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a b s t r a c t

This paper explores the evolution of a sharp interface model for phase separation of copolymers in the
limit of low volume fraction. Particles both exchange material as in usual Ostwald ripening, and migrate
because of an effectively repulsive nonlocal energetic term. Coarsening via mass diffusion only occurs
while particle radii are small, and they eventually approach a finite equilibrium size. Migration, on the
other hand, is responsible for producing self-organized patterns.
We construct approximations based upon an ansatz of spherical particles similar to the classical LSW

theory to derive finite dimensional dynamics for particle positions and radii. For large systems, kinetic-
type equations which describe the evolution of a probability density are constructed. For systems larger
than the screening length, we obtain an analog of the homogenization result of Niethammer & Otto
[B. Niethammer, F. Otto, Ostwald ripening: The screening length revisited, Calc. Var. Partial Differential
Equations 13-1 (2001) 33–68]. A separation of timescales between particle growth and migration allows
for a variational characterization of spatially inhomogeneous quasi-equilibrium states.

© 2009 Elsevier B.V. All rights reserved.
Ostwald ripening, a coarsening process described by the
exchange of material between particles of the minority phase in
binary mixtures (cf. [1,2]), has been the topic of extensive study
over the last 20 years. Much of the analytical work is based
upon the Cahn–Hilliard equation which was conceived to model
phase separation in binary alloys (cf [3]). This equation describes
spinodal decomposition of a fine grainedmixture and nucleation of
phases rich in each component of the mixture. This is followed by
interface coarsening via the Mullins–Sekerka law, which produces
coarsening behavior with a well-established rate of t1/3, i.e. the
length scale of increases as a power law with exponent 1/3.
In the dilute regime, the minority phase forms particles which

interact through mass diffusion, and the resulting process is
termed Ostwald ripening. One can derive both finite-dimensional
dynamics of individual particles, and in the limit of large
particle number kinetic-type statistical descriptions ([4,5,1,2,6]
and references therein). These descriptions provide a counterpart
to rigorous upper bounds (e.g. [7,8]) which predict and confirm
temporal scaling laws.
The Cahn–Hilliard approach applies equally well to phase

separation of mixtures or melts of homogeneous polymers which
are thermodynamically incompatible [9]. Block copolymers, on
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the other hand, are inhomogeneous chain molecules composed
of two or more monomer types (see Fig. 1 top). Below a critical
temperature, weak local repulsion of different species induces
phase separation. Complete separation does not occur, however,
because of molecular attachment of distinct monomer chains.
Instead, a remarkable array of locally periodic ‘‘metastable’’ states
appear: lamellar, cylindrical, spherical, gyroid structures have
all been observed [10,11]. Because of their variable architecture,
these materials are extremely versatile, having applications
in nanotechnology, lithography, photonics and controlled drug
delivery [10]. The regime of interest here is the spherical phase
that is encountered for highly asymmetric mixtures. Recent
experiments [12] and computational studies [13] have illuminated
the dynamic processes of this phase, including defect motion and
coarsening of ordered domains through grain boundary motion.
This paper studies the modification to the usual coarsening

process that results from long range interactions in systems of
block copolymers. Our approach is via a modified Cahn–Hilliard
equation which arises as a gradient flow (with respect to the
H−1 metric) of a nonlocal Cahn–Hilliard-type functional first
introduced by Ohta and Kawasaki in [14]. We are interested in
the strong segregation regime wherein A/B interfaces are rather
sharp in comparison to domain size, and hence focus on the sharp
interface limit of this equation (cf. [15])in the case of low volume
fraction. That is, we consider diblock copolymers of very small
molecular weight (ratio of B monomers to A) and envisage either
a melt of such diblock copolymers (cf. Fig. 1, bottom left) or a
mixture/blend of such diblocks with homopolymers of either type
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Fig. 1. Top: an AB diblock copolymer macromolecule of small molecular weight. Bottom left: microphase separation of these diblock copolymers. Bottom right: phase
separation in a mixture/blend of diblock copolymers and homopolymers of another monomer species having relatively weak interactions with the A and B monomers.
A or of type C but forwhich the CA and CB interactions are relatively
weak (cf. Fig. 1, bottom right).
This paper uses a plan of attack tangential to that for

mixtures described by the ordinary Cahn–Hilliard equation. Sagui
& Desai [16] considered an abstract prototypical model for these
systems in two dimensions and studied the reduced dynamics
numerically. We follow a similar reduction scheme specialized to
the copolymer case in three dimensions, and go ever further to
characterize the evolution statistically. In particular, we base our
analysis upon an ansatz of small spherical regions (inclusions) for
the minority monomer phase and utilize the following program:
(i) We identify two spatial scales, the screening length and
the structure length, and the temporal regimes relevant
for the evolution process of small spherical domains. The
screening length is, roughly speaking, the distance over which
particles interact and hence its relation to the sample size
is important. The structure length is the intrinsic scale set by
the competition of short and long range interactions which
comprise the free energy. The temporal scales correspond
respectively to traditional Ostwald ripening (coarsening),
structure formation when the size of the inclusions stabilizes,
and particle migration or pattern formation. Based upon the
size of screening length relative to the sample size, we focus
on two separate scenarios: unscreened and screened systems.

(ii) For the unscreened case, we modify the classical LSW (for
Lifshitz & Slyozov [4] and Wagner [5]) theory to derive sys-
tems of effective ordinary differential equations for both the
radii and the centers of the small spheres. These ODEs capture
both the separation of time scales as well as the length
scale corresponding to the structured regime.We characterize
these equations variationally by connecting them to a reduced
free energy.

(iii) For screened systems, we again apply the LSW arguments to
derive ODEs for the particle radii and a kinetic equation for the
particle radii distribution. We also perform a homogenization
of the Poisson equation relating the potential to the spatial
distribution on particles. This allows for an effective homoge-
nized systemwhich couples the kinetic equation with the ho-
mogenized Poisson equation, and extends a homogenization
result of Niethammer & Otto [6]. One can then study stability
of steady states of this system under certain constraints via a
homogenized energy.
(iv) To address the last stage of particle migration, we develop
the basic approximations one step further, which allows for
additional approximation of the free energy to include a
particle interaction term. We explore the consequence of
this subdominant term on particle migration and pattern
formation.

Our results are consistent with a recent Gamma-convergence
study [17] of free energy in the small volume fraction limit, and
a recent study [18] of stable local minimizers for small volume
fraction limit. TheGamma-convergence study is based on the small
volume fraction asymptotics of the (suitably rescaled) free energy,
and reveals at leading order, a local energy responsible for the
first stages of particle evolution, i.e., the coarsening process. At the
next order, one finds an interaction energy responsible for the last
stage of particle migration, i.e., self-organization. We discuss the
connections in Sections 3.4 and 5.2.

