exp), and (8 Coh), this is equivalent to (VI) on p. 520. This in turn (using (=  Exp)) 
is equivalent to (VU) on p. 521. Using (= Simp), (= Red), and (S Coh), we arrive a t  
the equivalent derivation (VIII) on p. 521, and this, using (A Exp) and (3 Exp), is 
easily shown to be equivalent to (id). 

The other parts of the proof are similar: moreover, we shall have more to say about 
this in 0 8 so we will not give further details here. So this completes the proof of the 
theorem. 

Q 5. Construction 2: Hyperdoctrine -+ LPCE 

For any hyperdoctrine P (over T) there is a corresponding theory T p  in LPCE. 
Briefly, the theory T: = T, is constructed as follows: the sorts of the language 2’ 
of T are the objects of T, the function symbols are morphisms of T, predicate symbols 
are objects of P (sorted by fibres) and rules of inference the morphisms of P. If gf = h, 
then we add a reduction Py P,, where Pi is the rule given by i. 

p, 
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This is not quite enough, however-intuitively, we expect cp x y to  be the same 
as q.~ A y ,  but p x y is an atomic formula, whereas Y A y certainly is not. It is easy 
to  see that there is a derivation p x y t- tp A y (viz. 

9 ” P  

where Pn,, Pn2 are the derivations (rules of inference, in fact) corresponding to the 
projections nL: tp x y 4 9, n2: tp x p + y) .  But there is no reason to suppose that 
there is an inverse derivation rp A p + p x y ,  so if we want these to  be equivalent, 
we must bodily add such a rule to T. Moreover, if we want this equivalence to be of 
the nature of an isomorphism, we must add reductions to the effect that the two “com- 
positions” rp A y + rp x y 4 cp A y and rp x y --* rp A y + rp x y both reduce to the 

identity. So we add to  T the rule ’ - ’ ( x I), the reduction 
P l X Y  

P P  
F A Y  Y A Y  -~ 

We treat the remaining logical connectives and quantifiers in a similar fashion, so 
that, x = A ,  U = V ,  e x p = = J , I T , = V , Z Z = 3 , O = I ,  1 = T .  (ByZT,=Vwe 
mean V is given by the “If-image” along a projection; similarly for Zz = 3.) Finally, 
we want t* to mean substitution of t ,  so we must add the rules 

the reduction 

P 
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and the expansion 

P 
t*uJ 

The equality predicate of sort X ,  for any X E IT1, is ZAXT,. (By an abuse of nota- 
tion that is justified by the above, the terminal object of P ( X )  will be denoted T,. 
Similarly, products, coproducts, exponentiation, and the initial object in P ( X )  wiil 
henceforth be denoted A,  v, 3, and Ix respectively. The categorical structure of T, 
on the other hand, will retain the more customary notation.) 

We must now make sure that all this is justified: that in fact p A y has the the 
logical properties we expect of p A y, and SQ on for the rest of the structure. This is 
well known for the propositional connectives: see SEELY [19]. That the (ordinary) 
quantifiers 3, V are given by the adjoints to projections-if p is over X x Y ,  then 
V& (respectively 3&), over Y ,  isIT,,.g, (respectively Cnrpl), where ny: X x Y + Y- 
is straightforward. We must check that the introduction and elimination rules for 3 
and V are satisfied: for example, (3 E) becomes the assertation that given p over 
X x I‘, p’ over Y ,  for types X ,  Y ,  and a proof (derivation) pl + +p‘, there is a proof 
(derivation) Z,,pl -+ 9‘. This is obviously so by adjointness. Also, (3 I) asserts the 
existence of a proof (derivation) 9 + n*y .C,,pt which again exists by adjointness. 
(Actually we should allow €or a term t :  = ( t ’ ,  Y } :  2 x Y -+ X x Y .  Applying t* 
to the above gives the required t*pl + n;* Zn,g,, where now nk: Z x Y + Y.) V is 
handled similarly. 

The equality rules follow as immediate consequences of our definition of E x  as 
ZAxT,:  (R) asserts the existence of a morphism T, + d$ZAITx, which is the unit 
of the adjunction ZAx -+ LIZ at  T,. For (sub), note that for any p E IP(X)l,  there is 
a morphism s: nzp A ZAxTX -+ ntpl: essentially this is just the counit 8 for the ad- 
junction ZA, + A:, by Frobenius Reciprocity. (Consider 

The actual form of (sub) can be easily derived from this. Note first that by a 
theorem of LAWVERE [lo], ZAx,,TXx y z n:3ZAxT, A n$JAxTy,  for projections 
X x X +-- X x Y x X x Y --f Y x Y .  We will show how to derive the morphism 

corresponding to 
X I  3 n24 

s = s‘ t = t’ q(s, t )  

Q)(s’, t ’ )  

for tp over X x Y ,  and terms s, s ’ :  X ‘  -+ X ,  t ,  t ‘ :  Y’ -+ Y .  This morphism is 

T C ; ~ * ( S  X t )  *pl h 31;3*(8 X 8’) *EX A ~ ; 4 * ( t  X t’) *By -+ fl;4*(S’ X t’)*q; 

it is obtained by applying (s x t x s‘ x t’)* to 

n, 2*v A zl 3*E, A zc,,*E, + n34*p, 

which exists because n,,*p A E x ,  + n34*p does, by LAWVERE’S result. 
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(’m7 !,> 

s x t x s’ x t‘ 
X‘  x Y’ x X‘ x Y‘ + x  X Y X  x x Y 

( * ) 3  p n * ’ p  A E x )  

p12 1.;. 1.:. p4 
X ’ X  Y ’ X ‘ X X ’  Y ’ x  Y ’ X ’ X  Y’ 

<I , ,  !,)l (*) A 3 1  ( * ) z  A:-%*p.*Ex 

i . 1 2  b 1 3  I . 2 4  k 3 &  

X X Y  x x x  Y X Y  X X Y  

(*)4 

(Note the four evident commutative squares.) 

