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THE CONSERVATION LAW OyU+OxV’l-u:=O AND DEFORMATIONS
OF FIBRE-REINFORCED MATERIALS*

RUSTUM CHOKSIt

Abstract. The conservation law COyU + 0xv u2 0 is found to govern planar deformations
of incompressible materials containing a continuous linear distribution of inextensible fibres. Kine-
matically feasible deformations are discussed, with emphasis on admissibility and the resolution of
nonuniqueness. Many of the aspects of hyperbolic conservation laws have direct consequences in the
kinematics of these materials, thus providing an illustrative guide to the theory. Alternatively, the
study of this conservation law is geometrically motivated by questions on the structure of the set of
points above a continuous function curve whose minimum distance to the curve is achieved in several
places.
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1. Introduction to the problem. In this article a particular hyperbolic conser-
vation law in a rather unusual setting is studied. The equation governs deformations
of certain idealized composite materials: planar deformations of an incompressible
matrix reinforced with inextensible fibres (cf. Pipkin and Rodgers [9], Spencer [10]).
A hyperbolic conservation law is a first-order, quasi-linear equation of the form

(1.1) OyU + Ox[f(u)] 0,

where f is some smooth and usually nonlinear function. The mathematical theory
behind such equations began in the fifties with a paper by Hopf (cf. [5]) on the special
case f(u)- 1u2 and was further developed for (1.1) by Lax and Oleinik (el. [6], [7]).
The fact that (1.1) has always been regarded as an evolution equation (y being a time
variable) has introduced concepts such as entropy which have been guiding forces
in the analysis of solutions to initial value problems. We will be interested here in a
purely spatial setting, where solution values are specified either explicitly or implicitly
on a function curve. In addition to having an application to kinematics of composites,
the study of our equation provides a vivid illustration of many facets of hyperbolic
conservation laws; many aspects of the theory have direct physical significance in the
fibre configurations of these materials.

Alternatively, the study of our equation plays a central role in describing the
following set. Given a continuous function curve y O(x), what is the structure of
the set of points above the curve whose minimum distance to the curve is attained
at more than one (or two) point(s)? We show that regardless of the differentiability
of O, this set consists of a countable number of Lipschitz curves which are smooth
almost everywhere (a.e). The set of points which have more than two distance mini-
mizers is at most countable and these points are either points of intersection or initial
points of these Lipschitz curves. This increased regularity is a consequence of the
genuine nonlinearity (cf. [6]) of the problem, which is made transparent by consid-
eration of the conservation law. Finally, the conservation law studied in this purely
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spatial situation bridges two fundamental aspects of the theory of scalar conservation
laws: minimization via the Hamilton-Jacobi theory (the Lax characterization) and
generalized characteristics.

The physical problem is the following. Consider an incompressible material (for
example, rubber) which contains a continuous distribution of strong fibres (for exam-
ple, metal). The purely kinematic study of such materials began in the early seventies
with work of Pipkin and Rodgers [9], [I0] who proposed a theory irrespective of the
nature of the materials in question. Working with the assumptions that the compos-
ite was incompressible and the fibres were inextensible and continuously distributed,
they considered planar deformations of a block with initially parallel linear fibres.
The problem was to determine kinematically feasible deformations, hence fibre con-
figurations, of the entire block given the deformation of a particular boundary fibre.
The following conclusions were made. In general, such a boundary displacement prob-
lem has many possible fibre configurations, some of which may involve discontinuities
in the fibre direction. Distinguishing among these configurations is not possible on
kinematic grounds alone. Because the assumptions of incompressibility and inexten-
sibility result in an arbitrary pressure and tension component in the entire stress
function, given reasonable assumptions on the stress response (i.e., the particular
material type), any kinematically admissible deformation can be achieved, i.e., solve
the equations of equilibrium. Thus kinematically admissible solutions are statically
admissible.

We introduce the basic notation and derive the conservation law at work. Let
X (XI, X2, X3) denote the position of a material point in the reference configuration
and x(X) (x(X),x2(X),x3(X)) the position in the deformed configuration where
the deformation x(X) is a Lipschitz homeomorphism. Let F Vx be the deformation
gradient and assume we are dealing with a planar deformation, i.e., xa(X) Xa
and z, x2 are functions of X and X2 only. The composite material is said to be
incompressible if the set of admissible deformations is contained in { x(X) det Vx
1 for a.e. X }. For simplicity of notation let X X,X Y, x x, and x y.
We assume that through each point X passes a fibre with unit tangent vector A(X).
Thus the reference fibres are trajectories of the vector field A. We take Aa 0. The
vector field

a(X) F. A(X)

will determine the position of the fibres in the deformed body. The above gives a
referential (Lagrangian) description of the deformed fibre tangent vectors. We use

x(X) to write a as a function of x, hence x and y, and from now on refer to a as this
function, which is our basis for describing the deformed state of the composite. Our
dependent variables are thus al and a2, the first and second components of a, and
a2(x, y), for example, represents the vertical component of the deformed fibre which
passes through the point (x,y). Regardless of whether the deformation is planar
or not, the composite being incompressible implies that the divergence of the fibre
tangent vector field is conserved in the following sense.

PROPOSITION 1.1. If the deformation x preserves volume, i.e., det Vx 1 a.e.,
then

(1.2) div a DIV A,

where the equality is interpreted in the sense of distributions. Here, div is with respect
to the spatial variables x, y, and DIV is with respect to the material variables X, Y.
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Proof. This proposition is attributed to Pipkin and Rodgers in the literature (cf.
[10]) and a proof for smooth vector fields can be found in either [9] or [10]. We will be
concerned with vector fields which may not even be piecewise smooth, and hence we
show (1.2) in the sense of distributions. Adopting the usual summation convention,
let E C be.any test function. Then

(diva,) =f 0 / Ox 0a x - x.

Using the incompressibility condition (determinant of deformation gradient is one
a.e.),

/iv a, ) X X (DIV A, }. [3

The inextensibility of the fibres is equivalent to a being a unit vector, so (al)2 +
(a2) 2 1. Under the assumption that al does not change sign, say positive, and
hence the fibres all look like graphs of functions of x, we have

(1.3) a V/1- (a2) 2.

Assuming the initial configuration of the fibres consists of parallel lines, i.e., A
(1, 0, 0), we combine the linear equation (1.2) with (1.3) to obtain the nonlinear equa-
tion

Oya2 + cox V/1 (a2)2 0.

2. Solutions: Breakdown of continuous fibre directions and existence
of weak solutions. Let us agree to refer to the dependent variable a2 as u. Thus
we will study

(2.1) OyU + i)x V/1 u2 O.

