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Abstract

Let S be an n-punctured sphere, with n > 3. We prove that
(n
3

)
is the maximum size

of a family of pairwise non-homotopic simple arcs on S joining a fixed pair of distinct
punctures of S and pairwise intersecting at most twice. On the way, we show that a
square annular diagram A has a corner on each of its boundary paths if A contains at
least one square and the dual curves of A are simple arcs joining the boundary paths
of A and pairwise intersecting at most once.

1. Introduction

A k-system A of arcs on a punctured surface S is a collection of essential simple arcs on S such
that no two arcs of A are homotopic or intersect more than k times. We begin with the following
observation.

Remark 1.1. If k = 0, S is an n-punctured sphere with n > 3, and the arcs of A all join a fixed
pair of distinct punctures p, q of S, then |A| 6 n − 2. To see this, fix a complete hyperbolic
metric on S of area 2π(n− 2) and realize the arcs of A as geodesics on S. Cutting S along A, we
obtain a collection of hyperbolic punctured strips. Since the boundary of each strip consists of
two arcs of A, and since each arc of A appears twice as a boundary component of some strip, we
count precisely |A| strips. The bound on |A| now follows from the fact that each of these strips
has area at least 2π. Moreover, this bound is tight since we can easily devise a 0-system on S
whose complement consists entirely of once-punctured strips (see Figure 1). An area argument
also shows that the maximum size of A is 2n− 5 if we assume instead that p = q.

Problems involving bounding the size of a k-system of arcs, of which Remark 1.1 serves as a
trivial example, originated in similar problems for curves. Juvan, Malnič, and Mohar introduced
the term “k-system” and showed that the maximum size N(k,Σ) of a k-system of essential
simple closed curves on a fixed compact surface Σ is finite [JMM96]. Independently, Farb and
Leininger inquired about N(k, g) := N(k,Σ) for Σ closed and oriented of genus g and k = 1. In
response, Malestein, Rivin, and Theran provided an upper bound exponential in g, and showed
that N(1, 2) = 12 [MRT14]. Also for k = 1, Przytycki produced an upper bound on the order
of g3 [Prz15, Theorem 1.4]; since then, tighter bounds on N(1, g) have been found by Aougab,
Biringer, and Gaster [ABG17], and more recently, Greene [Gre18a]. Moreover, Przytycki provided
an upper bound on N(k, g) for arbitrary k that grows like gk

2+k+1 [Prz15, Cor. 1.6]. This bound
was subsequently improved by Greene to one that grows like gk+1 log g [Gre18b].
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Figure 1: A maximum-size 0-system joining distinct punctures p, q of the 7-punctured sphere.

Figure 2: A 2-system of size 12 joining the punctures of a twice-punctured torus.

In [Prz15], so as to prove the aforementioned results about k-systems of curves, Przytycki
first proved stronger results about k-systems of arcs – for example, that the maximum size of a
k-system of arcs on a punctured surface S of Euler characteristic χ < 0 (where distinct arcs are
not required to have the same endpoints) grows like |χ|k+1. In the same article, Przytycki proved
the following:

Theorem 1.2. [Prz15, Theorem 1.7] Let p, q be punctures of an n-punctured sphere S, where
n > 3. The maximum size of a 1-system A of arcs on S joining p and q is

(n−1
2

)
.

Note that p and q are not assumed to be distinct in the statement of Theorem 1.2. More
recently, Bar-Natan showed that for S, p, q as in Theorem 1.2, if p = q then the maximum size
of a 2-system of arcs on S joining p and q is

(n
3

)
[BN17]. The main result of this article is that

Bar-Natan’s maximum holds for p, q distinct:

Theorem 1.3. Let p, q be distinct punctures of an n-punctured sphere S, where n > 3. The
maximum size of a 2-system A of arcs on S joining p and q is

(n
3

)
.

It is worth noting that the natural analogue of Theorem 1.3 does not hold in positive genus.
More precisely, it is not true that if S is an n-punctured surface of genus g with n > 2 and g > 0,
then the maximum size of a 2-system of arcs joining a fixed pair of distinct punctures of S is,
or is even bounded above by,

(|χ(S)|+2
3

)
=
(2g+n

3

)
; see Figure 2 for a counterexample in the case

g = 1 and n = 2, found with Przytycki.
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Organization

In Section 3, we provide an example of a 2-system of size
(n
3

)
joining a fixed pair of distinct

punctures of an n-punctured sphere for n > 3. The remaining sections are concerned with
proving that

(n
3

)
is an upper bound on the size of such a 2-system A. This is proved by induction

on n; we prove that the number of arcs of A that become homotopic after forgetting a puncture
of S is not too large. This, in turn, is proved by induction, via the following lemma:

Lemma 1.4. Let S be an n-punctured sphere, and let p, q, r be distinct punctures of S. Let P,Q
be 1-systems of arcs starting at r and ending at p, q, respectively, so that no arc of P intersects
an arc of Q. Suppose R ⊂ P ×Q such that for any (α, β), (α′, β′) ∈ R,

(i) we have |α ∩ α′|+ |β ∩ β′| 6 1;

(ii) if |α∩α′|+ |β ∩ β′| = 1 with α 6= α′, β 6= β′, then the cyclic order around r of the r-ends of
α, α′, β, β′ is given by (α, α′, β, β′) or (α′, α, β′, β).

Then |R| 6
(n−1

2

)
.

Section 6 is devoted to the proof of Lemma 1.4. The inductive step again involves forgetting
a puncture s of S, but this time, we choose s with care in order to control the subsequent
behavior of the arcs of P and Q. More precisely, we require that s be p-isolated (see Section 2
for definitions).

To guarantee that a puncture with this property exists, we take a detour into annular square
diagrams. A k-system annular diagram A is an annular diagram whose dual curves constitute
a k-system of arcs joining the boundary paths of A. Such a diagram arises as the dual square
complex to a k-system A on a punctured sphere with distinct prescribed endpoints. In Section
5, we prove the following:

Theorem 1.5. Let A be a 1-system annular diagram. Then either A is a cycle, or A has a corner
on each of its boundary paths.

Roughly speaking, a corner corresponds to an isolated puncture. Note that Theorem 1.5 does
not hold for k = 2; see Figure 5 (bottom left) for a counterexample, suggested by Przytycki. We
have also included a direct proof found by the referee of the existence of an isolated puncture
(Proof 2 of Corollary 5.3); this proof does not use annular square diagrams.

