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Abstract
We introduce an accurate, self-contained and automatic atom based numerical
algorithm to characterize grain distributions in two dimensional Phase Field
Crystal (PFC) simulations. We compare the method with hand segmented and
known test grain distributions to show that the algorithm is able to extract grains
and measure their area, perimeter and other geometric properties with high
accuracy. Four input parameters must be set by the user and their influence on
the results is described. The method is currently tuned to extract data from PFC
simulations in the hexagonal lattice regime but the framework may be extended
to more general problems.

Keywords: grain recognition, phase field crystal, Voronoi diagram, grain
growth

(Some figures may appear in colour only in the online journal)

1. Introduction

The polycrystalline structure of materials is one of the main deciding factors in determining
physical properties such as hardness and ductility. A thorough understanding of the condi-
tions that lead to the formation of a desirable crystalline structure is essential in many
technological applications. To study such conditions and their impact on the evolution of
polycrystalline materials, it is necessary to obtain experimental data throughout the structure
forming processes. For example, extensive studies into the evolution of grains and stagnation
in thin Al and Cu metallic films have been carried out in [1]. Such investigations are
experimentally challenging so simulations are desirable to investigate the evolution of
crystals. Many theoretical models have been proposed to do so, such as the well-known
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Mullins model [2]. More recently, the Phase Field Crystal (PFC) [3, 4] model has been
successful in modeling a wide variety of crystalline phenomena. In particular, grain size
distributions predicted by the 2D PFC model agree remarkably well with experimental data
[5]. While these results are encouraging, to our knowledge, a thorough statistical assessment
of geometric properties of grain boundaries in the PFC model has yet to be performed. To do
so, one needs a verifiably accurate method for extracting grain boundaries and geometric
features from input data containing millions of atoms (see figure 1).

In this article, we present and assess a simple and self-contained method specifically adapted
to characterize the geometric properties of grain distributions extracted from 2D hexagonal PFC
simulations. Attempts to numerically characterize such grain networks are not new. Much
experimental data comes from digital images of thin metallic films or tomographic maps of 3D
crystals in which grains are very large compared to atoms. This typically leads to very sharp and
clear grain boundaries that can be recognized readily both manually or numerically, as in [6, 7].
Grain area can then be measured by counting the number of pixels within each connected region.
Identifying the boundary network obtained from atomistic simulations proves to be a much more
complicated task. Unlike images where orientation is essentially a piecewise constant map in
space, the orientation in atomistic simulations must first be extracted from atomic positions. Such
an orientation map may be extracted using variational techniques as in [8–11]. Alternatively, the
map may be obtained by projecting and interpolating geometrically computed local orientations,
obtained for example with the atomistic visualization tool OVITO [12] and see [13] for details on
specific approaches. In both cases, the gradient of the orientation map may then be thresholded to
create a ‘skeleton’ of grain boundaries. Grain area may then be characterized by counting the
number of pixels in each region enclosed by a boundary. Recently, an automated atomistic
technique to identify grains whose barycenter can be tracked in time has been developed in [14].

We propose a grain extraction and measurement procedure which is also based on using
atomic positions instead of working with a projection of the orientation map. We show that
our method is capable of measuring grain area, perimeter, Grain Boundary Character Dis-
tributions (GBCD) [15] and related geometric properties with high accuracy. Our approach

Figure 1. Detail of atomic positions in a simple PFC simulation. Each atom is
represented as a ‘bump’ in luminosity. Away from grain boundaries, these bumps are
uniform through space and time and arrange into regular hexagonal lattices.
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uses the Voronoi region of each atom to characterize defects and grain boundaries, creating a
stencil with which one identifies grains on the graph of atoms. Once atoms belonging to a
grain have been identified, its geometry may be computed using the geometry of the atomic
cells. All steps rely on very simple geometric routines that can be implemented efficiently.
For simplicity and because our main goal is to extract grain distributions arising from the
basic PFC equation [3], our algorithm is adapted to 2D hexagonal lattices. The proposed
framework may be extended to more interesting scenarios once the underlying atomistic
characterization is extended to other lattice types or to 3D as in [14].