Consider the region in the reference domain { (X, Y) -c < X < c, 0 _< Y _< c}.
Suppose it is known that Y 0 is deformed into the curve y O(x). What de-
formations are possible, or, alternatively, what kinematically feasible deformed fibre
configurations are possible? For O(x) continuous, consider the set

B "= { (x, V) V > O(x)},

and let B denote its interior {(x, y) y > e(x)}. To begin, we assume O is differ-
entiable and look for a solution to (2.1) on B such that

(x,O(x)) O’(x)
V/1 + [O’(x)]

We refer to this problem as the upward problem, i.e., determining fibre configurations
from a specified bottom fibre. Once u(x, y) is found, the deformed fibre configuration
is obtained by solving the system

(2.2)
dx V1 u dy
d--- d-- u,
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whose trajectories correspond to the deformed fibres, noting that regardless of the
regularity of u, the solution (x(t), y(t)) must be the continuous image of a line with
X constant. This new configuration provides an illustration of the kinematically
feasible deformation x. Let us note that a great deal of information about (2.1) is
known. This knowledge dates back to Lax [6] and Oleinik [7] who, following a paper of
Hopf [5] pertaining to a quadratic f, laid the foundation for hyperbolic conservation
laws. One might hastily conclude that everything is known about (2.1). However,
there are some subtle but important differences; namely, y is not interpreted as a
time variable and initial conditions are prescribed on a function curve rather than
on a variable axis. Moreover, there is an intimate relationship between the data and
where they are prescribed. Uniqueness is a central problem in the study of (1.1),
and analytical methods alone do not suffice to alleviate the nonuniqueness present
in global solutions. One must go to the physics surrounding the conservation law
to weed out the physically undesirable solutions. For the evolution equations this
centres around the idea of entropy and has led to irreversibility of y in the initial
value problem.

As with any scalar conservation law, the solution to (2.1) is constant along classi-
cal characteristic lines which in the present situation are normal lines to the boundary
O fibre, indeed, to every fibre. Recall that classical characteristics are solutions to
the ordinary differential equation

dx -it
f’(u)-

dy v/1 u2

In fact, (2.1) is simply a statement that the normal derivative of u along any fibre is 0.
Hence given a specified (9 curve with simple structure, it is easy to sketch a feasible
deformed fibre configuration and therefore a solution u by constructing "parallel"
curves. One immediately realizes that the normal distance between any two initially
parallel fibres is preserved everywhere, a result obtained by Pipkin and Rodgers using
geometry. They consider the Frenet-Serret equations of the fibres together with (1.2)
to obtain equality between the curvature of the normal curves (curves normal to the
fibres) in the deformed and initial configurations. If a crimp line occurs (a curve
across which fibre directions are discontinuous or alternatively where characteristics
collide), the Rankine-Hugoniot jump conditions (cf. [6]) for (2.1) imply that the fibres
on each side of the crimp line make equal angles with the crimp line. Precisely, the
Rankine-Hugoniot jump conditions imply that the slope, with respect to y, of the
crimp line is related to the jump in fibre directions by

S
V/1 (u+)2 V/1 (u_)2

it+ t_

where u+ are limits from the left and right, respectively. Examples of solutions to
(2.1), i.e., kinematically feasible deformations, for various bottom fibre specifications
are given in Figures 1 through 7; Figure 1 shows the undeformed block. The specified
boundary y O(x) is denoted in bold. If O is concave down and smooth, the problem
has a unique solution with no crimp line (see Figure 2). However, if it is not smooth,
one can have many solutions, some with crimp lines and others with smooth fibres
(see Figures 3, 4). If O is concave up, crimp lines appear in any feasible deformation
(see Figures 5, 6, and 7). One might hastily conclude that in such a case we have a
unique solution, but Figure 6 shows that a continuum of solutions, parametrized by
the angle between adjacent crimp lines, can be constructed for the same boundary
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FIG. 1. FIG. 2.

FIG. 3. FIG. 4.

displacement of Figure 5. For these simple O curves, the theory of Pipkin and Rodgers
(based on the fact that the curvature of the normal curves is zero) is sufficient to
give a complete description of the kinematically feasible deformations, but for more
complicated curves, a more precise method of obtaining a solution is required. It is
with our simple conservation law and the theory which is to follow that we can find
and describe solutions to any boundary problem (even for nowhere differentiable O)
and address the issue of nonuniqueness, as exhibited for instance in Figures 3 and 4 (or
5 and 6), from a solely kinematic point of view. If a downward problem is considered,
that is, specification of a deformed upper (top) fibre, all the previous statements and
diagrams have analogues pertaining to the lower fibre configurations.

In terms of the regularity of solutions under the assumption of smooth boundary
displacement curves, we have the following.

PROPOSITION 2.1. Let be C2. A solution to (2.1) develops a discontinuity d
(normal distance) away from the boundary fibre 0 where d is given by

1
d inf

and (x) is the signed curvature of O(x); i.e., is positive if 0 is concave up and
negative if concave down. Hence the fibre which is initially d above the bottom fibre in
the undeformed configuration will be either the "first" fibre to have discontinuous slope
or the "last" fibre whose slope is continuous. As we shall see, the former corresponds
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FIG. 5. FIG. 6.

FIG. 7.

to the centre of a compression wave and the latter to a shock generation point (see 3
for definitions).

Note that if O’ is always negative then d < 0 and a continuous solution u is

uniquely determined by O. Proposition 2.1 could probably be proved with geometry
alone (radius of curvature, etc.). We give an analytical proof similar to the one used to
find a precise breakdown time for a solution of the Burgers equation ((1.1) with f(u)
!u2) To begin, we need an expression for the curvature of the fibres in terms of our2

variable u.

LEMMA 2.2. Let u be a smooth solution to (2.1). The curvature of the deformed
fibre associated with u through (x, y) is given by

1
(2.3) (x, y)

1 u2(x, y (x

Proof. The fibre through (x y) has a parametrization (x(t), y(t)) where

dx
x/l ualdt dt =a2 --.
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The curvature is given by

(x, ) Ixty" x’yl
((x,) . + (,))-

Oa2 Oa2 Oa 0aa / -y ala2 --x ala. Oy a

Using the fact that b-i o--k--flY)and Oy Oy --E;--)together with (1.2) we
obtain

-x + -y a a2 / --a
1 Oa. 1

Proof of Proposition 2.1. By Lemma 2.2,

1
t(x,y)--

1-u2
or -- 1 On

"1 u Ox

Next we examine the behavior of o along characteristic lines First note that in

general o is not defined on the boundary O curve. However we define it as the limitxx
along characteristics. To be precise, for every (x, y) E { (x, y) y > O(x)},

(1 u),Ox

and hence define

o(x) O(x)

Differentiating (2.1) with respect to x, we obtain

xx y x/’l-u: x x-
Let w(x(y) y) be the value of o along a characteristic x(y) emanating from (5 0(5))
The previous equation becomes

