
London Mathematical Society Nonlinearity

Nonlinearity 35 (2022) 1500–1520 https://doi.org/10.1088/1361-6544/ac4d91

Microscopic patterns in the 2D
phase-field-crystal model

Gabriel Martine-La Boissonière , Rustum Choksi∗ and
Jean-Philippe Lessard

Department of Mathematics and Statistics, McGill University, Montréal, QC, Canada
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Abstract
Using the recently developed theory of rigorously validated numerics, we
address the phase-field-crystal model at the microscopic (atomistic) level. We
show the existence of critical points and local minimizers associated with
‘classical’ candidates, grain boundaries, and localized patterns. We further
address the dynamical relationships between the observed patterns for fixed
parameters and across parameter space, then formulate several conjectures on
the dynamical connections (or orbits) between steady states.
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1. Introduction

The phase-field-crystal (PFC) model introduced in [1] is a gradient system capable of mod-
elling a variety of solid-state phenomena. In its simplest form, the PFC energy can be written
as

E[ψ] = ⨏Ω

1
2

(
∇2ψ + ψ

)2
+

1
4

(
ψ2 − β

)2
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Figure 1. Left: details of a grain boundary appearing in a PFC simulation (taken from
[3]). Right: grain boundary network from a PFC simulation (taken from [4]). Within
each grain is a hexagonal lattice of atoms with a particular orientation.

defined on phase-fields ψ ∈ H2(Ω) satisfying the phase constraint

ψ̄ = ⨏Ωψ =
1
|Ω|

∫
Ω

ψ.

The parameter β represents inverse temperature such that β = 0 models maximum disorder.
Coupled with this energy is its conservative H−1 gradient flow which entails the sixth-order
partial differential equation (PDE) known as the PFC equation

ψt = ∇2
((

∇2 + 1
)2
ψ + ψ3 − βψ

)
.

Note that the PFC model shares its energy with the Swift–Hohenberg equation [2], which is
simply the L2 gradient flow of E. From linear stability analysis applied to single Fourier mode
ansatz, we find three main candidate global minimizers that divide parameter space, see the
supplementary material (https://stacks.iop.org/Non/35/031500/mmedia). In the hexagonal lat-
tice regime, 2D-simulations of the PDE starting with random noise quickly produce atoms that
arrange into small patches of hexagonal lattices with random orientations. These patches grow
and interact with each other, forming grains of hexagonal lattices of atoms with a particular
orientation. The morphology and evolution of these grains have features resembling those in
polycrystalline materials (cf figure 1). In particular, it has recently been shown that statistics of
many of experimentally observed (universal) grain boundary distributions are accurately cap-
tured by data amassed from simulations of this simple PFC equation [4, 5]. While here we will
mostly work with this vanilla PFC formulation, we note that a family of PFC-like equations can
be derived from density-functional-theory [6, 7] to obtain more complicated models capable
of simulating eutectic and dendritic solidification [8] and graphene structures [9, 10]. There
has also been work connecting PFC models with quasicrystals [11–13].

In this article, we address the PFC model and its steady states at the ‘microscopic’ level—the
local atomic arrangement. We believe that such an investigation of microscopic pattern-
formation capabilities of PFC is not only of mathematical interest but is also necessary to con-
struct ‘designer’ models for polycrystalline behaviour. For example, varying the parameters in
the energy lead to more complicated states than simple lamellar and hexagonal. These include
localized patterns in the ‘glassy regime’—the states near the liquid and solid transition—and
‘globules’ at large β.
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With the exception of the constant (liquid) state (cf [14]), it is difficult to prove any theorem
on the exact nature of steady states, local and global minimizers to this diffuse interface
problem. What exists in the physics literature is numerical simulations, standard linear sta-
bility analysis, and ansatz-driven energy comparisons. The recently developed theory of rig-
orously validated numerics (cf [15–19]) now provides a powerful new tool to bridge what can
be observed numerically with rigorous statements on pattern morphology. In a nutshell this
approach can be summarized as follows: given an approximate steady state, we use the con-
traction mapping theorem to imply the existence and local uniqueness of an exact steady state
within a controlled distance of the approximation. This notion of closeness is strong enough
to imply further useful results, including closeness in energy and stability results. In this paper
we use this new approach to address the following aspects of the PFC model:

• Are the ‘classical’ candidates obtained from linear stability analysis close to actual local
minimizers?

• Are the stable yet complicated patterns observed numerically indeed critical points in
the PFC energy landscape? For example, are grain boundaries steady states or simply
metastable states?

• What are the dynamical relationships between the observed patterns for fixed parameters
and across parameter space?

Based upon our results we formulate several conjectures on the connections (or orbits)
between steady states. Taken as a whole, our work presents the first step into a rigorous analysis
of the rich PFC energy landscape.

The outline of this paper is as follows. We first setup the PFC equation in Fourier space and
discuss the application of the framework of rigorous computations. We then verify the exis-
tence of important steady states of the PFC equation, including localized patterns and grain
boundaries. With these states in hand, we address the energy landscape of PFC with a discus-
sion on conjectures for connections (or connecting orbits) between steady states. Finally, we
presents results in one-parameter numerical continuation to outline some interesting features
of the bifurcation diagram of PFC.