We have shown that Tp allows all the derivations we would expect of a theory in 
LPCE; we can do more, though, for it also has all the equivalences we would expect 
from the operations of 5 2. As examples, we shall prove the only two that might pose 
any problems : (= Red) and (= Exp). 

(= Red) To see this equivalence holds in T,, it is sufficient to show (for ‘p E IP(X)l)  

is the identity, where s is the morphism defined above (essentially (sub)), and 
E x  = ZAXTX. Using the definition of s and the triangle equality A ~ E  * qAl; = id, this 
reduces to showing the square (*) commutes: 

-+ ntAdf;E, A n:A);Ex A Ex 0.d’ Ex 

id 

es by he 

is the identity, where V :  X x X +  X x X  x X x X  is (I,, l , ,  1,) x 1, (i.e. 
“(xo, zl) I-+ (xo , xo, ro , xl) ”.) In  fact, we will show the corresponding morphism 
T, -+ A$EX is the unit q T x .  By a process similar to that used for (= Red), we can 
reduce this to showing 
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commutes. where rli is the unit of ZAA, +A:i ( i  = 1. 2 )  ( X 2  = X x X, of courhe!). 
(The rest of the notation is standard.) By considering the various components 
T, ---t A;E, .  and recalling that “the counit of a product is the product of the couuith”. 
this  reduces in turn to considering 

--f A%&, d X  

However, 
naturality 

this commutes (using the triangle equality A j ; 2 ~ 2  . q2Ag2 = id) by the 
of r/*: 

So we have the following : 

Theorem.  If P i s  a hyperdoctrine, then T,, as  constructed above, is a theory in LPCE, 
in that every deduction rule of LPCE i s  derivable in T,, and all the equivalences genera,ted 
by  the operations of 9 2, are satisfied (and in fact, are identities). 

5 6. Equivalences 

What happens if we iterate these constructions! Nothing new: 

Theorem. If T i s  a theory in LPCE, then TPT i s  equivalent to T in the following way:  
for every formula p of T ,  there is an (atomic) formula @ of TP,  canonically induced by  i t .  
Also, for every derivation P :  p t-- y of T ,  there i s  a derivation (rule of inference, in fact) 
P :  $5 +$j of TPT canonically induced by  i t .  Moreover, every formula qf of TP, i s  log- 
ically equivalent to @ for some 91 of T (in fact, isomorphic, in the sense of the categorical 
structure on TPT) ,  and for every derivation P’: p‘ + y’ of TP,  there i s  a derivation 
P i  @ k y induced by some P :  p t- y i n  T, where @ (respectively $j) i s  logically equiv- 
alent (in fact isomorphic) to q‘ (respectively y‘). (P’ and P are also “isomorphic”.) 

(What we shall actually prove is: T and T,, are equivalent as categorical structures. 
This implies they are logically equivalent theories.) 

Proof .  Given ‘p in T ,  by Construction p E lPTl and so is a predicate symbol of T p T ;  
@ is just this predicate symbol with the suitable free variables t>o make i t  a well-formed 
(atomic) formula. Given P :  y +- y in T ,  P is (or rather, its equivalence class is) a 
morphism of P, and so is a rule of inference of T P T ;  P is the corresponding (trivial) 
derivation. 

I n  defining TP for any hyperdoctrine P ,  we added enough rules to enable us to 
conclude that every formula is equivalent to an atomic formula. Moreover, by consider- 
ing the adjointness property of equality, we see t’hat xo = x1 is isomorphic to 
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3E([ = xo A E = x1 A T,) (i.e., ZAxTx),, :o “new” and “old” equality agree. Finally, 
in any hyperdoctrine the Beck condition for type (b) pullbacks implies that the 
“equality” meta-notion we defined was correct: equality over the sort X x Y of 
TP,  and “meta-equality” over the type X x Y of T agree. (See SEELY [18] for details.) 

So we have proved the theorem, and even more, once we note that the operation 
(functor) cp I+ g, PI+ P is full and faithful (up to equivalence of derivations). (This 
justifies the assertion that T and Tp,  are equivalent as categorieq.) 

Theorem. If P is a hyperdoctrine, then PTp i s  an equivalent hyperdoctrine. 