The outline of the article is as follows. First, we detail our atom based grain extraction and
measurement procedure. Then, we validate the accuracy of both the numerically computed grain
network and the extracted properties by comparing the numerical segmentation with hand seg-
mentations and artificially constructed grain distributions. The choice and influence of the input
parameters is also discussed. Finally, we present a few sample results from PFC simulations.

2. Atom based grain extraction and measurement

Let us suppose we are given an image of atomic positions representing a polycrystalline
material as in figure 1. A grid based approach to characterizing this material would be the use
of variational techniques to convert the input into a map of local lattice orientations. The
gradient of this map may then be used to construct rough grain boundaries from which grains
can be recognized as enclosed regions, represented as connected sets of pixels on a grid. The
geometric properties of these sets can be computed with image processing techniques.
Another approach, unified in the proposed method, is to first extract atomic positions then
repeat the steps outline above on the graph of connections between neighbor atoms which we
call the ‘graph of atoms’. The geometric properties of these sets are then to be computed using
the geometric properties of the atomic cells they contain. While the implementation of both
approaches is quite different, their respective steps are in a natural parallel.

We now present the later approach, the atom based grain extraction and measurement
algorithm. For simplicity and to analyze basic PFC simulations, we focus on characterizing
2D simulations in which atoms have arranged into suitably large hexagonal lattices with
interatomic distance d. The full procedure is outlined as follows:

• Atomic positions are extracted from an input image (2.1).
• A lattice orientation is assigned to each atom (2.2).
• The local lattice structure of each atom is probed to determine which atoms are close to
grain boundaries, forming a grain boundary mask (2.2).

• Grains are identified in a fashion similar to a flood-fill algorithm (2.3).
• Atoms in the grain boundary mask are assigned to the closest grain (2.3).
• Grain properties are measured (2.4).
• Spurious grains are detected and removed (2.5).

A MATLAB implementation of our procedure is capable of analyzing an 81922 image
containing roughly a million atoms in about 7 min on a standard machine. We note that an
implementation of the grid based approach would follow the same general outline with the
first steps replaced by variational filtering techniques, converting the input image into an
orientation map and an appropriate grain boundary mask. Subsequent steps follow naturally
with the pixels playing the role of atoms.

Our input data typically comes from simulations over periodic domains; it is therefore
necessary for the implementation to allow grains to be identified even if they cross periodic
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boundaries. Average orientations are also often required, a possibly ill defined quantity given
the identification between 0 60 =  in a hexagonal lattice. To compute an isotropic average,
convert a set of orientations into position vectors on the unit circle such that 1, 0( ) corre-
sponds to both 0 and 60 . Then, the angle of the average vector can be mapped on the same
range and taken as the average orientation. This agrees with the Euclidean average for narrow
distributions but avoids any ambiguity near the identification.

2.1. Atom recognition

Given an input image where atoms are represented as pixelated circular bumps, we use a
contouring algorithm to find the intersection points between the input and a height level h.
The points of each contour are then fit to a circle whose center is used to define atoms as in
figure 2(a). Note that the input parameter h must be chosen so that atoms at grain boundaries
are also recognized even if they are not as well formed as those within lattices. This is not an
issue since the appropriate range is quite wide.

2.2. Computation of atomic Voronoi properties and grain boundaries

We now identify defects and atoms with a local environment that is far from the expected
lattice configuration. This traces a preliminary boundary network while other atoms will be
assumed to be part of a grain. Our approach is to compute the Voronoi tessellation [16] of all
atomic positions and determine how closely the Voronoi or Wigner–Seitz cell of an atom
matches a regular hexagon, see figure 2(b) for an illustration. If the cell is hexagonal, we may
also compute the local lattice orientation of an atom by averaging the angle of the vector
pointing to the six Voronoi vertices modulo the 60° symmetry. Near boundaries, this com-
putation will give inaccurate results. When enough neighbor atoms have similar orientations,
they form a coherent lattice and will be considered to form a grain.