1. The Modified Cahn–Hilliard model and its sharp interface
limit

A density function theory [14,19] for the relative monomer
fraction u : Ω → [0, 1] yields a free energy of the form

F(u) =
∫
Ω

ε2

2
|∇u|2 +W (u)+

σ

2
|∇v|2dx (1)

1v = u− ρ, ρ =
1
|Ω|

∫
Ω

udx

where the second term is a double-well local energy preferring
u = 0 and u = 1, and the last term describes nonlocal interactions
while conserving volume fraction ρ. Dynamical models can be
built using a mass-conserved gradient descent method. The
most natural of which is gradient flow within the Hilbert space
H−1, and leads to the following modification of the well-known
Cahn–Hilliard equation

ut = 1(−ε21u+W ′(u))− σ(u− ρ). (2)

The singular limit ε → 0, σ ∼ ε is of particular interest [15,20,21],
and as first noted by Nishiura and Ohnishi, it leads to a free
boundary evolution which we will use as a point of departure.
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Let the physical domainΩ be divided into two non-overlapping
phase domainsΩ+,Ω−whereΩ+will denote theminority phase.
The free boundary, denoted ∂Ω+, evolves according to

1v = γ

{
1− ρ inΩ+

−ρ inΩ− (3)

v = κ on ∂Ω+ (4)

Vn = [∂v/∂n]−+ (5)

where the convention is used that the normal velocity Vn and
mean curvature κ are outward with respect toΩ+. For simplicity,
we take Ω = [0, 1]3 and assume periodic boundary conditions
throughout. The volume fraction of the dilute phase is |Ω+| = ρ;
we will be concerned about the case ρ � 1.
The free energy corresponding to (3)–(5)1is

F =
∫
∂Ω+
dA+

γ

2

∫
Ω

|∇w|2dx, (6)

where w is a continuously differentiable solution (unique up to a
constant) of

1w =

{
1− ρ inΩ+

−ρ inΩ−. (7)

The free boundary problem has a gradient flow structure; in
particular

dF
dt
= −

∫
Ω

|∇µ|2dx (8)

where µ = v − γw; physically µ is the chemical potential that
gives rise to the material flux−∇µ.

2. Scaling regimes of the low-volume fraction limit

We suppose that the minority phase is described to a
good approximation by a collection of non-overlapping spheres
(hereafter ‘‘particles’’)

Ω+ = ∪Ni=1 BRi(xi).

The validity of this starting point hinges on two conditions:
(1) spherical particles are, in some sense, stable equilibria, and
(2) relaxation to these equilibria is faster than the dynamics
of particle–particle interaction. Since the energy is nonlocal, it
is impossible to regard an isolated particle as an equilibrium
of the complete free boundary problem. However, in the low
volume fraction limit, the energy of interaction between particles
is subdominant to the particles ‘‘self-energy’’, and a simplified
variational problem for equilibrium and stability can be considered
(see Appendix A).
Let R be the typical sphere radius and d the minimum pairwise

distance (see Fig. 2). We assume throughout that R � d which
implies that we are in the small volume fraction regime:

ρ ∼ (R/d)3 � 1.

There are two other derived length scales which distinguish the
regimes to be investigated.

2.1. Spatial scales

One important scale is the screening length ξ , which roughly
sets the distance over which particles interact. From a mathe-
matical point of view, screening arises in solving elliptic Dirichlet

1 Alternatively, the free energy is, modulo a constant, theΓ -limit of (1) as ε tends
to 0 where σ = εγ .
R

1

d

Fig. 2. Collection of particles with fixed small volume fraction (∼ R/d) where R
denotes the radius of the spheres and d, the separation distance, and sample size is
set to unity.

problems in domains which are highly ‘‘perforated’’. It is under-
stood that Green’s functions on these domains have an exponen-
tially decreasing character [22], with ξ setting the length scale
of exponential decrease. Niethammer & Otto [6] show that the
screening length for the dilute particle scenario scales as

ξ ∼
d3/2

R1/2
∼ (NR)−1/2

whereN is the number of particles per unit volume. In our problem,
interactions are screened when the screening length is similar or
less than the system size. We later show how this length scale
arises naturally in our formal approximations.
A second scale is set by the competition between local

and nonlocal effects encoded in the parameter γ . The (non-
dimensional) length γ−1/3 sets the scale for the radii of near-
equilibrium particles. In particular, we show that particle sizes
typically approach a radius R∗ = (3/γ )1/3, which is smaller than
the threshold Rs for stability. The relative size of R and γ−1/3
therefore delineates two regimes that are characterized by the
dominant balance of terms in (3).
Outside of the particle regions Ω+, the solution v to (3) varies

over scales comparable to ξ . This implies the scaling

1v ∼
R−1

ξ 2
∼ d−3.

If

R� γ−1/3 (Coarsening regime)

dominant balance inΩ− gives1v = 0, and the situation is similar
to the usual description of Ostwald ripening. The other case to
consider is

R ∼ γ−1/3 (Structured regime)

where dominant balance inΩ− gives1v = −γ ρ. This situation is
predominantly characterized by equilibration of particle radii to a
range of stable values, rather than coarsening.

2.2. Scaling in time

There are several temporal regimes, each characterized by a
certain scaling:

• Coarsening: when R � γ−1/3, the dynamics coincide with
traditional Ostwald ripening, where the relevant timescale is
τ ∼ R3.
• Structure formation: when R ∼ γ−1/3, particle sizes equili-
brate (at least locally). This equilibration also occurs on the
timescale τ ∼ R3. We will derive approximations on this
timescale which describe relaxation of particle radii to locally
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constant values. Steady states of this evolution do not corre-
spond to minimizers of the exact energy (6), but rather to low
energy states which are energy minimizers of a restricted
problem that ignores particle migration. In the case of small
screening length, there can be a spatially inhomogeneous
(‘‘polydisperse’’) distribution of particle sizes. A similar inter-
play between spatial distribution and size was described in
numerical experiments of Sagui & Desai [16].
• Pattern formation: This stage of evolution is described
by particle migration and organization of roughly periodic
patterned states, principally resulting from repulsive nonlocal
energy terms. The relevant timescale is τ ∼ Rd3.

3. Unscreened systems

We first describe the approximate dynamics in the simplest
case when the screening length is large compared with the system
size. The particle number and inter-particle distance therefore
have the scales

N ∼ d−3 ∼ ξ−2R−1 � R−1. (9)

The intermediate coarsening behavior can be captured by modify-
ing the classical LSW theory (developed independently by Lifshitz
& Slyozov [4] and Wagner [5]).

3.1. The LSW argument and its modification

Provided the radii satisfy R � γ−1/3, dominant balance in
Eq. (3) means that inΩ−, v satisfies the Laplace equation1v = 0
to leading order. The traditional LSW approximation assumes a
spatially infinite domain; here we adjust the argument using the
modified Green’s function Gp that formally satisfies

−1Gp(x) = δ(x)− 1/|Ω| (10)

subject to periodic boundary conditions (Appendix B provides a
review of the Ewald method for practical computation of this
Green’s function). Note that Gp behaves like the free space Green’s
function in the near field:

Gp(x− xi) =
1

4π |x− xi|
+ O(1), |x− xi| → 0. (11)

The fundamental approximation takes the form

v(x) = A0 +
N∑
i=1

AiGp(x− xi)+ O(1), R→ 0. (12)

where the coefficients A0, Ai are assumed to be O(R−1), O(1)
respectively for small R. In light of (10), there is a solvability
constraint on the coefficients
N∑
i=1

Ai = 0, (13)

which guarantees 1v = 0. The validity of the ansatz (12) in the
context of Ostwald ripening has been the subject of recent work
(cf. [2,6]). In general, one should regard this as an ‘‘outer’’ or mean-
field solution valid away from the free boundaries. At leading order,
however, (12) also satisfactorily describes the boundary layer near
each particle. The case of particle migration (Section 5), on the
other hand, requires a correction term to the boundary layer.
Applying the boundary condition on v and using (11) gives

asymptotically for small R

2
Ri
= A0 +

Ai
4πRi

+

N∑
j6=i

AjGp(xi − xj)+ O(1). (14)