(2.4)
dw 1

w O.
dy ( _)

The coefficient of w is constant along characteristics and hence (2.4) can be solved
explicitly to obtain

()- c-

where C := (l_u2)g(ff:,o()) / O(:). Thus, w will blow up when
(_2)

y 0(5) + (1 uS) 1/2
(,o())
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In terms of normal distance, distance along the characteristics, we have blow up at

V/1 u2
1 1 1

E]

For certain O, we are posed with a uniqueness problem which on the onset seems
identical to that for evolution conservation laws, for example the Burgers equation.
However, the physical circumstances in which (2.1) arises differ substantially from
other known situations in which a conservation law governs behaviour. Taking into
account the experience gained within these evolution situations (where entropy is the
guiding force), we make the following requirement for a piecewise smooth solution
concerning the characteristics and the crimp line: on each side of the crimp line,
characteristics emanating from the O curve intersect the crimp line. In the context of
a time-dependent conservation law, this is the Lax admissibility (or entropy) criterion

(cf. [6]). For either the upward or the downward problem stated here, one can easily
verify that solutions which do not satisfy this criterion are geometrically unstable:
small perturbations of the O curves lead to large differences in the deformation, and
hence the composite is unstable and likely to snap (see Proposition 4.1). For the
upward problem, this condition is equivalent to requiring the solution to satisfy

_<

where, for example, u(x-, y) limz_.x-u(z, y). Note that the opposite inequality
should hold for the downwardproblem. Figures 2, 4, 5, and 7 are examples of this
condition when it is satisfied. In the theory of hyperbolic conservation laws, it is well
known that even C Cauchy data may give rise to a solution whose jump discontinu-
ities may accumulate (cf. [1]). Breaking from the class of piecewise smooth solutions,
we look for weak solutions with the property that left and right limits exist and satisfy
(2.5). Further, let us agree to call discontinuities of such a solution, points where left
and right limits differ, shocks.

For a piecewise smooth O it would seem reasonable to propose the following
formula for an admissible solution, one whose discontinuities are shocks. Let O(x) be
continuous and piecewise differentiable. Let (x, y) E B. There exists at least one
point on the the curve O such that the minimum distance from (x, y) to the curve
is achieved at this point. If there is more than one such point (minimizers), define
u arbitrarily. Otherwise, call the unique minimizing point (z, O(z)). Suppose O’(z)
exists. Define

e’(z)

If O’(z) does not exist, let d(x, y):= -(y_O()) and define

v/l +de

The last step amounts to constructing a rarefaction wave in the occurrence of a jump
(which must be downward) in the slope of the boundary curve. Alternatively, note
that the above definition can be replaced with the following. Define

d
u(x, y) with

v/1 +d2
d(x,y)

y-O(z)
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where (z, O(z)) minimizes distance from (x,y) to the O curve. This definition is
independent of the smoothness of O, and u(z, O(z)) does not appear explicitly but
rather is built implicitly into the formula. The above definition even makes sense
for , which is nowhere differentiable: no boundary values here, but as we shall see,
the property that classical characteristics are normal to the fibres is preserved. It is
not surprising that the proposed solution involves a minimization. Recall the Lax
characterization of the entropy solution to (1.1) with data specified at y 0 (cf. [6]).
His formula is based on the relationship of (1.1) to the Hamilton-Jacobi equation

(2.6) Uy + f (U) O,

whose solutions are rooted in the calculus of variations. One obtains (2.6) from (1.1)
by integration with respect to x. We apply Lax’s arguments to obtain existence of
an admissible solution for any continuous . In our case, the functional which is
minimized has a particular geometric significance.

THEOREM 2.3. Let O(x) be any continuous function and

(x, v, z) .=

(x z) + (v O(z))

For (x, y) B, define

(2.) (x, v) := (x, v, z),

where z minimizes D(x,y,z) := (x- z)2+ (y- O(z))2. Then on B, u satiCes
(2.1) in the sense of distributions with all the discontinuities of u being shocks.

Proof. First note that for any (x, y), D(x, y, z) achieves its minimum at some
z. rthermore, for fixed y, let z(x) denote any minimizer of D(x, y, z). Then z(x)
is nondecreasing. Thus for all but a countable number of x, D(x, y, z) has a unique
minimizer, and hence for each y, u(x, y) is well defined almost everywhere. We define

L% a(x, v, z) -nO(,,) z
,(x, V) L% -"(’’)z

and

(_ f (G(x, y, z)) e-nD(x’y’z) dz
fn(X, y) Lc e-nD(x,y,z) dz

where f(u):= v/1- u2. At points (x, y), which have unique minimizers, these inte-
grals are well defined, and

u(x, y) lim un (x, y) and f(u(x, y)) lim fn (x, y).

In fact, by considering the measurable function lim inf un lim sup un, we may con-
clude that the set where u is not well defined (nonunique minimizer) is a Lebesgue
measurable set of R2 and hence, by Fubini’s theorem and the fact that for fixed y this
set is countable, of measure zero. Thus, the above limits are valid for almost every
(x, y) E B. We show that for each n, the smooth function Un actually solves the
equation (U)y + (f)x 0 in the usual sense. Define

Vn (x, y) log/5 e-nD(x’y’z) dz.



1548 RUSTUM CHOKSI

Computing the partial derivatives of Vn, we obtain

oy, oy.
nn(X, y) and -n fn (x, y),Ox Oy

and thus Oyun(x, y)+ Oxfn(X, y) 0. The Lebesgue dominated convergence theorem
(note that u, and fn are bounded) together with the almost everywhere convergence
of u,,(x, y) and fn(x, y) implies that u satisfies (2.1) in the weak, integral sense; i.e.,

+ f(U)xdxdy 0 for every e Cc ({(x,y) y > O(x)}).

Next, we show that at a point of discontinuity (xl, yl), the limits u(x+, y) and
u(x-,y) both exist and u(x+,y) :> u(x-,y). Consider the smallest minimizer
z associated with the point (x, y) and let xn --* x-, with zn any minimizer associated
with (xn, y). By continuity of O(x), we must have z z, and therefore by (2.7),
u(x-, y) exists. An analogous argument implies that u(x+, y) exists, and by definition
of u, inequality (2.5) must hold. This completes the proof of Theorem 2.3. However,
additional information can be obtained by constructing an inequality analogous to
the entropy inequality for evolution equations. To this end, fix y and let

Cy {x (x, y) E B and there exists no minimizer for (x, y) with y O(z) }.