2. PFC steady states in Fourier space

We begin by writing the equation ψt = 0 in Fourier space to obtain a coupled system of
equations for the Fourier coefficients of steady states. We will be slightly more general and
consider functionals of the form

E[ψ] = ⨏Ω
1
2

(Kψ)2 +
1
4

(ψ2 − β)2,

where K is a linear differential operator acting on elements of a suitable function space. In
particular,

K =

{∇2 + 1 for the basic ‘one − mode’ PFC model

(∇2 + 1)(∇2 + q2) for the ‘two − mode’ PFC model [20]
,
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where q is the secondary wavelength of two-mode PFC. Taking the H−1 gradient flow of E,
we obtain the PFC-like equation ψt = ∇2

((
K2 − β

)
ψ + ψ3

)
.

For simplicity, we let Ω be the rectangular domain [0, Lx] × [0, Ly] with periodic boundary
conditions. We let

Lx =
4π√

3
Nx Ly = 4πNy,

where Nx , Ny ∈ N are the number of atoms lined up in the x, y-axes. The main parameters of
the problem are then (ψ̄, β) and the domain size is given by (Nx , Ny).

Let aα be the Fourier coefficients of ψ and let (aα)t be the time derivative. Inserting
this expansion into the PFC equation results in an infinite system of equations of the form
(aα)t = Fα(a) thanks to orthogonality. The steady states may then be found numerically by
solving F(a) = 0 up to some truncation order M. We will see later that it is imperative to iso-
late the zeros of F; the continuous translational and rotational symmetries of PFC must then
be broken. The simplest way to do so in this context is to also enforce Neumann boundary
conditions. It is convenient to write aα = aα1,α2 so that the symmetry and reality conditions
become a|α1|,|α2| ∈ R.

This choice allows us to simplify a complex Fourier series into the cosine expansion

ψ(x, y) =
∑
α∈Z2

aα exp

(
2πi

α1x
Lx

)
exp

(
2πi

α2y
Ly

)

=
∑
α∈N2

Wαaα cos

(
2πα1

Lx
x

)
cos

(
2πα2

Ly
y

) ,

where W is a weight matrix defined by

Wα =

⎧⎪⎪⎨⎪⎪⎩
1 if α = (0, 0)

2 if α1 = 0,α2 �= 0 orα1 �= 0,α2 = 0

4 otherwise.

The Fourier coefficients of ∇2ψ are given by the elementwise product Lαaα where

Lα = −
((

2πα1

Lx

)2

+

(
2πα2

Ly

)2
)

is the Fourier representation of the Laplacian. Inserting these expressions into the PFC equation
and equating Fourier modes, we obtain

(aα)t = Fα(a) = Lα (γαaα + (a ∗ a ∗ a)α) ,

where ∗ denotes the discrete convolution and the linear terms combining K and β are

γα =

⎧⎨⎩(Lα + 1)2 − β for PFC

(Lα + 1)2
(
Lα + q2

)2 − β for two − mode PFC.
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Note that the (0, 0) Fourier component picks out the average phase so it is fixed to ψ̄: this
is consistent with (a0,0)t = 0 thanks to L0,0 = 0. To keep track of the phase constraint directly
in F, we replace its first trivial component by F0,0 = a0,0 − ψ̄, resulting in:

Fα(a) =

{
a0,0 − ψ̄ if α = (0, 0)

Lα (γαaα + (a ∗ a ∗ a)α) otherwise.

The operator F then represents the PFC dynamics in the sense that its zeros correspond to
steady states of the PFC equation. A numerical advantage of the reduced expansion is that we
effectively only have to compute a quarter of the full Fourier series. Obviously, this means we
are not treating PFC in full generality over H2 and will have to address this later. As an aside,
the equivalent F for Swift–Hohenberg is simply −(γαaα + (a ∗ a ∗ a)α) hence its (0, 0) entry
is nonzero and average phase is not conserved.

3. Overview of rigorously validated numerics and application of the radii
polynomial approach for PFC

As we just mentioned, our main tool for addressing the steady states of the PFC functional is
the radii polynomial approach for rigorously validated numerics. The purpose of this section
(and material presented in the supplementary material) is to provide sufficient detail so that the
reader can appreciate and indeed verify our results. From the point of view of the theory there
is nothing new here; nevertheless, leaving out the details would leave the uninitiated reader
without the tools to evaluate and assess our results.

The recent framework of rigorous computations has significantly enhanced the study of
dynamical systems. Examples of early pioneering works in the field of rigorous computations
is the proof of the universality of the Feigenbaum constant [21] and the proof of existence of the
strange attractor in the Lorenz system [22]. Several computer-assisted proofs of existence of
solutions to PDEs have also been presented in the last decades including eigenvalues enclosure
methods [23], self-consistent a priori bounds [24, 25], a priori error estimates for finite ele-
ment approximations combined with the Schauder fixed point theorem [26, 27] and topological
methods based on Conley index theory [28, 29]. We refer the interested reader to the survey
papers [15–19], as well as the recent book [30]. In the present paper, our computer-assisted
proofs are based on combining a standard Newton–Kantorovich approach with the contraction
mapping theorem, which is an idea that has been developed by several authors and which is
at the center of a well-developed literature (e.g. see [31–37] for some early work). We briefly
review the fundamentals of our approach and refer to [38] for more details.