We can estimate the size of the summation by observing that for
roughly homogeneous distributions of particles, it behaves like an
integral
N∑
i6=j

AjGp(xi − xj) ≈
1
d3

∫
Ω

A(x)Gp(xi − x)dx

= O(d−3) = O(R−1) (15)

where A(xi) ≈ Ai. By virtue of (9), the dominant part of (14) is

2
Ri
= A0 +

Ai
4πRi

. (16)

For each particle in the minority phase Ω+, 1v ≈ γ , and the
solution has the form

v(x) = C0 + γ |x− xi|2/6, x ∈ BRi(xi). (17)

In the context of the approximation, the free boundary velocity
given by (5) is radially symmetric at leading order, and gives the
dynamics of the particle radii as

dRi
dt
= [∂v/∂n]−

+
≈ −

Ai
4πR2i

−
γ Rj
3

(18)

For R� γ−3, the second term in (18) is also small, leading to

dRi
dt
=
RiA0 − 2
R2i

. (19)

Using (13) and (16) and summing over i leads to

A0 =
2N
N∑
i=1
Ri

. (20)

Eqs. (19) and (20) are the traditional LSW approximation, which
only holds in our system for large screening lengths and radiimuch
smaller less than the structure length scale.
When R ∼ γ−1/3, dominant balance yields the Poisson equation

1v = −γ ρ in the exterior region Ω−. The monopole ansatz (12)
can still be used, but the solvability condition on the coefficients
changes:

v(x) ≈ A0 +
N∑
i=1

AiGp(x− xi),
N∑
i=1

Ai = −γ ρ. (21)

Using (16) and the fact that γ ∼ R−3, it follows that to leading
order

dRj
dt
=
RjA0 − 2− γ R3j /3

R2j
(22)

Summing over all i in (16) and using the solvability constraint in
(21) leads to

A0 =
2N
N∑
i=1
Ri

+
γ

3

N∑
i=1
R3i

N∑
i=1
Ri

. (23)

Eqs. (22) and (23) are a modification of the traditional LSW
approximation in the structured regime. The remainder of this
section will discuss their behavior.

3.2. Behavior of the modified LSW evolution

The system (22) and (23) reduces to the classical LSW
approximation for γ = 0. In that case, A0/2 is the reciprocal of
the average particle radius, and the interpretation of (22) is simple:
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Fig. 3. Evolution of the reduced dynamics of Eqs. (22) and (23). There were initially 106 particles with radii chosen from a uniform random distribution of R ∈ [0, R∗/10].
The critical radius was chosen to be R∗ = 1. Toward the end of the simulation (rightmost frame) most particles have radii near R∗ . Eventually all radii converge to the same
value (not shown).
particles larger than the average will grow, while the smaller ones
will shrink.
The situation for γ > 0 is more involved. From the form of (22)

it is clear that particles which are very small or large relative to the
average will shrink, whereas particles with radii in the ‘‘growth’’
interval

Ig(A0) = [R−(A0), R+(A0)],

R± are positive roots of RjA0 − 2− γ R3j /3

have dR/dt ≥ 0. Note that this interval cannot be empty, otherwise
all radii would shrink and volume would not be conserved.

3.2.1. Small particle initial conditions
Suppose that initially all particle radii are very small, so that

the first term in the expression for A0 dominates. As coarsening
proceeds, A0 will diminish along with the size of the interval Ig .
Ultimately, most particles will have either vanished or have radii
close to this shrinking interval, which is itself vanishing as a critical
value A∗0 of A0 is approached. Near this point, most particles must
have similar radii whichwill converge to a common value R∗ when
the interval Ig just vanishes. This happens when the growth rate
R∗A0−2−γ R3∗/3 undergoes a saddle-node bifurcation (relative to
the parameter A0), given by

R∗A∗0 − 2− γ R
3
∗
/3 = 0,

d(R∗A∗0 − 2− γ R
3
∗
/3)

dR∗
= 0, (24)

which has the solution A∗0 = γ R
2
∗
where the critical radius is

R∗ =
(
3
γ

)1/3
.

Of course, a small fraction of particles may have radii larger
than the growth interval. These particles will losemass as particles
in Ig grow. If these two sets of particles reach equilibrium before
Ig vanishes, then the equilibrium radius may be somewhat larger
than R∗. This possibility is investigatedmore deeply by considering
energetic stability (Section 3.3).
To illustrate the behavior for small particle initial conditions,

we have simulated (22) and (23) with particles sizes chosen from
a uniform random distribution in the interval R ∈ [0, R∗/10]. The
reported behavior is more or less the same for any randomization.
After a transient period, the particle radii distribution is peaked,
and the average particle radius increases until it is just slightly
larger that R∗ (Fig. 3). We also compute the average radius (Fig. 4).
Initially, the coarsening process follows the expected LSW scaling,
but saturates when particle sizes are on the same order as the
structural length.
t
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Fig. 4. Average radius for the evolution (22) and (23) with small particle initial
conditions. The dashed line with slope 1/3 is provided for comparison. Initially, the
usual coarsening scaling R ∼ t1/3 is observed, but slows when radii are comparable
to R∗ .

3.2.2. Arbitrary initial conditions
If radii are not all small initially, there may be a substantial

fraction above the growth interval Ig . Ultimately most radii should
converge to a common value R ≈ R+(A0) since particles just bigger
than R+(A0)will shrink, while those just smaller will grow. This is
possible for any value of R which is the larger of the two roots of
f (R) = RA0 − 2− γ R3/3, which can be shown to satisfy

R ≥
(
3
γ

)1/3
= R∗. (25)

There is therefore a range of stable long term behavior depending
on initial conditions, characterized by convergence of particle radii
to a common radius R ≥ R∗.
Simulations of (22) and (23) for arbitrary initial conditions show

similar coarsening of small particles (Fig. 5), but the average radius
converges to a value somewhat larger than R∗ (Fig. 6).

3.3. Energetic reasoning

The behavior described above can also be explained in terms of
an approximation of the system energy. In particular, we can show
that within the context of the LSW approximation, an assembly of
particles of common radius R is energetically stable if and only if
R ≥ R∗.
The self-energy of an isolated, spherical particle of radius R can

be regarded as the sumof the surface energy 4πR2 and the nonlocal
contribution in (6). The solution to (7) for ρ ≈ 0 is approximated
in a way similar to v. The difference is that instead of a Dirichlet
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boundary condition, there is Neumann boundary condition that
requires continuity of the normal derivative. This gives the solution
(up to additive constants)

w =

|x|
2/6− R2/2 |x| < R

−
R3

3|x|
|x| > R.

(26)

One then computes the total self-energy of a particle as

4πR2 +
γ

2

∫
R3
|∇w|2dx = 4π

(
γ R5

15
+ R2

)
. (27)

The system (22) and (23) is in fact a gradient flow. The self-
energy of the collection of particles is

Es =
N∑
i=1

4π
(
γ R5i
15
+ R2i

)
, (28)

so that

dEs
dt
= 4π

N∑
i=1

(
γ R4i
3
+ 2Ri

)
dRi
dt

= −4π
N∑
i=1

R3i

(
dRi
dt

)2
, (29)

where (22) and conservation of mass
∑
i R
2
i dRi/dt = 0 was used.