Acknowledgements
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out the course of this article’s preparation. I also thank Daniel Wise for providing helpful re-
sources. Finally, I thank the referee for penetrating comments and suggestions, and in particular
for the elegant direct proof of Corollary 5.3.

2. Definitions

2.1 Arc systems

A puncture is a topological end of a space S obtained from a connected, oriented, compact
surface Σ by removing finitely many points p1, . . . , pn from Σ. Note that the punctures of S are
in bijection with p1, . . . , pn, and that we allow punctures on the boundary of Σ. If p1, . . . pn are
taken from the interior of Σ, we call S an n-punctured Σ.
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Figure 3: Regions formed by arcs. The yellow region is a half-bigon. The pink and orange regions are
bigons. The orange bigon is empty.

An arc on S is a proper map α : (0, 1) → S. A proper map induces a map between ends of
topological spaces; in this sense, α “maps” each endpoint of (0, 1) to a puncture p of S. We call
p an end of α. If p, q are ends of α, we say α starts at p and ends at q, or that α joins p and q.
A segment of α is the restriction of α to some positive-length subinterval of (0, 1).

An arc α is simple if it is an embedding, in which case we identify α and its segments with
their images in S. If J is a subinterval of (0, 1) with endpoints t1, t2 and α is a simple arc mapping
ti to xi for i = 1, 2, we denote the segment α

∣∣
J

by (x1x2)α. If R ⊂ S is a subset and p is an end
of α corresponding to an endpoint t0 = 0, 1 of (0, 1), we say the p-end of α lies in R if α−1(R)
is a neighbourhood of t0 in (0, 1).

A homotopy between arcs α1 and α2 is a proper map (0, 1) × [0, 1] → S whose restrictions
to (0, 1)× {0} and (0, 1)× {1} are α1 and α2, respectively. In particular, a homotopy preserves
ends. If r is a puncture of S, we say that two arcs on S are r-homotopic if they are homotopic on
the surface S̄ obtained from S by forgetting r. Two arcs are in minimal position if the number
of their intersection points cannot be decreased by a homotopy. Note that if a pair of arcs have
a point of intersection that is not transversal, then they are not in minimal position. An arc α
is essential if it cannot be homotoped into a puncture, in the sense that there is no proper map
(0, 1)× [0, 1) → S whose restriction to (0, 1)× {0} is α. Unless otherwise stated, all arcs in the
article are simple and essential, and all intersections between arcs are transversal. Note that an
arc joining distinct punctures of a punctured surface is automatically essential.

Let R be a closed disc with at most 2 punctures on its boundary and possibly with punctures
in its interior. A region between arcs α1, α2 on S is a properly embedded R ⊂ S such that ∂R is
a union of exactly two segments σ1, σ2, where σi is a segment of αi for i = 1, 2 (see Figure 3).
We say that α1, α2 (or, more specifically, σ1, σ2) form or bound R. If R has no punctures in its
interior, we say R is empty. If R has exactly 0 (respectively, 1, 2) punctures on its boundary and
R ∩ (α1 ∪ α2) = ∂R, we call R a bigon (respectively, half-bigon, strip). We say R is adjacent to
a puncture p of S if p lies on the boundary of R. If p, s are distinct punctures of S and A is a
collection of arcs on S with s contained in a half-bigon or strip H adjacent to p formed by a pair
of arcs of A such that H is a component of S −

⋃
A, we say that s is p-isolated by A.

We will make frequent use of the following lemma.

Lemma 2.1 The bigon criterion. [FM12, Proposition 1.7] Two intersecting arcs on a punctured
surface are in minimal position if and only if they form no empty regions.
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Since an empty region bounded by intersecting arcs must contain an empty bigon or half-
bigon, we immediately obtain the following corollary.

Corollary 2.2. Two intersecting arcs on a punctured surface are in minimal position if and
only if they form no empty bigons or half-bigons.

A k-system of arcs on a punctured surface S is a collection A of essential simple arcs on S
such that no two arcs of A are homotopic or have more than k points of intersection. We will
mainly consider the case where S is a sphere punctured at least thrice and A is a 2-system of
arcs joining a fixed pair of distinct punctures p, q of S. Note that for any two arcs α1, α2 of such
a collection A, a region bounded by α1, α2 that contains neither p nor q must be a bigon, a
half-bigon, or a strip.

If a punctured surface S has Euler characteristic χ < 0, then S admits a complete hyperbolic
metric of area 2π|χ|. Under such a metric, the homotopy class of any arc contains a unique
geodesic representative, and any two distinct geodesic arcs are in minimal position. Thus, for the
purposes of determining the size of a k-system A of arcs on S, we may assume that A consists
of geodesics.

2.2 Combinatorial complexes

A map X → Y between CW complexes X,Y is combinatorial if its restriction to each open cell
of X is a homeomorphism onto an open cell of Y . A CW complex X is combinatorial if the
attaching map of each cell in X is combinatorial for some subdivision of the sphere. A cell of
dimension 0 is a vertex and a cell of dimension 1 is an edge. The degree of a vertex v of X is the
number of edges in X incident to v, with loops counted twice.

2.3 Square complexes

An n-cube is a copy of [−1, 1]n. A square complex X is a combinatorial complex whose cells are
n-cubes with n 6 2; that is, X is a combinatorial 2-complex each of whose 2-cells is attached
via a combinatorial map from a 4-cycle into the 1-skeleton of X. The cells of X are called cubes,
and its 2-cells are called squares.

A midcube is a subspace of a cube [−1, 1]n obtained by restricting one coordinate to 0. Let U
be a new square complex whose cells are midcubes of X and whose attaching maps are restrictions
of attaching maps in X to midcubes. A dual curve α of a cube c in X is a connected component
of U containing a midcube of c. Note that if c is a square whose dual curves are simple, then it
has exactly two dual curves. If c is an edge, we say α is dual to c. We call the dual curve α an arc
if it is homeomorphic to an interval (possibly of length 0). There is a natural immersion α→ X;
if this map is an embedding, we say α is simple. In this case, we identify α with its image in X.

2.4 Annular diagrams

An annular diagram A is a finite combinatorial cell decomposition of S2 minus two disjoint open
2-cells (see Figure 4). The attaching map of each of these 2-cells is a boundary path of A.

