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Abstract: Gersho’s conjecture in 3D asserts the asymptotic periodicity and structure of
the optimal centroidal Voronoi tessellation. This relatively simple crystallization prob-
lem remains to date open. We prove bounds on the geometric complexity of optimal
centroidal Voronoi tessellations as the number of generators tends to infinity. Combined
with an approach of Gruber in 2D, these bounds reduce the resolution of the 3DGersho’s
conjecture to a finite, albeit very large, computation of an explicit convex problem in
finitely many variables.

1. Introduction

A fundamental problem (cf. [6,7,17]) in both information theory and discrete geometry
is known, respectively, as optimal block quantization or optimal centroidal Voronoi
tessellations (CVT). To state the problem, consider a bounded domain inRN , say a cube
Q = [0, 1]N , and for a collection of points yk ∈ Y = {y1, · · · , yn} ⊆ Q, define the
associated Voronoi regions (comprising a Voronoi tessellation of Q)

Vk = {x ∈ Q | |x − yk | ≤ |x − yi | ∀ i �= k}.
A 2D illustration with n = 6 is presented on the left of Fig. 1. A centroidal Voronoi
tessellation (cf. Fig. 1 right) amounts to finding a placement of the points yk such that they
are exactly the centroids of their associated Voronoi region Vk . A variational formulation
is based upon minimization of the following nonlocal energy

E(Y ) :=
∫

Q
dist2(x, Y ) dx =

n∑
k=1

∫
Vk

|x − yk |2 dx . (1)

Criticality of E is exactly the condition that each yk be the centroid of its Voronoi region
Vk , that is

Y ∗ = {y∗
i } is a critical point of E iff y∗

i =
∫

Vi

x dx, the centroid of Vi .
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Fig. 1. Left: A Voronoi diagram (the Voronoi regions associated with six generators). Right: Three centroidal
Voronoi tessellations with five generators

Fig. 2. Left: 2D Optimal placement of points on a triangular lattice with associated optimal Voronoi polytope
a regular hexagon. Right: 3D Conjectured optimal placement of points on a BCC lattice and the associated
optimal Voronoi polytope the truncated octahedron (Source: Wikipedia)

In the context of information theory, the set Y is viewed as a quantizer to quantize data
which is distributed in Q according a continuous probability density, here taken to be
uniformly distributed across Q. The quantization error is given by E(Y ). The optimal
quantizer is the one with least error, alternatively the CVT with lowest energy (1).

A well-known conjecture attributed to Gersho [14] (cf. Conjecture (1.1) (a) below)
addresses the periodic nature of the configuration with least error (alternatively, the CVT
with lowest energy). This conjecture is completely solved in 2D but, to date, remains
open in 3D. We present a precise statement of Gersho’s conjecture (statement (a)) in its
augmented form (statement (b)):

Conjecture 1.1. The Augmented Gersho’s Conjecture

(a) There exists a polytope V with |V | = 1 which tiles the space with congruent copies
such that the following holds: let (Yn)n be a sequence of minimizers, with Yn ∈
argmin�Y=n E(Y ), then all the Voronoi cells not intersecting the domain’s boundary,
the number of which is of order n − o(n), are asymptotically congruent to n−1/N V
as n → +∞.

(b) For dimension N = 2, the optimal polytope V is known to be a regular hexagon,
corresponding to a optimal placement of points on a triangular lattice (cf. Fig. 2
left). For dimension N = 3, the optimal polytope V is the truncated octahedron,
corresponding an optimal placement of points on a BCC (body centered cubic) lattice
(cf. Fig. 2 right). While still unproven, this is supported by numerical simulations by
Du and Wang [8].



Optimal Centroidal Voronoi Tesselations in 3D

Conjecture 1.1 has been proven in 2D where hexagonal structures are pervasive1 .
The essential parts of the proof were first presented by Fejes Tóth [12] with later versions
given, for example, by Newman [20]. However, as noted in [15], the first complete 2D
proof of Gersho’s conjecture was given by Gruber. To date, the conjecture remains open
in 3D. In 3D, Barnes and Sloan [1] have proven the optimality of the BCC configuration
amongst all lattice configurations, while Du and Wang [8] have presented numerical
evidence supporting the conjecture. The nonlocal and nonconvex character of (1) insures
a highly nontrivial energy landscape associated with a multitude of critical points with
complex, albeit polygonal, Voronoi regions. Moreover, to divorce from boundary/size
effects, one can only address the asymptotics as the number of generators n tends to
infinity.

The purpose of this paper is to present in 3D some quantitative bounds for the geom-
etry of minimizing Voronoi regions (cf. Theorem 2.3). To our knowledge, these bounds
are new. In particular, we prove an upper bound (independent of n) on the complex-
ity (number of faces) of an optimal Voronoi cell. This is an important step: Indeed, to
divorce from boundary/size effects, one can only address the asymptotics as the number
of generators n tends to infinity. A priori, we cannot dismiss the possibility that the
complexity of the Voronoi cells associated with a CVT is O(n) as n → ∞; what we
can do is to prove that this is not the case for the optimal CVT. As we explain in Sect. 6,
we can combine this bound with Gruber’s two dimensional approach to reduce the 3D
Gersho conjecture to a finite, albeit large, computation of an explicit convex problem in
finitely many variables.

Remarkably, the proof of these bounds does not rely on any sophisticated mathe-
matical machinery, rather solely on elementary estimates with distance functions. Our
choice of domain (the unit square Q) is for convenience only: the analogous results hold
for any finite domain or, for example, the flat torus.