Cy consists of an at most countable collection of connected components. Choose
a b in one component. There exists A > 0 such that for x E [a,b] we have
(xl-Aff(u(xl, y)), y-A) B where u(x, y) is calculated with any minimizer. Now
for x2 [a, b] with x < x2 we must have Xl tfl(U(Xl, y)) <_ X2 Aff(U(x2, y)).
Using the mean-value theorem and the fact that f" (.) _< -1, we obtain

(2.8) ?’t(X2’ y) lt(Xl, y) > 1

x x A

It is easy to check that on the interior of the complement of Cy, u is either 1 or -1.
Thus inequality (2.8) implies that for every y, the decreasing variation of u(., y) is
locally bounded. This implies that the total variation is also locally bounded and
hence u(., y) is locally of bounded variation. In particular, at each x, left and right
limits exist and u(x/, y) >_ u(x-, y).

Theorem 2.3 implies that even if the boundary fibre is deformed so badly that
no tangent directions exist, the fibres immediately above have tangent directions
almost everywhere. Thus the nonlinearity of the situation may force infinitely smooth
boundary displacements to produce discontinuities but also rescues very irregular
boundary displacements. Moreover, for smooth boundary displacement perturbations
"close" to such an irregular one, the solutions given by Theorem 2.3 are "close" (see
Proposition 4.1), justifying on kinematic grounds the significance of such irregular
displacements.

In the next section we study the structure of the solution which will aid in demon-
strating a certain uniqueness. In order to initiate the study of uniqueness, we must
formulate precisely the boundary value problem. Recall that Theorem 2.3 does not
explicitly refer to boundary values. The widest class of O for which boundary values
are meaningful is that of functions locally of bounded variation (thus O(x) exists
a.e.). In addition to u being a weak admissible solution (cf. (2.5)) to (2.1) on B, we
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could require

(2.9) u(x, O(x))
+

where the above equality is interpreted in the sense of inner trace (cf. Volpert [11]).
This is a sort of measure theoretical limit or equivalent boundary values for a BV
(functions of bounded variation) function. A locally integrable function is of class
BV (cf. [11]) if its distributional partial derivatives are locally finite Borel measures.
This is a multivariable generalization of functions of bounded variation on the line.
It turns out that any weak solution whose left and right limits exist and satisfy (2.5)
is of class BV.

3. The structure of admissible deformations and generalized charac-
teristics. Having established the existence of an admissible solution (we still need
to modify the adjective "admissible"), we now study its structure. The method of
generalized characteristics (cf. [1], [2]) is perfect for us, and, in the present setting,
(2.1) gives a generic picture of the generalized characteristics and their various prop-
erties. As we have seen, the characteristics intersect, forming shocks (crimp lines) in
the material. Thus, certainly, at shock points we can only guarantee the existence
of left and right fibre directions. This is, of course, the situation in any hyperbolic
conservation law and led Dafermos [1], [2] to study the structure of "characteristic"
curves of a weak solution with only the property that left and right limits exist and
satisfy the appropriate inequality analogous to (2.5). In our context, we know that at
least one admissible solution exists and is much more regular than he first assumes.
However, this regularity, together with additional structural information, comes from
his theory. Dafermos considered characteristics of any admissible solution to an evolu-
tion equation defined in the upper half plane. In our case, we have a solution defined
above a function curve, and, moreover, if no assumption on the differentiability of O
is given, characteristic speeds (with respect to y) can be infinite (in the case where
tt +1). Hence, characteristics can be horizontal, but, as it turns out, shocks are
never horizontal. Some results are thus restricted to the solution of Theorem 2.3 for
which some a priori information is known. For the study of uniqueness we work within
a class of solutions for which fibre directions are never vertical; i.e., u : +1. Results
concerning generalized characteristics which are independent of the above-mentioned
differences are stated without proof. These consist of local results on the structure of
the genuine characteristics and the shocks. All emitted proofs in this section can be
found in either [1] or [2].

To start, let u be a weak solution to (2.1) on B such that (s.t.) u(x+, y) exists for
almost every y and (2.5) holds. Again, to simplify the notation, let f(u) := /1 u2.
A Lipschitz continuous curve (.) [a, b] (-oo, oe) is said to be a characteristic if
for almost all y E [a, b],

(3.1) (y) e [f’(u((y)+, y)), f’(u((y)-, y))].

Corresponding to the case where u +1, we include the possibility that may consist
in part of horizontal line segments. Differential equations where the right-hand side is
discontinuous have been studied by Filippov (cf. [3]/) who, in the above context, has
shown that for any (2, $) in the interior of B, there exists at least one forward (away
from y O(x)) characteristic defined on some interval and at least one backward
(toward y O(x)) characteristic defined on another interval. The set of forward (or
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backward) characteristics through (2, ) spans a funnel confined between a minimal
and maximal forward (backward) characteristic through (2, ). It may be that the
maximal and minimal forward (or backward) characteristics are the same, and in
fact this turns out to be the case .for the forward characteristics. The maximal and
minimal backward characteristics (and part of the forward characteristics) may be
horizontal line segments, and it is instructive to think of the adjectives backward
and forward as toward and away from the O boundary, respectively. For all but
uniqueness, we will be concerned with the solution of Theorem 2.3. For uniqueness,
where we need to deal with general admissible solutions, we will make the extra
assumption that fibre directions are not vertical. Hence, for simplicity of notation,
we assume all characteristics can be parametrized by the variable y. By examining
directly solutions from Theorem 2.3, we will be able to analyze what we have missed.

Denote the minimal and maximal backward characteristics through (2, ) by_
(y, 2, ) and + (y, 2, ),

respectively. In view of the substantial freedom associated with (3.1), it would seem
that little more could be said about characteristics. However, there is an intimate
relationship between u and f; i.e., u is a weak solution of (2.1) and satisfies (2.5). As it
turns out, this implies that characteristics must travel at either classical characteristic
speed or shock speed (given by the Rankine-Hugoniot jump conditions). Moreover,
these results imply that for each y, u(., y) is Lipschitz continuous as a map from R to
Loc, and this, together with an inequality analogous to (2.8), establishes u as a BV
function. A characteristic, (.): [a, b] - (-, ), is called genuine if

u((y)+, y) u((y)-, y) for almost all y e [a, b].

We again include as genuine the cases of infinite propagation speed (u +1) where
the characteristics are horizontal line segments. Using the assumption (2.5), Dafermos
showed that the minimal and maximal backward characteristics are genuine, and,
moreover, any genuine characteristic is a classical one in the following sense. There
exists a constant such that is a straight line with slope f’() and

u((y)/, y) u((y)-, y) for every y e (a, b).

