THIN RIGHT-ANGLED COXETER GROUPS IN SOME
UNIFORM ARITHMETIC LATTICES

SAMI DOUBA

ABSTRACT. Using a variant of an unpublished argument due to Agol, we show
that an irreducible right-angled Coxeter group on n > 3 vertices embeds as
a thin subgroup of a uniform arithmetic lattice in an indefinite orthogonal
group O(p, q) for some p,q > 1 satisfying p + ¢ = n.

Let G be a semisimple algebraic R-group and T' a lattice in G := G(R). A
subgroup A C I is said to be thin if A is Zariski-dense in G but of infinite index in I'.
It follows from the Borel density theorem [Bor60, Corollary 4.3] and a classical result
of Tits [Tit72, Theorem 3] that if G as above is nontrivial, connected, and without
compact factors, then any lattice in G contains a thin nonabelian free subgroup.
A famous construction of Kahn-Markovic [KM12] produces thin surface subgroups
of all uniform lattices in SO(3,1) (see [Ham15], [LR16], [CF19], [KLM18] for some
other manifestations of surface groups as thin groups). In [BL20], Ballas—Long
show that many arithmetic lattices in SO(n, 1) virtually embed as thin subgroups
of lattices in SL,41(R), and raise the question as to which groups arise as thin
groups. In this note, we observe the following.

Theorem 1. An irreducible right-angled Coxeter group on n > 3 vertices embeds
as a thin subgroup of a uniform arithmetic lattice in O(p,q) for some p,q > 1
satisfying p + q = n.

To that end, let 31 be a connected simplicial graph on n > 3 vertices; we think
of ¥; as a Coxeter scheme in the sense of [VS93, pg. 201, Def. 1.7] all of whose
edges are bold. Fix an order vy,...,v, on the vertices of X1, and let W be the
group given by the presentation with generators 1, ..., 7, subject to the relations
v2 =1fori=1,...,n,and [y;,v;] = 1 for each distinct i,j € {1,...n} such that
v; and v; are not adjacent in 3;. The group W is the (right-angled) Cozeter group
associated to the graph ;. (This convention will be convenient for our purposes;
however, in the literature, the right-angled Coxeter group associated to a graph X
is often defined as the right-angled Coxeter group associated to the complement
graph of 3 in our sense.) Let W™ be the index-2 subgroup of W consisting of all
elements that can be expressed as a product of an even number of the v;; that W+
indeed constitutes an index-2 subgroup of W follows, for instance, from faithfulness
of the representation o7 of W to be defined in the sequel.
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For d € R, let My = (m;;) € M,,(Z[d]) be the symmetric matrix given by
1 ifi=j
m;; = ¢ —d if ¢ # j and v;,v; are joined by an edge in

0 otherwise.

Let € > 0 be such that M, is positive-definite for d € [—¢, €], and let D > 1 be
such that M, is nondegenerate and its signature constant as d varies within [D, 00).
Note that M; is the Gram matrix of the Coxeter scheme ¥; (and the given order
on the vertices of 31). In particular, we have that ¢ < 1. For d > 1, the matrix My
is the Gram matrix of the Coxeter scheme ¥, obtained from ¥; by replacing each
edge with a dotted edge labeled by d. (Here, we are again using the conventions
employed by [VS93].)

For d > 1, let o4 : W — GL,(R) be the Tits—Vinberg representation asso-
ciated to the Coxeter scheme Y; and the given order on its vertices; this is the
representation given by

oa(vi)(v) =v— 2(UTMd€i)€i

for i = 1,...,n and v € R™, where (ej,...,e,) is the standard basis for R™. It
follows from Vinberg’s theory of reflection groups that the representations o4, d > 1,
are faithful [Vin71, Theorem 5] (see Lecture 1 in [Ben04] for an exposition). This
family of representations was studied in [DGK20].

If M € M,,(R) is a symmetric matrix and A is a subdomain of C, we write

O(M;A) = {g € GL,(A) : g"Mg =M},
SO(M;A) = {g € SL,(A) : g"Mg= M}.
Note that we have Wy := 04(W) C O(My; R) by design.
Lemma 2. The group Wy is Zariski-dense in O(Mg;R) for d > D.

Proof. The proof of the main theorem in [BAIH04] applies here, so we only sketch
the argument provided there. Let d > D and let G4 be the Zariski-closure of Wy
in O(Mg;R). Denote by g and b the Lie algebras of O(My;R) and Gg4, respec-
tively. It is enough to show that g = b, since the Zariski-closure of SO(My;R)°
is SO(My;R) and since Wy ¢ SO(Mg; R).

For each distinct pair 4,5 € {1,...,n}, let E;; be the orthogonal comple-
ment of (e;,e;) in R™ with respect to My. The subgroup of O(Mg;R) consist-
ing of all elements that fix each vector in F; ; is a 1-dimensional closed subgroup
of O(Myg4;R) whose identity component T; ; corresponds to a subspace (X; ;) of g
for some X; ; € g. Since My is nondegenerate, the elements X; ; form a basis for g
as a vector space [BdIH04, Lemme 7]. Thus, to show g = b, it suffices to show
that X; ; € b for each distinct pair ¢,j € {1,...,n}.