Using the Riemannian metric given by the bilinear form

(ϕ1, ϕ2)g ≡ 4π
N∑
i=1

R3i ϕ1,iϕ2,i, ϕ1,2 ∈ RN , (30)

then (22) and (23) satisfy the definition for a generalized gradient
flow ∇Es · ϕ = (dR/dt, ϕ)g for all (volume conserving) ϕ ∈ Rn,
where R = (R1, R2, . . . , RN).
The metric corresponds to the dissipation of energy (8) in the
limit of small volume fraction. Indeed, suppose −∇µ is the flux
of material resulting from a prescribed mass conserving radial
dynamics dRi/dt . Then µ solves a free boundary problem

1µ = 0, [∂µ/∂n]−
+
=
dRi
dt

on each ∂Bi. (31)

Then µ ≈ Ci/|x − Xi| + C2 outside of each particle so that Ci =
−R2i (dRi/dt). Inside,µ ≈ 0, therefore in the small volume fraction
limit the dissipation is∫
Ω

|∇µ|2dx =
N∑
i=1

∫
|x−Xi|>Ri

C2i
|x− Xi|4

dx

= 4π
N∑
i=1

R3i

(
dRi
dt

)2
, (32)

which agrees with (29).
It is easiest to compute the energetic stability of a collection of

spherical particles {BRi(xi)} by working with the volume variables
Vi = 4πR3i /3. The energy of this collection is, according to our
above approximations, given by

Es =
N∑
i=1

[ 35/3γ
15(4π)2/3

V 5/3i + 3
2/3(4π)1/3V 2/3i

]
. (33)

Critical points of the energy are subject to the volume conservation
constraint
N∑
i=1

Vi = constant. (34)

Therefore the only critical points arewhere particles have the same
size, i.e. Vi = V = a constant. The second variation of the energy
(the Hessian of E) must be positive definite on the affine linear
subspace defined by (34) for the particles to be energetically stable.
In this case the Hessian is just a diagonal matrix with entries

2γ
34/3(4π)2/3

V−1/3 −
2(4π)1/3

34/3
V−4/3.

The critical point of Es is therefore an energy minimum only if this
quantity is positive, which means V > 4π/γ , or in terms of the
particle radii,

R >
(
3
γ

)1/3
= R∗, (35)

which agrees with the earlier discussion.

3.4. Connection with the leading order gamma-convergence of the
energy

We show here how the self-energy (28), used in the previous
subsection, is consistent with a recent asymptotic study [17,23]
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of the full free energy (6) in the limit where the volume fraction
ρ tends to zero, and γ is suitably scaled so that the eventual
number of particles remains positive. In this study, one finds
at leading order, a local self-energy analogous to (28) which
drives the limited-time coarsening process. At the next level,
one finds a Coulomb-like interaction between particles, similar to
(75), which is responsible for the particle migration and pattern
formation addressed in Section 5. There is a natural language in
which to present the rigorous asymptotic analysis, that of Gamma-
convergence [24] (often written as Γ -convergence). The rigorous
Gamma-convergence results in 2D and 3D are presented in [17].
A few details on the formal decomposition of the (3D)free energy
and the resulting asymptotic limiting contributions are provided
below. See [17] for precise treatment with explicit representations
of the Gamma-limits.
By addition of a constant, we can assume that the modified

Green’s function Gp satisfies∫
Ω

Gp(x− y)dy = 0, ∀x ∈ Ω.

Hence we may rewrite the energy in (6) as:

E(u) :=
∫
Ω

|∇u| +
γ

2

∫
Ω

∫
Ω

Gp(x− y)u(x)u(y)dxdy

where u ∈ BV (Ω, {0, 1}), a characteristic function of bounded
variation. Thus the first term is simply the area of the interface
∂Ω+. We are interested in minimizing this energy over all such
u with average ρ, and deriving an effective energy in the limit
wherein ρ tends to 0 but the number of particles remains O(1).
The effective energy will be defined over weighted single point
particles (Dirac delta masses). To this end, we must rescale
and renormalized the energy. We introduce a new parameter η
controlling the (decreasing) volume fraction, i.e.,ρ = ηM for some
fixedM reflecting the total mass of the limiting (point) particles. In
order to enforce (c.f. [23,17]) that the number of particles remains
O(1) as η→ 0, we slave γ to η via

γ =
1
η
.

Setting

v =
u
η
,

the energy can then be written as E = ηFη where Fη is defined for
all v ∈ BV (Ω, {0, 1/η}) by

Fη(v) :=
∫
Ω

|∇v| +
1
2

∫
Ω

∫
Ω

Gp(x− y) v(x)v(y)dxdy. (36)

One readily checks (cf. [23]) that the minimum of Fη scales like
η−1/3, and hence let us consider the asymptotics of η1/3Fη .
The asymptotics are best illustrated by studying a minimizing

sequence vη with the following form. Let vη =
∑Nη
i=1 v

i
η, where

each viη is of the form v
i
η = η

−1χEiη , and the sets (called particles)
E iη are connected, non-intersecting with a smooth boundary. We
define the mass of each connected component as

αiη =

∫
Ω

viη =
1
η
|E iη|.

As η → 0 we assume the following convergence (weak-∗
convergence in the sense of measures)

vη,−→
∑
i

αiδxi , whereαiη → αi and xi ∈ Ω. (37)
Note that as η → 0, the relative masses of the particles need not
be uniformly distributed.
The energy Fη(vη) of (36) then splits into two pieces:

η1/3Fη(vη) = η1/3
∑
i

{
c0

∫
Ω

|∇viη|

+
1
2

∫
Ω

∫
Ω

Gp(x− y) viη(x) v
i
η(y)dxdy

}

+ η1/3
∑

(i,j): i6=j

1
2

∫
Ω

∫
Ω

Gp(x− y)viη(x)v
j
η(y)dxdy

= η1/3
∑
i

Fη(viη)+ η
1/3

×

∑
(i,j): i6=j

1
2

∫
Ω

∫
Ω

Gp(x− y)viη(x)v
j
η(y)dxdy. (38)

As η tends to zero, the second term vanishes, since by (37)∑
(i,j): i6=j

∫
Ω

∫
Ω

Gp(x− y)viη(x) v
j
η(y) dxdy

−→

∑
(i,j): i6=j

αiαjGp(xi − xj).

The first term is O(1) as η → 0, and is essentially the sum of
the energies of each particle, i.e. there is no interaction between
the particles and the leading order behavior is entirely local. In the
language of Gamma-convergence, we have

η1/3Fη(vη)
Γ
−→ F0,

where F0 is defined over weighted Dirac masses
∑
i α
iδxi , and

consists of a sum of the individual energies for each particle
of limiting mass αi. These individual energies are defined
variationally over characteristic functions of sets with volume αi
and involve perimeter plus the long-range self-interaction, the
latter computed over the entire space R3.
In order to make a connection with our previous calculations,

precisely with (28), let us consider η small but positive, and take
the particles Ei to be spheres and overall volume fraction ρ. For η
small, the above implies that up to leading order, the renormalized
energy associated with the collection of particles can be replaced
by F0, which is the sum of the perimeter and self-interaction
(defined over all space) of each spherical particle of approximate
mass αi.
Let us first focus on F0. Note that in the Gamma-limit F0

the parameter η is absent, and the particles have mass αi. The
functional F0 is the sum of the perimeter and self-interaction
(defined over all space)of each spherical particle of approximate
mass αi. The latter is simply the square of the H−1 norm2
(computed on all of R3) of the characteristic function of a ball of
volume αi; for a ball of radius a this is 8π15 a

5. Thus taking a =( 3
4π α

i
)1/3
one has

F0 =
∑
i

(
3√36π(αi)2/3 +

1
2
8π
15

(
3
4π
αi
)5/3)

.