Consider the Newton operator T(a) = a − AF(a), where A is a suitable inverse to the deriva-
tive DF(a). On one hand, if T is a contraction on a closed ball, the Banach fixed-point theorem
gives the existence and uniqueness of a zero of F within this ball. On the other, the repeated
application of T (allowing A to vary with a) should converge to this fixed point. We can then
numerically compute an approximate steady state ā for which F(ā) ≈ 0 up to numerical preci-
sion. If in addition we are able to show that T is a contraction around ā, then we immediately
have the existence of an exact steady state ã close to ā in an appropriate metric. This relation-
ship is made clear by the radii polynomial theorem, so-called for reasons that will become clear
shortly. To illustrate the method, we specialize the theorem to the case applicable to PFC, but
see [39, 40] for an applications to Ohta–Kawasaki in 2D and 3D. Given Banach spaces X, Y, we
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use the notation B(X, Y) for the space of bounded linear operators from X to Y, B(X) = B(X, X)
and Br(a) ⊂ X for the open ball of radius r around a ∈ X.

Theorem 1. Consider Banach spaces X, Y, a point ā ∈ X and let A† ∈ B(X, Y), A ∈ B(Y, X).
Suppose F : X → Y is Fréchet differentiable on X and A is injective. In addition, suppose

‖AF(ā)‖X � Y0

‖I − AA†‖B(X) � Z0

‖A(DF(ā) − A†)‖B(X) � Z1

‖A(DF(b) − DF(ā))‖B(X) � Z2(r)r ∀ b ∈ Br(ā)

where Y0, Z0, Z1 are positive constants and Z2 is a positive polynomial in r > 0. Construct the
radii polynomial

p(r) = Z2(r)r2 − (1 − Z0 − Z1)r + Y0. (1)

If p(r0) < 0 for some r0 > 0, then there exists a unique ã ∈ Br0 (ā) for which F(ã) = 0.

For completeness, the proof of this formulation is given in supplementary material section 2,
where we show a correspondence between the sign of the radii polynomial and the contraction
constant of T: if r0 can be found, T is a contraction and the Newton iteration starting at ā must
converge to some ã. This proves not only the existence of the exact steady states but also gives
control on its location in X with respect to a known point. In practice, one finds an interval
[r∗, r∗] of radii for which p(r) is negative; r∗ > 0 gives the maximum distance between ā and ã
while r∗ > r∗ gives the minimum distance between ā and another zero of F. The zeros of F
must therefore be isolated for consistency.

Each bound may be understood intuitively: Y0 being small indicates that ā is a good approx-
imation of ã while Z1 being small indicates that A† is a good approximation for DF(ā), and
so on. These bounds may be simplified analytically but must necessarily be computed numer-
ically. Therefore, we ensure that our numerical computations go in the same direction as the
required inequalities by using interval arithmetic [41], a formalized approach to deal with
numerical errors. We used the interval arithmetic package INTLAB for MATLAB, see [42,
43], to ensure that the radii polynomial approach is numerically rigorous.

This approach can be applied to the PFC equation to prepare numerical tools that can both
find a candidate steady state and compute the radii r∗, r∗ if they exist. If so, we immediately
have a proof that this candidate provides a good handle on an actual state of the PFC equation.
To do so, the derivative DF is computed and the underlying Banach space is specialized as
follows.

Let ν > 1 and define �1
ν(Z2) as the space of sequences aα with finite norm

‖a‖1,ν =
∑
α∈Z2

|aα|ν |α| =
∑
α∈Z2

|aα|ν |α1|+|α2|.

The restriction of �1
ν(Z2) using the symmetry condition is

X =
{

a ∈ �1
ν(Z2)

∣∣aα = a|α1|,|α2|
}
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over which the norm simplifies to

‖a‖1,ν =
∑
α∈N2

Wα|aα|ν |α| =
∑
α∈N2

|aα|να

where να is a weight matrix that forces the fast exponential decay of the Fourier coefficients.
The space (X, ‖ · ‖1,ν) can easily be shown to be Banach and the 2D discrete convolution forms
a Banach algebra over it, immediate results from the triangle inequality and the fact that ν > 1.

To implement Newton’s method numerically and obtain a numerical approximation ā, we
consider a finite dimensional projection of F. Given a truncation order M, denote by a(M), F(M)

the (M + 1)2 matrices consisting of keeping only the Fourier modes of order at most M in a
and F, respectively. For instance, a(M) is obtained by setting aσ = 0 whenever either σ1 or σ2

is greater than M.
Let now ā, ã ∈ X have the same meaning as before, with ā = 0 outside of U =

{0, 1, . . . , M}2 thanks to the truncation. Let G = DF(ā)(M) and denote by A(M) the numerical
inverse of G. We define approximate operators A†, A as

A†
α,σ =

⎧⎪⎪⎨⎪⎪⎩
Gα,σ if α, σ ∈ U

Lαγα if α = σ,α ∈ N
2\U

0 otherwise,

Aα,σ =

⎧⎪⎪⎨⎪⎪⎩
A(M)
α,σ if α, σ ∈ U

L−1
α γ−1

α if α = σ,α ∈ N
2\U

0 otherwise

which can be thought of as block tensors containing G or its inverse paired with the linear
terms Lαγα as the main ‘diagonal’ of the second block. If G is an invertible matrix1, so is A
and it is thus injective. The inverse of A is not A† however because A(M)G ≈ I(M) only up to
numerical inversion errors.