Let us conclude the introduction by noting that Gersho’s conjecture is related to a
fundamental, largely open, question in condensed matter physics. The Crystallization
Conjecture roughly states that within the confinements of some physical domain, n
interacting particles arrange themselves into a periodic configuration. Precisely, let �

be a domain in RN , Y = {y1, · · · , yn} a collection of n points in �, and define

FV (Y ) :=
n∑

i, j=1

V(|yi − y j |), (2)

where V is the interaction potential. Such V has to satisfy stringent technical assump-
tions, and it is often repulsive at short ranges, attractive at long ranges, with a very deep
well around its minimum value. We refer the interested reader to [19,23] for examples
of conditions imposed on V . In this respect, the crystallization conjecture asserts that
as n → ∞, the minimizers of Fn over all possible points y1, . . . , yn ∈ � arrange
themselves in a periodic lattice. Typical physical interaction potentials, for example the
Lennard-Jones potential, have the property that they are repulsive at short distances and
attractive at large. To dispense with boundary effects, it is necessary to pose the problem
as an asymptotic statement as the size of the domain get larger. Upon rescaling, this
is equivalent to letting the number of particles n → ∞. The crystallization conjecture
remains one of the most fundamental and difficult problems in mathematical physics
with rigorous results far and few (see, for example, [2,10,11,13,19,21,23]). It is clear
from [19] that the crystallization conjecture is related to the sphere packing problems,

1 For example, Hales’ celebrated resolution of the Honeycomb Conjecture in [18].
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since the proof of the main result in [19] directly relies on the fact that optimal sphere
packing in 2D is achieved by placing centers along a triangular lattice. However, the
sphere packing itself is a difficut problem and only solved in dimensions 2, 3, 8, and 24
(cf. [4,24]).

The relationship of our purely geometric variational problem (1) to the ubiquitous
class (2) is not immediate; in the former, the points do interact with each other but
implicitly, via the distance function (equivalently via the associated Voronoi regions).
While there is no explicit effective interaction potentialV , one can reformulate the energy
E in terms of the Wasserstein-2 distance W2 (cf. [25]) between a weighed sum of delta
functions and Lebesgue measure LN :

E(Y ) = W2

(
n∑

i=1

|Vi |δyi , LN

)2

,

where δyi denotes the delta functionwith concentration at yi . In otherwords, the quantiza-
tion error is precisely the squaredWasserstein-2 distance distance between the weighted
point quantities and the continuous probability density. Such semi-discrete optimal trans-
portation problems have recently been studied in [3].

In our opinion, the optimal CVT problem is the simplest setting to prove 3D crystal-
lization because:

• there is a simple and elegant characterization of criticality (critical points);
• working solely with distance functions facilitates the proof of estimates and quanti-
tative bounds for optimal configurations entirely in terms of their convex polygonal
Voronoi regions. In particular, the energy (1) has a pseudo-local character which
means that one can readily estimate the total energy loss resulting from the addition
of a new generator in a fixed Voronoi cell (cf. Lemma 3.1).

Our choice to work with a fixed domain Q := [0, 1]3 is for convenience reasons,
since doing so completely removes any issue that might arise from a moving domain.

In the study of thermodynamic limits of many particle systems (cf. [22]), however,
it is quite common to let the domain size diverge. In our case wherein the problem has
an obvious scaling we can assume without loss of generality that the density of points
is constantly equal to 1. Hence, our problem can be reformulated as follows: define the
lowest energy of a domain � as

E(�) := min
Y⊆�

#Y=n=|�|
E�(Y ) (3)

where

where E�(Y ) :=
∫

�

dist2(x, Y ) dx =
n∑

i=1

∫
Vi

|x − yi |2 dx Y = {y1, · · · , yn}.

The goal is now to understand the structure of E when � → R
3. It was shown in [27]

that such energy E is subadditive, in the sense that if� = �1∪�2, with |�1|, |�2| ∈ N,
then

E(�) ≤ E(�1) + E(�2).
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2. Optimal CVT and Gersho’s Conjecture: Previous Results and the Statement of
Our Main Theorem

2.1. Gruber’s approach in two dimensions. In [15], Gruber presented an elementary
proof in 2D ofGersho’s conjecture based upon ideas of Fejes Tóth [12]. For convenience,
he took the domain � to be a suitably-chosen regular polygon; however, one can work
on an arbitrary domain at the expense of smaller-order boundary errors. His argument
is as follows:

(i) First, it is shown that the functional

G(a, m) := min
A is an

m-gon with area a

∫
A

|x − y|2 dx, y = centroid of A

is jointly convex. Here, one first shows that the minimum is attained on regular
polygons. Then, via a direct Hessian computation, it is shown that there exists an
extension of G, say G̃, whose second argument is defined over the positive real
numbers, which is convex in both variables.

(ii) Second, it is shown that given a Voronoi tessellation {Vi }n
i=1, the average number

of sides is at most 6: let E(F) be the number of sides of the face F , and by double
counting (each side belongs to exactly 2 faces) we get

∑
{F faces} E(F) = 2e ≤

6n − 12, where e is the total number of sides, and 2e ≤ 6n − 12 comes from Euler’s
formula for polytopes. Moreover, it is easy to check that

G(a, 6) ≤ min{G(a, 3), G(a, 4), G(a, 5)}
for all a ≥ 0, by directly computing the values of G(a, 6), G(a, 3), G(a, 4), G(a, 5)
on regular 3, 4, 5, 6-gons.

(iii) With these steps in hand, one proceeds as follows. Let {Vi }n
i=1 be an arbitrary Voronoi

tessellation and denote: by si the number of sides of Vi , by ai its area, and

ā := 1

n

n∑
i=1

ai , s̄ := 1

n

n∑
i=1

si .

The convexity of G then implies that

n∑
i=1

∫
Vi

|x − yi |2 dx ≥
n∑

i=1

G(ai , si )

≥ nG(ā, s̄) + o(n)

≥ nG(ā, 6) + o(n),

where o(n) is the contribution of the boundary terms, which vanish as n → +∞. The
last inequality shows that the hexagonal partition is optimal.

The fundamental difficulty of applying Gruber’s arguments in 3D case is establishing
the convexity in m of

G(a, m) := min
V convex polytope, |V |=a

V has at most m faces

∫
V

|x − y|2 dx, y = centroid of V .
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We do not have regular m-hedron in 3D, and computations are unfeasible. A priori, the
maximum number of possible faces of the Voronoi polygons associated with a critical
point can grow with n. One of the main results of this paper is to prove (cf. Theorem 2.3)
upper bounds on the geometric complexity (including the number of faces) of such
polygons which are independent of n. With such bounds in place, one could, in principle,
have the computer verify the convexity of G(a, m). As we explain in the last section
(Sect. 6), this would then prove Gersho’s conjecture in 3D.