Figure 2.Detail of a PFC simulation with contours used to find atomic positions (a) and
their Voronoi diagram (b). Note how grain boundaries can be identified as the set of
cells that are not perfect hexagons.
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A simple measure of closeness between the Voronoi cell and the regular hexagon is as
follows. The area A and perimeter P of the Voronoi regions can be computed using methods
such as the Shoelace formula [17]. From these properties, one can compute the isoperimetric
ratio Q A

P

4
2= p of the region. This parameter is positive and less than 1 by the isoperimetric

inequality, that value being achieved only by a perfect circle. A similar result is that within the
class of N-sided polygons, the regular N-gon achieves the maximum isoperimetric ratio
QN

N

Ntan
= p

p( )
. This means that the cell of an atom with six neighbors is close to a regular

hexagon if Q is close to Q6. To characterize defects and atoms close to grain boundaries, we
will label any atom for which Q Q6 -∣ ∣ is larger than some threshold γ as ‘bad’. In contrast, if
an atom has six neighbors and its region is close enough to a perfect hexagon, it is called a

Figure 3. Visualization of local lattice orientations in a PFC simulation (a). Grain
boundary masks using γ equal to 0.002, 0.0005 and 0.0002 in (b), (c), (d) respectively.
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‘good’ atom. The value of γ then sets how atoms close to boundaries are expected to behave
compared to atoms deep in a perfect lattice. This ‘bad atom mask’ is illustrated in figure 3:
notice how decreasing γ from (b) to (d) progressively thickens the boundaries and closes most
gaps between grains until the boundaries become too thick and start invading the grains
proper. From this figure, the partition between good and bad atoms is clear: it gives a
preliminary mask that can be used to ignore all misleading orientations near grain boundaries,
improving the accuracy in the detected grain angle and boundaries.

Since this approach is similar to the Voronoi Analysis detailed in [13], it suffers from
issues that reduce its applicability to other lattice types or to 3D. As in [14], this step may be
overhauled with similar methods such as Common Neighbor Analysis or Centrosymmetry
Parameter.

2.3. Flood fill procedure

Grains must now be identified by connecting neighboring good atoms based on their
orientation. This step is similar to extracting connected components on a square grid, working
instead on the graph of atoms given by connecting neighboring atoms. These may be detected
by connecting atoms that share a Voronoi vertex or by connecting atoms that share a triangle
in the Delaunay triangulation [16] of the atomic positions.

A grain is found by picking a random good atom and probing its six neighbors. If a
neighbor is good and its orientation is sufficiently close to that of the starting atom, it is
accepted into the grain. How small this misorientation can be is set by the misorientation
threshold θ. The grain having grown by one shell of neighbors, a preliminary grain orientation
is computed by averaging the orientations of accepted atoms. This process iterates for all new
atoms with the difference that orientations are now compared to the preliminary grain
orientation. When the process ends, the number of atoms is computed and if it is smaller than
an atom number threshold α, the grain is deleted and its atoms are marked as bad. This
ensures that small spurious clusters of good atoms are not falsely recognized as grains.

The procedure iterates until all good atoms have been associated to a grain or marked as
bad, resulting in a partition of atoms in either grains or the thick grain boundary network
similar to figure 3(c). As long as no true grain has been missed, we can assume the ‘sharp’
grain boundaries lies exactly in the middle of the region of bad atoms between preliminary
grains. This is done approximately by connecting a bad atom to the grain that contains most
of its neighbors, ignoring those connected only to bad atoms. This process repeats until all
atoms belong to a grain. Since all grains acquire a few new atoms, the smallest grain detected
will be slightly bigger than α. An appropriate choice for this threshold is then any value
smaller than half the size of the smallest feature that is represented in the input. Since very
small clusters of good atoms may be present within the boundary network, α must still be
larger than some minimum value to ensure that not too many false positives are detected.

2.4. Measurement of grain properties

Measuring grain properties turns out to be quite simple once grains are identified and their
atoms known. Let us call boundary atoms those atoms that have a neighbor inside a different
grain. We now describe how to compute several grain properties using only the Voronoi area
of atoms.

Grain area. The area of a grain is the sum of the area of the Voronoi regions of its atoms.
This property is usually expressed through the normalized reduced area, computed by first
taking the root of the areas then dividing by the average.
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Grain perimeter. The perimeter of a grain is the sum of the area of all boundary atoms
that are connected to the grain, divided by a characteristic boundary thickness. This sum then
includes all boundary atoms of the current grain plus the boundary atoms of grains that are in
contact with it.