We call A a square annular diagram, or simply a diagram, if it is also a square complex (see
Figure 5). A corner on a boundary path P of a diagram A is a vertex v on P of degree 2 that is
contained in some square of A.

Let c be a square of a diagram A with boundary path P , and let x be the center of c. Suppose
the dual curves α, β of c are dual to consecutive edges a, b on P with shared vertex v. Let γ be
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Figure 4: An annular diagram. The boundary paths are indicated in red.

the loop obtained from the subarcs of α, β joining x and P and the half-edges of a, b containing
v. If γ is homotopic in A to a constant path, then we call c a cornsquare with outerpath ab.

A hexagon move on a diagram A is the replacement of three squares forming a subdivided
hexagon by an alternate three squares forming a subdivided hexagon (see Figure 6). A hexagon
move can be visualized as a benign “sliding” operation on one of the dual curves of A, so that if
A′ is obtained from A by a hexagon move, there is a natural correspondence between the dual
curves of A and those of A′. Note that the number of squares of A is preserved under hexagon
moves.

A square annular diagram A is a k-system annular diagram if its dual curves are simple arcs
joining the boundary paths of A and pairwise intersecting at most k times in A. Note that the
number of intersections between any pair of dual curves of A is preserved under a hexagon move.
Thus, if A′ is obtained from a k-system annular diagram A by a hexagon move, then A′ is also
a k-system annular diagram.

3. A 2-system of maximum size

We provide an example of a 2-system of arcs of size
(n
3

)
joining a fixed pair of distinct punctures

of an n-punctured sphere S. This collection was independently discovered by Assaf Bar-Natan.

We think of S as R2 punctured at p = (−1, 0) and at the points ri = (i − 1
2 , 0) for i =

1, . . . , n− 2. We construct a 2-system A joining p and the puncture q at infinity.

Let α<−1 be the arc given by the ray {(x, 0) : x < −1}. For a, b, c ∈ {0, 1, . . . , n − 2}
with a < b < c or 0 < a < b = c = n − 2, let αabc be the graph of the polynomial function
fabc : (−1,∞)→ R given by x 7→ (x+ 1)(x− a)(x− b)(x− c).

Note that for distinct triples (a, b, c), (a′, b′, c′), the difference fabc−fa′b′c′ is a cubic polynomial,
one of whose roots is −1. Thus, the αabc pairwise intersect at most twice. Furthermore, the αabc
are pairwise non-homotopic [BN17, proof of Lemma 4.2], and α<−1 is not homotopic to any of
the αabc since the complement of α<−1 ∪ αabc is a pair of punctured strips.

Now fix M > 0 such that M > |fabc(x)| for all x ∈ (−1, n− 2]. For each i, j ∈ {1, . . . , n− 2}
with i < j, let αij be the union of the following horizontal and vertical segments: the segment
joining (−1, 0) and (−1,M), the segment joining (−1,M) and (i− 1

2 + 1
4 ,M), the segment joining

(i− 1
2+ 1

4 ,M) and (i− 1
2+ 1

4 ,−M), the segment joining (i− 1
2+ 1

4 ,−M) and (−2,−M), the segment
joining (−2,−M) and (−2,M + 1), the segment joining (−2,M + 1) and (j − 1

2 −
1
4 ,M + 1),

and the vertical ray travelling down from (j − 1
2 −

1
4 ,M + 1). Note that each αij intersects α<−1
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Figure 5: Square annular diagrams. Dual curves are dashed and colored. Corners are colored red. The
bottom left (respectively, bottom right) diagram is a 2-system (respectively, 1-system) annular diagram.
Note that the square at which the blue and orange dual curves meet in the bottom right diagram is a
cornsquare with an outerpath on each boundary path, while the square at which the green and purple
dual curves meet is not a cornsquare, even though the latter two dual curves are dual to consecutive edges
on each boundary path.

Figure 6: A hexagon move and its effect on dual curves.
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p

Figure 7: The arcs αabc on the 5-punctured sphere, together with arc α<−1, drawn in blue, arc α23,
drawn in violet, and arc γ1, drawn in green.

exactly once and each αabc exactly twice (see Figure 7). Furthermore, each αij is in minimal
position with α<−1 by Corollary 2.2; since α<−1 is disjoint from the αabc, this shows that none
of the αij is homotopic to any of the αabc.

We claim that the αij are pairwise non-homotopic. Indeed, for k ∈ {1, . . . , n − 3}, let γk be
the horizontal arc joining the punctures at x = k − 1

2 and x = k + 1
2 , and note that αij and

γk are in minimal position by Corollary 2.2. Since no two of the αij share the same number of
intersection points with each of the γk, the αij must be pairwise non-homotopic.

We claim further that the αij pairwise intersect at most twice. Indeed, if i, j, i′, j′ ∈ {1, . . . , n−
2} with i 6 i′, then the number of intersection points between αij , αi′j′ is determined by the
order of j, i′, j′. If i′ < j 6 j′, then αij and αi′j′ are disjoint (see Figure 8, top). If i′ < j′ < j, then
αij and αi′j′ intersect once (see Figure 8, middle). Otherwise, j 6 i′, and there are two points
of intersection between αij and αi′,j′ (see Figure 8, bottom). Thus, the family A consisting of
α<−1, the αabc, and the αij is a 2-system of size 1 + (n− 3) +

(n−1
3

)
+
(n−2

2

)
=
(n
3

)
.

4. Properties of r-homotopic arcs intersecting at most twice

Let p, q, r be distinct punctures of a punctured sphere S, and let A be a 2-system of arcs on S
joining p and q. Let S̄ be the surface obtained from S by forgetting r, and for each arc α ∈ A,
let ᾱ be the homotopy class of the corresponding arc on S̄. In order to bound the size of A from
above, we will need to examine to what extent the map α 7→ ᾱ is injective. In this section, we
collect some facts about the fibers of this map. Together, the results of this section show that we
can extend A so that the size of each fiber is 1 larger than the number of pairs of disjoint arcs
in that fiber.

The main results of this section are Lemmas 4.5, 4.6, and 4.7. The proofs are rather technical
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p

p

p

Figure 8: The αij pairwise intersect at most twice.

and may be skipped on an initial reading.