Perhaps a deeper reason for the significantly increased difficulty in proving Gersho’s
in 3D, compared to 2D, is due to the fact that we do not expect the presence of a
universally optimal configuration ([5, Definition 1.3]) in 3D. This is in stark contrast
with the 2D case, where the triangular lattice is almost surely to be universally optimal
(cf. [5]), although no rigorous proof is available. Gersho’s conjecture would not be the
first one in which such issue appears: it is well known that the solution to the optimal
foam problem in 2D is given by the honeycomb structure, whose barycenters lie on the
triangular lattice, while in 3D this is still open, and the long conjectured solution, i.e.
the bitruncated cubic honeycomb, is surely not optimal, as it has higher energy than the
Weaire-Phelan structure (cf. [26]).

Before presenting our results, let us document two known results in 3D.

2.2. Two previous results in three dimensions.

Theorem 2.1. (Gruber’s Theorem 2 in [16]) Let (Yn)n be a sequence of minimizers, i.e.
(Yn)n, with Yn ∈ argmin�Y=n E(Y ).

(1) Then for some positive integer n0, if n > n0 there exists β > 1 such that Yn is a
((1/β)n−1/3, n−1/3)-Delone set, i.e.,

n−1/3 ≥ min
y,y′∈Yn , y �=y′ |y − y′| ≥ (1/β)n−1/3.

(2) Yn is uniformly distributed in Q, i.e.

�(K ∩ Yn) = |K |n + o(n) as n → +∞
for any Jordan measurable set K ⊆ Q.

Theorem 2.2. (Zador’s uniform energy formula in [27], 3D case) There exists some
constant τ > 0 such that given any sequence Yn ∈ argmin�Y=n E(Y ), we have

n2/3E(Yn) → τ.

Zador’s result has been extended by Gruber in the general setting of manifolds [16].
However, to our knowledge, no further description of the geometry of Voronoi cells
has been proven, nor any explicit lower bounds on τ . We remark that in terms of the
reformulation E(�) defined in (3), we have

τ = lim
n→∞

E(�n)

|�n| as �n → R
3,

the thermodynamic limit of the system.
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2.3. The statement of our results. For the remainder of this article we assume the space
dimension N = 3.

Theorem 2.3. Let n ∈ N and Yn be a minimizer of (1). Then for any y ∈ Yn, with V
denoting its Voronoi cell, we have:
(i) There exists constants �1, . . . , �5 (independent of n) such that

diam(V ) ≥ �3n−1/3, (4)

|V | ≥ ω3�
3
5n−1, (5)

diam(V ) ≤ �4(n − 2)−1/3, (6)

V has at most N∗ := 2(3�4/�5)
3 faces, (7)

where ω3 := 4π/3, and

�1 := (2/5)2/3/40 ≈ 0.013572,

�3 := ω
−1/5
3 �

1/5
1 ≈ 0.317769,

�5 := 1

4

(√
1 +

24 · 33
52 · 103 − 1

)
�3 ≈ 0.000451,

�4 := 2 · 121/4(16)1/3
π1/4ω

1/12
3

(√
1 +

24 · 33
52 · 103 − 1

)−1/2(52 · 103
22 · 33

)1/4

≈ 333.18

N∗ ≈ 2.94 × 1020.

(ii) Let τ be the constant in Zador’s asymptotic estimate (cf. Theorem 2.2), that is,

n2/3E(Yn) → τ.

Then we have

n2/3E(Yn) ≥ τ ∀n � 1 (8)

with

τ ≥ 2π

5
ω

−5/3
3 ≈ 0.11545. (9)

The lower bound on τ given in (9) is approximately half the energy density of theBCC
lattice (≈ 0.23562), the conjectured asymptotically optimal configuration. Although this
lower bound is surely non optimal (cf. [15, Table 1]), its proof will be rather simple. The
proofs of the statements comprising Theorem 2.3 are presented in Sect. 3-5.
Remark: While we state and prove Theorem 2.3 in three dimensions, our proofs work
in any space dimension, with appropriate adjustments for the constants.

We expect the upper bound N∗ to be significantly suboptimal, as it is significantly
larger than the average number of faces in a Voronoi tessellation, which was shown in
[9] to be at most 14. Moreover, it is currently computationally unfeasible to perform
simulations with such a large N∗. We do not expect such N∗ to depend significantly on
the shape of the domain.
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3. The Proof of Theorem 2.3(i)

In this section we prove the statements (4)–(7) of Theorem 2.3, in the exact same order
they are stated. Their proofs will rely on the following two lemmas whose proofs are
presented later in Sect. 5.

Lemma 3.1. Given a compact, convex set V ⊆ R
3, a point y in the interior of V , then

there exists y′ ∈ V such that

∫
V
[|x − y|2 − d2(x, {y, y′})] dx ≥ max

{
22 · 33
52 · 103 r2|V |, �1|V |5/3

}
, (10)

where r := maxz′∈∂V |z′ − y|, �1 = (2/5)2/3/40.

Lemma 3.2 (Lower bound on the distance to a closest neighbor). Given n, let Yn be a
minimizer. Then for any y ∈ Yn with V denoting its Voronoi cell, we have

min
z∈Yn\{y} |y − z| ≥ r

(√
1 +

24 · 33
52 · 103 − 1

)
≥ �2|V |1/3,

where

�2 :=
(√

1 +
24 · 33
52 · 103 − 1

)
ω

−1/3
3 and r := max

z′∈∂V
|z′ − y|.

3.1. Lower bound on the diameter: proof of statement (4). To proof of statement (4) of
Theorem 2.3 will only require Lemma 3.1.

Proof. (of statement (4)) Let s := diam(V ). We claim:

there exists y′ ∈ Yn\{y} such that |y′ − y| ≤ 2s. (11)

The proof is by contradiction: assume the opposite, i.e. there are no other points of
Yn\{y} in the ball B(y, 2(s + ε)) for some ε > 0. Then let z be an arbitrary point with
|z − y| = s + ε/2: clearly z ∈ V , as the opposite would give the existence of y′ ∈ Yn
with |z − y′| ≤ |z − y| = s + ε/2, hence

2(s + ε) ≤ |y′ − y| ≤ |z − y′| + |z − y| ≤ 2s + ε,

which is a contradiction. Thus any such z satisfying |z − y| = s + ε/2 belongs to V ,
hence B(y, s + ε/2) ⊆ V , contradicting diam(V ) = s, and (11) is proven.