Several issues arise when attempting to compute grain perimeter since a boundary is an
extended region ambiguously defined by discrete atomic positions. In addition, similarly to
the coastline paradox, one could either trace a smooth line somewhere through a grain
boundary or one could trace the line connecting boundary atoms one by one. While the first
approach is more sensible from a materials science point of view, only the second is
unambiguous. Naturally, the perimeters recorded vary between the two approaches. Since
there is no clear notion of perimeter, we use a geometrically unambiguous quantity to
approximate the length of grain boundaries. Taking PFC as a concrete example, grain
boundaries are very thin with a thickness comparable to the interatomic distance d. The region
defined by the Voronoi regions of boundary atoms is then roughly two atoms thick, illustrated
in figure 4. Thus, dividing its area by d2 transforms the quantity into a one dimensional value
akin to perimeter. While d is not necessarily fixed in space or time, we simply assume that all
atoms have a perfectly hexagonal Voronoi region and equally divide the domain so that given
the domain area A and the number of atoms Na, one has that d A N2 32

a» ( ). This simple
estimate gives reasonable results as will be shown in 3.2.

Any other method of relating the area of the diffuse boundary to the perimeter could be
used and accuracy might be gained by using a relationship that is better informed by the exact
geometry of expected interfaces. An alternative and unambiguous characterization of area and
perimeter in atomistic simulations may simply be the number of atoms inside a grain and at
the boundary respectively. While this would not as well extend to mesoscopic experiments, it
could be used to compare different atomistic simulations directly and unambiguously.

Grain isoperimetric ratio. This ratio is computed from the area and the perimeter. The
closer this value is to 1, the closer a grain is to a circle. In particular, oscillations in the
boundary quickly decrease this value. This provides a measure not only of grain circularity
but also of the roughness of its interface. Our method does not provide a geometric

Figure 4. Detail of a PFC grain boundary with extracted atomic positions in black and
the Voronoi region of boundary region atoms colored in blue.
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isoperimetric ratio since area and perimeter do not represent the same curve, hence the ratio
may be larger than 1.

Grain coordination number. The coordination number of a grain is the number of grains
with which it makes contact.

Grain–grain area ratio. Given the areas A Aand1 2 of two neighbor grains, the area ratio
is defined as the minimum between A A A Aand1 2 2 1 to keep the ratio below 1. This property
is an attempt to capture geometric correlations between neighbors. For example, if a grain has
grown in time, its area must have been part of neighboring grains, giving rise to local
imbalances in area. The evolution in time of the distribution of area ratios can then reveal
whether this process ‘balances out’ across the structure or whether large grains grow sys-
tematically to the detriment of very small neighbor grains.

Grain–grain interface length, misorientation and GBCD. As with the perimeter, the area
of the Voronoi regions of only the boundary atoms connecting two neighbor grains may be
summed and divided by d2 , measuring the length of the interface between the grains. The
misorientation between two grains may be computed using the periodic angular difference
between the grain orientations. A derived property is then the GBCD [15] which is computed
by summing the interface length between grains whose misorientation falls in a given angular
bin. In contrast to the bare misorientation distribution, this produces a histogram weighted by
interface length rather than number which highlights preferred misorientations according to a
geometrical metric.

2.5. Post processing grains

Some issues in the input image may lead to the detection of spurious grains. This is a problem
when using very small thresholds in the hope of recognizing all true grains. The principal
cause of concern is the presence of defects in ambiguous low misorientation boundaries as
shown in figure 5. In (a), it is quite ambiguous whether there are two purple grains or a single
one. Upon closer inspection, the misorientation between the dark and light purple is 2.6
which is slightly above the chosen threshold 2.5q = . However, there is a very smooth
transition between the two orientations suggesting that this is a single grain under stress due to
the large defect, hence, it should not be split. While the algorithm correctly identifies the
whole smooth region as a single grain, the defect influences a large set of good atoms. Such
regions around point defects are sometimes counted as spurious grains, especially in large
grains, as in (b). These artefacts may be identified by detecting grains that have only one
neighbor, which should be extremely rare in usual circumstances.

