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We consider two well known variational problems associated with the phenomenon of phase
separation: the isoperimetric problem and minimization of the Cahn–Hilliard energy. The two
problems are related through a classical result inΓ -convergence and we explore the behavior of
global and local minimizers for these problems in the periodic setting. More precisely, we investigate
these variational problems for competitors defined on the flat 2- or 3-torus. We view these two
problems as prototypes for periodic phase separation. We give a complete analysis of stable critical
points of the 2-d periodic isoperimetric problem and also obtain stable solutions to the 2-d and 3-d
periodic Cahn–Hilliard problem. We also discuss some intriguing open questions regarding triply
periodic constant mean curvature surfaces in 3-d and possible counterparts in the Cahn–Hilliard
setting.

1. Introduction

Many physical systems exhibit a phase separation that, according to experiments, can be described
roughly as follows:

• The phase separation is periodic on some fixed scale (often amesoscopicscale much less than
the sample size).

• Within a period cell, the structure appears to minimize surface area between the two phases.

Macroscopic phase separation (sometimes dubbedspinodal decomposition), i.e. phase separation
on a scale comparable to the system size, has been the topic of extensive mathematical study (see
for example [17, 26, 36], and the references therein). A simple model, in the spirit of van der Walls
and Landau, was proposed in 1958 by Cahn and Hilliard [9]. The model is based upon minimizing
the free energy ∫

Ω

(
ε2

2
|∇u|

2
+ W(u)

)
dx, (1.1)

where the order parameteru represents the relative concentration of one of the two phases and obeys
the mass conservation

∫
Ω

u dx fixed; W is a nonnegative double-well preferring pure phases (e.g.
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W(±1) = 0); and the small parameterε represents the interfacial thickness at a transition between
the phases. It is straightforward to see that the minimum energy of (1.1) isO(ε) and hence it is
natural to scale (1.1) by 1/ε. With this rescaling, it has been shown rigorously (cf. [36, 53]) that
minimizers of (1.1) converge to minimizers of a sharp-interface, pure perimeter problem. Because
of the conservation of the total mass for the order parameter, the limit problem is anisoperimetric
problemin which solutions possess phase boundaries of constant mean curvature (CMC). Hence,
a natural approach to studyperiodicphase separation is via theperiodicCahn–Hilliard (PCH) and
isoperimetric problems (PIP) whereby the physical domain is taken to be then-dimensional flat
torus.

One would expect these problems on a flat torus to be well understood. However, many questions
remain open. Moreover, while the periodic isoperimetric problem has been the focus of much
attention in the geometry community (see [29], [49] and the references therein), to our knowledge,
the associated periodic Cahn–Hilliard problem, in particular the study of complex triply periodic
local minimizers, has been ignored.1 This is particularly surprising given that, as we shall argue,
the possible geometric structure of (local) minimizers in 3-d is far more complex and vast than with
other well studied boundary conditions.

A physical paradigm for periodic phase separation is provided by microphase separation of
diblock copolymers (cf. [5, 6, 56]). A diblock copolymer is a linear-chain molecule consisting of
two sub-chains joined covalently to each other. One of the sub-chains is made of monomers of type
A and the other of type B. Below a critical temperature, even a weak repulsion between unlike
monomers A and B induces a strong repulsion between the sub-chains, causing the sub-chains to
segregate. A macroscopic segregation, whereby the sub-chains detach from one another, cannot
occur because the chains are chemically bonded: rather, a phase separation on a mesoscopic scale
with A and B-rich domains emerges. The observed mesoscopic domains, illustrated in Figure 1,
are highly regular periodic structures; for example lamellas, spheres, cylindrical tubes, and single
and double gyroids (see for example, [6] and the references therein). These, and many of the other
observed structures, strongly resemble triply periodic constant mean curvature (CMC) surfaces.
This fact is well documented in both the science and mathematics literature (cf. [5, 6, 30, 49, 56]).
Hence, focusing on one periodic cell, one may naturally regard (PCH) and (PIP) as toy problems
for microphase separation of diblock copolymers.