Let y′ ∈ Yn\{y} be a point satisfying |y′ − y| ≤ 2s. If we remove y, then all points
of V can still project on y′, in the sense that for any x ∈ V we have

|x − y′|2 − |x − y|2 = (|x − y′| − |x − y|)(|x − y′| + |x − y|)
≤ |y − y′|(2s + |y − y′|) ≤ 8s2.

Integrating over V yields
∫

V
[|x − y′|2 − |x − y|2] dx ≤ 8s2|V |.
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Since diam(V ) = s, it follows that V is contained in a ball of diameter s, hence

∫
V
[|x − y′|2 − |x − y|2] dx ≤ 8s2|V | ≤ ω3s5.

Thus by removing y, the energy increases by at most ω3s5. The average volume of all
Voronoi cells is n−1, thus there exists y′ whose Voronoi cell V ′ has volume at least n−1.
Lemma 3.1 gives that it is possible to add ỹ′ in V ′, and the energy is decreased by at
least �1n−5/3. By the minimality of Yn we get

ω3s5 ≥ �1n−5/3 �⇒ s ≥ �3n−1/3, �3 = ω
−1/5
3 �

1/5
1 ,

concluding the proof. ��

3.2. Lower bound on the volume: proof of statement (5). The proof of (5) only requires
Lemma 3.2.

Proof. (of statement (5))Consider an arbitrary y ∈ Yn , and denote by V its Voronoi cell.
Set r := maxz′∈∂V |z′ − y|, and for any pair z1, z2 ∈ V such that |z1 − z2| = diam(V ),
we have

diam(V ) = |z1 − z2| ≤ |z1 − y| + |y − z2| ≤ 2r �⇒ r ≥ diam(V )/2. (12)

Choose y′ ∈ Yn\{y} such that |y − y′| = minz∈Yn\{y} |y − z|, and by Lemma 3.2, (12)
and (4) we have

|y − y′| Lemma 3.2≥ r

(√
1 +

24 · 33
52 · 103 − 1

)

(12)≥ 1

2

(√
1 +

24 · 33
52 · 103 − 1

)
diam(V )

(4)≥ 1

2

(√
1 +

24 · 33
52 · 103 − 1

)
�3n−1/3 (13)

and hence

B(y, �5n−1/3) ⊆ V where �5 = 1

4

(√
1 +

24 · 33
52 · 103 − 1

)
�3. (14)

Thus (14) is proven, which in turn gives

ω3�
3
5n−1 = |B(y, �5n−1/3)| ≤ |V |,

hence (5). ��
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3.3. Upper bound on the diameter: proof of statement (6). The proof of (6) requires
both Lemma 3.1 and Lemma 3.2.

Proof. (of statement (6)) Upon renaming, let y1 be such that its Voronoi cell V1 has
maximum diameter. Let r1 := maxz′∈∂V1 |z′ − y1|, and note that denoting by w, u ∈ V1
two points realizing the diameter, we have

|w − u| = diam(V1) ≤ |w − y1| + |u − y1| ≤ 2r1.

Next we prove the existence of a cell V2, with generator y2, such that

|V2| ≤ 2

(n − 2)
and σ(y2)

3 ≤ 16

ω3(n − 2)
where σ(y2) := min

z∈Yn\{y2}
|y2 − z|.

(15)

To this end, we note the following.

(a) Denoting by

Vn := {y ∈ Yn : the Voronoi cell Vy of y satisfies |Vy | ≥ 2/(n − 2)},
we claim �Vn ≤ �n/2�. This is because the total number of cells is n, and if the
opposite holds, i.e. if there exists at least n − �n/2� ≥ (n − 1)/2 cells with volume
greater than 2/(n − 2), we conclude that

1 = |Q| ≥
∑
y /∈Vn

|Vy | ≥ (n − �n/2�) 2

n − 2
≥ n − 1

2

2

n − 2
> 1.

(b) Similarly if we denote by

Sn :=
{

y ∈ Yn : σ(y)3 ≤ 16

ω3(n − 2)

}
, σ (y) := min

z∈Yn\{y} |y − z|,

we claim �Sn ≥ �n/2� + 1. To this end, for any y we have B(y, σ (y)/2) ⊆ Vy , and
hence |Vy | ≥ ω3σ(y)3/8. If by contraction we had �Sn ≤ �n/2�, i.e. there exist at
least n − �n/2� generators y with σ(y)3 ≥ 16

ω3(n−2) , we would conclude that

1 = |Q| ≥
∑
y /∈Sn

|Vy | ≥ ω3

8

∑
y /∈Sn

σ(y)3 ≥ ω3

8

n − 1

2

16

ω3(n − 2)
> 1.

Combining (a) and (b) above yields the existence of a cell V2 with generator y2 satisfying
(15).

Next, we estimate how much the total energy increases if we remove y2. Let y3 be
such that |y2 − y3| = σ(y2). Then for any x ∈ V2, we have

|x − y3|2 − |x − y2|2 ≤ |y2 − y3|(|x − y3| + |x − y2|) ≤ σ(y2)(2|x − y2| + σ(y2)).

Noting that the midpoint ȳ := (y2 + y3)/2 ∈ ∂V2, we have

σ(y2) = 2|y2 − ȳ| ≤ 2 diam(V2) ≤ 2 diam(V1).

Thus we have

|x − y3|2 − |x − y2|2 ≤ 4 diam(V1)σ (y2)
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which implies
∫

V2

(|x − y3|2 − |x − y2|2) dx ≤ 4 diam(V1)σ (y2)|V2|
(15)≤ 8 · (16)1/3 diam(V1)

ω
1/3
3 (n − 2)4/3

≤ (16)4/3r1

ω
1/3
3 (n − 2)4/3

. (16)

By Lemma 3.1, we can always add a point in V1 and the energy is decreased by at
least 22·33

52·103 r21 |V1|. Hence we need to bound |V1| from below. To this end, choose an
arbitrary z1 such that |z1 − y1| = r1, and let 
 be the line through y1 and z1, and let �

be the plane through y1 and orthogonal to 
. By Lemma 3.2, we have

σ(y1) := min
z∈Yn\{y1}

|y1 − z| ≥ r1

(√
1 +

24 · 33
52 · 103 − 1

)
,

and hence B(y1, σ (y1)/2) ⊆ V1. In particular, by convexity of V1, the disk � ∩
B(y1, σ (y1)/2) ⊆ V1, and the cone with base � ∩ B(y1, σ (y1)/2) and height {(1 −
s)y1 + sz1 : s ∈ [0, 1]} is again contained in V1. It follows that

|V1| ≥ r1
πσ(y1)2

12
≥ r31

π

12

(√
1 +

24 · 33
52 · 103 − 1

)2

.