A similar issue sometimes arises at the boundary between two grains. Unlike defects, the
problem is that part of the whole diffuse boundary is detected as an independent grain. Such
cases cannot be detected on the basis of the coordination number but they usually have a very
small misorientation to one of their neighbor. An example of such an artefact is shown in
figure 5(c). While the diffuse region contains a dark blue and a purple grain, the mis-
orientation between the blue half and the dark blue grain to its right is of only 1°. The
boundary marked by the white arrow in (d) is then spurious and must be deleted. Such cases
are detected easily by finding all grain to grain misorientations smaller than θ which then
becomes an exact threshold. In both cases presented above, the spurious grain is simply
deleted and its atoms are reassigned to the relevant neighbor.
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3. Validation

In this section, we validate the results of our atom based grain extraction procedure. The first
issue is to verify that we properly account for almost all grains present in the input and
identify as few spurious grains as possible. The definition of a grain is obviously subject to
interpretation hence our goal is to ensure that the numerical scheme essentially reproduces a
human manual segmentation. The second issue is that once all grains are properly identified,
geometric properties must be faithful to the input with the caveat discussed before in the case
of interface lengths. Our source of validation is two-fold: first, we use results from PFC

Figure 5. Visualization of local lattice orientations in a PFC simulation (a), (c).
Corresponding visualizations of extracted grain orientations showing a single-neighbor
grain (b) and a boundary with misorientation smaller than the threshold (d).

Modelling Simul. Mater. Sci. Eng. 26 (2018) 035001 G Martine La Boissonière and R Choksi

9



simulations, which we briefly summarize, to have a ‘natural’ grain distribution that can be
hand segmented. Second, we produce artificial grain distributions using known geometric
shapes whose number and properties are unambiguous. In both validation sources, there are
targets for the grain structure and geometric properties that the numerical scheme must
recover. We shall use cumulative density functions (CDF) to compare between data sets as
there is no guarantee of a one-to-one map between recognized and actual grains. Unlike a
histogram, a CDF is unique and can be used even for very small data sets.

3.1. PFC evolution

While many more elaborate PFC-like models have been developed, ranging from the pro-
totypical evolution of [3] to those modeling dendritic solidification [18] and even graphene
[19], its simplest form gives the evolution of a phase field u according to the partial differ-
ential equation

u q u u u .t
2 2

0
2 2 3 b=   + + -(( ) )

Such an evolution conserves the average phase u m=⟨ ⟩ . The parameter β can be thought of
as an inverse temperature while q0 sets an atomic lengthscale. In 2D, the phase diagram of the
system in m, b( ) can be divided into three regions: a ‘liquid’ state where u=m, a ‘rolls’ state
u m A qxsin= + ( ) and finally a state where u is a superposition of three rolls misoriented by
60° forming a hexagonal lattice. In this regime, an initially noisy phase field quickly evolves
to form local ‘bumps’ representing atoms. These arrange locally into small hexagonal clusters
with interatomic distance d q q4 30 0p=( ) ( ). The subsequent evolution is at a macroscopic
level as clusters become grains and coarsen. This PFC system gives a prototypical evolution
with a single crystalline lattice type and is thus the ideal test for our method.

To simulate the evolution, we use the unconditionally stable semi-implicit numerical
scheme developed in [20]. We fix a square domain with periodic boundary conditions
and choose the same PFC parameters m, 0.07, 0.025b =( ) ( ) along with the regularization
parameterC 2 0.05b= = and 1000t = . Fixing q 10 = , the numerical domain size is given by
L d1024 1 7429= »( ) with 8192 grid points. Defined this way, the domain supports roughly
1024 atoms in a dimension aligned with the lattice and each atom is resolved by approximately
82 pixels. These simulations were processed with h 0.035, 0.001, 2.5g q= - = =  and

40a = , choices justified in 3.3.