Proof. First, note that there are canonical functors P - +  P T p ,  T p  T T p ,  which 
are fully faithful. These functors are also essentially surjective - the proof of this fact 
also shows that P and P T p  are equivalent as hyperdoctrines, since ( )* and its adjoints 
Z,Il are preserved up to isomorphism. That i is essentially surjective is seen easily: 
the only “new” objects of TTP correspond to  the types of T, which are not sorts, 
and these are isomorphic to obvious sorts (or objects of TTp); morphisms of TTp 
(“terms”) are treated similarly. The “propositional” part of the proof that i is es- 
sentially surjective is analagous. Since we added rules to TP to  make t*cp and ~ ( t )  
isomorphic, and treated the quantifiers similarly, j must be essentially surjective. But 
even more can be asserted: the adjoints agree up to isomorphism. By a theorem of 
LAWVERE in [lo] 2 , ~  E C;ry(Et A n k ~ )  for any hyperdoctrine with the Beck condi- 
tion for pullbacks of type (a), where cp E IP(X)l and nx: X x Y + X ,  n*,: X x Y -+ X ,  
t :  X -+ Y in T, and E,  =df  (t x Y)* E,. One can also show (under the same assump- 
tions) 17,~ E UAy(E,  2 ntq~). Using this, it is easy to see that the adjoints to t* agree 
-the left hand side (of these isomorphisms) giving the adjoint in P ,  and the right 
hand side giving that in PTp . This completes the proof. 

Remark .  We have not yet defined the notion of a “morphism of hyperdoctrines”, 
but i t  is clear that what we would want is the following. Suppose Po (over To),  P 1  
(over T,) are hyperdoctrines. Then a morphism F from Po to P, is given by a functor 
To 2 T, , and for each X E ITol, a functor F , ( X )  : Po(X)  -+ P1(FoX) ,  with the evident 
preservation properties: Fo preserves finite products; for each X ,  F ,  ( X )  preserves the 
locally closed structure of Po(X)  ; and for any X I, Y in T o ,  the following commute 
(up to  isomorphism) : 

I 

(ii) 
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This just corresponds to the notion of an interpretation of Tpo in Tp ,  , SHOENFIELD [20] 
(modified to suit our treatment of first order logic, of course.) (If we think of P as a 
(pseudo) functor T o p  5 V d ,  then (ii) is just the condition that F ,  : Po -+ P, Fo is 
natural.) 

If we then define the category %yb of hyperdoctrines and morphisms of hyper- 
doctrines, and the category F4g of theories and interpretations of theories, then we 
have shown 

Theorem. The categories Z?Y~ and 9 - 4 ~  are equivalent. 
(In 5 8 we will refine the equivalence to one dealing with hyperdoctrines satisfying 

the Beck condition locally.) 

5 7. Examples 

We shall briefly describe two well known examples of hyperdoctrines, and a structure 
not quite a hyperdoctrine. 

7.1 Defini t ion.  A logos is a category L with finite limits and stable image factori- 
sations, such that every object has a minimal subject, every pair of subobjects has 
a union, and for every morphism X Y and subobject X’ H X there is a subobject 
I7,X’ w Y maximal among subobjects of Y whose pullbacks along t lie in X’. 

There are many examples of logoi: for instance, any topos is a logos. (This is no 
more than the truism that first order logic is part of higher order logic, in view of 
the following.) 

Any logos L induces an indexed category SubL (over L )  in the obvious way by tak- 
ing the poset of subobjects of X as the fibre over X ,  and defining t* as pullback along t. 
The following is well known (see REYES [IS]): 

Propos i t ion .  If L is  a logos, then SubL is  a hyperdoctrine. Conversely, if L has 
finite limits and SubL is  a hyperdoctrine, then L is  a logos. 

So we can identify logoi as certain hyperdoctrines, whose fibres are posets. In fact, 
if 9 0 9  is the category of logoi (and structure preserving functors) and PoA,& the 
full subcategory of &Y# of hyperdoctrines with poset fibres (“ po-hyperdoctrines ”), 
then : 

Propos i t ion .  909 is  a reflective subcategory of Y&yfi .  

(The reflection is given by the construction of the ’‘ Lindenbaum-Tarski-category ” 

7.2. Our first example of a hyperdoctrine dealt with the notion of “propositional 

of the theory corresponding to a po-hyperdoctrine, See SEELY [18] for details.) 

function”; the next will concern that of “indexed family”. 
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Defin i t ion .  A locally closed category is a category B with finite limits and finite 
coproducts (including a 0 ) ,  such that for any object X of B ,  BjX is Cartesian closed. 

I believe the following observation is due independently to LAWVEKE and RENABOIJ 
-a  proof appears in FREYD [ 2 ]  (Proposition 1.34). 

Propos i t ion .  I f  B i s  locally closed, then B, as a B-category, i s  a hyperdoctrine. P o t i -  

versely, if B has finite limits, and B, as a B-category, i s  a hyperdoctrine, then B is locally 
closed. In  fact, if B has finite limits and finite coproducts, and B, as  a B-cutegory, is 
locally small. then B i s  locally closed. 

Remark .  B, as a B-category, is the indexed category with fibres B ( X )  = S I X ,  the 
comma category. This is locally small iff for each X ,  B/X is Cartesian closed, iff for 
each t ,  t* has a right adjoint Hr. (See, e.g., PAR&SCHUMACHER [13].) (The presence 
of coproducts is irrelevant to all this-we include them only because our logic in- 
cludes v.) 