Lemma 4.1. Let p, q, r be distinct punctures of a punctured sphere S, and let α1, α2 be a pair
of r-homotopic arcs joining p and q and intersecting at most twice. If the αi are in minimal
position, then they are in one of the configurations shown in Figure 9, up to relabeling p and q.

Proof. If α1, α2 are disjoint, then they bound a strip whose only puncture is r (see Figure 9, top
left). Otherwise, by Corollary 2.2, α1, α2 bound a half-bigon or bigon R whose only puncture is
r. If α1, α2 intersect exactly once, then R is a half-bigon and, since the αi are r-homotopic, all
punctures of S distinct from p, q, r lie in the other half-bigon formed by α1, α2 (see Figure 9, top
right).

If the αi intersect twice and R is a half-bigon, then the αi do not form a bigon, since otherwise
they would not be r-homotopic (see Figure 10). Thus, in this case, the αi must be as in the bottom
right diagram of Figure 9, and since the αi are r-homotopic, all punctures of S distinct from
p, q, r must lie in the other half-bigon formed by the αi.

Otherwise, R is a bigon, and the αi also bound a pair of punctured half-bigons. These half-
bigons must contain all the remaining punctures of S since the αi are r-homotopic (see Figure
9, bottom left).

The corollary of the following lemma will be useful in the proof of Lemma 4.4. The former
tells us that, in a particular context, if we have a portion of an arc then we can trace out the
remainder of that arc.

Lemma 4.2. Let D be a disc with at least 2 punctures in its interior and at least 1 puncture on
its boundary, and let α be an arc joining an interior puncture p of D to a puncture x on ∂D. If β
is another arc joining p and x such that α and β bound a strip containing all interior punctures
of D distinct from p, then β is homotopic to exactly one of the arcs α1, α2 shown in Figure 11
(left).
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Figure 9: The possible configurations of a pair of r-homotopic arcs in minimal position and intersecting
at most twice, up to relabeling p and q.

Figure 10: If α1, α2 are in minimal position, intersect exactly twice, and form a bigon that does not
contain r, then they cannot be r-homotopic. The fact that the bigon and half-bigons bounded by the αi

prior to forgetting r are punctured, and the fact that the arcs on the right are in minimal position, are
consequences of Corollary 2.2.
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Figure 11

Figure 12: By Lemma 4.2, given segments β0 and β1 of β, there are at most 2 homotopy classes of
arcs joining q and x2 to which β2 can belong. One such homotopy class produces a β that intersects α
non-transversally at x2, as shown above.

Proof. Suppose that the x-end of β lies to the right of α. Then we may homotope α1 so that it
bounds an empty strip with β, as in Figure 11 (right). Thus, in this case, β is homotopic to α1.
Similarly, if the x-end of β lies to the left of α, then β is homotopic to α2.

Corollary 4.3. Let p, q, r be distinct punctures of an n-punctured sphere S, with n > 4, and
let α, β be r-homotopic arcs in minimal position joining p, q and intersecting once or twice. Let
x1, . . . , xm be the points of intersection of α, β in the order that β traverses them as β travels
from p to q, and set x0 = p, xm+1 = q. For i = 0, . . . ,m, let βi be the segment of β joining xi
and xi+1. If m = 2, then the homotopy types of β0 and β1 determine that of β. If α and β do
not bound a bigon, then the homotopy type of β0 determines that of β for m = 1, 2.

Proof. For i = 0, . . . ,m, let αi be the segment of α joining xi and xi+1. We puncture S at
x1, . . . , xm.

Case 1: α and β intersect exactly once. Cutting S along α0, β0 yields two punctured strips. Let
D be the strip containing q. Note that x1 is now a puncture on ∂D, and that α1 and β1 are arcs
joining q and x1 and bounding a strip containing all the interior punctures of D distinct from
q. Thus, by Lemma 4.2, the homotopy type of β1 is uniquely determined, since only one of the
arcs described in Lemma 4.2 produces a β that intersects α transversally at x1 (in fact, the only
other candidate homotopy class of β1 produces a β that is homotopic to α).

Case 2: α and β form a bigon. Let D be the square containing the puncture q obtained by
cutting S along α0, β0, α1, β1. Now x2 is a puncture on ∂D, and α2, β2 are arcs joining q and x2
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and bounding a strip containing all the interior punctures of D distinct from q, so we may apply
Lemma 4.2 as in Case 1. Again, only one of the two homotopy classes to which β2 must belong
by Lemma 4.2 produces a β that intersects α transversally at x2 (see Figure 12).

Case 3: α and β intersect exactly twice but do not form a bigon. Let D be the strip containing
q obtained by cutting S along α0, β0. Since x1 is a puncture on ∂D, and α1, β1 are arcs joining
x1, x2 and bounding a strip containing all the interior punctures of D distinct from x2, the
homotopy type of β1 is uniquely determined by Lemma 4.2 as in the previous cases. Now let D′

be the strip containing q obtained by cutting D along α1, β1. Since x2 is a puncture on ∂D′, and
α2, β2 are arcs joining q, x2 and bounding a strip containing all interior punctures of D′ distinct
from q, the homotopy type of β2 is uniquely determined by Lemma 4.2.

Lemma 4.4. Let p, q, r be distinct punctures of an n-punctured sphere S, with n > 4. Let Ar
be a maximal 2-system of r-homotopic arcs on S that join p and q and are pairwise in minimal
position. Then, up to homotopy and relabeling p and q, Ar is as in Figures 13 or 14, depending
on whether or not there is a pair of arcs in Ar that form a bigon.

We divide the proof of Lemma 4.4 into the following two lemmas. Note that if Ar is as in
Lemma 4.4, then Ar necessarily contains a pair of intersecting arcs.

Lemma 4.5. Let Ar be as in Lemma 4.4, and suppose further that Ar contains intersecting arcs
α1, α2 ∈ Ar that do not form a bigon. Then Ar is as in Figure 13, up to homotopy and relabeling
p and q.

Proof. Let H be the half-bigon formed by the αi containing r, and assume that H is adjacent
to p (see Figures 15, 16, left). Let β ∈ Ar.