These results imply that two genuine characteristics may intersect only at their end-
points and that the minimal and maximal backward characteristics _(y; 2, ) and
+(y; 2, ) are lines with slope f’(u(2-, )) and if(u(2/, )), respectively. In addi-
tion,

u(+ (y; 2, )+, y) u(2+, ),

where, for example, {_(y; g’, ) is defined on (c, ); i.e., O (C_(c; 2, )) c. Hence
the curves {_ (y; 2, 2) and + (y; 2, ) coincide (are the same) iff u(2-, ) u(2+, ).

Next, we direct our attention to the solution of Theorem 2.3.
PROPOSITION 3.1. Let u be given by (2.7). A backward characteristic emanating

from (2, ]) is genuine iff it is a line segment from (2, ) to (z, O(z)) where
is minimum. That is, all genuine backward characteristics are line segments which
minimize distance to the boundary curve.
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Proof. The fact that a genuine characteristic must be a line segment to a
distance minimizing point point (z, O(z)) follows directly from the definition of u
and from the fact that is a line with slope f(), given by (3.2). Now suppose
X is a line segment from (2, ) to the O(x) curve which minimizes distance. If X
is horizontal then it is genuine. Otherwise, suppose at some interior point of X, u
had different left and right limits. By the first part of the theorem there would exist
two distinct distance-minimizing line segments from the interior point to (x) (the
minimal and maximal backward characteristics). This would contradict the fact that
X was distance minimizing.

In terms of the forward characteristics, the fact that genuine characteristics can
only intersect at their endpoints implies that through each point in B there exists
a unique forward characteristic. In our setting, Proposition 3.1 implies that for any
O(x) continuous, the forward characteristic cannot escape (i.e., is defined as y
nor intersect the O boundary. Corresponding to the case of a point where both left and
right limits are either 1 or -I, the forward characteristic will start off as a horizontal
line segment but eventually will become a curve parametrized by y, which is defined
as y - cx (i.e., a shock curve; see below).

We now examine points of discontinuity (shocks) of any weak solution satisfying
(2.5). For the solution of Theorem 2.3, it should be clear that the set of shocks has
a particular geometric significance. Consider a continuous curve given by y O(x).
What points P E {(x, y) y O(x)} have the following property: there exists
more than one point on the curve which minimizes distance from P to the curve.
Returning to the general situation pertaining to any admissible solution, it turns out
that the points of discontinuity lie on curves which propagate without bound through
the material and can always be parametrized by y. A characteristic 7(’) defined on

[, c) is called a shock curve if

u((y)-, y) < u(l(y)+, y) for all y E (, x).

Two particular types of points are relevant to the shock curves. A point (2, ) B
is called a shock generation point if the (unique) forward characteristic through it
is a shock curve and there is only one (genuine) backward characteristic. A point
(2, ) B is called a centre of a centred compression wave if there are two distinct
minimal and maximal backward characteristics and every other backward characteris-
tic is also genuine. The funnel confined between the minimal and maximal backward
characteristics stemming from a centre of a centred compression wave is filled by
distance-minimizing lines, and hence the bottom boundary of this funnel (the 0 part)
consists of a circular arc. Note that the shock generation points (not shocks by our

definition) are included in the shock curves.
We state some results of Dafermos pertaining to the shocks. If at some point (2, ),

u(2-, ) < u(2+, ), then the unique forward characteristic 7(’) has the property that
for all y e [, ), u(u(y)-, y) < u((y)+, y) (i.e., is a shock curve). The following
regularity properties of the solution and shock curve hold. Let r(.) be a shock curve
defined on [, x) and let w_(y) u((y)-, y), w+(y) u(rl(y)+, y). Then w+(y) is
continuous from the right on [, c), and, further, limits w+ (y-) from the left exist for
all y [, x) and w_(y-) <_ w_(y), w+(y-) >_ w+(y). Additionally, (y) exists and
is continuous except on the at most countable set of interaction points of with other
shock curves or centres of centred compression waves. Moreover, for a.e. y

f(u(U(y)/, y)) f(u(U(y)-, y))
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Thus all the discontinuities in the fibre direction lie on Lipschitz curves which are
smooth almost everywhere: the same situation as with the piecewise smooth solutions
given in Figures 2 through 7. Moreover, (3.3) combined with the fact that for any y
the set of discontinuities of u(., y) is at most countable implies that there are at most
countably many shock curves. These shock curves (crimp lines) bisect the fibres at
their points of discontinuous slope. Alternatively, the shock curve bisects the angle
between the minimal and the maximal backward characteristics.

The following picture of backward characteristics emerges for the solution of The-
orem 2.3 which as we shall see (Propositions 3.3 and 3.4), at least for certain O, is
unique. For any P (2, ) E B consider M {z D(2, fl, z)is minimum}. The
backward characteristics lie between lines joining (2, ) to O(x) at x min M and
x max M. In-between characteristics, which fill up the region, are either distance-
minimizing line segments, shock curves, or combinations of the two. If min M :/: max
M, the unique forward characteristic through P is a shock curve. This is illustrated
in Figure 8, where the dotted line indicates the shock curve beginning at a shock
generation point and ending at P.

If min M max M and the unique distance-minimizing line segment was hori-
zontal and to the left of P (i.e., u(P) -1), then the unique forward characteristic
would start off as a horizontal line (y ) to the right of P and continue until it
reaches a point where another minimizer exists (this must happen), after which it
becomes a shock and propagates upward. If M contains more than two points, then
P is either a point of shock curve interaction or a centre of a compression wave. Thus
the set of points in B which have more than two distance minimizers on y O(x) is
at most countable. We have proved Theorem 3.2.

THEOREM 3.2. Let O(x) be any continuous function and consider the planar
curve given by y O(x). The set of points above (below) the curve which have
the property that their minimum distance to the curve is attained at more than one
point consists of a countable number of Lipschitz curves which are smooth almost
everywhere. As y increases (decreases) they either merge with another such curve or
are unbounded above (below). Further, the set of points which have more than two
minimizers is at most countable and is contained in the union of the interaction points
and the finite endpoints of these Lipschitz curves.

As for continuity of the fibre direction, we have the following. Let (2,) E
B, u(2+/-, ) 4-1, and be the unique forward characteristic emanating from (2, ).

FIG. 8.
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Then (2, 9) is a point of continuity of u relative to the sets

((x,y):y_>,x_<(y) ory<,x<__(y;2,)},
{(x,y): y _> , x > r/(y) or y < , x _> C+(y;2,)},

with the respective limits being u(2-,) and u(2+,9). If u(2-,9) -1 and
u(2+, ) > -1 or the analogous statement for +1, then the above have appropriate
adjustments. If we have u(2+/-, ) -1 (or 1), then we can directly check that u is
continuous in a neighbourhood of (2, ). Thus the solution u(x, y) is continuous at
(2, ) iff u(2-, ) u(2+, ). We also have continuity on either side of the shock
curve. Precisely, let be a shock curve and let be a point of continuity of the func-
tions w+(y) u(l(y)+, y). Then (r](), ) is a point of continuity of u(x, y) relative
to the sets {(x, y) x < (y)} and {(x, y) x > r/(y)} with the respective limits
being u(r]()-, ) and u(](])+, 1). So for any continuous lower fibre displacement ,
the resulting fibres are smooth on the complement of the shock set with the fibre
directions continuous in x and y.