Note that F, DF and A† map to a space Y with less regularity than X because of the unbounded
Lαγα terms arising from real space derivatives; Y is a space where sequences Lαγαaα have
finite norm. However, the operator products against A are bounded on X thanks to the fast
decay of L−1

α γ−1
α . Thus, we say that A ‘lifts’ the regularity of the other operators back to X,

allowing statements such as T : X → X or ADF(ā) ∈ B(X).
We show in supplementary material section 3 how to simplify the bounds into expres-

sions that can be evaluated numerically. This allows us to write down the radii polynomial
p(r) = Z2(r)r2 − (1 − Z0 − Z1)r + Y0, noting that Z2(r) = Z(0)

2 + Z(1)
2 r, hence the polynomial

is cubic with non-negative coefficients except for maybe the linear term. We have p(0) > 0,
p′(0) = Z0 + Z1 − 1 and p(r) →∞ for large r. As a consequence, if p is strictly negative
for some positive r, there must exist exactly two strictly positive roots r∗ < r∗ defining the
interval where the proof is applicable. When this is satisfied, the radii polynomial theorem
gives that

(a) There exists an exact solution ã of F(a) = 0 in Br∗ (ā).
(b) This solution is unique in Br∗ (ā).

Thus, when the radii polynomial is computed using interval arithmetic and has exactly two
real non-negative roots, the zero computed numerically with the Newton iteration is close to
an actual steady state of the PFC equation. Note the important fact that the ball is in X so
a priori, only the Fourier coefficients are controlled. Thanks to ν > 1 however, we show in

1 The numerical method will fail if G is almost singular, so this is the case in practice.
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supplementary material section 4 that this control translates into closeness in energy and in
real space norms. In particular, the distance in value between the phase fields corresponding
to ā and ã is at most r∗.

Further, we show in supplementary material section 5 that the stability of ã in X is con-
trolled by the eigenvalues of G. It is important to observe that this matrix will always have a
positive eigenvalue because of the trivial condition F0,0 = a0,0 − ψ̄. This is not indicative of
instability in the context of the H−1 gradient flow because a0,0 is fixed. We shall see later that
this unstable direction can be used to compute a branch of solutions in parameter continua-
tion. For now however, we call the number of positive eigenvalues, minus 1, the Morse index
of ã, indicating how many unstable directions are available to a given steady state for fixed
parameters.

The procedure to numerically investigate the steady states of the PFC equation is as follows:

• Starting from a given initial condition, the Newton iteration is run until it converges up to
numerical precision.

• Then, the radii polynomial of the numerical guess is computed and its roots are tested.
• If the proof succeeds, we can characterize an exact steady state in value, in energy and

compute its stability in X. The parameters (M, ν) can be adjusted until the proof succeeds
with a trade-off between the computational effort and closeness in X.

In order for the reader to verify the success of the method for the presented states (patterns),
we have provided the coefficient data and processing algorithms at the following site: https://
github.com/gmartinemath/pfc-steady-states.

4. Rigorous results on small domains

We now have a complete framework for finding verified steady states along with their energetic
and stability properties. This allows us to understand the behaviour of the PFC system for a
given choice of (ψ̄, β), with three important caveats:

• We cannot guarantee that we have found all steady states and therefore the global mini-
mizer. Indeed, we may only hope to cover a reasonable portion of the underlying space by
sampling initial conditions randomly.

• The size of M must be balanced with ν to keep r∗ as small as possible, keeping in mind
that r∗ is ultimately bounded above by the distance between two steady states. In par-
ticular, large domains and large β increase the contribution of high frequency Fourier
modes, hence the truncation order can become large even for domains containing only
100 atoms. This limits our results to small domains so our analysis is ‘small scale’ in
nature.

• The Neumann boundary conditions restrict us to a ‘quadrant’ of H2. While the existence
of a steady state, the energy bound and instability obviously extend to H2, stability does
not as there may be unstable directions in the other three Fourier series that are missed by
the current method.

For the last point, we sometimes observe that translational shifts have a different Morse
index in X. This is observed for example with the stripes states, see figure 3(a). In this sense,
we only provide a lower bound for Morse indices in H2.
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Table 1. Data for selected values of (ψ̄,β) on the exact steady states ã near the numer-
ical approximation ā, obtained from the original candidate a. M = 20, 30, 40 for each
parameter set respectively. The Morse index was verified in X. We write <ε when the
number was numerically computed as 0. E0 denotes the energy of the constant state.