Case 1: The αi intersect exactly once. Let x be their unique point of intersection. If β is disjoint
from the αi, then β is homotopic to arc β1 in Figure 15 (right). Now suppose β is not disjoint
from the αi, and let z be the first point of intersection of β and the αi as β travels from p to q.
Suppose that z lies on α1. If the p-end of β lies in H, then β forms a half-bigon with α1 whose
only puncture is r, since otherwise α1 and β would form an empty half-bigon, contradicting
our assumption that α1, β are in minimal position (Corollary 2.2). Thus, by Lemma 4.1 and
Corollary 4.3, β is either homotopic to α2 or to arc β2 in Figure 15 (right). If the p-end of β
lies outside H, then z cannot lie on the segment (px)α1 , since otherwise β and α1 would form
an empty half-bigon. Thus, z lies on (xq)α1 , and so β again forms a half-bigon with α1 whose
only puncture is r. Thus, by Corollary 4.3, β is again homotopic to one of α2, β2. Note that, by
the above, Ar cannot contain an additional arc β′ intersecting α2 first as β′ travels from p to q.
This is because the reflection of β2 across the vertical diameter in Figure 15 (right) intersects β2
thrice.

Case 2: The αi intersect exactly twice. Let x, y be the points of intersection of the αi in the order
that α1 traverses them as it travels from p to q. In this case, β intersects at least one of the αi
since p, q are in distinct components of the complement of α1 ∪ α2. Let z be the first point of
intersection of β and the αi as β travels from p to q. Suppose that z lies on α1. If the p-end of
β lies in H, then, as in Case 1, β forms a half-bigon with α1 whose only puncture is r. Thus, by
Corollary 4.3, β is either homotopic to α2 or to arc β1 in Figure 16 (right). If the p-end of β lies
outside H, then, as in Case 1, z cannot lie on the segment (px)α1 . Thus, z lies on (xy)α1 . But
then β again forms a half-bigon with α1 whose only puncture is r, and so β is either homotopic
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Figure 13

Figure 14

to α2 or to β1 as before. Similarly, if β intersects α2 first as it travels from p to q, then β is either
homotopic to α1 or to arc β2 in Figure 16 (right).

Lemma 4.6. Let Ar be as in Lemma 4.4, and suppose further that Ar contains arcs α1, α2 ∈ Ar
that form a bigon. Then Ar is as in Figure 14, up to homotopy and relabeling p and q.

Proof. Let H be the half-bigon adjacent to p formed by the αi. Let x, y be the points of inter-
section of the αi in the order that α1 traverses them as it travels from p to q.

Let β ∈ Ar. If β is disjoint from the αi, then β is homotopic to the blue arc in Figure 14.
Now suppose β is not disjoint from the αi, and let z1, z2, . . . be the points of intersection of β
and the αi in the order that β traverses them as it travels from p to q. We assume that z1 lies
on α1. Note that, by Lemma 4.5, β forms a bigon (containing only the puncture r) with each of
the αi that it intersects.

Case 1: z1 lies on the segment (yq)α1. In this case, α1 and β form a half-bigon whose only
puncture is r. As remarked above, this is impossible.

Case 2: z1 lies on the segment (xy)α1. In this case, z2 does not lie on (xy)α2 . Otherwise, since
α2 and β are in minimal position, they would form a half-bigon whose only puncture is r (as in
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Figure 15

Figure 16

Case 1 of Lemma 4.5), but this is impossible. Thus, z2 lies on (xy)α1 , and so β is homotopic to
α2 by Corollary 4.3.

Case 3: z1 lies on the segment (px)α1. In this case, since α1, β are in minimal position, β forms
a half-bigon H ′ with α1 adjacent to p and containing at least one of the punctures of H.

Observe that z2 cannot lie on the segment (yq)α2 , since otherwise α2 and β would form a half-
bigon containing r. We also have that z2 cannot lie on (xy)α1 , since otherwise α1 and β would
not form a bigon. Furthermore, if z2 lies on (px)α2 , then so must z3, since otherwise α1 and β
would not form a bigon. But if z2 and z3 both lie on (px)α2 , then α2 and β form a bigon that
does not contain r, which is impossible.

Now, if H ′ contains all the punctures of H, then z2 cannot lie on (xy)α2 since α2, β are in
minimal position, and if z2 lies on (yq)α1 then β is homotopic to α2 by Corollary 4.3. Thus, we
may assume that H ′ contains some but not all of the punctures of H.

Under this assumption, z2 cannot lie on (yq)α1 , since otherwise β would be homotopic to
the purple arc in Figure 17 (left) by Corollary 4.3, and so β would intersect α2 thrice. For the
same reason, z3 cannot lie on (xy)α1 if z2 lies on (xy)α2 . The only case left to consider is that
z2 and z3 both lie on (xy)α2 . But then β is homotopic to the orange arc in Figure 17 (right) by
Corollary 4.3, and so β intersects α1 thrice.

Lemma 4.7. Let p, q be distinct punctures of an n-punctured sphere S, with n > 4. Let α1, α2, β
be arcs on S joining p, q in one of the configurations shown in Figure 18. Then an arc γ joining
p, q that is in minimal position with β and intersects β at least thrice must intersect α1 or α2 at
least thrice.
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Figure 17

Figure 18

Proof. Set x0 = p, and let x1, x2, x3 be the first 3 points of intersection of β and γ in the order
that γ traverses them as γ travels from p to q. For i = 0, 1, 2, let βi = (xixi+1)β, γi = (xixi+1)γ ,
and let Ri be the region not containing p bounded by βi, γi. If γ0 does not intersect the αi, then
R0 contains no punctures, and so β, γ are not in minimal position by Lemma 2.1, contradicting
our assumption. Thus, γ0 has at least one point of intersection with the αi. Similarly, R1, R2 must
each contain at least one puncture of S, and so each of γ1, γ2 has at least 2 points of intersection
with the αi. Thus, γ has at least 3 points of intersection with α1 or α2.

5. 1-System annular diagrams

In this section, we prove Theorem 1.5, which will be useful in the inductive step of the proof of
Lemma 1.4.

Lemma 5.1. Let S be a twice-punctured sphere and p, q its punctures. Let A be a finite collection
of simple arcs joining p and q. If there is a pair of intersecting arcs of A, then there is a pair of
intersecting arcs of A forming a region R adjacent to p such that no other arc of A has its p-end
in R.