Now consider η small but positive. The above implies to leading
order that

2 For f ∈ L∞(R3)with compact support, we define

‖f ‖2H−1(R3) =
∫

R3
|∇v|2dx, where v ∈ H1(R3) solves−4v = f .
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E = ηFη
= η2/3

(
η1/3Fη

)
η small
≈ η2/3F0

= η2/3
∑
i

(
3√36π (αi)2/3 +

1
2
8π
15

(
3
4π
αi
)5/3)

= η2/3
∑
i

(
3√36π (αi)2/3 + 3

√
9
16π2

(αi)5/3

5

)
.

On the other hand, turning our attention to the the self-energy
of (28) we note that in these variables, for η small, but positive, the
particles have radii

Ri =
(
3
4π
ηαi
)1/3

.

Hence (28) can be written as

Es =
∑
i

4π

((
3
4π
ηαi
)2/3
+
γ

15

(
3
4π
ηαi
)5/3)

=

∑
i

4π

((
3
4π
ηαi
)2/3
+
1
15η

(
3
4π
ηαi
)5/3)

= η2/3
∑
i

(
3√36π(αi)2/3 + 3

√
9
16π2

(αi)5/3

5

)
.

Thus the self-energy (28) is the leading order term of the full
energy (6) in the regime of small volume fraction.

4. Screening and homogenization

If the screening length ξ is similar or smaller than the system’s
size (set to unity here) only particleswithin a distance set by ξ have
significant interaction. This is in contrast to the unscreened case,
where particle dynamics are determined entirely by a constant
mean field (represented by the fact v ≈ A0 away from particles),
which in turn depends on all particles in the system.

4.1. LSW approximation for large systems

We now look for an approximation under the scalings

N ∼ d−3 � R−1, R ∼ γ−3, (39)
corresponding to a system size larger than the screening length.
These approximations are the most general in the sense that they
reduce to the previous cases for small radii or large screening
length.
The solution to 1v = −γ ρ in the exterior region is given as

in the unscreened case by (21). The principal difference is that the
summation term in Eq. (14) is no longer subdominant. The same
approximation of the boundary condition as before gives a linear
system for the coefficients Ai that reads

2
Ri
= A0 +

Ai
4πRi

+

N∑
j6=i

AjG(xi − xj) (40)

which is closed by the solvability condition
N∑
i=1

Ai = −γ ρ. (41)

The solution to 1v ≈ γ in the minority phase Ω+ is the same as
in (17). The dynamics arise in the same fashion as the unscreened
case (22), giving

dRi
dt
=
−Ai/(4π)− γ R3i /3

R2i
. (42)
4.2. Homogenization and kinetic equations

In the large number limit, it is useful to work with the
(unnormalized) joint distribution ν(x, R) of particle positions and
radii∫
Ω ′

∫ R2

R1
ν(x, R)dRdx = #

{
i | xi ∈ Ω ′, R ∈ (R1, R2)

}
. (43)

The goal is to derive an equation for ν that captures the evolution
in a statistical fashion. It is convenient to define two related
quantities, the number density and ‘‘electrostatic’’ capacity:

φ(x) ≡
∫
ν(x, R)dR =

N∑
i=1

δ(x− xi) (44)

µ(x) ≡
∫
Rν(x, R)dR =

N∑
i=1

Riδ(x− xi). (45)

Within the limit of a large number of small particles, the
Dirichlet problem for v can be homogenized to yield an effective
equation for the limiting solution we denote by v(x) (cf. [6,25]).
To see how this arises, note that for small radius, each particle
has a boundary layer of thickness R, outside of which v is well
approximated by the mean field limit v(x). The boundary layer
is described (at leading order) by a solution to Laplace’s equation
exterior to the i-th particle, which has the form

v ∼ vi +
Ai

4π |x− xi|
.

Applying the boundary condition for v gives the relationship

vi + Ai/(4πRi) = 2/Ri, (46)

therefore the mean field near the i-th particle is given by

v(xi) ≈ vi =
2− Ai/(4π)

Ri
. (47)

The linear system (40) can therefore be written as

A0 + 4π
N∑
j6=i

(2− vjRj)Gp(xi − xj) = vi. (48)

By virtue of (44) and (45) and the approximation (47), the summ-
ations can be replaced by integrals:

N∑
j6=i

Gp(xi − xj) =
∫
Ω

φ(y)Gp(xi − y)dy (49)

N∑
j6=i

viRiGp(xi − xj) ≈
∫
Ω

v(y)µ(y)Gp(xi − y)dy (50)

The condition (41) can be written using (47) as

4π
N∑
i=1

(2− viRi) = −γ ρ (51)

or similarly using (44) and (45),

4π
∫
Ω

(
2φ − µv

)
dx = −γ ρ. (52)

Therefore (48) becomes an integral equation

A0 + 4π
∫
Ω

(2φ(y)− µ(y)v(y))Gp(x− y)dy = v(x). (53)

Although φ,µ are defined as distributions in (44) and (45), one
imagines that in the large number limitφ/N andµ/N approximate
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sufficiently smooth bounded functions. Roughly speaking, this
requires that particles are not ‘‘clumped’’ and are sufficiently
distributed throughout the spatial domain. This seems likely in our
problem, since particles repel one another (see Section 5). In what
follows, φ,µwill be regarded as those smooth functions obtained
within the large number limit.
Using the definition (10) of the modified Green’s function,

Eq. (53) is nothing more than an integral representation of the
homogenized differential equation

−1v + 4πµv = 8πφ + γ ρ. (54)

This equation is an extension of the homogenization result of
Niethammer & Otto [15].
In terms of the mean field, the dynamical approximation (42)

can be written as

dRi
dt
=
v(xi)Ri − 2− γ R3i /3

R2i
. (55)

Since v is determined entirely in terms of particle statistics by (54),
the kinetic equation for ν

νt + ∂R

(
R−2[Rv − 2− γ R3/3]ν

)
= 0 (56)

together with (54) forms a closed system for evolution of ν.

4.3. Stationary polydisperse states and energetics

For a specified (continuous) number distribution φ, stationary
states of the homogenized system (54) and (56) can be sought.
These states are not particle distributions which correspond to
minimizers of the original energy (6), but rather should be thought
of as constituting a lower-dimension manifold in state space
on which the migration dynamics (see next section) are slow
relative to the rate at which the manifold is approached. We can
nevertheless characterize these states as energy minimizers by
fixing φ, which is equivalent to ignoring particle migration.
Since themean field v is continuous, it follows that when (56) is

stationary, nearby particles necessarily have the same radius; that
is, we look for a distribution function ν which takes the form

ν(x, R) = δ(R− R(x)) φ(x), (57)

where R(x) is the radii of particles at x. It follows that stationary
solutions solve

−1v = 4πφ(2− R v)+ γ ρ, vR− 2−
γ

3
R
3
= 0. (58)

It is useful to introduce the quantity

ρ(x) =
4π
3
φ(x)R(x)3,

which represents the ‘‘local’’ volume fraction, so that (58)(a) can be
written

−1v = γ (ρ − ρ). (59)

Note that R and ρ can be used interchangeably.
The system (58) is best understood as the Euler–Lagrange

equation for an energy which is the natural homogenized version
of the system energy for prescribed number density φ, namely

Ehom(ρ;φ) = 4π
∫
φ
( γ
15
R
5
+ R

2
)
dx+

γ

2

∫
Ω

|∇w|2dx,

−1w = ρ − ρ. (60)

The first term represents the self-energy (see Eq. (27)) of a
collection of particles, whereas the second term is the nonlocal
contribution deriving from variations in the mean field. The
homogenized energy (60) is minimized for constant volume
fraction, given by the constraint∫
ρ dx = ρ.