Remark .  If B i s  both a logos and locally closed, (e.g. a topos) then there i s  an indexed 
functor between these hyperdoctrines, Im:  B -+ Sub,, taking a wLorphism to its image. 
Th i s  preserves A, v, T, I, ( )*, and Z; it also preserves I7 (equivalently I>) and so i s  Q 

hyperdoctrine morphism iff for any  t :  X + Y ,  ITt preserves regular epis. In  a topos, this 
i s  a weak version of the axiom of choice. (See JOHNSTONE [S] Q 5.2; also SEELY [IS] for 
details .) 

7.3. Our third example just misses being a hyperdoctrine: The base category is 
3’@, the category of allgroupoids. (A groupoid is a category all of whose morphisms 
are isomorphisms.) Given a groupoid X ,  the fibre P ( X )  =df9‘,tdX is the category of 
functors X -+ Y d d .  (If X is a group-i.e., has only one object-then . Y ’ E G $ ~  is 
perhaps better known as the category of permutation representations of X.) . S u + ~ t . 5 ~  is 
a topos, and so is certainly locally closed. Given a functor (groupoid homomorphism) 
X L  Y ,  t* : ,40e/6Y -+ Y . & d X  is .defined by composition with t .  Zt , 17, are defined as 
left and right Kan extensions (c.f. MACLANE [ll]). (For groups Ztp is the “induced 
representation” of Y ;  we may call I7,pl the “dual induced representation”.) 

For the benefit of the non-category theorist (and because we will need this later) 
I will explicitly calculate Zfpl,, for p: X -+ Yetcr. To simplify notation, let us suppose 
X and Y are groups: denote their unique objects by X and Y respectively, and write 
“ z  E 2’’ for “ z  is a morphism of 2” .  In this case pl: X -+ Y e t 5  can be represented 
as <@, p)JxSx, where @ is a set (it is pl(X)), and for each x E X ,  yx  is a permutation 
of @ (sat,isfying the usual equation plxOx,-, = plxoy;,!, so that the px define an X 
action on @). 

Then Zrpl is, as a set, the “orbit set” of Y x @, i.e. Y x @/- for ( y o ,  a,) - ( y ,  . a , )  
iff for some x E S (yL, a,) = (yox, x-’n0) =df z(y,, a,). (This defines the action of X 
on Zty  also.). For groupoids the idea is similar, (details in SEELY [IS]). 

P ropos i t  ion. ( i )  The groupoid representation structure satisfies Frobenius Reciprocity. 
(ii) I t  doe,s satisfy the Beck condition for pullbacks of types (a) and (b) (cf. Q 3), but not, 
in general, for pullbacks of type (c ) .  (iii) The  Beck condition i s  preserved under products, 
in the caSe where pl is E ,  (the case used in 9 8). 

Remarks .  (i) is proven in LAWVERE [lo], (where LAWVERE also seems to suggest 
that (ii) is false, in that he suggests that his “meagre theorems apparently do not 
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hold in [this structure]”, where these theorems depend only on the Beck condition 
for pullbacks of types (a) and (b)). (ii) and (iii) may in fact be proven by a direct “dia- 
gram chase”: details are given in SEELY [18]. 

Among other things, this example shows that the operation (R Coh) is independent 
of the usual expansions, reductions, and permutations. Its logic is perfectly well be- 
haved as far as the equality-free part is concerned, but the logic of equality does show 
some curiosities Clearly t = t is quite different from T, and so can be an important 
assumption in a derivation, for instance. Also x = y and (x, x) = (y, y) behave quite 
differently. However, some things remain: the rules (sub) and (R) (though (R) is not 
an isomorphism), and the equivalences (= Red), (= Exp) all hold in 3 p d .  

5 8. The Beck Condition 

Most of the structure in the definition of a hyperdoctrine is (from the logical point 
of view) more or less self-evident-that is, it is clear why the definition must impose 
such conditions. The only question one might pose is “why do we need the Beck con- 
dition!” Part of the answer is already given to us: to  even begin interpreting the 
categorical structure logically, the Beck condition is needed for pullbacks of the three 
types given in $ 3. Type (a) allows us to interpret Ztp as 3&t5 = x A ~(6))-otherwise 
it would just be some formula about which we knew little. Type (b) allows us to treat 
types as if they were sorts, especially with respect to equality. It also gives a result 
analogous to  Frobenius Reciprocity, viz. that substitution is well-defined : for 

[ 3 q ( a ,  y)1 ( t )  = 3 q 4 K  tx) 
becomes the isomorphism t*C,+p z ZZx(A x t)* p, where 

A x t  
A x X - A x Y  

and p is over A x Y .  Type (c) gives the isomorphism (x = 2) z T, (and in practice 
allows us to  treat A ,  as the diagonal morphism i t  is). There is one further condition 
we need: the preservation of the Beck condition under products. This amounts to the 
following: if for all p over Y ,  3 [ ( r l  = x A p(t6)) z 3y(sy = t‘x A p(y)) then for all y 
over Y x 2, 

36 3 [ ( T E  = X A 5 = 2 A y(t6, 5) )  2 37 3((S?j = t’x A 5 = 2 A y(q,  5 ) ) .  
(Which says that we may suppress free variables in considering the Beck condition.) 
This would seem justified without further comment. 