Consequently, there exists y′ ∈ V1 such that

∫
V1

(|x − y1|2 − d2(x, {y1, y′})) dx
Lemma 3.1≥ 22 · 33

52 · 103 r21 |V1|

≥ π

12

(√
1 +

24 · 33
52 · 103 − 1

)2 22 · 33
52 · 103 r51 .

Combining with (16) and using the minimality of Yn , we infer

(16)4/3r1

ω
1/3
3 (n − 2)4/3

≥ π

12

(√
1 +

24 · 33
52 · 103 − 1

)2 22 · 33
52 · 103 r51

�⇒ r41 ≤ 12(16)4/3

πω
1/3
3 (n − 2)4/3

(√
1 +

24 · 33
52 · 103 − 1

)−2 52 · 103
22 · 33

�⇒ diam(V1) ≤ 2r1 ≤ 2 · 121/4(16)1/3
π1/4ω

1/12
3 (n − 2)1/3

(√
1 +

24 · 33
52 · 103 − 1

)−1/2(52 · 103
22 · 33

)1/4

,

concluding the proof. ��
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3.4. Upper bound on the number of faces: proof of statement (7). The bounds on the
diameter (statement (6)) and volume (statement (5)) of Voronoi cells allow us to bound
their geometric complexity (i.e. the maximum number of faces).

Proof. (of statement (7))Consider an arbitrary y ∈ V . By construction, its Voronoi cell
V is the bounded convex region delimited by the axial planes (i.e. the plane orthogonal
to the line segment and passing through its midpoint) of the line segments connecting y
and some other generator y′ ∈ Yn .

Statement (6) implies that anyVoronoi cell has diameter not exceeding�4(n − 2)−1/3.
Thus if twogenerators y′, y′′ ∈ Yn satisfy |y′−y′′| > 2�4(n − 2)−1/3, then theirVoronoi
cells do not share boundaries. Thus only the generators y′ ∈ B(y, 2�4(n − 2)−1/3)

can have their Voronoi region share a boundary with V . Again, the upper bound on
the diameter given by estimate (6) gives that any Voronoi cell (of any generator y′ ∈
B(y, 2�4(n − 2)−1/3)) is entirely contained in B(y, 3�4(n − 2)−1/3).

Statement (5) implies that each Voronoi cell has volume at least ω3�
3
5n−1, so the

ball

B(y, 3�4(n − 2)−1/3)

can contain only

ω3(3�4(n − 2)−1/3)3

ω3�
3
5n−1

= (3�4/�5)
3 n

n − 2
≤ 2(3�4/�5)

3 =: N∗

whole Voronoi cells. The last factor 2 comes from the fact that any polyhedron has at
least 4 faces, and n/(n − 2) ≤ 2 for all n ≥ 4. Thus V can share boundary with at most
N∗ other Voronoi cells. ��

4. Energy Estimates: Proof of Theorem 2.3(ii)

4.1. Proof of (8). As is common in statistical mechanics (cf. [22]), the proof of the lower
bound on the thermodynamic limit follows quite straightforwardly from the subadditivity
property of the energy E , defined in (3). Thus in this proof it is convenient to use the
equivalent formulation (3) with the fixed average density of points which, without loss
of generality, is set to 1. Proving (8) is equivalent to proving

lim
�n→R3

E(�n)

|�n| ≥ τ. (17)

Proof. (of estimate (17)) We first consider the case where � is a cube with volume
n = 8k . We partition � into 8 cubes of volume 8k−1 and use the subadditivity of to
yield

E(8k)

8k
≤ E(8k−1)

8k−1 ,

where for simplicity we denote by E(n) (n ∈ N) the energy of the cube with volume n.
Hence the limit as k → +∞ exists. Similarly, the same arguments show that for any n
of the form n = 8kn0 (n0 ∈ N), such a limit, which we denote by τ(n0), also exists.

By the subadditivity of E , we have E(8kn0) ≤ n0E(8k), hence τ(n0) ≤ τ(1).
Next we show that τ is actually independent of n0. To this end, write 8k = p8
n0 +q,

with q = o(8k). Pack the cube of volume 8k with p cubes of volume 8
n0, and denote
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by �q the remaining part. Note that �q is the difference between a larger cube (of
volume 8k), and p smaller cubes (of volume 8
n0), so it might not be a cube itself. The
subadditivity of E gives

E(8k) ≤ pE(8kn0) + E(�q).

Place q points inside �q on a cubic lattice to obtain E(q) ≤ Cq = o(8k). Therefore,

E(8k)

8k
≤ E(8
n0)

8
n0
+ o(1).

Passing to the limit k → +∞ and 
 → +∞ gives τ(n0) ≥ τ(1), and hence τ(n0) =
τ(1) =: τ for all n0.

Finally, to obtain the limit for all n, we write n = p8
n0 + q and repeat the above
arguments. Similarly, it can be shown that, for any reasonably regular sequence�n which
tends toR3, that does not create too much surface tension, we also have E(�n)/|�n| →
τ . ��

4.2. Proof of (9). Wewill use the following result, easily derived from simple rearrange-
ment inequalites.

Lemma 4.1. Among all convex sets with fixed volume and centroid at the origin, the
sphere has the lowest energy in the sense that∫

V
|x |2 dx ≥

∫
B

|x |2 dx, B := ball of volume |V |.
Proof. (of statement (9)) Consider a sequence of minimizers (Yn)n , and choose an
arbitrary element Ym . Note that the union

⋃
y∈Ym

Vy has volume 1, where Vy denotes
the Voronoi cell of y. Lemma 4.1 gives that among all convex sets of unit volume, the
sphere has the lowest energy, which is equal to

2π

5

( 3

4π

)5/3
.