Note that one cannot rule out, a-priori, the possibility of R ≤ 0
for critical points of (60). This is a reflection of the fact that if the
number density is too high locally, the coarsening dynamics will
eliminate some particles so as to reduce the particle density before
equilibrium is established.

4.4. Stability of particle distributions in the homogenized limit

Recall that for the unscreened case, a collection of particles was
stable (in the sense of the approximate energy) if all radii are larger
than the critical radius R∗ (see Eq. (35)), which is a root of

η(R∗) = 0, η(R) ≡
2γ
27R
−
2
9 R4

.

The homogenized energy turns out to have the same criteria:

R(x) is a minimizer of Ehom iff R(x) ≥ R∗, x ∈ Ω. (61)

The second variation of (60) is easily computed: it is just the second
variation of the energy in the unscreened system plus a nonlocal
term

S(ρ ′) =
d2

d2ε

∣∣∣∣
ε=0
E(ρ + ερ ′) = 4π

∫
(4πφ/3)−2η(R)(ρ ′)2dx

+
γ

2

∫
|∇w′|2dx, 1w′ = ρ ′. (62)

where ρ ′ must be volume preserving so
∫
ρ ′dx = 0.

To see why (61) is true, first note that the nonlocal term in the
second variation (62) is always positive and therefore stabilizing.
Therefore, R(x) ≥ R∗ implies η(R) > 0 and the entire second varia-
tion is positive. Conversely, suppose that R(x0) < R∗ for some x0
so that η(R(x0)) < 0, and consider for small ε > 0 the volume
preserving perturbation

ρ ′ =


1
ε3

|x− x0| ≤ ε

−
1
7ε3

ε < |x− x0| < 2ε
0 |x− x0| ≥ 2ε.

(63)

This has an exact, periodic solution to1w′ = ρ ′

w′ =



|x− x0|2

6ε3
|x− x0| ≤ ε

−
|x− x0|2

42ε3
−
8|x− x0|−1

21

+
12
21ε

ε < |x− x0| < 2ε
1
3ε

2ε ≤ |x− x0|.

(64)

Since w′ = O(ε−1), it follows that nonlocal term in (62) can be
estimated∫
|∇w′|2dx = −

∫
w′1w′ = O(ε−1). (65)

Therefore the entire second variation can be written

S(ρ ′) = C1ε−3[η(R(x0))+ O(ε)] + C2ε−1 + O(1), ε → 0 (66)

for positive constants C1, C2. For ε small enough, the term involving
η dominates and S(ρ ′) < 0.
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N=36, ξ=46.0433
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Fig. 7. Equilibrium configuration and statistics for large screening length, showing a small variation in sizes (the grey shading indicates z-coordinate). Particle sizes are
exaggerated for clarity.
N=297, ξ=6.3878
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Fig. 8. Equilibrium configuration and statistics for small screening length, showing a larger variation in sizes due to less interaction between widely spaced particles.
4.5. Numerical illustrations

To exhibit the interplay between particle configuration and dis-
tribution of radii, the screened approximate system (40)–(42) was
simulated. In the first case, there were N = 36 particles in a
periodic domain of dimensions [0, 50]3. The locations of the parti-
cles were chosen at random,with the constraint that theminimum
inter-particle distance is not less than several times the size of the
particles. The radii were chosen from a uniform random distribu-
tion in the interval R ∈ [R∗, 2R∗]. The average radius and aver-
age minimum distance between particles was used to define the
screening length. For this case, the result was ξ ≈ 46, which is the
same order as the domain size.
The equilibrium configuration is shown in Fig. 7, together with

the statistics for radius and minimum spacing distributions. The
notable feature is that the distribution of radii is sharply peaked
about R ≈ 1.6.
To yield small screening length, N = 297 particles were also

simulated, giving ξ ≈ 6.3 which is much smaller than the domain
size. The equilibrium configuration and statistics are shown in
Fig. 8. In this case, the radii distribution exhibits are larger variance
in contrast to the large screening length case. This is a reflection of
the fact that particles here only interact locally on the scale ξ , so
there is greater opportunity to have spatial variations in particle
sizes.
5. Particle migration

Near the i-th spherical particle, the boundary layer may be
further approximated as

v(x) =
Ai

4π |x− xi|
+ v1(x)+ o(1), R→ 0. (67)

The term v1 is a O(1) subdominant correction, which wewill show
is responsible for the migration of particles.
A systematic matching of v to the monopole solution (12)

means that v1 will solve the following problem:

1v1 = 0, v1 = 0 when |x− xi| = Ri,
lim
|x|→∞

∇v1 · n = ψ · n, (68)

for any direction nwhere

ψ =
∑
j6=i

Aj∇Gp(xi − xj).

Looking for solutions of the form v1 = Φ(|x− xi|) cos(ϕ), where ϕ
is the (polar) angle between x− xi and ψ , one obtains

v1 = |ψ |
(
|x− xi| − R3i |x− xi|

−2
)
cos(ϕ). (69)
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Since v1 = 0 inside the sphere, the corresponding free boundary
velocity is

∂v1

∂n
= 3|ψ | cos(ϕ), (70)

which corresponds to a rigid translation of a sphere. It follows that
the particle velocity can be written

dxi
dt
= 3

∑
j6=i

Aj∇Gp(xi − xj). (71)

Observe that the radial dynamics (22) have an associated
timescale

τR ∼
R

dR/dt
∼ R3.

If the screening length is comparable to the system size, the
summation in (71) can be estimated as an integral like Eq. (15) so
that the migration dynamics have the timescale

τX ∼
d

dx/dt
∼ R4/3.

A similar argument is given below for small screening length.
Therefore one expects migration of particles to be much slower
than the dynamicswhich causes equilibration of radii. In particular,
this justifies the study of particle distributions in which their
positions are held steady. In systems larger than the screening
length, this means that the particle radius distribution is well
approximated by a steady solution of (58) at a fixed time.

5.1. Variational characterization

We can amend the discussion of Section 3.3 by including
subdominant terms in the approximation of the nonlocal energy
term. These extra terms represent the interaction energy of
particles which gives rise to the migration dynamics.
To account for inter-particle interactions, the field w is better

approximated as

w =


|x− xi|2

6
−
R2

2
on each BRi(xi)

−

N∑
i=1

ViGp(x− xi) inΩ−,
(72)

where Vi = 4π/3R3i makes the normal derivatives on ∂Ω
continuous. The nonlocal part of the total energy can be written∫
Ω

|∇w|2dx

=

N∑
i=1

(∫
BRi (xi)
|∇w|2dx+ V 2i

∫
Ω/BRi (xi)

|∇Gp(x− xi)|2dx

)

+

N∑
i=1

N∑
j=1,j6=i

ViVj

∫
Ω−
∇Gp(x− xi) · ∇Gp(x− xj)dx. (73)

The first two terms represent the nonlocal parts of each particle’s
self energy (27). The last term is computed by writing∫
Ω−
∇Gp(x− xi) · ∇Gp(x− xj)dx = −