On the other hand, it would seem that any model for these polymer configurations cannot
simply be based solely on minimization of A-B monomer interfaces. Indeed, a density functional
theory, first proposed by Ohta and Kawasaki [42], entails the minimization of anonlocalCahn–
Hilliard like energy (cf. [11, 40]) whereby the standard Cahn–Hilliard free energy is augmented
by a long-range interaction term—associated with the connectivity of the sub-chains in the diblock
copolymer macromolecule. This term is proportional to an interaction material parameter related
to the length of the copolymer chain. We refer to this nonlocal counterpart as thenonlocal Cahn–
Hilliard problem (see formula (6.37)) and its sharp interface version as thenonlocal isoperimetric
problem (see (6.38)). We will discuss them briefly in Section 6, but a subsequent paper [12] is
devoted entirely to their study. We stress two important facts concerning these nonlocal functionals.
When the interaction parameter is sufficiently large, energetic competitions between the perimeter
and nonlocal terms sets a newmesoscopiclength scale (smaller than the physical domain size)
for minimizers. Moreover, heuristic, numerical, and analytical results suggest that minimizers are

1 In [18], the authors pursue an interesting analysis of the two-dimensional periodic Cahn–Hilliard problem, but from the
standpoint of bifurcation theory in a much different vein than is taken here.
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THE ISOPERIMETRIC PROBLEM 15

Figure 12. Edwin Thomas talk on material science, MSRI (Berke-
ley), 1999

of the system, which, assuming suitable ideal conditions, is given by the area of the
interface Σ separating both materials. As the volume fraction of the liquids is given,
we see that Σ is a local solution of the isoperimetric problem (i. e. a stable surface).
It happens that there are several pairs of substances of this type that (for chemical
reasons) behave periodically. These periods hold at a very small scale (on the scale
of nanometers) and the main shapes which appear in the laboratory, under our
conditions, are described in Figure 12. The parallelism between these shapes and
the periodic stable surfaces listed above is clear. For more details see [75] and [35].
Instead of the area, the bending energy, see §2.3, is sometimes considered to explain
these phenomena. However, from the theoretical point of view, this last functional is
harder to study, and it does not seem possible at this moment to classify its extremal
surfaces.

2. The isoperimetric problem for Riemannian 3-manifolds

In this section M will be a 3-dimensional orientable compact manifold without
boundary. The volume of M will be denoted by v = V (M). Some of the results below
are also true in higher dimension. However we will only consider the 3-dimensional
case for the sake of clarity.

FIG. 1. Periodic phase separation. Cartoon from Edwin Thomas’ talk at MSRI 1999—taken from reference [49].

nearly periodic (on this smaller length scale), regardless of the boundary conditions adopted on
the physical domain (cf. [2, 3, 10, 39, 42, 44, 55, 60]). As for the geometry of minimizers, it is
well known (cf. [34, 52]) that vanishing first variation of the area functional with respect to the
volume constraint reduces to constant mean curvature for the phase boundary. On the other hand,
with the nonlocal term, vanishing first variation does not imply CMC (see [12] for a full treatment
of the first and second variations) and so not surprisingly, there are local minimizers which do
not have CMC (cf. [39, 45]). Nonetheless, accepting both the validity of nonlocal model and the
many experimental observations, it would seem that the effect of the nonlocal interactions within
a period cell is minimal; rather, surface tension is the driving force (numerical evidence supports
this claim—cf. [55]). Hence, in addition to being of interest in their own right, the local periodic
problems focused on in the present article seem quite pertinent to the diblock problem as well.

We have in mind two primary goals in our investigation of the periodic Cahn–Hilliard and
isoperimetric problems:

(i) Address the issue ofglobal minimizersin two and three space dimensions. We will document
what is known for the periodic isoperimetric problem, and with the tool ofΓ -convergence (cf.
[7]), we will exploit the work of geometers to easily obtain analogous stable solutions to the
periodic Cahn–Hilliard problem. While these results are not difficult to prove, as far as we are
aware, they have not been previously observed in the vast literature on the subject.

(ii) A more novel goal pertains tolocal minimizers. For the periodic isoperimetric problem, we
address the possibility that strict stability (e.g. an appropriate positive lower bound on the
second variation) implies an appropriate notion of strict local minimality with respect to small
L1 perturbations. A similar conjecture in the strongerC1 topology and with Dirichlet boundary
conditions is addressed in [18]. As we describe in Section 5, there is a wealth of complex
triply periodic stable surfaces. Many physics papers (see for example [1, 4, 5, 56, 13–15)
allude to these surfaces and many papers in geometry (see for example [33, 50]) are devoted
to their study. The natural question arises as to whether their structure is seen at the diffuse
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interface (Cahn–Hilliard) level. One route to a positive answer rests on proving this connection
between strict stability and strict local minimality in three dimensions. Here we address the
conjecture in two dimensions. We exhaust the list of all possible critical points to see which
are unstable, which are stable and which areL1-local minimizers. We work in such a weak
topology due to our wish to invokeΓ -convergence results in drawing conclusions about the
Cahn–Hilliard setting. Of course, in two dimensions, criticality alone leads immediately to
curves with constant curvature (i.e. circles and lines), thus severely limiting the number of
possible candidates. In the future, we hope to address whether in 3-d, some form of strict
stability implies strictL1-local minimality. While this will naturally require an entirely new
machinery, our work here in 2-d lends support to the conjecture that the answer is indeed yes.