Proof. Pick α, β ∈ A such that α and β intersect. Since neither α nor β has both of its ends at
p, there is a unique region R adjacent to p formed by α, β. If R is as in the statement of the
lemma, then we are done. Otherwise, there is an arc β′ ∈ A whose p-end lies in R. Since the
q-end of β′ is outside R, the arc β′ must intersect one of α, β, say α. We now repeat the above
steps with arcs α, β′. Since there are finitely many arcs in A, this process must terminate.
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Figure 19: If a single hexagon move produces two corners on P , then there is a dual curve beginning
and ending at P .

Figure 20: If a corner v produced by a hexagon move has a neighbor of degree 3, then that neighbor
had to have been a corner prior to performing that move.

The following corollary follows immediately.

Corollary 5.2. Let A be a square annular diagram whose dual curves are simple arcs joining
its two boundary paths, and let P be a boundary path of A. If A has at least one square, then
A has a cornsquare with outerpath on P .

We now proceed to the proof of Theorem 1.5.

Proof of Theorem 1.5. We proceed by induction on the number of squares of A. If A has no
squares, then A is a cycle. Now suppose A has at least one square, that there is a boundary path
P of A without a corner, and that the theorem holds for any annular square complex with fewer
squares than A. Since A contains a square, A contains a cornsquare with outerpath on P by
Corollary 5.2. Since A is a 1-system annular diagram, we may thus produce a corner on P via a
series of hexagon moves [Wis12, Figure 3.17]. Note that a single hexagon move cannot produce
two corners on P ; otherwise there would be a dual curve beginning and terminating at P (see
Figure 19).

We perform hexagon moves until the first corner v on P is produced. Note that each neighbor
of v has degree at least 4. Indeed, since P had no corners, we had to have performed at least one
hexagon move to obtain v, but a neighbor of v of degree 3 would correspond to a corner prior
to performing that move, contradicting our assumption that v is the first corner produced on P
(see Figure 20). Thus, by deleting v as well as the two edges and the square incident to v, we
obtain a 1-system annular diagram with one fewer square than A and without any corners on
one of its boundary paths, contradicting the induction hypothesis.

Corollary 5.3. Let p, q be punctures of an n-punctured sphere S, and let A be a 1-system of
arcs joining p and q such that |A| > 2 and the arcs of A are pairwise in minimal position. There
is a puncture s of S distinct from p, q that is p-isolated by A. If A contains a pair of intersecting
arcs, then s can be chosen so that the component H of S −

⋃
A containing s is a half-bigon.
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Proof 1. The dual square complex A to A is an annular square complex as in Theorem 1.5. Let P
be the boundary path corresponding to p. Note that A has at least 2 vertices since |A| > 2, and
that A has at least one square if and only if A contains at least one pair of intersecting arcs. If
A is a cycle, then we may take H to be the strip corresponding to any vertex of A. Otherwise, A
has a corner v on P , and we may take H to be the half-bigon corresponding to v. In either case,
H is punctured since the arcs of A are pairwise non-homotopic and in minimal position.

What follows is a direct proof of Corollary 5.3 found by the referee that does not employ
square complexes.

Proof 2. Note that since |A| > 2, we must have n > 4. If A is a 0-system, then the components
of S −

⋃
A are punctured strips, and we may take s to be any puncture of S distinct from

p, q. Otherwise, by Lemma 5.1, there is a pair of intersecting arcs α, β ∈ A forming a region
R adjacent to p such that no other arc of A has its p-end in R. Since α and β are in minimal
position and intersect exactly once, R is a punctured half-bigon. Let α′ ∈ A (resp. β′ ∈ A) be
the arc of A whose intersection with α (resp. β) is closest to p along α (resp. along β). If α′ = β
(resp. β′ = α), then we may take s to be any puncture of R. Otherwise, since α′ (resp. β′) does
not have its p-end in R, it must intersect (px)β (resp. (px)α), where x is the unique intersection
point of α, β. The p-end of α′ (resp. β′) lies in one of the components of α′ − α (resp. β′ − β).
Observe that, since A is a 1-system, either α′ has its p-end in the component of α′ − α disjoint
from R or β′ has its p-end in the component of β′−β disjoint from R. Without loss of generality,
assume the former is true, and set α1 = α′.

Now α1 and α form a punctured half-bigon H1 adjacent to p, and no other arcs of A may
intersect (px1)α, where x1 is the unique intersection point of α, α1. In particular, because A is a
1-system, any arc of A that enters H1 (necessarily through (px1)α1) must have its p-end in H1.
If no arc of A enters H1, then we may take s to be any puncture of H1. Otherwise, let α2 be the
arc whose intersection with α1 is closest to p along α1. Now α1 and α2 form a half-bigon H2,
and we choose the arc α3 whose intersection with α2 is closest to p along α2, and so on. Since A
is necessarily finite, this process must terminate.

6. Proof of Lemma 1.4

In this section, we prove Lemma 1.4, which essentially constitutes the inductive step in the proof
of Theorem 1.3. We will need the following:

Lemma 6.1. [Erd46] A set of pairwise intersecting straight line segments between ` points on a
circle in R2 has size at most `.

Proof of Lemma 1.4. We fix a complete hyperbolic metric on S of area 2π(n−2). We may assume
that P,Q are nonempty, and that the arcs of P ∪Q are pairwise in minimal position. We divide
the proof into steps:

Step 0: The arcs of P (and hence the arcs of Q) are consecutive at r. Indeed, suppose α, α′ ∈ P
are distinct, and suppose there is an arc β ∈ Q whose r-end lies in the strip or half-bigon H
bounded by α, α′ and adjacent to r. Since β does not intersect α, α′, the puncture q must lie in
H. Since no arc of Q intersects α, α′, it follows that the r-end of every arc of Q must also lie in H.
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Figure 21: An illustration of Step 1.

We fix an orientation on S. This induces a cyclic order C of the arcs of P ∪Q around r. By Step
0, this order in turn induces a linear order < on P, where the minimum and maximum arcs of
P are those with a successor or predecessor in Q under C.

We proceed by induction. If n = 3, then, up to homotopy, there is a unique arc joining r to
each of p, q, and the statement of the lemma holds. Now let n > 4, and assume the lemma holds
if S has fewer punctures. If P consists of a single arc then the lemma is trivially satisfied since
|Q| 6

(n−1
2

)
by Theorem 1.2. Thus, we may assume that |P| > 2.