3.2. Comparison with PFC grain distributions

Our first comparison comes from the evolution of a noisy phase field according to the PFC
equation. The phase was saved after 228 and 40 000 time steps, corresponding to roughly
1.25 million atoms divided in 1830 and 130 grains respectively. For clarity, we shall call
these the early and late distributions. To manually segment these, atomic orientations were
projected and interpolated on a grid over which grain boundaries were carefully traced as
polygons without overfitting atomic structural details. Because low misorientation boundaries
are ambiguous, especially in large grains, it is not realistic to trace all boundaries that are
visible or implied by a line of defects; one should ideally consider the misorientation between
the two grains as well as the openness of the line of defects. Without accepting such poorly
defined porous boundaries, the manual boundary network in the late distribution is shown in
figure 6(a) and contains 129 grains with an average perimeter of 2426. Note that average area
is redundant since it equals the area of the domain divided by the number of grains. Since the
early distribution contains so many grains, only 459 grains were extracted which represents a
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little more than a quarter of the entire domain. The target number of grains should therefore be
close to 1830 with an average perimeter of 680. In both cases, the only regions prone to
ambiguity are those in which misorientations are smaller than about 5° as otherwise grain
boundaries are very sharp and clear.

Since the flood-fill approach uses a random atom as its starting point, the results may
differ each time the algorithm is run. With the parameters chosen before, the numerical
scheme detects between 128 and 130 grains with an average perimeter of 2360.4–2399.6 in
the late distribution and between 1810 and 1827 grains with an average perimeter of
656.3–660.2 in the early distribution, representing a 2% variability.

Let us first compare the boundary networks in the late distribution, shown in figure 6(b).
With 128 detected grains, five boundaries are in disagreement, three being found only in the
hand segmentation and two spurious grains or artefacts being found numerically. These
boundaries are all ambiguous and porous with a misorientation lying between 2 and 3 . The
scheme is then able to detect almost all hand segmented grains while identifying a minimal
number of artefacts. A similar comparison is shown in figure 7 where 1822 grains were
extracted numerically. The agreement shown in (b) is quite good considering the small
working scale. One very small grain has been missed while two more actual grains were
detected, meaning that the hand segmentation could have been further refined in a few cases.

It remains to compare the geometric properties. We focus on comparing the area, peri-
meter and isoperimetric ratio since other properties mostly depend on the networks being well
recovered. The agreement between the CDFs of the manual and numerical segmentations is
shown in figure 8 for the late distribution. While the area CDFs agree remarkably well, there
are some differences in comparing the perimeter and isoperimetric ratios that can be traced to
very small grains. The perimeter of these grains is generally underestimated, thus causing the
shift in the perimeter comparison below 2000 and that in the isoperimetric ratio above 0.75.

Figure 6.Visualization of local lattice orientations in the late distribution with manually
segmented grain boundary network in black (a). Comparison between the manual and
numerical segmentations (b); common boundaries are drawn in black, two spurious
boundaries in blue and three undetected boundaries in red.
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Matching the numerically detected grains to their counterpart in the hand segmentation and
ignoring outliers, for example when two grains have been merged, grain area is captured with
less than 1% error while the perimeters are on average underestimated by about 2%. This is
especially the case for very small grains whose perimeter is sometimes underestimated by as
much as 20%. In the early distribution, areas are also recovered almost exactly while peri-
meters are underestimated by about 4%, highlighting a slight underestimation of perimeters
depending on grain size.

Figure 7. Detail of the visualization of local lattice orientations in the late distribution
with manually segmented grain boundary network in black (a). Comparison between
the manual and numerical segmentations (b); the numerically extracted grains are
visualized in color while the manual segmentation is drawn in black.
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Figure 8. Comparison between the area (a), perimeter (b) and isoperimetric ratio
(c) CDFs of the hand segmentation in red with the numerical extraction procedure in
blue. Note that in (b), the grain with the largest numerical perimeter corresponds to the
magenta/purple bottom right grain that was not properly split in figure 6.
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3.3. Influence of the parameters

While the chosen parameters give rise to good agreement, their influence and choice is
important to accurately measure grain properties. The atom extraction level h is chosen to
maximize the radius of good atoms while recognizing poorly formed bad atoms. From visual
inspection, this happens around −0.035 in our simulations. Other values of h miss atoms at
boundaries, so the next shell of boundary atoms have very large Voronoi areas, thus intro-
ducing large overestimates in the perimeter computation. For our PFC parameters, this
happens when h is roughly outside 0.01, 0.06- -[ ]. The effect of the three other parameters is
more subtle. In the following tables, only one parameter was varied at a time from

0.001, 2.5g q= =  and 40a = .
From table 1(a), γ has more impact on early results. Increasing γ increases the number of

detected grains since smaller γ produce thicker bad atom masks that eventually block very
small grains entirely. At 0.0014, more grains are found but these are generally small artefacts
or spurious boundaries in ambiguous regions. Since the late results are stable, 0.001g = is
chosen to prevent the introduction of artefacts. Part (b) shows that, as expected, less grains are

Table 1. Dependence of results on γ (a), θ (b) and α (c).