From a geometer’s point of view, one might argue as to the relevance and virtue of the
diffuse interface version. To this viewpoint, however, we respond that numerics are not easily
performed with sharp interface energetic formulations, while a standard gradient flow approach
to the diffuse interface energy gives a parabolic PDE (the well known Cahn–Hilliard equation), for
which numerical algorithms are fairly well developed. In the same vein, one can view the periodic
Cahn–Hilliard problem as a kind of regularization of the sharp interface problem, with the hope that
the diffuse problem might shed light on some of the many remaining open questions regarding the
3-d periodic isoperimetric problem. In any event, we hope that this article will stimulate interest
in both these important geometric and analytical problems, and, in particular, their interaction. The
paper is organized as follows. In Section 2, we review some basic concepts from geometric measure
theory. In Section 3 we formally introduce the problems, and note their connection via the theory
of Γ -convergence. Global minimizers are addressed in Section 4 and local minimizers in Section 5.
In Section 6, we briefly address the nonlocal analogues but only in the case where the nonlocalities
are small. We conclude in Section 7 with some remarks.

2. Some preliminaries

We will require a few preliminaries from geometric measure theory. For further background, we
refer the reader to [16, 20, 52].

For n > 1 (usuallyn = 2, 3), let Tn (n = 2 or 3) denote then-dimensionalflat torus. In
particular we identify two points(x1, . . . , xn) = (y1, . . . , yn) iff xi = yi + ki for some integerski .

Let H 1(Tn) denote the Sobolev space obtained by taking the closure under the Sobolev norm
on (−1/2, 1/2)n of periodicC∞(Rn) functions, i.e. functionsϕ which satisfy

ϕ(x1 + k1, . . . , xn + kn) = ϕ(x1, . . . , xn) for all integerski, i = 1, . . . n. (2.2)

Let BV (Tn) denote the set of allL1(Tn) functionsu such that the total variation∫
Tn

|∇u| := sup
σ

∫
Tn

u div σ dx < ∞, (2.3)

where the supremum is taken over all vector fieldsσ ∈ C1(Rn, Rn) whose components each satisfy
(2.2), and such that|σ | 6 1.

If S ⊂ Tn, one saysS is of finite perimeterin Tn if the characteristic function ofS, χS, lies in
BV (Tn). Then one defines theperimeterof S as

P(S, Tn) :=
∫

Tn

|∇χS |.
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When we wish to be specific about functions on the torus, it is often convenient to give
coordinates toTn via the cube

Qn := [−1/2, 1/2)n ⊂ Rn, (2.4)

but note that the spacesH 1(Tn) andBV (Tn) are not simplyH 1(Qn) andBV (Qn) respectively.
A setE ⊂ Tn of finite perimeter is of course only defined up to a set of Lebesgue measure zero.

In order to identify a useful representative for such an equivalence class, we introduce thedensity
of E at a pointx given by the limit

D(E, x) = lim
r→0

|E ∩ B(x, r)|

|B(x, r)|
. (2.5)

HereB(x, r) denotes then-dimensional ball centered atx of radiusr. One defines themeasure-
theoretic interiorof a setE of finite perimeter as the set of all thosex for which D(E, x) = 1.
Similarly, themeasure-theoretic exterioris taken to be the set of all thosex for whichD(E, x) = 0.
Then themeasure-theoretic boundaryof E, denoted by∂ME, consists of thosex for which either
0 < D(E, x) < 1 or the limit in (2.5) fails to exist. Clearly,∂ME ⊂ ∂E, where∂E denotes the
topological boundary. When necessary, in this paper we will choose the measure-theoretic interior
of E as its representative.

Denoting(n − 1)-dimensional Hausdorff measure byHn−1, it is well known that

E is of finite perimeter if and only if Hn−1(∂ME) < ∞

and that
P(E, Tn) = Hn−1(∂ME) = Hn−1(∂∗E),

where∂∗E is thereduced boundaryof E, consisting of all those boundary points ofE possessing a
measure-theoretic normal (cf. [16, Section 4.5]). Furthermore, the rectifiability of∂ME means that
one has the useful decomposition

∂ME =

∞⋃
j=0

Γj (2.6)

whereHn−1(Γ0) = 0 andΓj is the image of a Lipschitz map forj > 1. As theΓj are boundary
components, it can then be shown for the casen = 2 that, in particular, theΓj are given by closed
Lipschitz curves forj > 1 ([16, 4.2.25]).