Ansatz
(ψ̄,β) ‖ā‖1,ν r∗ E[ā] − E0 Morse index

‖a − ā‖1,ν r∗ |E[ā] − E[ã]|

(0.07, 0.025)
0.07 4.3 × 10−16 4.337 × 10−19

4
<ε 1.7 × 10−2 4.9 × 10−17

(0.3, 0.5)
0.30 1.1 × 10−14 1.388 × 10−17

16
<ε 1.9 × 10−2 1.5 × 10−14

(0.5, 1.0)
0.50 7.2 × 10−15 <ε

16
<ε 5.3 × 10−3 2.6 × 10−14

(0.07, 0.025)
0.21 7.3 × 10−13 −1.774 × 10−5

0
4.8 × 10−4 5.7 × 10−3 4.8 × 10−13

(0.3, 0.5)
1.02 1.9 × 10−11 −9.369 × 10−3

7
4.5 × 10−2 1.2 × 10−3 8.3 × 10−11

(0.5, 1.0)
1.31 1.2 × 10−12 −1.241 × 10−2

111.1 × 10−1 1.7 × 10−2 9.1 × 10−12

(0.07, 0.025)
0.41 1.0 × 10−11 −4.714 × 10−5

0
1.1 × 10−3 6.8 × 10−3 1.5 × 10−11

(0.3, 0.5)
1.92 5.5 × 10−10 −2.089 × 10−2

0
8.1 × 10−2 4.5 × 10−3 8.1 × 10−9

(0.5, 1.0)
2.79 1.3 × 10−11 −5.897 × 10−2

0
2.4 × 10−1 2.9 × 10−3 4.4 × 10−10

(0.07, 0.025)
0.19 1.4 × 10−13 −3.013 × 10−6

3
7.6 × 10−4 3.2 × 10−3 8.1 × 10−14

(0.3, 0.5)
0.99 3.7 × 10−12 −1.839 × 10−3

128.8 × 10−2 2.9 × 10−3 1.6 × 10−11

(0.5, 1.0)
1.09 4.7 × 10−12 −1.312 × 10−3

16
1.0 × 10−1 2.1 × 10−3 2.1 × 10−11

4.1. Verification of the candidate minimizers

The candidate global minimizers (constant, stripes, atoms and donuts states) introduced in
supplementary material section 1 have trivial Fourier coefficients by construction, given by

Constant: a0,0 = ψ̄

Stripes: a0,0 = ψ̄ a0,2Ny =
1
2

As

Hexagonal: a0,0 = ψ̄ aNx ,Ny =
1
2

Ah a0,2Ny =
1
2

Ah

,

where As, Ah represent amplitudes that optimize the PFC energy calculation. Note that Ah

differs between the atoms and donuts states.
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Table 2. Data on steady states for (ψ̄,β) = (0.07, 0.025) and (Nx , Ny) = (8, 5), cap-
turing roughly 80 atoms. The observed count is the number of times the steady state,
including its discrete translational shifts, were reached out of 200 randomized trials.

Visualization
r∗ E[ā] − E0 Morse index Count
r∗ |E[ā] − E[ã]|

1.0 × 10−8 −4.714 × 10−5

0 53

2.8 × 10−3 2.2 × 10−8

2.5 × 10−8 −2.358 × 10−5

0 21

2.9 × 10−4 6.7 × 10−8

5.4 × 10−8 −2.215 × 10−5

0 57

5.8 × 10−5 1.9 × 10−7

1.6 × 10−9 −1.774 × 10−5

1 0

2.0 × 10−3 1.3 × 10−9

3.5 × 10−8 −1.161 × 10−5

2 1

5.4 × 10−5 9.0 × 10−8

To illustrate the approach, we first applied the verification program starting at the atoms state
b constructed for (ψ̄, β) = (0.07, 0.025), (Nx , Ny) = (4, 2) and M = 20. The Newton iteration
was used to obtain b̄ for which the radii polynomial was tested with ν = 1.05, resulting in
r∗ = 1.0 × 10−11 and r∗ = 6.8 × 10−3. The �1

ν distance between b and b̄ is 1.1 × 10−3, indeed
smaller than r∗.

The difference b − b̄ is mainly captured by new Fourier modes: we find that the main
Fourier coefficients bNx ,Ny = b0,2Ny = −4.4 × 10−2 differ by 1.5 × 10−5 while the largest
new Fourier modes are b8,0 = b4,5 = −7.4 × 10−5. Moreover, the distance in the (numerical)
sup norm between the two phase fields is approximately 4.4 × 10−4 which is again smaller
than the �1

ν distance, consistent with the L∞ bound.
This approach was repeated for the other candidates and for a few other choices of the PFC

parameters in the hexagonal regime, with truncation adjusted to β. The results are presented
in table 1, showing that such simple candidates capture well the leading behaviour. Note that
the agreement decreases with increasing β: compare the size of ‖a − ā‖1,ν to ‖ā‖1,ν .

4.2. Steady states in the hexagonal lattice regime

The Newton iteration can detect new steady states regardless of stability as it is based on
criticality instead of minimality. This allows us to find steady states that are observed only
momentarily or even locally during a PFC simulation. Table 2 presents a few of the 28 distinct
steady states found for (ψ̄, β) = (0.07, 0.025), (Nx , Ny) = (8, 5), ν = 1.05 and M = 40. Start-
ing at random initial coefficient matrices, the Newton iteration converges in 15 to 50 steps.
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Table 3. Data on steady states for (ψ̄,β) = (0.5, 0.6) and (Nx , Ny) = (7, 4). No count is
provided because only a few trials were attempted.

Visualization r∗ E[ā] − E0 Morse index
r∗ |E[ā] − E[ã]|

9.9 × 10−11 −2.465 × 10−3

0
3.3 × 10−4 4.7 × 10−9

1.6 × 10−10 −1.457 × 10−3

1
2.4 × 10−4 1.9 × 10−8

2.6 × 10−10 −2.670 × 10−4

8
7.7 × 10−5 2.3 × 10−9

2.1 × 10−11 −6.420 × 10−5

0
1.3 × 10−3 3.0 × 10−10

9.3 × 10−15 <ε
0

4.8 × 10−2 2.8 × 10−14

1.7 × 10−11 5.629 × 10−4

20
1.6 × 10−3 5.7 × 10−11

The four main ansatz were also explicitly tested, as only the atoms state could be reached from
random initial conditions.

Note that the energy of the exact steady states can be compared from table 2: for instance,
the energy of the exact atoms state is bounded away from the others so it is guaranteed to be
the best candidate global minimizer out of the observed steady states at the current parameter
values.

