THIN RIGHT-ANGLED COXETER GROUPS IN SOME UNIFORM ARITHMETIC LATTICES

SAMI DOUBA

Abstract. Using a variant of an unpublished argument due to Agol, we show that an irreducible right-angled Coxeter group on \(n \geq 3 \) vertices embeds as a thin subgroup of a uniform arithmetic lattice in an indefinite orthogonal group \(O(p, q) \) for some \(p, q \geq 1 \) satisfying \(p + q = n \).

Let \(G \) be a semisimple algebraic \(\mathbb{R} \)-group and \(\Gamma \) a lattice in \(G := G(\mathbb{R}) \). A subgroup \(\Delta \subset \Gamma \) is said to be thin if \(\Delta \) is Zariski-dense in \(G \) but of infinite index in \(\Gamma \). It follows from the Borel density theorem [Bor60, Corollary 4.3] and a classical result of Tits [Tit72, Theorem 3] that if \(G \) as above is nontrivial, connected, and without compact factors, then any lattice in \(G \) contains a thin nonabelian free subgroup. A famous construction of Kahn–Markovic [KM12] produces thin surface subgroups of all uniform lattices in \(SO(3, 1) \) (see [Ham15], [LR16], [CF19], [KLM18] for some other manifestations of surface groups as thin groups). In [BL20], Ballas–Long show that many arithmetic lattices in \(SO(n, 1) \) virtually embed as thin subgroups of lattices in \(SL_{n+1}(\mathbb{R}) \), and raise the question as to which groups arise as thin groups. In this note, we observe the following.

Theorem 1. An irreducible right-angled Coxeter group on \(n \geq 3 \) vertices embeds as a thin subgroup of a uniform arithmetic lattice in \(O(p, q) \) for some \(p, q \geq 1 \) satisfying \(p + q = n \).

To that end, let \(\Sigma_1 \) be a connected simplicial graph on \(n \geq 3 \) vertices; we think of \(\Sigma_1 \) as a Coxeter scheme in the sense of [VS93, pg. 201, Def. 1.7] all of whose edges are bold. Fix an order \(v_1, \ldots, v_n \) on the vertices of \(\Sigma_1 \), and let \(W \) be the group given by the presentation with generators \(\gamma_1, \ldots, \gamma_n \) subject to the relations \(\gamma_i^2 = 1 \) for \(i = 1, \ldots, n \), and \([\gamma_i, \gamma_j] = 1 \) for each distinct \(i, j \in \{1, \ldots, n\} \) such that \(v_i \) and \(v_j \) are not adjacent in \(\Sigma_1 \). The group \(W \) is the (right-angled) Coxeter group associated to the graph \(\Sigma_1 \). (This convention will be convenient for our purposes; however, in the literature, the right-angled Coxeter group associated to a graph \(\Sigma \) is often defined as the right-angled Coxeter group associated to the complement graph of \(\Sigma \) in our sense.) Let \(W^+ \) be the index-2 subgroup of \(W \) consisting of all elements that can be expressed as a product of an even number of the \(\gamma_i \); that \(W^+ \) indeed constitutes an index-2 subgroup of \(W \) follows, for instance, from faithfulness of the representation \(\sigma_1 \) of \(W \) to be defined in the sequel.

The author was supported by a public grant as part of the Investissement d’avenir project, FMJH, and by the National Science Centre, Poland UMO-2018/30/M/ST1/00668.
For $d \in \mathbb{R}$, let $M_d = (m_{ij}) \in M_n(\mathbb{Z}[d])$ be the symmetric matrix given by

$$m_{ij} = \begin{cases}
1 & \text{if } i = j \\
-d & \text{if } i \neq j \text{ and } v_i, v_j \text{ are joined by an edge in } \Sigma_1 \\
0 & \text{otherwise.}
\end{cases}$$

Let $\epsilon > 0$ be such that M_d is positive-definite for $d \in [-\epsilon, \epsilon]$, and let $D \geq 1$ be such that M_d is nondegenerate and its signature constant as d varies within $[D, \infty)$. Note that M_1 is the Gram matrix of the Coxeter scheme Σ_1 (and the given order on the vertices of Σ_1). In particular, we have that $\epsilon < 1$. For $d > 1$, the matrix M_d is the Gram matrix of the Coxeter scheme Σ_d obtained from Σ_1 by replacing each edge with a dotted edge labeled by d. (Here, we are again using the conventions employed by [VS93].)