At times, it will also be useful to us to view a set of finite perimeterE ⊂ R2 as a 2-current of
multiplicity one. Recall that a 2-current is simply a bounded linear functional acting on 2-forms.
Themassof ak-current defined on a setΩ is given by

M(T ) ≡ sup
{ϕ∈Dk(Ω): |ϕ|61}

|T (ϕ)|, (2.7)

whereDk(Ω) denotes the set of smooth, compactly supportedk-forms onΩ. Theboundaryof an
k-currentT , denoted by∂T , is the(k − 1)-current defined by the relation

∂T (ϕ) = T (dϕ) for all ϕ ∈ Dk−1(Ω),

wheredϕ represents thek-form obtained by exterior differentiation ofϕ.
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For a 1-currentT , we also wish to recall the notion of the slice of a current by a Lipschitz
functionf : Ω → R1 (cf. [52, p. 155]). IfT is described by a 1-rectifiable setΓ , a tangent vector
ξ : Γ → R2 and a multiplicitym : Γ → Z, then thesliceof T by f at a valuet ∈ R1, denoted by
〈T , f, t〉, is a 0-current defined forH 1-a.e.t ∈ R1. Letting∇

Γ f denote the gradient off relative
to Γ andΓ+ ≡ {x ∈ Γ : |∇

Γ f (x)| > 0}, the slice is supported on the countable set of points
f −1(t) ∩ Γ+, carries orientation±1 according to the relationξ(x) = ±∇

Γ f (x)/|∇Γ f (x)|, and
carries multiplicitymbΓ+. Of most significance to our purposes is the inequality∫

∞

−∞

M(〈T , f, t〉)dt 6 sup
x∈Γ

|∇
Γ f (x)|M(T ). (2.8)

3. The connection between (PCH) and (PIP) viaΓ -convergence

We first formulate the two problems. Foru ∈ L1(Tn), m ∈ (−1, 1), andε > 0, we define the
Cahn–Hilliard energyas

Eε(u) :=


∫

Tn

(
1

4ε
(u2

− 1)2
+

ε

2
|∇u|

2
)

dx if u ∈ H 1(Tn),
∫
Tn u = m,

+∞ otherwise.
(3.9)

By thePeriodic Cahn–Hilliard Problemwe mean

(PCH) Minimize Eε(u) over allu ∈ L1(Tn).

We also define, forc0 = 2
√

2/3, a limit energy of the form

E0(u) :=

{
c0P({x : u(x) = 1}, Tn) if u ∈ BV (Tn), |u| = 1 a.e.,

∫
Tn u = m,

+∞ otherwise,
(3.10)

and introduce the associated sharp interface minimization problem:

(PIP)′ Minimize E0(u) over allu ∈ L1(Tn).

It is sometimes more convenient to rephrase the limit problem in terms of sets of finite perimeter.
To a givenu0 ∈ BV (Tn, {±1}) with

∫
Tn u0 = m, one naturally associates a set of finite perimeter

A := {x ∈ Tn : u0(x) = 1}, |A| = a :=
m + 1

2
. (3.11)

Conversely, to a given set of finite perimeterA with |A| = a, one naturally associatesu0 ∈

BV (Tn, {±1}) given by

u0(x) =

{
1 if x ∈ A,

−1 if x ∈ Ac.
(3.12)

Clearly
∫
Tn u0 = m = 2a − 1. Thus (PIP)′ is equivalent to what is known as thePeriodic

Isoperimetric Problem:

(PIP) Minimize P(A, Tn) overA ⊂ Tn with finite perimeter|A| = a.
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We note that through the (weak) compactness and lower semicontinuity properties ofH 1(Tn)

andBV (Tn), global minimizers of both (PCH) and (PIP) are easily obtained via the direct method
in the calculus of variations. Proposition 3.1 supplies the well known connection between the two
problems viaΓ -convergence.

PROPOSITION3.1 The sequenceEε Γ -converges toE0 in L1(Tn) (cf. [7]). That is,

for everyv ∈ L1(Tn) and every sequence{vε} converging tov in L1

one has lim inf
ε→0

Eε(vε) > E0(v) (3.13)

and
for everyw ∈ L1(Tn) there exists a sequence{wε} ⊂ L1(Tn) such that

wε → w in L1 and lim
ε→0

Eε(wε) = E0(w). (3.14)

Consequently, for any sequence{uεj } of minimizers of (PCH), there exists a subsequence (not
relabeled) such that

uεj → u0 in L1(Tn),

whereu0 is a minimizer of (PIP)′.