We now direct our attention toward uniqueness. As mentioned at the end of 2,
we work with the assumption that O is locally of bounded variation. In this case
we have sufficient regularity in terms of both the solution and the boundary of the
domain B to invoke the Gauss-Green theorem (see [11]). Moreover, assume further
that O(x) is bounded. This precludes the possibility that u +1 for u given by
(2.7) and also insures the integrability of the trace on y O(x). We show that the
fibre configuration associatedwith this solution u is unique amongst all configurations
where fibre directions are never vertical and which satisfy the compatibility relation
with the boundary , i.e., (2.9).

PROPOSITION 3.3. Let be locally of bounded variation and O(x) be bounded.
Let v be any weak solution to (2.1) such that v +/-1 and v satisfies (2.5) and (2.9)
in the sense of trace. Then genuine characteristics are distance-minimizing line seg-
ments.

Proof. The fact that genuine backward characteristics cannot be horizontal im-
plies that they are defined down to the y O(x) curve. Let (.) be a genuine
backward characteristic through (2, ) and let X(’) be any line from (2, ) to a point
on y O(x). We show that the length of (stopping of course when hits ) is no
greater than the length of X. Let R be the "triangular" region which and X make
with . We use the Gauss-Green theorem which is valid for our BV solution on a set
whose characteristic function is in turn of bounded variation; this is where we need
the hypothesis on O(x). Integrating (2.1),

o f f div(x,y) (f (v), v) dx dy
R

’(f(v),v) ndHl + J (f(v),v) ndHl + /opart (f(v), v). n dH1,

where H denotes one-dimensional Hausdorff measure. Since (2.9) holds in the sense
of trace and n is perpendicular to a.e., the last integral is zero. The theory of
generalized characteristics implies that is a line segment with slope f(), g given
by (3.2). This combined with the Schwarz inequality implies

(f (v), v) n dH (f(v), v). n dH
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Proposition 3.3 implies there is at most one admissible solution which satisfies
(2.9) in the sense of trace. In order to establish that the solution constructed in The-
orem 2.3 is the unique solution to the boundary value problem we need the following.

PROPOSITION 3.4. Let (9 be as in Proposition 3.3. Then the solution constructed
in Theorem 2.3 satisfies (2.9) in the sense of trace.

Proof. Let P1 be any point in B and let be a genuine backward characteristic
from P1. Consider the fibre F through P1 (say in the direction of increasing x), that
is, the continuous solution to the ordinary differential equations (2.2) Let P2 be any
point on F and 5 a genuine backward characteristic emanating from P2. The fact
that fibres (trajectories of (2.2)) are normal characteristics implies that the length of
equals the length of 5. Integrating (2.1) in the region bounded by O(x), F,

using the flexibility in choosing P1 and P2, and the Gauss-Green theorem, we obtain

(f(u), u) n dH 0,

where the integrand involves the trace of u on the boundary O(x), n is the upper
normal to y O(x), and 7 is any bounded and connected subset of {(x, y) y
O(x) }. Hence, the same equality holds true for any measurable subset of y
and the result follows.

Next we address the case of smooth curves and the resulting regularity of the
fibres. Let O(x) E Ck+1 with k _> I. We note that f(u) v/l-u2 is Cc except
when u +I. However, since O’(z) exists for all z and is continuous, the solution
u given by Theorem 2.3 takes values strictly between -I and I. In fact, the solution

e’(x) w(x). Now let z+ be the interceptors ofmust satisfy u(x, O(x)) vh+(e,(x)).
+(2, ) and _(2, ) with the y O(x) curve. The properties of the minimal and
maximal backward characteristics imply that

2 z-t:
f’ (w(z+)) =-O’(z+)

or

(3.4)

and

9)

Recall from the proof of Theorem 2.3 that, for fixed , z+ are increasing functions
of 2 and are continuous from the left and right. For our smooth O, they are in fact
strictly increasing. Hence for every (2, ) E B, differentiating (3.4) with respect to
z+ (z-) gives

(3.6) 1 (- O(z))O"(z) -+- (O’(z)) 2 > 0, z z+ or z-.

At a point of continuity (2,), z is a continuous function of x and hence by the
implicit-function theorem we have Proposition 3.5.

PROPOSITION 3.5. u is Ck on a neighbourhood of a point of continuity (2, f) as
long as

(3.7) 1 (- O(z))O"(z) + (O’(z)) > 0.
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If the above is zero then (2, f]) is the centre of the osculating circle of y O(x) at

If equality holds in (3.6), (2, ) is either a shock generation point or centre of
a compression wave. If (2, ) is a point of continuity of u, then (2, ) is a shock
generation point. In either case one can directly check that (2, ) is the centre of
the osculating circle (also known as the circle of curvature) for y O(x) at x z.
Moreover the forward characteristic through (2, ) is a shock and hence (2, ) is part
of a shock curve. On the complement of the union of shock curves (the set of shocks
together with the shock generation points), (3.6) must hold as a strict inequality. Thus
by Proposition 3.5, the complement of the union of shock curves is open and u is Ck on
this set. In terms of smoothness of the shock curves, the previous results concerning
continuity on either side of a shock curve, (3.3), (3.4), (3.5), and the implicit-function
theorem imply the following. If (2, ) is a point on a shock curve (.) at which (3.7)
holds and is a point of continuity of u((y), y), then (.) is C+ smooth on a
neighbourhood of . rther, on a neighbourhood of (2, ), u(x, y) is C smooth on
either side of (.).

We close this section with a simple example of a smooth O, which may give rise
to a solution that is not piecewise smooth. A solution is said to be piecewise smooth if
any bounded subset of B intersects with only a finite number of shock curves. Failure
to satisfy this condition is a consequence of an accumulation of shock generation
points which, in view of the geometry of the problem, happens only if there exists an
accumulation of inflection points in O(x). Consider

O(x)=xksin() forx0andO(x)--,xlsin(} forx<0.

For x > 0, the signed curvature is given by (x) +)). The numerator is

1
x co -.

X X

Suppose k > 4. In this case 0 as x 0 and hence, by Proposition 2.1, the shock
generation points do not accumulate or, rather, accumulate at infinity. Suppose k < 4
(and k 2). Then sup over a quasi period of O with centre x approaches as
x 0, and thus, by Proposition 2.1, the shock generation points accumulate at the
origin. Finally, let us consider the critical case of k 4. In this case, sup over a
quasi period of O with centre x approaches 1 as x 0, and thus shock generation
points will accumulate in the interior of the material, in fact at the point (0, 1), and
the solution is not piecewise smooth. In all cases, the shock curves eventually become
the y-axis, which remains a shock as y , albeit a weaker and weaker one.