The second and third states presented in the table clearly display two grains of the same
orientation but with boundary atoms meeting ‘head-to-head’. This is essentially an intermedi-
ate in the grains slipping on one another that is stabilized by the restrictions of the boundary
conditions. Such states then represent a grain boundary that is stable, at least in X. When PFC
simulations [44] are initialized at these states, the flow appears to be stable for thousands of
steps then suddenly goes to the hexagonal lattice, meaning there are unstable directions in the
rest of H2. Nevertheless, the fact remains that grain boundaries can be steady states.
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Table 4. Data on steady states for (ψ̄,β) = (2.5, 20.0) and (Nx , Ny) = (4, 2).

Visualization r∗ E[ā] − E0 Morse index
r∗ |E[ā] − E[ã]|

1.5 × 10−8 −36.71
0

5.0 × 10−5 5.8 × 10−4

1.2 × 10−9 −35.48
0

2.6 × 10−4 3.5 × 10−6

2.3 × 10−8 −35.08
0

2.9 × 10−5 1.0 × 10−3

1.2 × 10−7 −24.11
13

4.4 × 10−6 4.6 × 10−4

4.3. Steady states in the localized patterns regime

Table 3 presents some steady states found for (ψ̄, β) = (0.5, 0.6), (Nx , Ny) = (7, 4), ν = 1.01
and M = 60. In this regime, localized or coexistence patterns are observed in PFC simula-
tions, some of which we can confirm to be steady states: note in particular the existence of a
‘single atom’ state. We see here that the global minimizer cannot be of the four main ansatz.
We observe two atoms states with different amplitudes and stability, highlighting the fact that
the ‘linear’ candidate is no longer appropriate as β increases and nonlinear effects begin to
dominate the energy.

Similar results have been obtained previously for a version of Swift–Hohenberg with broken
ψ →−ψ symmetry, see [45, 46].

4.4. Steady states for the large β regime

Table 4 shows a selection of steady states found in the large β regime, (ψ̄, β) = (2.5, 20.0),
(Nx , Ny) = (4, 2), ν = 1.01 and M = 65. In this regime, the microscopic organization is lost
as constant patches of phase form, with value close to ±

√
β, meaning that the double well term

of the PFC functional dominates the oscillation term.

4.5. Phase diagram with verified steady states

The framework allows us to construct a ‘rigorous’ phase diagram for PFC. Here the adjective
‘rigorous’ does not mean that we have identified the ground state; but rather that the respective
candidate state has been rigorously verified in its parameter regime. To this end, one must
construct a ‘patchwork’ of (ψ̄, β) split in regions in which we have a proof that a given state
is a global minimizer. For now, we restrict ourselves to proving that one of the steady states
near the known candidate minimizers has lower energy than all other known steady states at
given points. Further, our attempt is somewhat limited by the small domains we can access.
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Figure 2. Phase diagram for small parameter values (a) and for the localized patterns
regime. (b) All points are prepared by rigorously verifying that the exact steady state
around the ansatz have lower energy than all other observed steady states, up to trans-
lational shifts. Coloured regions are filled in to guide the eye. The curves show the
condition for the energy of the basic ansatz to be equal.

Nevertheless, this construction is useful and does indicate rigorously where the candidates
cannot be global minimizers.

Our approach is as follows: we discretize the (ψ̄, β) parameter space to some desired accu-
racy and for each point, we test the four ansatz and several other candidates obtained from
random initial coefficients. When one of the four ansatz has verified lower energy than the
others, up to translational symmetries, we label that point accordingly and otherwise leave
the point blank. Figure 2(a) shows the resulting diagram for small parameter values with
(Nx , Ny) = (4, 2), ν = 1.01, M = 20. At each point, 30 trials of the Newton iteration were tried
and verified rigorously. Note that the points below β = ψ̄2 could have been skipped since the
constant state is known to be the global minimizer in that regime [14]. This diagram matches
the one obtained in the supplementary materials with linear stability analysis.

Figure 2(b) shows the phase diagram near (ψ̄, β) = (0.5, 0.6) where localized patterns have
been observed. The domain is the same size but M = 30 to accommodate the larger β. At each
point, 15 trials were tried and verified, leading to points that have lower energy than the atoms
or constant states. This indeed shows the existence of a region where localized patterns are
more energetically favourable. This region gives an estimate of the full coexistence region that
ultimately cannot be made explicit without more refined techniques.

4.6. Rigorous results for two-mode PFC

As a final example, table 5 shows three verified steady states for two-mode PFC with
q = 1/

√
2, (ψ̄, β) = (0.09, 0.025), (Nx , Ny) = (12, 4), ν = 1.01 and M = 64. Note that here,

Lx = 2
√

2πNx and Ly = 2
√

2πLy to fit the symmetry of the square lattice. The second state
shows two grains slipping on each other; in contrast, especially to the result for hexagonal lat-
tices, the third state is a grain boundary with non-zero misorientation. Here, the rectangular
domains with Neumann boundary conditions can support the geometry of the square lattice at
0◦ and 45◦ rotations, so we can observe their coexistence. Since this result can be extended
to larger domains by simple tiling operations, we conclude that straight grain boundaries can
be steady states even in infinite domains where boundary conditions cannot ‘help’ stabilizing
such defects.
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Table 5. Data on steady states for (ψ̄,β) = (0.09, 0.025) and (Nx , Ny) = (12, 4) in the
two-mode PFC model with q = 1/

√
2. E0 is the energy of the constant state for two-

mode PFC. E[ā] is listed for comparison purposes but it is not rigorously bounded.