Scaling arguments give that as the volume scales by a factor of s, the energy scales by
a factor of s5/3, hence the energy of a Voronoi cell with volume |V | is at least

2π

5

( 3

4π

)5/3|V |5/3.
Therefore,

E(Ym) =
∑
y∈Ym

∫
Vy

|x − y|2 dx ≥ 2π

5

( 3

4π

)5/3 ∑
y∈Yn

|Vy |5/3.

Using the convexity of f (t) = t5/3 and the fact that the average volume is 1/m, we
infer

E(Ym) ≥ 2π

5

( 3

4π

)5/3 ∑
y∈Yn

|Vy |5/3 ≥ 2π

5

( 3

4π

)5/3
m−2/3,

hence
2π

5

( 3

4π

)5/3 ≤ m2/3E(Ym) → τ,

and the proof is complete. ��
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Fig. 3. Simplified 2D representation of the construction. The extra point we added is y′, and the entire yellow
region, whose volume is a significant fraction of |V |, contributes to decrease the energy

5. Proofs of Lemmas 3.1 and 3.2

Proof. (of Lemma 3.1) We first prove
∫

V
[|x − y|2 − d2(x, {y, y′})] dx ≥ 22 · 33

52 · 103 r2|V |. (18)

Let z ∈ ∂V be a point satisfying

|z − y| = max
z′∈V

|z′ − y| = max
z′∈∂V

|z′ − y|,

and let r := |z − y|. Endow R
3 with the cartesian system (x1, x2, x3) with

y = (0, 0, 0), z = (r, 0, 0),

and we add a point y′ = (x, 0, 0) ∈ V , with fixed x ∈ (0, r) to be determined shortly.
We provide a schematic of the following steps in Fig. 3.

Define the planes �x := {x1 = x}. Since V is convex, the intersection �x ∩ V
is also convex for all x , and the boundary ∂V ∩ �x is a convex Jordan curve. Let
γ : [0, 1] −→ ∂V ∩ �x be an arbitrary parameterization, and for any t ∈ [0, 1], let 
t
be the half-line starting from z passing through γ (t).

The convexity of V now has the following geometric consequences:

(G1) V surely contains the “cone” delimited by the surfaces V ∩ �x and
⋃

t∈[0,1](
t ∩
{x1 ≥ x}),

(G2) for any t ∈ [0, 1], the half-line 
t exits V at γ (t), that is, 
t ∩ {x1 < x} = ∅.
Now let V+(x) := V ∩ {x1 ≥ x}, and we estimate its volume. By construction, in view
of |z − y| = maxz′∈V |z′ − y| and observation (G2), it follows that V ∩ {x1 < x} must
be contained in the truncated cone (that we denote by C−) delimited by the surfaces⋃

t∈[0,1](
t ∩ {−r ≤ x1 ≤ x}), {x1 = −r} and �x . Let C be the cone delimited by
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⋃
t∈[0,1](
t ∩ {−r ≤ x1}) and {x1 = −r} and �x , and note that the cone C+ := C\C−

satisfies

|C+|
|C| =

(
r − x

2r

)3

�⇒ |C+|
|C−| =

( r−x
2r

)3
1 − ( r−x

2r

)3 = (r − x)3

8r3 − (r − x)3
.

Since by construction we have V ⊆ C− ∪ V+, and C+ ⊆ V+, it follows

|V | ≤ |C−| + |V+| and |V+| ≥ |C+| = (r − x)3

8r3 − (r − x)3
|C−|.

Hence, we have

|C−| ≤ |V+|8r3 − (r − x)3

(r − x)3
= |V+|

[
8r3

(r − x)3
− 1

]
and so |V |

≤ |C−| + |V+| ≤ |V+| 8r3

(r − x)3
.

Thus

|V+|
|V | ≥ (r − x)3

8r3
=

(
1

2
− x

2r

)3

. (19)

Now take an arbitrary point w = (w1, w2, w3) ∈ V+ (hence w1 ∈ [x, r ]), and note that

|w − y|2 = w2
1 + w2

2 + w2
3, |w − y′|2 = (w1 − x)2 + w2

2 + w2
3

�⇒ |w − y|2 − |w − y′|2 = w2
1 − (w1 − x)2 = x(2w1 − x) ≥ x2. (20)

Thus ∫
V
[|w − y|2 − d2(w, {y, y′})] dw ≥

∫
V+

[|w − y|2 − d2(w, {y, y′})] dw

=
∫

V+

[|w − y|2 − |w − y′|2] dw
(20)≥ |V+|x2
(19)≥ |V |

(
1

2
− x

2r

)3

x2.

Since the above argument is valid for all x ∈ [0, r ], it follows
∫

V
[|w − y|2 − d2(w, {y, y′})] dw ≥ |V | max

x∈[0,r ]

(
1

2
− x

2r

)3

x2.

Maximizing the last expression over x ∈ [0, r ] (i.e. taking x = 2r
5 ) yields (18).

We now prove
∫

V
[|x − y|2 − d2(x, {y, y′})] dx ≥ �1|V |5/3. (21)
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As in the proof of (18), endow R
3 with a Cartesian coordinate system with origin in y.

For any t ∈ [0, |V |1/3], set
Q(t) := {−t/2 ≤ x1, x2, x3 ≤ t/2}, V ±

k (t) := V ∩ {±xk ≥ t/2}, k = 1, 2, 3.

Note that since

V \Q(t) =
3⋃

k=1

V ±
k (t),

we have

|V \Q(t)| =
∣∣∣∣

3⋃
k=1

V ±
k (t)

∣∣∣∣ ≥ |V | − t3.

Thus there exists an element Ṽ (t) ∈ {V ±
k (t) : k = 1, 2, 3} such that |Ṽ (t)| ≥ (|V | −

t3)/6. Let y′ be the center of the face Ṽ (t) ∩ Q(t). By (20), any w ∈ Ṽ (t) satisfies
|w − y|2 − |w − y′|2 ≥ t2/4, hence∫

V
[|w − y|2 − d2(w, {y, y′})] dw ≥

∫
Ṽ (t)

[|w − y|2 − d2(w, {y, y′})] dw

≥ |Ṽ (t)|t2
4

≥ (|V | − t3)t2

24
.