4. Admissibility. Via the admissibility condition (2.5), we have shown existence
for general boundary displacements and uniqueness for certain reasonable boundary
displacements. As previously noted, ignoring condition (2.5) implies that an infinite
number of deformations exist (see Figure 6). How can one justify that the deformation
obtained in Theorem 2.3 is the one which is likely to occur without going to the level of
the constitutive behavior of the materials in question and the forces which accompany
the deformation? A mechanist may debate whether this is possible at all; in fact
Pipkin and Rodgers concluded that it is not (cf. [9]). We show with kinematics alone
that this class of solutions exhibits certain desirable properties which other solutions
fail to exhibit.
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4.1. Stability. The first such property is stability with respect to perturbation
of the boundary fibre displacement. Consider Figures 3 and 4. Both are kinematically
feasible deformations for the particular boundary displacement problem. It is not hard
to see that the deformation of Figure 3 fails to satisfy the following: under smooth
perturbations of O(x) there are associated, kinematically feasible deformations which
converge to the deformation associated with O(x). This is satisfied by the solution
in Figure 4. This type of stability fails when characteristics on either side of a crimp
line do not, as they propagate away from the specified boundary fibre, intersect the
crimp line. With the aid of the previous minimization formula (2.7) and Proposition
3.1, we make these comments precise.

PROPOSITION 4.1. Let On(x) be continuous functions which converge uniformly
to O(x), and let un, u be the solutions, via (2.7), for On and (9, respectively. If (2, )
is a point of continuity of u, then

Proof. Let z be the interceptors with y O(x) of the minimal and maximal
backward characteristics through (2, ) associated with u and z the interceptor with
y O(x) of the unique backward characteristic associated with u. By Proposition
3.1, Dn (2, , z) is the minimum distance from (2, ) to y On (x) and D(2, f], z) is
the minimum distance from (2, ) to y (9(x). The fact that z is unique and O(x)
converges uniformly to O(x) implies z -- z. The result now follows from (2.7). [

4.2. "Viscosity". It is well known that one way to construct solutions to (1.1)
with f" > 0 (or < 0) is via vanishing viscosity, limits of smooth solutions to the
parabolic equation

(4.1) Oxl u + Ox2[f(u)]

(cf. Oleinik [7]). Moreover, the limits are known to correspond to physically admissi-
ble solutions which, in the context of an evolution equation (1.1), entail satisfying the
entropy inequality. Physically, (4.1) corresponds to the introduction of small viscosity,
thermal conductivity, or some other frictional effect which brings in second deriva-
tives. Analytically, we cannot blindly replace (2.1) with a second-order equation of
the form (4.1) if we assume the "viscous" equation will hold for both the upward and
the downward problems. Such equations have solutions in one direction alone: the re-
lationship between the sign of the coefficient of the first term on the left and the term
on the right is critical. Without further speculation, we must consider the physical
situations surrounding the introduction of the second-order term. As a first attempt
we provide a simple model for constructing a viscous equation by the relaxation of the
inextensibility constraint. For the rest of 4.2 let (9 be piecewise C2. Assuming the
composite is incompressible (itself an idealization), one would expect that the fibres,
though creating anisotropic behavior in the composite, permit small changes in length
and that this ability should enable them to deform within the composite without the
formation of discontinuities: crimp lines. The idea is that in implementing a given
boundary displacement we have control only of the length of the boundary fibre and,
hence, no contraction nor extension occurs on it. However, the other fibres will be
free to change their length slightly and with the amount of change proportional to
the curvature of the fibres. That is, we assume the following relationship between
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tangent vector components:

(4.2)

where c +1 depending on whether the deformation causes fibre compression or ex-
tension and is the curvature. We proceed formally to derive the "viscous" equations,
localize, and look for viscous profiles about jump discontinuities in u.

Eventually (el. (4.4)) terms of order e2 will be ignored, and hence we use Propo-
sition 2.1, which assumes inextensibility, to compute the curvature. The curvature of
the fibre through (x, y) is thus 1-1 u1" Assuming u on the boundary (9 curve is

bounded away from 1 the curvature equals ou-1 multiplied by a bounded term. For
simplicity we replace n in (4.2) with 7 I" In order to determine a, one must decide
whether the distance between a given pair of fibres increases or decreases as a result
of the deformation, that is, the resulting reaction of the matrix to the fibres. An
increase in distance will lead to contraction of the fibres, whereas a decrease leads to
extension. Consider the "Riemann problem" of boundary displacements which consist
of two joined lines, one horizontal (cf. Figures 3, 4, and 5). The distance between
fibres will increase if the boundary curve is deformed into the material (cf. Figure 5)
and decrease if the boundary curve is deformed away from the material (cf. Figure 3
or 4). The amount of extension/compression will depend on the magnitude of the nor-
mal force components which we assume is proportional to the curvature of the fibres.
Suppose our specified displacement fibre is the bottom fibre (the upward problem).
In this case if u (= a2) increases with x (o is positive) the boundary displacement
is "into" the material whereas if u decreases ( is negative) the displacement is
"away" from the material. Thus for the upward problem we propose that

(4.3) a
Ox

o CombiningFor the downward problem, the right-hand side of (4.3) should be +-.
these results with (4.2) and (1.2), which holds for any incompressible composite, we
obtain

(4.4)
O92%t
(X2

for the upward problem and

for the downward problem.
PROPOSITION 4.2. For (4.4), we obtain viscous profiles for the constant states

u+ and u_ iff u+ > u_. For (4.5), we obtain viscous profiles iff u+ < u_.

Thus the deformations in Figures 4 and 5 are chosen over the deformations in
Figures 3 and 6, respectively.

Proof. The proof follows a standard argument in dynamical systems. In the lan-
guage of conservation laws, we demonstrate the viscosity shock admissibility criterion.
Consider a solution u which is constant on either side of a shock curve x s y where
s is the speed of the shock curve. Suppose u u_ if x < sy and u u+ if x > sy.
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We look for conditions on u_ and u+ such that there exist traveling wave solutions
of (4.4) which converge to u. Letting x-By we look for solutions of the form
u(x, y)- g()such that

u_ if -oo,() - u+ if --+

Analysis of the phase portrait for the ordinary differential equation that g must satisfy
yields the appropriate inequality. E]

One might justify analytically that the inclusion of the second-order term does
indeed produce smooth solutions, assuming no extension/contraction along the bound-
ary fibre, but interior fibres do change their length. According to (4.2), a smooth field
of fibre directions exists compatible with the incompressibility constraint. Precisely,
let O be a piecewise smooth curve and e > 0. There exists a smooth solution to (4.4)
on { (x, y) y _> O(x) } and a smooth solution to (4.5) on { (x, y) y _< O(x) }, both
satisfying

O’(x)(x, e)(x))
V/1 + [e’(x)]

If O(x) is constant, this follows from the classical theory (cf. Oleinik [7]). We do not
include a proof but refer the reader to 5 for a few comments on a possible proof.