Step 1: There is a puncture s of S distinct from p, q, r that is p-isolated by P. Indeed, if the
arcs of P are pairwise disjoint, then since |P| > 2, we have that S − P consists of at least two
punctured strips adjacent to p and r, and so we may take s to be a puncture of any such strip
that does not contain q (see Figure 21, left). Otherwise, by Corollary 5.3, there is a puncture
s distinct from p, r that is p-isolated by P such that the component of S −

⋃
P containing s

is a half-bigon (see Figure 21, right). In this case, s is necessarily distinct from q since we are
assuming Q to be nonempty, and so there is at least one arc disjoint from the arcs of P joining
q and r.

Let S̄ be the surface obtained from S by forgetting the puncture s (endowed with a complete,
finite-area hyperbolic metric), and for each arc α ∈ P ∪Q, let ᾱ be the corresponding arc on S̄.
Let P̄, Q̄ be the collection of all ᾱ for α ∈ P,Q, respectively. We tighten the arcs of P̄ ∪ Q̄ to
geodesics, thereby identifying arcs that correspond to s-homotopic arcs on S.

The orientation on S induces an orientation on S̄. As above, this gives us a linear order ≺
on P̄.

Step 2: Two distinct arcs in Q cannot be s-homotopic. Otherwise, they would form a strip
adjacent to q, r or a half-bigon adjacent to one of q, r whose only puncture is s, which cannot
happen since the component of S−

⋃
(P∪Q) containing s is adjacent to p. Thus, we may identify

Q̄ with Q.

Step 3: Arcs in P that are s-homotopic must be consecutive at r. Indeed, suppose that α, α′ ∈ P
are s-homotopic. If α, α′ bound a strip whose only puncture is s, then the r-end of any arc
β ∈ P distinct from α, α′ cannot lie inside this strip, since otherwise β and one of α, α′ would
necessarily form a half-bigon adjacent to r whose only puncture is s, contradicting the fact that
s is p-isolated.
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Figure 22: The only possible configuration of two intersecting s-homotopic arcs α, α′ ∈ P, and the unique
arc α′′ up to homotopy joining p and r and disjoint from α, α′.

Otherwise, α and α′ form a half-bigon adjacent to p whose only puncture is s, and a half-bigon
adjacent to r containing all punctures of S except p, r, s (see Figure 22). Thus, any arc α′′ in P
distinct from α, α′ with r-end outside the latter half-bigon must be disjoint from α, α′, in which
case α, α′′, α′ are in fact s-homotopic and consecutive at r.

In the case that P contains a (necessarily unique) pair of intersecting s-homotopic arcs α, α′,
we extend P and R as follows. As discussed in Step 3, there is a unique arc α′′ up to homotopy
joining p, r and disjoint from α, α′. The arc α′′ is s-homotopic to α, α′ and lies between α, α′ in
the linear order on P. If P contains an arc α′′′ homotopic to α′′, we rename the former arc α′′.
Otherwise, we add α′′ to P. At this stage, if there is an arc β ∈ Q such that (α, β), (α′, β) ∈ R
but (α′′, β) /∈ R, then we add the pair (α′′, β) to R. Since α′′ is disjoint from all arcs in P ∪ Q,
we have not violated any of the conditions of the lemma.

Note that if P does not contain a pair of intersecting s-homotopic arcs, then the fibers of the
map P → P̄ have size at most 2.

Step 4: For any α, α′ ∈ P, if α < α′ then ᾱ � ᾱ′. Indeed, if ᾱ � ᾱ′, then α, α′ form a half-bigon
adjacent to r whose only puncture is s. This cannot happen since s is p-isolated.

Let R̄ be the image of R under the map P × Q → P̄ × Q, (α, β) 7→ (ᾱ, β). It is clear that R̄
satisfies condition (i), and it follows from Step 4 that R̄ satisfies (ii) as well, so that |R̄| 6

(n−2
2

)
.

It remains to show that |R| − |R̄| 6 n− 2.

Let I be the subset of R̄ consisting of elements with more than one pre-image under the map
R → R̄.

Step 5: If (ᾱ, β), (ᾱ′, β′) ∈ I with β 6= β′, then β, β′ are disjoint. Indeed, let (α1, β), (α2, β) be
pre-images of (ᾱ, β), and (α′1, β

′), (α′2, β
′) pre-images of (ᾱ′, β′) with α1 6= α2, α

′
1 6= α′2. Suppose

that β and β′ intersect. Note that we cannot have {α1, α2} = {α′1, α′2}, since otherwise either
(α1, β), (α2, β

′) or (α1, β
′), (α2, β) would be two intersecting pairs of arcs in R whose cyclic order

around r is not alternating, contradicting assumption (ii).

Now suppose {α1, α2}∩{α′1, α′2} 6= ∅. Then there are 3 distinct arcs among α1, α2, α
′
1, α
′
2 that are

s-homotopic. Assume without loss of generality that these arcs are α1, α2, α
′
1. Observe that α′1
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Figure 23: An illustration of Step 6. Here, the pairs (α1, β) and (α′1, β
′) contradict assumption (ii).

cannot intersect αi for i = 1, 2, since otherwise (αi, β), (α′1, β
′) would intersect more than once,

contradicting assumption (i). Thus, α1 intersects α2, but then α′1 lies between α1 and α2 at r,
and so there is an i ∈ {1, 2} such that (αi, β), (α′1, β

′) contradict assumption (ii).

We conclude that α1, α2, α
′
1, α
′
2 are distinct; in particular, since at most 3 distinct arcs in P

can be s-homotopic, we must have ᾱ 6= ᾱ′. Thus, by Step 3, the order of α1, α2, α
′
1, α
′
2 at r is

neither alternating nor nested. By the latter, we mean that α1, α2 do not both lie between α′1, α
′
2

in the linear order on P, and vice versa. Since each of the pairs of arcs α1, α2 and α′1, α
′
2 bound

a strip or half-bigon containing s, we must have that αi, α
′
j intersect for some i, j ∈ {1, 2}, but

then (αi, β), (α′j , β
′) intersect more than once, contradicting assumption (i).