This last inequality holds for all t ∈ [0, |V |1/3]. In particular, direct computation gives
that the maximum of (|V | − t3)t2 is attained at t3 = 2|V |/5, thus

∫
V
[|w − y|2 − d2(w, {y, y′})] dw ≥ (|V | − t3)t2

24

∣∣∣∣
t3=2|V |/5

= 1

40

(
2

3

)2/5

|V |5/3

which proves (21). ��
Proof. (of Lemma 3.2) Although a similar estimate has been proven by Gruber in [16],
the lower bound therein was only implicit. Here we give an explicit lower bound. To this
end, assume |V | > 0, otherwise the thesis is trivial. The main idea of the proof is:

(1) first we show that if Yn is optimal, then y is in the interior of V ,
(2) thenweaddanother point y′ inV (the energydifference is estimatedusingLemma3.1),
(3) finally we remove y (energy difference to be estimated by direct computation).

Step 1. Assume by contradiction y ∈ ∂V . Then there exists a plane � such that V is
entirely on one side of �. Endow R

3 with a cartesian system with � = {(x1, x2, x3) :
x1 = 0}, V ⊆ {x1 ≥ 0}, y = (0, 0, 0). Then,∫

V
|z − y|2 dz =

∫
V
[z21 + z22 + z23] dz1 dz2 dz3,

with z1 ≥ 0 for all z ∈ V . Therefore,

∂

∂y1

∫
V
[(z1 − y1)

2 + z22 + z23] dz1 dz2 dz3

∣∣∣∣
y1=0

= −2
∫

V
z1 dz1 dz2 dz3 < 0,
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and Yn cannot be a minimizer.
Step 2. In Step 1 we have proven that y must be in the interior of V , thus we are under

the hypotheses of Lemma 3.1, which gives that there exists y′ such that
∫

V
[|x − y|2 − d2(x, {y, y′})] dx ≥ |V | 2

2 · 33
52 · 103 r2 ≥ �1|V |5/3, r := max

z′∈∂V
|y − z′|.

(22)

This means that adding y′ in V , the energy decreases by at least |V | 22·33
52·103 r2.

Step 3. Now we have to remove y, and estimate how much the energy increases. Set

s := |y − y′′| = min
z∈Yn , z �=y

|y − z|,

and for any x ∈ V it holds

|x − y′′|2 − |x − y|2 = (|x − y′′| − |x − y|)(|x − y′′| + |x − y|)
≤ |y − y′′|(2|x − y| + |y − y′′|) ≤ s(2r + s)

�⇒
∫

V
[|x − y′′|2 − |x − y|2] dx ≤ |V |s(2r + s). (23)

Combining (22), (23) and the minimality of Yn then gives

s2 + 2rs − r2
22 · 33
52 · 103 ≥ 0 �⇒ s ≥ r

(√
1 +

24 · 33
52 · 103 − 1

)
.

Finally note that V ⊆ B(y, r), hence ω3r3 ≥ |V |, and

s ≥ r

(√
1 +

24 · 33
52 · 103 − 1

)
≥

(√
1 +

24 · 33
52 · 103 − 1

)
ω

−1/3
3 |V |1/3,

and the proof is complete. ��

6. Towards a Proof of Gersho’s Conjecture in 3D

Let us now address the extension to 3D of Gruber’s 2D proof of Gersho’s conjecture.
The following analogous results are needed.

(1) We first note that the average number of faces (as n → +∞) of Voronoi cells is some
number m ≤ 14. This has been proven in [9]. Note that 14 is the number of faces
of truncated octahedra. This is quite promising, since simulations in [8] strongly
support the optimality of the BCC lattice, whose Voronoi cells are exactly truncated
octahedra.

(2) We need to verify that the function

m �−→ min
V convex polytope, |V |=α

V has at most m faces

∫
V

|x − y|2 dx, y centroid of V,

is convex for m ≤ N∗, where N∗ is given by Theorem 2.3. This will allow us
to extend this function (denoted below by G) to the continuum m ∈ [0, N∗], so
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we can then verify its convexity. This step ensures that we can then compute the
Hessian matrix of G. Alternatively, we can try to check G∗∗(a, 14) = G(a, 14),
with G∗∗ denoting the convex envelope of G. However, we do not expect to be able
to determine values of G∗∗ without any convexity estimates on G.

(3) The optimal polytope V with m̄ faces should be space tiling. According to simula-
tions from [8], we should expect m̄ = 14 and V being the truncated octahedron.

(4) We can dispense with the energetic contributions of the boundary cells. More pre-
cisely, as proven in Proposition 6.1 below, the total energetic contributions of the
boundary cells is of order O(n−1), which is negligible since the total energy is of
order O(n−2/3).

With these results in hand, Gruber’s method would then be as follows: let

G(a, m) := min
V convex polytope, |V |=a

V has at most m faces

∫
V

|x − y|2 dx, y centroid of V .

Suppose G is jointly convex. Then, for any arbitrary tessellation Yn (with �Yn = n), of
Q, let {Vk} be the collection of Voronoi cells, and let αk be the number of faces of Vk .
Then it follows that

E(Yn) =
n∑

k=1

∫
Vk

|x − y|2 dx

≥
n∑

k=1

G(|Vk |, αk)

≥ nG(1/n, m) + error due to boundary effects

≥ nG(1/n, 14) + error due to boundary effects.

Since the error due to boundary effects is a higher order term (actually of order O(n−1),
compared to nG(1/n, m), which has order O(n−2/3), as n → +∞) it follows that
the optimal tessellation (as n → +∞) consists of congruent copies of a space tiling
polyhedron realizing G(1/n, 14).

Concerning issue (3), we expect the optimal polytope to be the regular truncated
octahedron, since:

• it is the tessellation corresponding to the BCC lattice, which has been proven to be
pretty optimal from numerical simulations (see [8]),

• it is the only convex polytope to tile the space by translation, with 14 faces (see [17,
pp. 471–473]). Although this property is valid for some irregular truncated octahedra
too, we expect that for any fixed volume constraint a, irregular truncated octahedra
should not realize the minimum in G(a, 14).