∫
Ω−
Gp(x− xi)dx

+

∫
∂Ω

Gp(x− xi)∇Gp(x− xj) · ndx, (74)

where n is the inward normal with respect toΩ+. The first term is
independent of xi, and in view of (11),

−

∫
Ω−
Gp(x− xi)dx = E0 + O(R2), R→ 0, (75)
where E0 is a constant which ultimately depends on the choice of
gauge for Gp. Near the j-th particle Gp(x− xi) ≈ Gp(xj − xi) so that∫
Ω−
∇Gp(x− xi) · ∇Gp(x− xj)dx = E0 + Gp(xj − xi)

×

∫
∂BRj (xj)

∇Gp(x− xj) · n+ O(R2)

= E0 + Gp(xj − xi)+ O(R2). (76)

It follows that the total energy in the limit of small R is
approximated as E = Es + EI where the interaction energy is

EI =
γ

2

N∑
i=1

N∑
j=1,j6=i

ViVj[E0 + Gp(xj − xi)]. (77)

Notice that in the structured regime γ ∼ R−3, Es ∼ R2
and EI ∼ R3. Therefore (since kinetics for migration and mass
exchange both scale as R3), the motion associated with EI should
be subdominant to the radial dynamics associated with Es. This
is another justification for the separation of timescales discussed
earlier.
On the very slow timescale associated with migration, the radii

are all the same and constant in time, so according to (23) Ai =
−γ Vi = constant. The dissipation of EI is computed using (71) as

dEI
dt
=
γ

2

N∑
i=1

N∑
j=1,j6=i

ViVj

×

(
∇Gp(xj − xi) ·

dxj
dt
−∇Gp(xj − xi) ·

dxi
dt

)
= −

1
3

N∑
i=1

Vi
dxi
dt

N∑
j=1,j6=i

(
−3γ Vj∇Gp(xi − xj)

)

= −
1
3

N∑
i=1

Vi

(
dxi
dt

)2
. (78)

This quantity can be interpreted as a Riemannianmetric associated
with a gradient flow. The chemical potential µ needed to create a
migration velocity dxi/dt of an isolated particle satisfies

1µ = 0,
[
∂µ

∂n

]−
+

=
dxi
dt
· n when |x− xi| = Ri,

∇µ→ 0, |x| → ∞. (79)

The solution is

µ =


1
3
(x− xi) ·

dxi
dt

|x− xi| < Ri
R3i
3
(x− xi) · (dxi/dt)
|x− xi|3

|x− xi| > Ri,
(80)

so that the dissipation of energy
∫
|∇µ|2dx of a collection of

approximately isolated particles gives is precisely (78).

5.2. Connection with the next order gamma-convergence of the
energy

Following the discussion of Section 3.4,we can also useGamma-
convergence [17] to support the energetic findings of the previous
section. In Section 3.4 we saw that the first order asymptotics of
the rescaled energy, Fη is given by a local functional F0, defined on
weighted sums of Dirac masses,

∑
im
iδxi . To find the next order,

one considers the asymptotics as η→ 0 (i.e. the Gamma-limit) of

Fη −min
(
η−1/3 F0

)
.
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In doing so, one finds an interaction energy of the form:

C0
∑
i

(αi)2 +
∑
(i,j):i6=j

αiαj Gp(xi − xj), (81)

where C0 is a constant associated with Gp (see [17] for details).
As we argued in Section 3.4, we may relate αi, η, ρ to the radii
and volume of the small particles. In doing so, together with the
incorporation of the scaling γ ∼ 1/η, we see that the dominant
second term of (81) and that of EI in (77) are identical.

5.3. Homogenization and kinetic equations

For a large particle numbers, the migration given by (71)
approximates an integral which can be treated by homogenization
as in Section 4. In particular, using (47) we have∑
j6=i

Aj∇Gp(xi − xj) ≈ 4π

×

∫
Ω

[
2φ(y)− µ(y)v(y)

]
∇Gp(xi − y)dy. (82)

Taking the gradient of the integral form of the homogenized Eq.
(53), it follows that the dynamics given by (71) in the homogenized
limit is
dxi
dt
= 3∇v(xi). (83)

Migration of particles can be incorporated into the kinetic Eq. (56)
by noting the probability flux due tomigration is just 3ν∇v, so that
the joint density ν satisfies

νt + ∂R

(
R−2[Rv − 2− γ R3/3]ν

)
+∇x · (3ν∇v) = 0. (84)

Since themean field v scales like 1/R (by virtue of the boundary
condition), and v varies over spatial length scales of ξ , the velocity
given by (83) scales like R−1ξ−1. The associated timescale is
therefore

τX ∼
d

dx/dt
∼ R4/3ξ 5/3.

Not only is migration slower than mass exchange, but screening
apparently inhibits motion. On timescales larger than R−3, particle
radii are determined quasi-statically by solving (58) for a given
number density φ. Therefore using the characterization (57) of
quasi-steady radii distributions, the evolution of φ can be written
as the closed system

φt +∇x · (3ν∇v) = 0 (85)

where v solves (58).

5.4. Computational results

We now illustrate the migration and self-organization of
particles using the finite dimensional approximation (71). Fig. 9
shows the initial and final configuration of 250 particles on a
[0, 50]3 domain. The radii were all initialized to the critical value
R = R∗. The initial configuration was random, but particles closer
than three radii to their neighbors were deleted.
The dynamics described by (71) is repulsive, and the final

state is an exact (or nearly exact) body-centered cubic (BCC)
lattice, which is expected for strongly segregated dilute copolymer
mixtures [10]. The absence of defects in the BCC pattern is partly
due to the choice of particle number, which is exactly enough for
a 5× 5× 5 tiling with the BCC configuration. We have conducted
other experiments with an uneven number of particles, and lattice
dislocations appear. The nature of these defects has been left to
future study.
6. Remarks on the two-dimensional thin film geometry

A similar scheme to reduce the dynamics to a set of ODEs can
be accomplished in two dimensions, although the results are more
subtle because of the presence of a logarithmic boundary layer
[26]. Nevertheless, even rigorous results have beenobtained for the
limit of small volume fraction for the classical Ostwald system [27].
The hypothesis leading to those results only depend on particles
being well-separated and having radii of a similar size, which is
what we expect here as well.
The Green’s function solving (10) on the two dimensional

domain Ω = [0, 1]2 with periodic boundary conditions has the
form

Gp(x) = −
1
2π
ln |x| + O(1), |x| → 0. (86)

It then suffices to construct an approximation for x ∈ Ω−

v = A0 −
N∑
i=1

Ai
2π
ln
∣∣∣∣x− xid

∣∣∣∣+ O(1), N∑
i=1

Ai = −γ ρ, (87)

where d is a cutoff length scale, chosen to be the typical distance
between particles. The reasoning for this is a follows: at a distance
∼ d from particles, the field v should behave like the mean field,
represented by A0. Although the choice of d is somewhat arbitrary,
we show below that the leading order in the approximation is
ultimately unaffected.
Applying the boundary condition to the i-th particle, one has

1
Ri
= A0 +

Ai
2π
ln(d/Ri)+ O(1), Ri/d→ 0. (88)

Because of the choice of d as the cutoff, the other terms in the sum
in (87) are (logarithmically) subdominant to ln(d/Ri). Notice that
the logarithmic term