Step 6: If (ᾱ, β), (ᾱ′, β′) ∈ I with ᾱ 6= ᾱ′, β 6= β′, then the cyclic order of (ᾱ, β), (ᾱ′, β′) at r
is alternating. Indeed, suppose otherwise, and let (α1, β), (α2, β) be pre-images of (ᾱ, β), and
(α′1, β

′), (α′2, β
′) pre-images of (ᾱ′, β′) with α1 6= α2, α

′
1 6= α′2. Then, by Step 3, the order of

α1, α2, α
′
1, α
′
2 at r is neither alternating nor nested. Thus, as in Step 5, αi, α

′
j must intersect for

some i, j ∈ {1, 2}, but then (αi, β), (α′j , β
′) are two intersecting pairs of arcs in R whose cyclic

order around r is not alternating, contradicting assumption (ii) (see Figure 23).

Let Hq be the image of I under the projection map P̄ × Q → Q. Let Hs be the collection of all
geodesic arcs a joining r and s such that a is contained in a strip bounded by a pair of distinct,
disjoint s-homotopic arcs in P (see Figure 24).

Let H = Hs∪Hq, and let I ′ ⊂ Hs×Hq be the set of all (a, β) ∈ Hs×Hq such that (α, β) ∈ I
for an arc α bounding a strip corresponding to a. We extended R (immediately after Step 3) so
that the map R → R̄ is injective outside a set of cardinality |I ′|. Indeed, each element of I has
either 2 or 3 pre-images in R; in the first case, one gets 1 element of I ′, and in the second, one
gets 2 elements of I ′. Thus, to complete the proof, it suffices to show that |I ′| 6 n− 2.

Step 7: The complement of
⋃
H consists of punctured strips and a single square, possibly with

no punctures. Indeed, the arcs of Hs are disjoint by construction [Prz15, proof of Theorem 1.7],
and the arcs of Hq are disjoint by Step 5, so that the complement of each of

⋃
Hs,

⋃
Hq consists

of punctured strips. By Step 0, the arcs in Hq (and hence the arcs in Hs) are consecutive at r.
Thus, Hs is contained in a single strip of S −

⋃
Hq and vice versa. Let β, β′ be the arcs in Hq

bounding the unique strip of S −
⋃
Hq containing Hs, and let γ, γ′ be the arcs in Hs bounding

the unique strip of S −
⋃
Hs containing Hq (note that we do not exclude the possibility that
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Figure 24: The collection Hs (the arcs of Hs are dashed). The case where P contains an intersecting
pair of s-homotopic arcs is depicted on the left, while a generic case is depicted on the right. Note that,
in either case, |Hs| = |P| − |P̄|.

β = β′ or γ = γ′). Then the complement of
⋃
H consists of the remaining strips of S −

⋃
Hq,

S −
⋃
Hs and a square bounded by β, β′, γ, γ′.

Step 8: |H| 6 n − 1. Indeed, |H| is 2 larger than the number of strips of S −
⋃
H, so it suffices

to show that there are at most n − 3 of these strips. This is true by Step 7 since S has area
2π(n− 2), and a punctured strip and a square each have area at least 2π.

Step 9: |I ′| 6 n−2. To show this, we intersectH with a small circle C centered at r. Each element
of I ′ is determined by a pair of points of this intersection, and we connect them by a straight
line segment. We also draw a line segment between the outermost points on C corresponding
to elements of Hq. By Step 6, these line segments are pairwise intersecting, so by Lemma 6.1,
|I ′|+ 1 6 |H| 6 n− 1.

Remark 6.2. Note that we already used planarity in Step 0 of the proof of Lemma 1.4 (see
Figure 25).

Remark 6.3. Note that if |H| = n − 1 in Step 8, then S −
⋃
H necessarily consists of a single

square without punctures, |Hq|−1 once-punctured strips from r to q, and |Hs|−1 once-punctured
strips from r to s, one of which contains p (see Figure 26).

7. Proof of Theorem 1.3

Proof of Theorem 1.3. We proceed by induction on n. The case n = 3 is trivial. Now let n > 4,
and assume the theorem holds if S has fewer punctures. Let r be a puncture of S distinct from
p, q. Let S̄ be the (n− 1)-punctured sphere obtained from S by forgetting r. For each arc α ∈ A,
let ᾱ be the corresponding arc on S̄, and let Ā = {ᾱ : α ∈ A}. We tighten the arcs of Ā to
geodesics. Note that Ā is a 2-system on S̄, and so |Ā| 6

(n−1
3

)
by the induction hypothesis. Thus,

it is enough to show that |A| − |Ā| 6
(n−1

2

)
. To that end, we examine the extent to which the

map π : A → Ā, α 7→ ᾱ is injective.
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p p

q

q

r

Figure 25: If we allow S to have positive genus then, under the assumptions of Lemma 1.4, the arcs of
P need not be consecutive at r.

Figure 26: The 0-system H must have the above configuration if it is of maximum size.

Figure 27
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By Lemmas 4.4 and 4.7, we may add arcs to A so that for each α ∈ A,

|π−1(ᾱ)| − 1 = |{{α1, α2} ∈ π−1(ᾱ) : α1, α2 distinct and disjoint}|

Let P (resp., Q) be the collection of all geodesic arcs α on S starting at r and ending at p (resp.,
ending at q) such that α is contained entirely in a strip bounded by a pair of distinct, disjoint
r-homotopic arcs in A. Let R ⊂ P×Q be the relation consisting of all pairs (α, β) such that both
α and β lie in a single such strip. We claim that P,Q,R satisfy the conditions of Lemma 1.4, so
that |R| 6

(n−1
2

)
. Since |R| = |A| − |Ā|, this completes the proof.

We first note that for (α, β), (α′, β′) ∈ R corresponding to pairs of disjoint r-homotopic arcs
γ1, γ2 ∈ A and γ′1, γ

′
2 ∈ A, respectively, we have for some i, j ∈ {1, 2} that r produces at least

one point of intersection between γi, γ
′
j . Each point of intersection between the arcs α, β, α′, β′

produces an additional point of intersection between γi, γ
′
j . It follows that there is at most one

point of intersection between any two pairs of arcs in R.

We now show that no arc in P intersects an arc in Q. Indeed, suppose we have (α, β), (α′, β′) ∈
R such that α intersects β′. By the above, α intersects β′ exactly once and that is the only point
of intersection between the pairs of arcs (α, β), (α′, β′). But then we can find two arcs in A that
intersect thrice, as shown in Figure 27 (left).

Finally, if there are two intersecting pairs of arcs in R whose cyclic order around r is not
alternating, then we can also find two arcs in A that intersect thrice, as shown in Figure 27
(right).
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