The previous arguments are only a first attempt at bringing in so-called viscous
terms and give way to several criticisms. Indeed, the sign of the viscous term in ei-
ther (4.4) or (4.5) should be related to the local configuration of the fibres (curvature,
stresses, etc.) and not to the boundary conditions. We have given a naive argument
which, without looking at constitutive properties of the material, attempts to relate
these local configurations to the boundary displacement, and, in particular, our argu-
ments apply only to a local neighbourhood of the boundary fibre. A firmer approach
to the problem of selecting those deformations which are limits of deformations associ-
ated with relaxed problems could be via the study of homogenization of the linearized
equations of equilibrium, the Navier equations (see Gurtin [4]) corresponding to a
fixed volume fraction of very thin hard fibres in an incompressible matrix. The pa-
rameters in these equations (Young and bulk modulus, etc.) should be related to the
relaxation of the inextensibility and incompressibility constraints and would tend to
infinity (thus producing small terms in the equations) in the idealized, limiting case
considered in this paper. Such analysis certainly warrants future attention but is not
pursued here.

4.3. Decay. It is straightforward to check that admissible deformations have the
following decay properties which other solutions fail to exhibit.

PROPOSITION 4.3. Let O(x) be continuous with sup O(x)-inf O(x) < C for some
C > O. Then

(1)(, )1- o as y oo.

x-zl Moreover,Poof. from (.7), I(x,)l _< -_-)

(D(, , z)) ( z) + ( O()) (( (z)) + D(x, , z) (- O(z)))
( O(z)) + (D(, , z) ( O())) + ( O())(D(, , ) ( O())).



CONSERVATION LAWS IN FIBRE-REINFORCED MATERIALS 1559

By assumption, D(x, y,z)- (y- O(z)) _< C, and hence

I I _< Cv/( e()) + c which implies In(x, Y)I < cv/( O(z)) + c- o()

The result now follows from the fact that O(z) is bounded.
We gain more rapid decay for data which in addition to being bounded are peri-

odic.
PROPOSITION 4.4. Let O(x) be continuous and periodic. Then

Proof. Let P be the period of O. We must have Ix- z < P. Hence

I(x, y)l <_ P
-e()’

and the result follows.
In either of the previous cases, with respect to y, the slopes of the shock curves

tend to zero as they propagate away from the specified boundary. Kinematically
feasible deformations not in this class do not decay for appropriate (9. See Figures 9
through 12. Figures 10 and 12 are the unique admissible solutions given by (2.7). It

FIG. 9. FIG. I0.

FG. 11. FG. 12.
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is the failure of the characteristics to collide into the crimp lines which precipitates
nonzero information to propagate indefinitely.

5. Remarks. To establish the existence of the "viscous" equation (4.4/, we could
begin by obtaining a local solution. Direct calculation shows that the data curve
y O(x) is characteristic for (4.4) iff O’(x) 0, and hence if O’(x) - 0 we need to
specify an extra boundary condition. The natural condition is

d (x)the normal derivative of u ly=(x)= e d---’
where (x) is the signed curvature of O(x). Once a local solution is found, we can
use the parabolicity of the equation to show that the solution can be extended as
y --+ c without blowup (cf. Oleinik [7]). Differentiating (4.4), we obtain an equation
for Oxu to which we apply the maximum principle for parabolic operators. The
relative sign in (4.4) of the viscosity coefficient and the coefficient of Ozu is now
critical.

Rather different work of Pipkin [8] attempts to alleviate the nonuniqueness for
a particular problem via energy minimization with particular constitutive relations.
A block (cf. Figure 1) is deformed via loading at some point on the lower boundary,
to arrive at two kinematically admissible deformations (similar to Figures 3 and 4
reflected in the x-axis) which roughly share the same upper boundary fibre config-
uration. It is shown that the deformation with a rarefaction wave (cf. Figure 4)
minimizes energy, but the one with the crimp line (cf. Figure 3) fails to minimize
energy and moreover does not even correspond to stationary energy.

Acknowledgements. This article emerged from a part of my doctoral disserta-
tion at Brown University. I would like to thank C. M. Dafermos for his guidance and
encouragement. I would also like to thank the anonymous referee for his comments
and suggestions pertaining to 4.2.

REFERENCES

[1] C. M. DAFERMOS, Generalized characteristics and the structure of solutions of hyperbolic con-
servation laws, Indiana Univ. Math. J., 26 (1977), pp. 1097-1119.

[2] , Characteristics in hyperbolic conservation laws. A study of the structure and the asymp-
totic behavior of solutions, in Nonlinear Analysis and Mechanics, R. J. Knops, ed., Research
Notes in Math. 17, Pitman, London, 1977, pp. 1-58.

[3] A. F. FILIPPOV, Differential equations with discontinuous right-hand side, Mat. Sb., 51 (1960),
pp. 99-128. Amer. Math. Soc. Transl. Set. 2, 42 (1964), pp. 199-231.

[4] M. GURTIN, The linear theory of elasticity, in Handbuch der Physik 6a., Springer-Verlag,
Berlin, 1972.

[5] E. HOPF, The partial differential equation ut + uux #Uxx, Comm. Pure Appl. Math., 3
(1950), pp. 201-230.

[6] P. D. LAX, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10 (1957),
pp. 537-566.

[7] O. A. OLEINIK, Discontinuous solutions of non-linear differential equations, Uspekhi Mat.
Nauk, 12 (1957), pp. 3-73. Amer. Math. Soc. Transl. Set. 2, 26, pp. 95-172. (In English.)

[8] A. C. PIPKIN, Energy changes in ideal fiber-reinforced composites, Quart. Appl. Math., 35
(1978), pp. 455-463.

[9] A. C. PIPKIN AND T. G. RODGERS, Plane deformations of incompressible fibre-reinforced ma-
terials, J. Appl. Mech., 38 (1971), 634-640.

A. J. M. SPENCER, Deformations of Fibre-Reinforced Materials, Oxford Science Research Pa-
pers, Oxford, 1972.

A. I. VOLPERT, The space BV and quasilinear equations, Mat. Sb., 73 (1967), pp. 255-302.
English translation: Math. USSR-Sb., 2 (1967), pp. 225-267.

[10]

[11]