To that end, let 4,5 € {1,...,n}, i # j, and suppose first that v; and v; are
adjacent in X;. Then og(7;y;) generates an infinite cyclic subgroup of T; ;, so
that T; ; C Gq4. It follows that X; ; € b in this case. One now verifies that, since 3;
is connected, any Lie subalgebra of g that contains X; ; for all 4, j such that v;,v;
are adjacent in fact contains X, ; for each distinct pair ¢,j € {1,...,n} [BdIH04,
Preuve du Théoréme, second cas]. O

Now let K C R be a real quadratic extension of Q, let 7 : K — K be the
nontrivial element of Gal(K/Q), and let Ok be the ring of integers of K. Then by
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Dirichlet’s unit theorem, there is a unit o € O3 such that o > max{%, D}. Thus,
we have
|7 (c)]

€
where the final equality holds because a € Oj,. We conclude that |7(a)| < e,
and so M, is positive-definite. It follows that I' := O(M,; Ox) is a uniform
arithmetic lattice in O(M,; R) (for an efficient survey of the relevant facts, see, for
instance, Section 2 of [GPS87]). Moreover, we have W,, C O(My;Z[a]) C T.

<alr(a)] = la-7(a)] =1,

Remark 3. Note that Galois conjugation by 7 transports I' and hence W, into the
compact group O(M,(,);R). That finitely generated right-angled Coxeter groups
embed in compact Lie groups had already been observed by Agol [Agol8] using a
similar trick to the one above. Indeed, Agol’s argument was the inspiration for this
note.

Proof of Theorem 1. We show that W, is a thin subgroup of I' C O(M,;R). By
Lemma 2, it suffices to show that W, is of infinite index in I'. Indeed, suppose
otherwise. Then W, is a uniform lattice in O(M,;R). If n = 3, then immediately
we obtain a contradiction, since in this case W, is virtually a closed hyperbolic
surface group, whereas W is virtually free. If M, has signature (2,2) (the one case
under consideration in which SO(M,;R)° is not simple), then we again obtain a
contradiction as W has virtual cohomological dimension at most 3 (for instance,
since the latter is an upper bound for the dimension of the Davis complex as-
sociated to the infinite right-angled Coxeter group W; see [Dav08, Chapter 1]),
while the symmetric space associated to O(M,;R) has dimension 4. Now suppose
that n > 3 and that the signature of M, is not (2,2). There is some 8 > « and
a path [, 8] = GL,(R),d +— hg such that hX Myhg = M, for all d € [a, 8] (this
follows, for example, from the fact that GL,,(R) acts continuously and transitively
on the set  C M, (R) of symmetric matrices with the same signature as M,, and
so the orbit map GL,(R) — Q, g — g7 M,g is a fiber bundle). Setting gq = hgh_*
for d € [a, B3], we have that g, = I, and g} Magq = M, for d € [a, 8]. For d € [a, ],
let pg = gd_ladgd, and note

pa(W) C g, 'O(My;R)ga = O(g93 Maga; R) = O(M,; R).

Let py = paly,+ and o) = o4y, for d € o, f]. Then pf(WT) is a uniform
lattice in the connected non-compact simple Lie group SO(M,;R)°, and the latter
is not locally isomorphic to SO(2,1)° by our assumption that n > 3. Thus, by Weil
local rigidity [Wei60, Wei62], up to choosing 3 closer to «, we may assume that for
each d € [a, 5] there is some ag € SO(M,;R)° such that

(1) ph = aapta;t = aqolay’.

But p; = g;'0} ga, so we obtain from (1) that the trace tr(c4(v;7;)) remains
constant as d varies within [«, 8], where i,5 € {1,...,n} are chosen so that the
vertices v;, v; are adjacent in 3.

We claim, however, that tr(oq(viv;)) = 4d*> —4+n for d > D. Indeed, let d > D.
Then My is nondegenerate, so that R? splits as a direct sum of the 2-dimensional
subspace (e;,e;) C R™ and its orthogonal complement E;; with respect to Mg.
Each of ; and «; acts as the identity on Fj ;, so our claim is equivalent to the as-

sertion that tr (Ud (vi75) ‘ (ere »>) = 4d? —2, and the latter follows from the fact that,
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with respect to the basis (e;, e;) of (e;, e;), the matrices representing o4 (i), 74(7v;)

-1 2d 1 0 .
are ( 0 1 ) , <2d _1) , respectively. ([

Example 4. We consider the case that n > 5 and the complement graph of ¥ is
the cycle vivs...v,. In this case, the group W may be realized as the subgroup
of Isom(H?) generated by the reflections in the sides of a right-angled hyperbolic
n-gon, so that W is virtually the fundamental group of a closed hyperbolic surface.
We have

(2) My=1+d)I, +d(J, +J Y —d(I, +Jp+...+ I
where J,, € M,,(C) is the matrix
Jn = (62 es ... en el).
There is some C € GL,(C) such that
CJ,C! = diag(1,¢n, Chy oo, G0 )
where ¢, = €27/"_ Observe that

C(Iy+Jp+...+JHC™! = diag(n,0,...,0)

yeees2CO8

2 21 -2 2 -1
C(Jp+J0HC™! = diag (2,2(305 %,QCOS Wn 7r(7:1)> .

It follows from (2) that, counted with multiplicity, the eigenvalues of M, are
1—d(n—3) and 1+ d(1+2cos 2"’“), where £k = 1,...,n — 1. Note that for d

sufficiently large, we have that 1—d(n—3) < 0, and that 14d (1 + 2 cos 22£) > 0 if

and only if cos 2ZE > —1. We conclude that the signature of M, is (2l5],n—2[%])

for all d sufficiently large. In particular, if n = 3m, m > 2, then the signature of My
is (2m,m) for all d sufficiently large. The above discussion yields thin surface sub-

groups of uniform arithmetic lattices in SO(2| % |,n — 2[%]) for each n > 5.
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