Visualization r∗ E[ā] − E0 Morse index
r∗

2.0 × 10−12
−2.758 × 10−5 0

3.6 × 10−4

6.5 × 10−12
−2.319 × 10−5 0

1.3 × 10−4

2.4 × 10−11
−2.244 × 10−5 0

4.2 × 10−5

Moreover, this grain boundary was observed to be (numerically) stable in two-mode PFC
simulations in the sense that small random perturbations of the phase field always converged
back to the grain boundary state. This is not a rigorous proof of stability in H2, but it gives a
good indication that grain boundaries are likely to be stable features in the PFC model.

5. Connections between steady states

Suppose Ψ1,Ψ2 represent two steady states, we say that there is a connection (or a connecting
orbit) from Ψ1 to Ψ2 if there exists a solution ψ(t) with the property that

lim
t→−∞

ψ(t) = Ψ1 and lim
t→+∞

ψ(t) = Ψ2.

More precisely, the connecting orbit leaves the unstable manifold of Ψ1 and ends up in
the stable manifold of Ψ2. Since the PFC equation is a gradient flow, there cannot exist non-
trivial homoclinic connections so there is a natural hierarchy of steady states expressed through
heteroclinic connections. This concept is extremely useful to ‘visualize’ the energy landscape.

States with Morse index 0 are stable (for fixed parameters) and are thus at the bottom of
the hierarchy. Those states with Morse index 1 have one unstable direction, so there are two
distinct perturbations that lead away from the state. For states with Morse index 2, two unstable
directions span infinitely many such perturbations, and so on. To detect connections, we pro-
pose to initialize a PFC flow near an unstable steady state offset by such perturbations. If the
flow becomes close enough to another known steady states, we stop and propose a conjectured
connection between the two steady states. This procedure often allows us to find unknown
steady states: when the flow stagnates, the Newton iteration can be run and often converges in
very few steps to a steady state that can be verified. Alternatively, we could check for inclusion
in the target r∗ ball, but this is a very restrictive criterion that limits our numerical investigation,
especially when obtaining connections to unstable states. We use the PFC scheme detailed in
[44].

While we cannot for the moment prove such claims because ‘parameterizing’ the infinite
dimensional stable manifold of the unstable steady states is highly non-trivial, we are aware of
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Figure 3. Connection diagram (a) where arrows represent likely connections; the con-
stant state is connected to all others. The vertical axis gives the ordering in energy while
the numbers give the Morse index. (b) Energy visualization with respect to the unsta-
ble directions of the constant state. This diagram illustrates how the unstable directions
combine to transform the constant state into other lower energy states. The unstable
directions serve as the main axes and the lines represent different initial perturbations.
The length of the lines indicate the number of PFC steps before the flows becomes close
to the connecting steady states. Colours represent energy (red for high and blue for low
energy).

some preliminary work in this direction [47]. That said, computer-assisted proofs of connecting
orbits from saddle points to asymptotically stable steady states in parabolic PDEs are starting
to appear [48, 49].

We first consider the standard parameters (ψ̄, β) = (0.07, 0.025) and use the very small
domain (Nx , Ny) = (2, 1). This choice is made to ensure that the constant state has Morse index
2 in X to simplify the visualization. We find seven steady states: both possible translations
of the atoms, stripes and donuts state, and the trivial constant state. Following the program
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Figure 4. Connection diagram (a) where arrows represent a few of the connections
found. The two hexagonal lattice states differ in their amplitude and stability. The ver-
tical axis roughly indicates the energy while the numbers give the Morse indices. We
could not obtain (nor disprove) a connection to the single atom state, indicated with the
question mark. The connection labelled with a star is broken down in the energy plot to
the right (b). These states appear to be metastable intermediates where the energy gra-
dient becomes small and the evolution slows down considerably. The blue curve shows
the energy as a function of time in arbitrary units, highlighting momentaneous ‘flats’ in
the evolution.

described above, we can construct the ‘connection diagram’ shown in figure 3(a) with the
arrows indicating that a connection was found from a state to the other. Note in particular that
the stable stripes state to the right numerically decays into the appropriately shifted hexagonal
lattices, but this is a slow process as the sine modes must grow out of numerical noise. This
clearly shows that our method cannot be used to guarantee stability in H2 because it cannot
depend on translational shifts.

We also propose a visualization method for such diagrams shown in figure 3(b). Take for
example the constant state with its two unstable directions given by the coefficients a0,2Ny and
aNx ,Ny . We place the constant state at the origin and plot radial lines along linear combination
of the unstable directions. The line length corresponds to the number of PFC steps needed to
approach the target steady states. In addition, we can colour the points along the line as a func-
tion of energy to indicate energetic relationships. A variant would be to show the energy as the
z-component of a surface; essentially giving an indirect visualization of the energy landscape
through 2D unstable manifolds. In particular, this diagram clarifies the relationships between
the steady states. For instance, the stripes states are formed by adding the a0,2Ny mode to the
constant state while the donuts are combinations of the atoms and stripes states.

We now consider the localized patterns regime to illustrate these ideas with states of high
Morse index. We do not attempt to build a higher dimensional visualization, but simply attempt
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Figure 5. Continuation (bifurcation) diagram showing the L2 norm of the phase (a) and
the energy offset by E0 (b) as functions of ψ̄. The dots represent the starting points at
(ψ̄,β) = (0.01, 0.025).

to recover the ‘pathways’ between the highly unstable hexagonal lattice with Morse index 20
towards stable steady states. This is visualized in the connection diagram of figure 4(a) which
includes a few states of table 3. In (b), we plot the energy along the PFC flow starting from the
index 2 state; this plot can be thought of as one of the rays in a diagram like figure 3(b). Note that
along the flow, the energy decreases in ‘steps’ corresponding to changes in topology, i.e. the
formation (or removal) of atoms. In this process, we could not verify that these intermediates
are steady states since the Newton iteration always converged to the endpoint; we then suppose
they are short-lived ‘metastable’ states.