Lρ = ln(d/Ri) = ln(ρ−1/2)+ O(1), ρ → 0,

provided the radii satisfy Ri/(dρ1/2) = O(1) as ρ → 0. This is why
it suffices to regard d as an arbitrary measure of particle distance.
Accordingly, the approximation Lρ ≡ ln(ρ−1/2) is used from here
on.
For x ∈ Ω+, the solution has the form

v = C +
γ |x− xi|2

4
, (89)

so that using (88) the radial dynamics are

dRi
dt
= −

Ai
2πRi

−
γ Ri
2
=
A0Ri − 1− γ LρR3I /2

R2i Lρ
. (90)

The second requirement in (87) implies, using (88) that

A0 =

N∑
i=1
1/Ri + (γ Lρ/2)

N∑
i=1
R2i

N
. (91)

The behavior of the system (90) and (91) is similar to the three
dimensional case. In particular, for small radii initial conditions, the
critical radius where the growth interval vanishes is computed to
be

R∗ =
(
1
γ Lρ

)1/3
. (92)

The interesting difference from three dimensions is that the
equilibrium radius depends on the volume fraction.
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Fig. 9. Initial and final configuration of 250 particles. Repulsive dynamics given by the approximation (71) leads to the formation of a regular BCC lattice.
7. Discussion

This work has demonstrated that evolution of dilute copolymer
mixtures can be analyzed by an approximation scheme similar
to those of ordinary dilute mixtures. The principal differences
arise in the slowing of the coarsening process and the ultimate
migration toward spatially ordered patterns. We note that the
problem studied here has various other physical analogs, including
ferrofluids [28] and Langmuir monolayers [29]. These problems
have the common ingredients of short-ranged attraction, which
creates phases, and long-ranged repulsion, that results in phase
patterning. It is expected that our results would apply to these
cases as well.
The approach taken in this article has been primarily formal,

and it is natural to seek out rigorous results to support our
findings. Starting with an ansatz of small spherical particles,
we have essentially focused on two dynamic regimes, the first
related to coarsening and the second related to migration and
self-organization. As we have already mentioned, there is a
direct connection here with the rigorous asymptotics via Gamma-
convergence of the energy in the limit of small volume fraction.
The dynamics of the first regime are driven via a self energy
which is simply the leading order term of the asymptotics (the
first order Gamma-limit), while the dynamics of the second regime
are driven by a Coulomb-like interaction energy which is the
next order term in the asymptotics. It would be interesting to
further justify our dynamic equations (gradient flows) via the
recently established connection between Gamma-convergence
and gradient flows (cf. [30]).
There is also rigorous work on stable spherical patterns

displaying this dichotomy of energetic effects. In [18], Ren andWei
prove the existence of sphere-like solutions to the Euler–Lagrange
equation of (1) and further investigate their stability. Working in a
regime of small volume fraction, they also show that the centers of
sphere-like solutions are close to global minimizers of an effective
energy defined over point masses which includes both a local
energy defined over each mass and a Green’s function interaction
term which sets the location of the approximate spheres.
In terms of the first regime of coarsening, onewould like to have

some rigorous statement concerning the threshold for particles of
critical radius size R∗ whereby particle systems of radii R where
R > R∗ constitute local minimizers (stationary states) with respect
to some underlying topology. One approach could be to interpret
the kinetic equation as gradient flowwith respect to some topology
and show that delta mass distributions ν = δR, R > Rast are
local minimizers with respect to the underlying topology. This is
the approach taken in [31] via the Wasserstein metric. Another
approach could be via themethod of Kohn and Otto [7] on rigorous
bounds on scaling laws for the particle radius, where one might
be able to show cross over of different bounds (or a collapse
altogether) as the length scale approached the critical value.
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Appendix A. Stability of a single particle

An isolated particle can be regarded as a steady solution to

1v = γ

{
1 inΩ+

0 inΩ− (93)

v = κ on ∂Ω+ (94)

Vn = [∂v/∂n]−+ (95)

v(x) ∼
γ

4π |x|2
|Ω+|, |x| → ∞ (96)

(The last condition arises from mass conservation). The energy
corresponding to this version of our problem is

F =
∫
∂Ω+
dA+

γ

2

∫
Ω

|∇w|2dx, (97)
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wherew is a solution to

1w =

{
1 inΩ+

0 inΩ−. (98)

The radially symmetric particle solution to (93)–(95) of radius R
has

w =


|x|2

6
|x| < R

R3

3|x|
|x| > R.

(99)

Stability is computed by the second variation of the energy; a
calculation similar to Choksi & Sternberg [32] gives the following
criteria for stability:

J(ζ ) ≡
∫
∂BR
|∇sζ |

2
− 2R−2ζ 2ds+ γ

(∫
∂BR

∫
∂BR
G(x− y)

× ζ (x)ζ (y)ds(x)ds(y)−
R
3

∫
∂BR
ζ 2ds

)
≥ 0 (100)

for smooth test functions ζ on the spherical surface with zero
average. The notation ∇s refers to the gradient on the surface ∂BR
and G is the free space Green’s function.
An expansion in terms of spherical harmonics

ζ =

∞∑
l=1

∑
|m|≤l

ClmYml (θ, φ)

allows the bilinear form (100) to be diagonalized. (Recall these
form a complete orthonormal set on L2(∂B) with eigenvalues
−1sYml = l(l + 1)Y

m
l ). The nonlocal term in (100) is computed

by lettingµ = ζ (θ, φ)δ(r − R) andw be a weak solution (in R3) to

−1w = µ. (101)

so that∫
∂BR

∫
∂BR
G(x− y)ζ (x)ζ (y)ds(y)ds(x) =

∫
∂BR
wζds. (102)

Eq. (101) can be solved by eigenfunction expansions, giving

w =

∞∑
l=1

∑
|m|≤l

R1−α
Clm
2l+ 1

rαYml (θ, φ)

where α = l for r < R and α = −l − 1 for r > R. Utilizing
orthogonality,

J(ζ ) =
∞∑
l=1

∑
|m|≤l

C2lm

(
l(l+ 1)− 2+ R3γ

( 1
2l+ 1

− 1/3
))
. (103)

It follows that stability requires

l(l+ 1)− 2+ R3γ

(
1

2l+ 1
− 1/3

)
≥ 0

for l = 1, 2, 3, . . .. The modes corresponding to l = 1 give J = 0
since the energy has translational symmetry. As R3γ is increased,
the first unstable modes occur when l = 2; therefore the spherical
particle solution is stable provided

R ≤ Rs ≡
(
30
γ

)1/3
= 101/3R∗, (104)

where the critical radius R∗ is defined in (25).
Appendix B. Ewald summation of periodic Green’s functions

Here we recap a practical way of approximating periodic
Green’s functions using Ewald summation techniques. The solution
Gp to (10) can be found using eigenfunction expansions as

Gp(x) =
∑
k6=0

exp(i2πk · x)(2π |k|)−2

=

∑
k6=0

∫
∞

0
exp(2π ik · x− (2π |k|)2t)dt, (105)

where k ∈ Z3. Themain idea is to split the integral at t = β in such
a way that one part is a quickly converging sum in k (for large t),
whereas the other part (for small t) can be rewritten as a quickly
converging lattice sum by using the Poisson–Jacobi formula. The
result is

Gp(x) =
∑
k6=0

(2π |k|)−2 exp(−β[2π |k|]2) exp(2π ik · x)

+
1
4π

∑
K

erfc
(
|x− K |/(2β)

)
|x− K |

, (106)

where K ∈ Z3. The optimal choice is β ≈ L2/10 where L is the
domain dimension size.
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