There is one remark we should perhaps make here: if we wished, we could do with- 
out the Beck condition for pullbacks of type (c). Of course, we would then have to 
drop (R Coh) from the operations of $ 2, and pay very close attention to the assump- 
tions of our derivations (not overlooking any of the form t = t )  and to  any use of the 
diagonal (not confusing the formulae ( t ,  t )  = ( t ’ ,  t ‘ )  and t = t ’ ) .  An example of a 
structure of this sort was seen in $ 7. However, we shall continue to  regard (R Coh) 
as a desirable equivalence, and so shall continue to  suppose Beck for type (c). 

34 Ztschr. f .  math. Logik 
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For the rest of this section, let “hyperdoctrine” be understood in this new sense: 
we replace the full Beck condition with only those instances generated by diagrams 
of types (a), (b), (c) and by thc “product” operation. (Of course, all t* will still have 
bot,h adjoints.) Then we can characterize the Beck condition for arbitrary pullbacks 
as follows: 

Theorem. Let P (over T )  be a hyperdoctrine (in the above sense) and let 

be a pullback in T.  Then T has the Beck conditions for (D) (viz. f o ~  any q~ E IP(Yj1, 
,Zrt*g, z t’*,ZsqJ and for p E IP(X‘)l, &r*p 2 s*&y) iff in T, there are derivations 

P,: t‘x‘ = sy + 3 & ~ 6  = z’ A t5  = y) 

PE:  rxo = rx, , ta, = tz, + zo = x1 

(over X’ x Y )  

(over X x Y ) .  
and 

Remarks .  (1) In  earlier versions of this paper (such as SEELY [IS]) certain “co- 
herence” conditions were attached to this theorem. For the benefit of readers of the 
earlier versions, I should remark that these conditions are consequences of Corollary 1 

(2) The theorem can be given by the slogan: ‘‘a hyperdoctrine satisfies the Beck 
condition for a pullback diagram iff it knows that the diagram is a pullback”, in view 
of the characterisation of pullbacks in Sets. 

Proof of t h e  theorem. We shall prove the theorem in two sections: in Q 8.1 we 
construct morphisms in P which induce PIpPE in Y p ,  assuming that P has the Beck 
condition for (D). In  9 8.2 we suppose TP has P I ,  P, and show that PTp (and so P) 
satisfies the Beck condition for (D) by constructing an inverse to the suitable canonical 
proof. The difficulty comes in showing the two proofs inverse: to  do this we write out 
each composite, reduce it to normal form, and then by a careful series of expansions 
and reductions (whose general purpose may be described as “replacing equals by 
equals”) show that it is equivalent to the identity. 

8.1. Suppose that P has the Beck conditions for (D). Then PI is induced by the 
(iso)morphism (t’ x Y)* ZsXYEY Z r x  y ( t  x Y)* E,: this exists since we have as- 
sumed the Beck condition is preserved under products. It is easy to see (using LAWVERE’S 
theorems, since we have the Beck condition for pullbacks of types (a) and (b), and 
E ,  =dfZAyTY) that ( t ’  x Y)* ZSx E (t’ x s)* E,, , and that ZrXy(t x Y)* E ,  z% 
z 2xrr(~$xp(~ x X‘)* E x  A n&(t x Y)* A’,), so we have the required morphism. 

P, is induced by the (iso)morphism ( ( r ,  t )  x ( r ,  t ) )*  E x e x  , 3 Ex. (As above, i t  is 
easy to  shorn ( ( r ,  t )  x ( r ,  t ) )*  Ex . . ,  z (r x r)* E x  A (t  x t)* E,, so this does give 
the required morphism.) The existence of this isomorphism is shown by the following 
simple lemmas : 

of 5 2. 
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Lemma 1. For any  t :  X ---f 1’, ( I ,  t )  * E y  z T, . In fact we can claim more: For 
any t :  X -+ Y ,  the Beck condition holds for 

t x-Y 

xi !Ay 
x - Y X Y  

( 4  0 
1 Y 

Proof .  Consider S j 1’ + 1’ q Y i  py 
x - Y - Y x Y .  

t A Y 

Lemma 2 .  Zf (D) is a pullback, then so i.s 

t ‘ r  
9 ____, Y’ W’) 

tcdditiots, if the Beck condition holds for (D). then it does also for (D‘). 

1’ t’ 
Proof .  Consider x -A ,Y‘ -__3 Y‘ 

1 S‘ x 1’ 

t ‘ x  Y‘ 
1 

X’ x R 

! X‘ x t 

9’ x Y - S’ x Y’ - P‘ x Y ’ .  

34 * 
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are pullbacks and that the Beck condition holds for each. Then 

t 
X d Y  

.I I. 
X ‘  -----+ Y‘ 

t’ 

is a pullback and the Beck cotadition holds for a,ny (p over Y of the form tfy for y over Z 
(wiz. Zrt*p, r t’*Zspl if 9) = t,*p). 

Proof trivial. 