It is difficult to obtain perturbations that can flow to desired steady states, especially when
they are unstable; see how only a few directions reach the Morse index 1 states in figure 3(b).
Indeed, unless ‘trivial’ combinations of the unstable direction happen to go to an unstable
state, we are unlikely to find such connections numerically. Similarly, our attempts to find a
perturbation that connects the starting lattice to the single atom state were unfruitful.

6. Parameter continuation for steady states

A verified steady state ã for some parameter (ψ̄, β) is usually part of a family of steady states
representing a ‘phase’ of matter. In fact, the candidate minimizers defined in supplementary
material section 1 as functions of (ψ̄, β) approximate such families, or branches in the bifur-
cation diagram. In this context, we can construct such branches by starting at a known steady
state, vary ψ̄ and find the closest steady state at this new parameter value.

Several verified techniques exist for following branches, see [39, 50] for an application to
Ohta–Kawasaki. We use non-verified pseudo-arclength continuation [51] in ψ̄. Note that the
unstable direction that is to followed is precisely given by the one corresponding to the ‘fixed’
a0,0 = ψ̄ condition and this is one of the reasons that we chose to enforce this directly in the
formulation of F. As a possible extension, 2D manifolds can be constructed in two-parameter
continuation when both parameters are allowed to vary, see [52].

Figure 5 shows the norm (a) and offset energy (b) of the main ansatz at (ψ̄, β) =
(0.07, 0.025) are plotted as functions of ψ̄. The domain is kept small with (Nx, Ny) = (2, 1) to
keep the bifurcation diagram as simple as possible. The atoms and donuts branches are actually
the same since we can continue the branches through the folds at ψ̄ = ±

√
5/12β. This branch
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Figure 6. Continuation (bifurcation) diagram showing the L2 norm of the phase (a) and
the energy offset by E0 (b) as functions of ψ̄. The inset in (a) shows the norm of ψ − ψ̄ to
better illustrate the snaking phenomenon. Both the hexagonal and single atom branches
appear to loop on themselves.

intersects the checkers state at β = 15ψ̄2 and the constant and stripes states at β = 3ψ̄2. The
energy plot (b) clearly shows that the donuts state is the ‘proper’ hexagonal lattice for ψ̄ < 0.
We note that varying β simply causes the branches to dilate. For example, we expect the 2D
hexagonal steady states manifold to be a ‘conic’ figure-eight.

Other ‘new’ branches will appear for larger domains or higher β. In particular, figure 6
shows the atoms/donuts branch and the single atom branch in the localized patterns regime
near (ψ̄, β) = (0.5, 0.6) with (Nx , Ny) = (7, 4). Again, (a) shows the L2 norm and (b) shows the
energy of the phase field as functions of ψ̄. The hexagonal lattice traces out its usual figure-eight
pattern while the single atom (and other localized states in general) traces out a complicated
looping path. Such branches illustrate the ‘snaking’ phenomenon previously observed in modi-
fied Swift–Hohenberg equations that support such localized patterns, see [45] for example. We
observe that the path loops on itself in one direction as the single atom evolves into a localized
pattern with 9, 7 then 4 atoms before looping back with a 90◦ rotation. In the other direction,
the branch moves towards the transition between the hexagonal and constant states where it
again loops back. This computation is difficult because the truncation must remain large and
the pseudo-arclength step size must remain small; if the step size is larger than 0.0005, the
branch breaks away towards the hexagonal lattice solution.

7. Conclusion

We surveyed the basic properties of the PFC equation as a dynamical system in the framework
of rigorous numerics. Thanks to an application of the radii polynomial approach, we were
able to verify the existence of steady states close to numerically computed approximations.
This provided us with important verified information regarding the behaviour of the energy
landscape, especially in terms of energetic relationships between steady states. We were also
able to provide partial stability results with the caveat that they only applied to the cosine
Fourier series. The Morse indices given were lower bounds in H2—thus those steady states
with Morse index higher than 0 must be unstable in H2.

Such ideas were applied in various regimes of the PFC equation to verify that certain impor-
tant patterns are steady states (as opposed to metastable intermediates) including single atoms,
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other localized patterns and grain boundaries. In particular, we showed that two-mode PFC
supports a non-zero misorientation grain boundary steady state that we expect to be stable. We
also showed the construction of the phase diagram with our fully nonlinear approach.

Finally, we used such results to further investigate the energy landscape through connections
or orbits and through parameter continuation. Connections reveal the energetic and dynam-
ical relationships between steady states, highlighting the behaviour of unstable patterns as
they reach states with lower energy. Continuation is especially useful to understand how the
important states evolve across parameter space, highlighting the surprising behaviour of the
hexagonal lattice patterns and the snaking behaviour of localized patterns.

Our work suggests several interesting directions for future work. On one hand, our connec-
tion results could be made rigorous with a technique to prove orbits from unstable to stable
manifolds. This is a complicated problem because the stable manifold is infinite dimensional
and special techniques must be applied to properly parameterize its ‘dominant’ submanifold.
On the other, our continuation results could also be made rigorous or extended to two-parameter
continuation to reveal more interesting behaviour. Alternatively, parameter continuation could
be applied to the domain size, for example to investigate problems in elasticity.
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