(a)
Early distribution Late distribution

γ Grains Average perimeter Grains Average perimeter

0.0004 1698 698.4 128 2395.5
0.0006 1754 676.3 128 2387.1
0.0008 1804 661.9 126 2387.4
0.0010 1824 658.3 128 2375.5
0.0012 1841 653.7 129 2365.4
0.0014 1852 653.0 132 2333.5
0.0016 1866 651.9 129 2394.6

(b) Early distribution Late distribution

θ (deg.) Grains Average perimeter Grains Average perimeter

1.0 2100 599.9 204 1697.2
1.5 1999 618.3 158 2043.5
2.0 1924 634.6 136 2283.6
2.5 1822 658.7 128 2383.1
3.0 1708 685.9 121 2467.3
3.5 1601 716.2 118 2538.1
4.0 1516 742.1 111 2684.7

(c) Early distribution Late distribution

α Grains Average perimeter Grains Average perimeter

10 2062 602.4 150 2074.8
20 1898 639.6 134 2305.3
30 1878 644.8 131 2349.6
40 1817 659.0 128 2386.7
50 1785 667.5 130 2367.6
60 1743 678.2 127 2400.9
70 1692 690.9 130 2359.9

Target 1830 680 129 2426
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detected as θ is increased. At 2.0, a very large amount of spurious grains is detected
suggesting that 2.5 is roughly the smallest threshold for which low misorientation boundaries
can be characterized accurately. The results in (c) clearly show that increasing α decreases the
number of detected small grains but does not affect the late distribution greatly. Below 40,
almost all new grains that are detected are artefacts in both distributions. The value 40a = is
again chosen to maximize the number of early grains without introducing many artefacts.
Since the smallest features in the early distribution are about 60 atoms in size, choosing α as
half the size of the smallest expected feature is a reasonable guideline.

The parameters chosen above are then reasonable to extract both the early and late
distribution. We note however that accuracy could be improved slightly by further optimizing

anda g together. This might in principle produce optimal parameters that may differ
between the two distributions. In such a case, it would be desirable to allow the parameters to
vary dynamically as a function of grain size or other measured properties. Moreover, the
optimal parameters could depend on the specifics of a given problem so similar tests should
be done before extracting other types of data.

3.4. Comparison with Voronoi grain distributions

We now present a similar validation using an artificially constructed grain distribution so that
areas and perimeters may be computed exactly. Given a target number N of grains on a
domain of a given size, we compute the Voronoi tessellation of N randomly distributed
points. Each Voronoi region is made to correspond to a grain whose angle is chosen ran-
domly. Rotated lattices are placed onto the regions and passed through the PFC scheme to
smooth out atoms at boundaries and the results are extracted. To compare with the scales used
in PFC simulations, we let N vary between125 and 2000 over the same grid size. Since grain
misorientations below a certain threshold are ambiguous, we will not be able to recover all
grains produced by the purely random Voronoi diagram. Instead, we can compute the pro-
portion of grains in the diagram whose minimum misorientation is greater than the 2.5
threshold and take this number of grains as the target. The fraction of such grains is found to
be independent of grain size and equals about 40%. Thus, roughly half of these grains will be
merged to a neighbor, giving a target grain number of N0.8 . Another approach, useful to
compare the area and perimeter distributions directly, is to preemptively filter out neighbors
with a small misorientation by changing one of their angle until all misorientations are greater
than some threshold.