For $d \geq 1$, let $\sigma_d : W \to \text{GL}_n(\mathbb{R})$ be the Tits–Vinberg representation associated to the Coxeter scheme Σ_d and the given order on its vertices; this is the representation given by

$$\sigma_d(\gamma_i)(v) = v - 2(v^T M_d e_i) e_i$$

for $i = 1, \ldots, n$ and $v \in \mathbb{R}^n$, where (e_1, \ldots, e_n) is the standard basis for \mathbb{R}^n. It follows from Vinberg’s theory of reflection groups that the representations $\sigma_d, d \geq 1$, are faithful [Vin71, Theorem 5] (see Lecture 1 in [Ben04] for an exposition). This family of representations was studied in [DGK20].

If $M \in M_n(\mathbb{R})$ is a symmetric matrix and A is a subdomain of \mathbb{C}, we write

$$\text{O}(M; A) = \{g \in \text{GL}_n(A) : g^T M g = M\},$$

$$\text{SO}(M; A) = \{g \in \text{SL}_n(A) : g^T M g = M\}.$$

Note that we have $W_d := \sigma_d(W) \subset \text{O}(M_d; \mathbb{R})$ by design.

Lemma 2. The group W_d is Zariski-dense in $\text{O}(M_d; \mathbb{R})$ for $d \geq D$.

Proof. The proof of the main theorem in [BdlH04] applies here, so we only sketch the argument provided there. Let $d \geq D$ and let G_d be the Zariski-closure of W_d in $\text{O}(M_d; \mathbb{R})$. Denote by \mathfrak{g} and \mathfrak{h} the Lie algebras of $\text{O}(M_d; \mathbb{R})$ and G_d, respectively. It is enough to show that $\mathfrak{g} = \mathfrak{h}$, since the Zariski-closure of $\text{SO}(M_d; \mathbb{R})$ is $\text{SO}(M_d; \mathbb{R})$ and since $W_d \not\subset \text{SO}(M_d; \mathbb{R})$.

For each distinct pair $i, j \in \{1, \ldots, n\}$, let $E_{i,j}$ be the orthogonal complement of (e_i, e_j) in \mathbb{R}^n with respect to M_d. The subgroup of $\text{O}(M_d; \mathbb{R})$ consisting of all elements that fix each vector in $E_{i,j}$ is a 1-dimensional closed subgroup of $\text{O}(M_d; \mathbb{R})$ whose identity component $T_{i,j}$ gives rise to a subspace $\langle X_{i,j} \rangle$ of \mathfrak{g} for some $X_{i,j} \in \mathfrak{g}$. Since M_d is nondegenerate, the elements $X_{i,j}$ form a basis for \mathfrak{g} as a vector space [BdlH04, Lemme 7]. Thus, to show $\mathfrak{g} = \mathfrak{h}$, it suffices to show that $X_{i,j} \in \mathfrak{h}$ for each distinct pair $i, j \in \{1, \ldots, n\}$.

To that end, let $i, j \in \{1, \ldots, n\}$, $i \neq j$, and suppose first that v_i and v_j are adjacent in Σ_1. Then $\sigma_d(\gamma_i \gamma_j)$ generates an infinite cyclic subgroup of $T_{i,j}$, so that $T_{i,j} \subset G_d$. It follows that $X_{i,j} \in \mathfrak{h}$ in this case. One now verifies that, since Σ_1 is connected, any Lie subalgebra of \mathfrak{g} that contains $X_{i,j}$ for all i, j such that v_i, v_j are adjacent in fact contains $X_{i,j}$ for each distinct pair $i, j \in \{1, \ldots, n\}$ [BdlH04, Preuve du Théorème, second cas].

Now let $K \subset \mathbb{R}$ be a real quadratic extension of \mathbb{Q}, let $\tau : K \to K$ be the nontrivial element of $\text{Gal}(K/\mathbb{Q})$, and let \mathcal{O}_K be the ring of integers of K. Then by
Dirichlet’s unit theorem, there is a unit \(\alpha \in \mathcal{O}_K^{*} \) such that \(\alpha \geq \max \{ \frac{1}{\epsilon}, D \} \). Thus, we have

\[
\frac{1}{\epsilon} |\tau(\alpha)| \leq \alpha |\tau(\alpha)| = |\alpha \cdot \tau(\alpha)| = 1,
\]

where the final equality holds because \(\alpha \in \mathcal{O}_K^{*} \). We conclude that \(|\tau(\alpha)| \leq \epsilon \), and so \(M_{\tau(\alpha)} \) is positive-definite. It follows that \(\Gamma := O(M_\alpha; \mathcal{O}_K) \) is a uniform arithmetic lattice in \(O(M_\alpha; \mathbb{R}) \) (for an efficient survey of the relevant facts, see, for instance, Section 2 of [GPS87]). Moreover, we have \(W_\alpha \subset O(M_\alpha; \mathbb{Z}[\alpha]) \subset \Gamma \).