Corollary 1. For (D) as in the theorem, the Beck condition for T, holds for 

x -  X ‘ X  I’ 
( r ,  t> 

(wiz. T, E ( r ,  t )  *Z<<r,,>Tx). 
Proof .  Consider 

X t’r x - - - - - - + x -  Y‘ 

x ---- X‘ x Y - Y‘ x Y’ 
<T? 9 t’ x s 

note that (t’ x s )  ( r ,  t )  = (t’r,  t’r), and that T, = (t’r) *Ty. 

Lemma 4. For any t :  X -+ Y ,  if 

i s  a pullback, then so is 

ky 
t x t  

xxx- Y x  Y 

Moreover, if the Beck condition (for (p over X )  holds for (Do), then it doas also (respectively 
for any y over Y so that t*y = p1) for (D1). 

Proof. Immediate from Lemma 2. 
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Corol lary 2 .  For (D) as in the theorem, ( ( r ,  t )  x ( r ,  t ) )  * E x , x y  r E x .  

Proof. E, =dfZAZTZ. 
8.2. Suppose TP satisfies the condition of the theorem. We will show that from 

this it follows that Z,t*tp z t’*Z8p for any p E J P ( Y ) I ;  the dual result will follow 
immediately. 

Before we begin, however, we must mention an equivalence scheme we shall need: 

Lemma 1. If no assumption in PI is discharged by the use of (3 E) in question, the 
following derivations are equimleat : 

(3 E Simp) P P, 
3& 8 -PI - - 

8 8 

Remark .  We could have included this in Corollary 2 of $ 2 ,  but as we have not 
yet needed it, and as the proof is simplified by the Theorems of $ 6, we have left it 
instead until now. 

Proof. First, we should clarify what is meant: P, is a derivation of 8 from assump- 
tions A , ,  say, which do not include p and do not have x as a nondummy free variable. 
P is a derivation of 3Ep from assumptions A ,  say. So the LHS is a derivation of 8 
from A A A ,  (really the set A u A l ) ,  and the RHS is supposed then to be the deriva- 
tion P ,  with “dummy” assumption A -we can think of it as A A A ,  proj\ A ,  L 8. 
Suppose p E IP(X x Y)I,  A --% 8 is in P ( Y ) ,  and X x Y d\ Y. To prove the lemma, 
i t  suffices to show that the canonical morphism Z;,p A A --& 8, induced by 
p A n*A proj\ n*A n48 under Z;, + n*, is in fact EXp, A A proj\ A -% 8 .  Now P ,  
fs defined using the Cartesian closedness of the fibres (and Frobenius Reciprocity) : 

P 

P 

P 

A z*A 3 n*A 3 
QI + (+A xn*8) 7 n*(A 3 8 )  

So the result is an immediate consequence of the fact that in any Cartesian closed 
category with a terminal object 1, the bijection 

AABLC 

restricts to  a bijection 
A A B S B - C  f 

A ---+ 1 7  (R 3 C) 0 
!A 

We may also remark that there is an analogous scheme for V :  

( v E  Simp) P P, P, 
V ” Y  8 8 - p, - 

8 - 8  
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where neither ‘p nor y is an assumption of P ,  . This is not as general as the form given 
hy PRAWITZ [15]-however, his form is not valid in all hyperdoctrines. We can now 
return to the proof of the theorem. 

Far any formula 9 of Tp over I’, there is a derivation 3q(sq = t‘.r’ A q~(q)) t-- 
k- 3 [ ( r t  = r’ A ‘p(tt)) over X ’  as follows (we may suppose ~1 is atomic): 

This derivation is inverse to that given in 0 4 (condition (5)‘ (ii)) : 3 t ( r [  = s‘ A q(t5)) + 
f-- 3q(sq = t’x’ A ‘(7)) (or rather the corresponding morphisms are inverse). To  prove 
this, we must show the two composite derivations equivalent to the identity derivation 

(a) &t*T -+ t’*Z;p, + Zrt*’p = id. 

We begin with the composite derivation (IX) on p. 535. 

(.rI is a free variable of type X. different from x .  Tt is necessary so that the use of 
(3 Red) below is valid; “getting rid” of it will be the burden of this proof.) Using 
(3 Perm), (3 Red), (A Red). this is equivalent to the derivation.: 
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Call this derivation Po.  Notice that rx, = x’ A tx, = tx could be replaced with 

(1) (3) 
rx = x’ A ~ ( t x )  rx, = x’ A tx,  = tx 

rx = x’ A y(tx) A rx, = x’ A tx,  = tx 
(A 1) 

(A E) 
rxl = x‘ A txl = tx 

since the latter reduces to the former by (A Red). We can expand this even further 
using the following : 

Lemma 2. Let Q1 be the derivation 

rx = z’ A y(tx) A x 1  = x 
(A E) 

x1 = x rz = x’ A y(tx) A x1 = x rx = x‘ A y( tx)  A xl = x 
(&PI (A E) (A E) 

rx,  = rx rx = x’ 2, = x 

tx, = tx 
(T) 

rxl = x’ rx = x‘ A y( tx )  A x1 = x 
(A E) (A 1) 

rx = x’ A y( tx)  rxl = x’ A tx, = tx 
(A 1) 

rx = x’ A yftx) A rx, = x‘ A tx, = tx 

and Qz the derivation 

rx = x‘ A y(tx) A rxl = x’ A tx, = tx 
(A E) 

rx = x‘ A y(tx) A rx, = x’ A txl = tx rx = x‘ 
(S) 

rx, = x’ xr  = rx 

[rx, = rx 

rx = x‘ A pl(tx) A rxt = x’ A tx, = tx 
(T) 

tx, = tx] 