With the same extraction parameters as before, the algorithm is capable of finding the
correct number of grains in both cases. When the angles are not filtered, an average of 79%
grains are found across all lengthscales. Obviously, the average perimeter is overestimated at
roughly 115%. When angles are pre-filtered, an average of 99% grains are detected since
random Voronoi diagrams do not generate ambiguous boundaries and very small grains are
rare. The average perimeter is recovered at 101% for N=125 and at 98% for N=2000.
When matching grains, one finds that the error in the area is negligible and independent of
grain size. On the contrary, the error in the perimeter depends on grain size and is consistent
with the previous results: for N=125, perimeter is recovered almost exactly while for
N=2000, grains are underestimated by 2%. Thus, the CDF of the isoperimetric ratios match
almost exactly when there are 125 grains but are spaced by 0.03 when there are 2000 grains as
shown in figure 9. These are quite slight deviations but when comparing the isoperimetric
ratios on the same plot, this discrepancy does lead to confusion as the bias may be confused
with evolution, meaning that isoperimetric ratio should only be compared qualitatively.
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3.5. Comparison with simple geometric shapes

The accuracy of the scheme was also tested on simple geometric shapes. Grains with
boundaries shaped like circles, squares and other shapes were created by embedding a mis-
oriented grain of that shape within another and smoothing out atoms as before. The geometry
of the inner grain was then extracted and compared to the expected value. This was done for
various various sizes and misorientations but the later did not affect the results. Overall, the
area was always recovered within 0.5% accuracy while the perimeter was recovered with
similar accuracy for curved shapes and otherwise underestimated with a slight bias consistent
with the results found above. The reason the curved shapes are precisely matched in perimeter
is because they can only be represented as polygons using atoms. Thus, the perimeter of the
shape of the polygonal grain will be slightly larger than that of the true curved shape,
canceling out the inherent bias of the scheme.

4. PFC sample results

Using the PFC equation, we evolved 18 initially noisy distributions over 40 000 time steps,
saving the phase field at certain intervals. Geometric properties were extracted using the
extraction parameters given before. All runs were added together to form much larger data
sets containing more than roughly 2300 grains at the final time so that histograms become
accurate in visualizing the evolution. We present the normalized reduced area, GBCD and
area ratio distributions extracted using our algorithm in figure 10.

The normalized reduced area behaves as in [5], being at least approximately lognormal
with a peak becoming flatter in time, stabilizing around 0.65. We note however that the
relative proportion of very small and very large grains does continue to increase slightly as
time goes on. Perimeter essentially tracks the reduced area while the isoperimetric ratio
decreases, indicating that grains become qualitatively less regular in time. The absolute
orientation distribution does not evolve in time and remains constant since the PFC equation
is isotropic. On the other hand, the misorientation distribution and GBCD do evolve inter-
estingly. The GBCD tracks the misorientation distribution but its features are more pro-
nounced as there is some additional correlation between misorientation and interface length.

Figure 9. Comparison between the isoperimetric ratio CDFs of the125 and 2000 grains
Voronoi distributions in red and the numerically extracted results in blue. The solid and
dashed lines correspond to the 125 and 2000 grains distribution respectively.
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Early in time, the GBCD is relatively flat away from the threshold but as time goes on, the
misorientations around 10° become over represented to the detriment of small and large
misorientations. The area ratio introduced earlier is also quite interesting. This property may
be interpreted as follows: a flat area ratio distribution would indicate that the area of neighbor
grains are completely uncorrelated. A peaked distribution close to 1 would indicate the
neighbor grains are likely to be similar in size while a peak close to 0 would indicate that
neighbors are likely to be very different in size. From figure 10(c), it is clear that the PFC
evolution favors large area imbalances between neighbors. Finally, the coordination number
does not evolve in time, peaking at 5 with an average of almost exactly 6 at all times.

5. Conclusion

Grain extraction being an important step in analyzing materials science data, there is a clear
need for automated algorithms capable of extracting both the grain distribution and grain
geometric properties. We detailed a simple, accurate and efficient atom based method to
extract such grain networks along with grain area, perimeter and other properties. The
detection accuracy of these measurements was tested using PFC grain distributions and
surrogate artificial distributions. Overall, the boundary network and the number of grains may
be extracted with very good precision. Grain area is measured with high accuracy while
perimeter is underestimated by less than about 5% for very small grains.

The numerical method we have presented may then be used to automatically characterize
the geometric properties of statistically significant data sets with good accuracy considering
the difficulty and ambiguity inherent to the task. With modifications, our general atom based
framework may be applied to 3D and to other crystal lattices. We shall use this scheme to
analyze the PFC evolution in more detail in a future article.
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