Remark 3. Note that Galois conjugation by \(\tau \) transports \(\Gamma \) and hence \(W_\alpha \) into the compact group \(O(M_{\tau(\alpha)}; \mathbb{R}) \). That finitely generated right-angled Coxeter groups embed in compact Lie groups had already been observed by Agol [Ago18] using a similar trick to the one above. Indeed, Agol’s argument was the inspiration for this note.

Proof of Theorem 1. We show that \(W_\alpha \) is a thin subgroup of \(\Gamma \subset O(M_\alpha; \mathbb{R}) \). By Lemma 2, it suffices to show that \(W_\alpha \) is of infinite index in \(\Gamma \). Indeed, suppose otherwise. Then \(W_\alpha \) is a uniform lattice in \(O(M_\alpha; \mathbb{R}) \). If \(n = 3 \), then immediately we obtain a contradiction, since in this case \(W_\alpha \) is virtually a closed hyperbolic surface group, whereas \(W \) is virtually free. If \(M_\alpha \) has signature \((2,2)\) (the one case under consideration in which \(\text{SO}(M_\alpha; \mathbb{R})^0 \) is not simple), then we again obtain a contradiction as \(W \) has virtual cohomological dimension at most 3 (for instance, since the latter is an upper bound for the dimension of the Davis complex associated to the infinite right-angled Coxeter group \(W \); see [Dav08, Chapter 1]), while the symmetric space associated to \(O(M_\alpha; \mathbb{R}) \) has dimension 4. Now suppose that \(n > 3 \) and that the signature of \(M_\alpha \) is not \((2,2)\). There is some \(\beta > \alpha \) and a path \([\alpha, \beta] \rightarrow \text{GL}_n(\mathbb{R}) \), \(d \mapsto h_d \) such that \(h_d^T M_d h_d = M_\alpha \) for all \(d \in [\alpha, \beta] \) (this follows, for example, from the fact that \(\text{GL}_n(\mathbb{R}) \) acts continuously and transitively on the set \(\Omega \subset M_\alpha(\mathbb{R}) \) of symmetric matrices with the same signature as \(M_\alpha \), and so the orbit map \(\text{GL}_n(\mathbb{R}) \rightarrow \Omega, g \mapsto g^T M_\alpha g \) is a fiber bundle). Setting \(g_d = h_d h_{\alpha}^{-1} \) for \(d \in [\alpha, \beta] \), we have that \(g_d = I_\alpha \) and \(g_d^T M_d g_d = M_\alpha \) for \(d \in [\alpha, \beta] \). For \(d \in [\alpha, \beta] \), let \(\rho_d = g_d^{-1} \sigma_d g_d \), and note

\[
\rho_d(W') \subset g_d^{-1} O(M_\alpha; \mathbb{R}) g_d = O(g_d^T M_d g_d; \mathbb{R}) = O(M_\alpha; \mathbb{R}).
\]

Let \(\rho_+^d = \rho_d|_{W^+} \) and \(\sigma_+^d = \sigma_d|_{W^+} \) for \(d \in [\alpha, \beta] \). Then \(\rho_+^d(W^+) \) is a uniform lattice in the connected non-compact simple Lie group \(\text{SO}(M_\alpha; \mathbb{R})^0 \), and the latter is not locally isomorphic to \(\text{SO}(2,1)^0 \) by our assumption that \(n > 3 \). Thus, by Weil local rigidity [Wei00, Wei02], up to choosing \(\beta \) closer to \(\alpha \), we may assume that for each \(d \in [\alpha, \beta] \) there is some \(a_d \in \text{SO}(M_\alpha; \mathbb{R})^0 \) such that

\[
(1) \quad \rho_d^+ = a_d \rho_+^d a_d^{-1} = a_d \sigma_+^d a_d^{-1}.
\]

But \(\rho_d^+ = g_d^{-1} \sigma_d^+ g_d \), so we obtain from (1) that the trace \(\text{tr}(\sigma_d(\gamma_i \gamma_j)) \) remains constant as \(d \) varies within \([\alpha, \beta]\), where \(i, j \in \{1, \ldots, n\} \) are chosen so that the vertices \(v_i, v_j \) are adjacent in \(\Sigma_1 \).