PE rx = x’ A pl(tx) A rx, = x’ A tx,  = tx 
(A E) 

rx = x‘ A ~ ( t x )  x1 = Z 
(A 1) 

rx = x’ A ~ ( t x )  A x1 = x 

Then the derivation 

P 
[rx = x’ A ~ ( t x )  A rxl = x’ A tz, = tx] 

Q2 

Q1 

[rx = x’ A cp(tx) A z, = $1 

Y X  = Z’ A p l ( t X )  A rX1 = 2’ A tX, = tX 
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is equivalent to 

P 
rx = x‘ A ~ ( t x )  A rx, = x‘ A tx, = tx 

for any P. 
Proof. The proof of this fact is fairly straightforward, and so we will not write out 

the details here. Note, however, that the proof is simplified if one notices the following : 

P 
- = rx, = rxl 

2, = x, 
(ap) tx, = tx, 

These equivalences are proved in the familiar way, using (=  Exp) and (R Coh): 
replace x1 with x,, and note that rx, = rx, and tx, = tx,, are isomorphic to T~ 
(so that the corresponding derivations must be equal). (Note also that there must be 
“dummy” assumptions on each RHS, as in (3 E Simp), t o  make sense of these equi- 
valences.) 

Let P, be the derivation Po with the (discharged) assumption rxl = xr A txl = tx 
replaced by the derivation 

(1) (3) 
rx = x’ A ~ ( x )  rx, = x’ A tx, = tx 
rx = x’ A ~ ( t x )  A rxl = 2’ A txl = tx (A 1) 

Q2 

Q1 

rx = x’ A q(tx) A x1 = x 

rx = x’ A ~ ( x )  A rxl = x‘ A tx, = tx 
rxl = x’ A txl = tx (A E) 

Then PI is equivalent to Po (and so to the original composite derivation); we must 
show it equivalent to the identity. 
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First, consider that part of P ,  above ~ x ,  = m’ A p(txl); writing Q !  in full, it is easy 
to see that this is equivalent to the derivation 

(1) (3) 

&z 

(A 1) 

dtx) (sub) 
rx l  = rx rx = xf tx = tx,  

(TI 

(A 1) 
r x ,  = x‘ a(tz1) 

rzl = m’ A gl(tx,) 

Let P, be the derivation P I  with this subderivation replacing the subderivation above 
r x ,  = x’ A p ( t x l ) .  Use (= Exp) and ( =  Simp) to get the equivalent derivation 

( 1 )  

(’) (AE) 
t;z: = tx 

(A E) 
t‘rx = t’x’ z = x 

(id) (ap) - - 

rx = x’ A p(tz) 

3[ ( r t  = 5’ A ~ ( t l ) )  

%(r t  = 2’ A p(tt)) 

p, (3 1) 
35(r[ = x‘ A tE = tx) 

(3 E) (2) 

(3 E) (1) 
gE(1.6 = ,T’ A q(t[)) 

3$(1.t = X’ A fp(tg)) 

(We have used (A Red) to eliminate the derivation Q2 above rx = m’.) 

(=  Exp), (A Exp), (3 E Simp), and (3 Exp). 

(b) 

It is now easy to see that this is equivalent to the identity derivation, using ( = Red), 

t’*Esp -+ Z,t*y -+ t ’ * & p  = id. 

We begin with the composite derivation ( X )  on p. 540. 

(This time x, could be z-it will disappear of its own accord soon!) Using (3  Perm) 
(twice), (3 Red), (A Red) this is equivalent to the derivation 
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rx
 =

 x‘
 A

 t
s 

=
 y

 
(A

 E
) 
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It is easy to see this is equivalent to the identity (use (= Red), (S Coh), (A Exp), 
(3 E Simp), (3 Exp)). This completes the proof. 

As an immediate corollary to the theorem, we can characterise all the “left” struc- 
ture of the base category T of a hyperdoctrine P over T with the full Beck condition. 
As examples, we give the following. Suppose P has the full Beck condition. 

Corol lary 1 .  X -!+ Y is a monomorphism of T iff there i s  a derivation in  T,: 
tx, = ta, t-x, = X I .  

Coro l la ry  2. E 2 X 3 Y i s  an equuliser diagram of T iff there are derivations 

i n  T,: 
sx = tz t- 3s(re = x), re, = re, t- e ,  = e ,  . 

Corol lary 3. If uo , ul are free variables of type 1 ,  then there is a derivation 

I-+, = U I  

(which is why we don’t need many free variables of type 1). 

t :  X -+ Y is a monomorphism iff 
Proofs. The first corollary is immediate from the theorem and the fact that 

X x-x 

1 
x - Y  

t 

is a pullback. (So the Beck condition for this diagram is equivalent to  the existence 
of the above derivation (and of x, = xl, xo = x, t- x, = x1 !)) 