Moreover, since a periodic CVT should have generators distributed on a lattice, by [1]
such a lattice should be theBCCone.However, a priori Gersho’s conjecture requires only
the existence of such a unique “seed” polytope for Voronoi cells, without any geometric
description.

For issue (4), we have the following proposition which proves that, given any cube
� ⊆ Q, the energy contribution of Voronoi cells intersecting ∂� is negligible compared
to the energy contribution of Voronoi cells not intersecting ∂�.
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Proposition 6.1. For any n, let Yn be a minimizer with �Yn = n. Then let � ⊆ Q be an
arbitrary cube with positive volume, then for any sufficiently large n it holds:

(1) the contribution to the energy of Voronoi cells intersecting ∂� is of order O(n−1),
(2) the contribution to the energy of Voronoi cells in � but not intersecting ∂� is of order

O(n−2/3).

Consequently, the energy contribution of Voronoi cells intersecting ∂� is negligible
compared to the energy contribution of Voronoi cells in � not intersecting ∂�.

Proof. Choose n � 1, and a minimizer Yn with �Yn = n. We will establish (from
Claims 1–3) that the energy contribution of Voronoi cells intersecting ∂� is negligible
as n → +∞. In the following �i (i = 1, 3, 4) will be constants from Theorem 2.3.

• Claim 1: at most 6�4
ω3�

3
5

n2/3 Voronoi cells can intersect ∂�.

To prove this claim, estimate (6) gives that the diameter of each Voronoi cell is at most
�4n−1/3, hence all the Voronoi cells intersecting ∂� are contained in

{x : d(x, ∂�) ≤ �4n−1/3}.
Estimate (5) gives that the volume of any Voronoi cell is at least ω3�

3
5n−1, hence at

most

|{x : d(x, ∂K ) ≤ �4n−1/3}|
ω3�

3
5n−1

≤ 6�4

ω3�
3
5

n2/3

can intersect ∂�. Thus Claim 1 is proven.

• Claim 2: the energy contribution of all Voronoi cells intersecting ∂� is at most

3�6
4n−5/3

4�3
5

= O(n−1).

Let (yk)k ⊆ Yn be the (finite) collection of atoms such that their Voronoi cells (Vk)k
intersect ∂�. Estimate (6) proves that, for any k, diam(Vk) ≤ �4n−1/3, hence Vk ⊆
B(yk, �4n−1/3/2) and
∫

Vk

|x − yk |2 dx ≤ |Vk | diam2(Vk) ≤ |B(yk, �4n−1/3/2)| diam2(Vk) ≤ ω3�
5
4n−5/3

8
.

Since Claim 1 proves that at most
6�3

4
�1

n2/3 Voronoi cells can intersect ∂�, the energy
contribution of all such cells is at most

6�4

ω3�
3
5

n2/3 · ω3�
5
4n−5/3

8
= 3�6

4n−1

4�3
5

and Claim 2 is proven.

• Claim 3: the energy contribution of all Voronoi cells in � which do not intersect
∂� is at least

π

5
ω

−5/3
3 n−2/3 − 3�6

4n−1

4�3
5

= O(n−2/3).
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Zador’s asymptotic estimate proved that there exists τ > 0 such that n2/3E(Yn) → τ .
Thus, for n large we have

2τn−2/3 ≥ E(Yn) ≥ τ

2
n−2/3,

and the contribution of cells not intersection ∂� is estimated by

2τn−2/3 ≥ E(Yn) − 3�6
4n−5/3

4�3
5

≥ τ

2
n−2/3 − 3�6

4n−1

4�3
5

,

and since we proved τ ≥ 2π
5 ω

−5/3
3 , Claim 3 follows. ��

Thus the fundamental remaining issue for the proof of Gersho’s conjecture in 3D is
(2). Note that the convexity of G in the volume variable is almost trivial due to scaling:
without loss of generality assume the centroid is y = 0, and by using a scaling of ratio
r we obtain ∫

r V
|x |2 dx = r5

∫
V

|x |2 dx,

independently of the number of faces of V . With this is hand, the Hessian calculation
will establish joint convexity once we establish (2).

To prove (2), the convexity of G in the other variable (i.e. the number of faces), note
that the bound on the number of faces implies also an uniform bound on the number of
vertices. Since we need only the convexity of G for polytopes with up to N∗ faces, let
M∗ be the maximum number of vertices of all such polytopes. Thus one can write the
integral ∫

V
|x − y|2 dx

as a function of the vertices {v1, · · · , vm} only (vi ∈ R
3, m ≤ N∗): the cell V is indeed

the convex combination of its vertices, hence any x ∈ V is of the form x = ∑m
k=1 akvk .

Similarly, the centroid y := |V |−1
∫

V xdx can be also expressed in terms of the vertices:

y = 1

|V |
∫

V
x dx

= 1

|V |
∫
{a : ak≥0,

∑m
k=1 ak=1}

m∑
k=1

akvk da a := (a1, · · · , am).

Hence, if we define

I (v1, · · · , vm) :=
∫

V
|x − y|2 dx

=
∫
{a : ak≥0,

∑m
k=1 ak=1}

∣∣∣∣
m∑

k=1

akvk − 1

|V |
∫
{ã : ãk≥0,

∑m
k=1 ãk=1}

m∑
k=1

ãkvk dã

∣∣∣∣
2

da,

we see that problem reduces to convex minimization in 3m variables over a convex
constraint; That is, we solve

min
v1,··· ,vm

I (v1, · · · , vm)

under the constraint that V is a convex polytope with unit volume.
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7. Conclusion and Future Directions

In this paper we have shown that Voronoi cells in optimal CVTs have at most N∗ faces,
with N∗ independent of the number of generators. This allowed us to reduce Gersho’s
conjecture in 3D, which is intrinsically nonlocal and infinite dimensional (as it requires
the number of generators to tend to infinity), to a local and finite dimensional problem of
studying the convexity of G on convex polytopes with at most N∗ faces. In our opinion,
this alone is an achievement. However, the issue remains that the current bound on N∗ is
far too big for computer verification. Note that the fact that we are interested only in the
convexity of G allows us to have computational errors, as long as these are sufficiently
small not to influence the convexity. While we have tried to optimize constants within
the framework of our method, one should seek different more optimal techniques for
our bounds to lower the threshold for N∗.
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