We claim, however, that \(\text{tr}(\sigma_d(\gamma_i \gamma_j)) = 4d^2 - 4 + n \) for \(d \geq D \). Indeed, let \(d \geq D \). Then \(M_d \) is nondegenerate, so that \(\mathbb{R}^d \) splits as a direct sum of the 2-dimensional subspace \(\langle e_i, e_j \rangle \subset \mathbb{R}^n \) and its orthogonal complement \(E_{i,j} \) with respect to \(M_d \). Each of \(\gamma_i \) and \(\gamma_j \) acts as the identity on \(E_{i,j} \), so our claim is equivalent to the assertion that

\[
\text{tr} \left(\sigma_d(\gamma_i \gamma_j) \right)_{\langle e_i, e_j \rangle} = 4d^2 - 2,
\]

and the latter follows from the fact that,
with respect to the basis \((e_i, e_j)\) of \((e_i, e_j)\), the matrices representing \(\sigma_d(\gamma_i), \sigma_d(\gamma_j)\) are \(
abla = \begin{pmatrix} -1 & 2d \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 2d & -1 \end{pmatrix}\), respectively. \(\Box\)

Example 4. We consider the case that \(n \geq 5\) and the complement graph of \(\Sigma_1\) is the cycle \(v_1v_2\ldots v_n\). In this case, the group \(W\) may be realized as the subgroup of \(\mathrm{Isom}(\mathbb{H}^2)\) generated by the reflections in the sides of a right-angled hyperbolic \(n\)-gon, so that \(W\) is virtually the fundamental group of a closed hyperbolic surface. We have

\[
M_d = (1 + d)I_n + d(J_n + J_n^{-1}) - d(I_n + J_n + \ldots + J_n^{-1})
\]

where \(J_n \in M_n(\mathbb{C})\) is the matrix

\[
J_n = \begin{pmatrix} e_2 & e_3 & \ldots & e_n & e_1 \end{pmatrix}.
\]

There is some \(C \in \mathrm{GL}_n(\mathbb{C})\) such that

\[
CJ_nC^{-1} = \text{diag}(1, \zeta_n, \zeta_n^2, \ldots, \zeta_n^{n-1})
\]

where \(\zeta_n = e^{2\pi i/n}\). Observe that

\[
C(I_n + J_n + \ldots + J_n^{-1})C^{-1} = \text{diag}(n, 0, \ldots, 0)
\]

\[
C(J_n + J_n^{-1})C^{-1} = \text{diag}\left(2, 2\cos\frac{2\pi}{n}, 2\cos\frac{2\pi}{n}, \ldots, 2\cos\frac{2\pi(n-1)}{n}\right).
\]

It follows from (2) that, counted with multiplicity, the eigenvalues of \(M_d\) are \(1 - d(n - 3)\) and \(1 + d\left(1 + 2\cos\frac{2\pi k}{n}\right)\), where \(k = 1, \ldots, n - 1\). Note that for \(d\) sufficiently large, we have that \(1 - d(n - 3) < 0\), and that \(1 + d\left(1 + 2\cos\frac{2\pi k}{n}\right) \geq 0\) if and only if \(\cos\frac{2\pi k}{n} \geq -\frac{1}{2}\). We conclude that the signature of \(M_d\) is \(\left(\left\lfloor \frac{n}{4} \right\rfloor, n - 2\left\lfloor \frac{n}{4} \right\rfloor\right)\) for all \(d\) sufficiently large. In particular, if \(n = 3m, m \geq 2\), then the signature of \(M_d\) is \((2m, m)\) for all \(d\) sufficiently large. The above discussion yields thin surface subgroups of uniform arithmetic lattices in \(\mathrm{SO}(2n + 1, \mathbb{R})\) for \(n \geq 5\).

Acknowledgements. I thank Yves Benoist and Pierre Pansu for helpful discussions. I am also deeply grateful to the latter for inviting me to spend the fall of 2021 at Université Paris-Saclay, where this note was written, and to my supervisor Piotr Przytycki for his support during my stay.

References

McGill University, Department of Mathematics and Statistics

E-mail address: sami.douba@mail.mcgill.ca