The second corollary is almost as immediate from the theorem and the fact that 

E -I-, x S 

Y is an equaliser iff 
1 

tr 
E - Y  

is a pullback. The Beck condition for this is equivalent to the existence of derivations 
sz = y A tx = y + 3E(re = x A trs = y) and re, = re, tre, = tre, + e ,  = e l .  From 
this to the derivations of the statement of the corollary is an easy step. 

And finally, since 1 is a terminal object, 

A ,  1 - 1 x 1  

11 x 1 

-1 1 x 1  -1 
1 x l - 1  x I 

Robert
Text Box

Robert
Placed Image
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is a pullback, and moreover, since d ,  is an isomorphism, the Beck condition holds for 
this pullback. So there is a derivation uo = uo.  u ,  = 96, t-- ~ Y ( Y  = uo A Y = u, ) ;  
this is just t-u, = u1 as claimed. 

References 

111 FOURMAN, M. P., The Logic of Topoi. In: J. BARWISE (ed.), Handbook of Mathematical Imgic:, 

121 FREYD, P., Aspects of topoi. Bull. Australian Math. SOC. i (1972), 1-76. 
131 GIRARD, J.-Y., Une extension de l’interpr6tation de Godel 8. I’analgse, et son npplicat,ion a 

I’klimination des coupures dnns l’analyse et  la thkoric des t,ypes. In :  J. E. FENSTAD (ed.), 
Proceedings of the Second Scandinavian Logic Symposium, North-Holland Publ. Comp., 
Amsterdam 1971, pp. 63 -92. 

[4] GOLUBLATT, R., Topoi, the categorial analysis of logic. North-Holland Publ. Comp., Amster- 
dam 1979. 

[5]  HYLAND, J. M. E., JOHNSTONE, P. T., and A.M. PITTS, Tripos theory. Math. Proc. Camb. 
Phil. SOC. 85 (1980), 205-232. 

[O] JOHNSTONE, P. T., Topos Theory. Academic Press, London 1977. 
171 KOCK, A., and G. E. REYES, Doctrines in categorical logic. In: J. BARWISE (ed.), Handbook 

[8] L ~ N B E K ,  J., Deductive Systems and Categories 111. In :  F. W. LAWVERE (ed.), Toposes, Alge- 

[9] LAWVERE. F. W., Adjointness in foundations. Dialectica 13 (1969), 281 -296. 

North-Holland Publ. Comp., Amsterdam 1977, pp. 1053 - 1090. 

of M;tthematical Logic, Nortth-Holland Publ. Comp., Amsterdam 1977, pp. 283 - 313. 

braic Geometry and Logic, Springer Lecture Notes in Math. 1 7 1  (1972), pp. 57-82. 

1101 LAWVERE, P. W.. Equality in hyperdoctrines and the comprehension schema as an adjouint 
functor. In: A. HELLER (ed.), Proc. New York Symposium on Applications of Cat,egorical 
Logic, Amer. Math. SOC. 1970, pp. 1 - 14. 

[ 111  MAC LANE, S., Categories for the Working Mathematician. Springer-Verlag, Berlin- Heidel- 
berg-New York 1971. 

[13] MAKKAI, M., and G. E. REYES, First order categorical logic. Springer-Verlag, Berlin-Heidel- 
berg-New York 1977. 

[I:%] PAR& R., and G. ScrtunfAcHER, Abstract families and the adjoint functor theorems. In:  P. T. 
JOHNSTONE and R. PARE (eds.), Indexed Categories and their Applications, Springer Lectnre 
Notes in Math. 661 (1978), pp. 1 - 125. 

[la] PRAWITZ, D., Natural Deduction: a proof-theoretical study. Alrnqvist and Wiksell, Stoclr- 
Ixolm 1965. 

[15] PRIWLTZ, D.. Ideas and results in proof theory. In:  J. E. FENSTAD (ed.), Proc. of the Second 
Scandinavian Logic Symposium, North-Holland Publ. Comp., Amsterdam 1971, pp. 235 -307. 

[lO] REYES, G. E., From sheaves to logic. In:  A. DAIGNEAULT (ed.), Stndies in Algebraic Logic, 
M. S.A. Studies in Math. 9 (1974), pp. 143-204. 

1171 SCOTT, P. J., The “Dialectica” interpretation and categories. This Zeitschr. ?4 (1978), 553 -575.  
[18] SEELY, R. A. G.,  Hyperdoctrines and Natural Deduction. Ph. D. Thesis, University of Cam- 

bridge 1977. 
[ 191 SEELY, R. A. G . ,  Weak adjointness in proof theory. In: M. P. FOURMAN, C. J. MULVKY, and 

D. S. SCOTT (eds.), Applications of Sheaves, Springer Lecture Sot,es in Math. 7g& (1979), 
pp. 697 - 701. 

[20] SHOENFIELD, J. R., Mathematical Logic, Addison-Wcsley, Retiding (h1ms.) 1967. 
1211 SZABO, M. E., Algebra of Proofs. North-Holland Publ. Comp., Ains t t~da~n 1978. 

Robert A. G. Seely 
John Abbott College 
Math. Dept. 
P.O. Box 2000 
Ste. Anne de Bellevue 
Qu6bec H9X 3L9  - Canada 

(Eingegangen am 11. Februar 1982) 