Proof. The fact thatEε Γ -converges toE0 follows directly from the Modica–Mortola theorem ([36,
37]). Moreover, the usual compactness argument also applies directly to produce a subsequenceuεj

converging inL1(Tn) to a limit u0 ∈ BV (Tn) with |u0| = 1 a.e. and
∫
Tn u0 dx = m. Finally, for

anyw ∈ L1(Tn) condition (3.14) guarantees the existence of a sequencewεj converging tow in
L1(Tn) such that

lim Eεj (wεj ) = E0(w).

Hence by (3.13) we have

E0(u0) 6 lim inf Eεj (uεj ) 6 lim inf Eεj (wεj ) = E0(w),

sou0 is a minimizer ofE0. 2

We also wish to explore the possibility of local minimizers to (PCH) and (PIP) and to investigate
their relationship to each other viaΓ -convergence. By anL1-local minimizerof (PCH) we mean an
admissible (finite energy) functionuε with the property that there exists aδ > 0 such that

Eε(uε) 6 Eε(v) for all admissiblev with 0 < ‖uε − v‖L1(Tn) < δ. (3.15)

Of course, such a functionuε will automatically locally minimize in the strongerH 1-topology and
will in particular satisfy the Euler–Lagrange equation associated with criticality.

By anL1-local minimizerof (PIP)′ we mean an admissible (finite energy) functionu0 with the
property that there exists aδ > 0 such that

E0(u0) 6 E0(v) for all admissiblev with 0 < ‖u0 − v‖L1(Tn) < δ. (3.16)

In either case, if the inequality for the energies is strict, we use the termisolatedL1-local minimizer.
The main result of [35] asserts that near isolatedL1-local minimizers ofE0 one can find local
minimizers ofEε (the different boundary conditions are irrelevant here). Unfortunately, in light
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of the translation invariance of the periodic isoperimetric problem, the local minimizers we will
consider areneverisolated. Hence, we must invoke this slight generalization of the result from [35].
In what follows, we usedL1(v, S) to denote theL1 distance between a functionv ∈ L1(Tn) and a
setS ⊂ L1(Tn), i.e.

dL1(v, S) := inf
u∈S

‖v − u‖L1(Tn).

PROPOSITION3.2 SupposeS ⊂ L1(Tn) is a set of locally minimizing critical points ofE0 in the
sense that there exist positive numbersM andδ such that for allu ∈ S one has

E0(v) > E0(u) = M whenever 0< dL1(v, S) < δ. (3.17)

Suppose furthermore thatS is compact inL1(Tn); that is, for every sequence{uj } ⊂ S suppose
there exists a subseqence{ujk

} converging inL1 to a limit u ∈ S. Then there exists a valueε0 > 0
and, for allε < ε0, a family ofL1-local minimizers{uε} of Eε such thatd(uε, S) → 0 asε → 0.
Furthermore, for any sequenceεj → 0, there exists a subsequence{εjk

} and an elementu of S such
thatuεjk

→ u in L1.

If the hypothesis of Proposition 3.2 holds, we callv astrict L1-local minimizer.

Proof. This modification of the result from [35] is fairly well known but for the sake of self-
containment, we sketch its proof here. We begin by fixing any positive numberδ1 < δ and for
eachε > 0 we defineuε as any solution to the minimization problem

inf
{v:d(v,S)6δ1}

Eε(v).

The existence of such a minimizer follows via the direct method by utilizing standard compactness
and lower semicontinuity properties. Suppose, by way of contradiction, that there exists a
subsequence{uεj } and a positive numberγ 6 δ1 such that

d(uεj , S) > γ.

Invoking the usual compactness property for sequences of functions of uniformly bounded Cahn–
Hilliard energy, we can pass to anL1-convergent subsequence (still denoted byuεj ):

uεj → v for somev ∈ L1.

Furthermore, the conditionγ 6 d(uεj , S) 6 δ1 and the compactness ofS imply that there exists a
functionw ∈ S with 0 < γ 6 ‖v − w‖L1 6 δ1. Then, invoking (3.13) and (3.14), we have

E0(v) 6 lim inf Eεj (uεj ) 6 lim Eεj (wεj ) = E0(w),

contradicting (3.17).
The final claim of this proposition follows readily from the compactness ofS. 2

We conclude this section with a remark about regularity for local minimizers of (PIP)′. It is well
known that any minimizer of (PIP), in fact anyL1-local minimizer, must have a regular boundary.
This is stated more precisely in the following result of Gonzalez, Massari, and Tamanini [21]. The
presence of periodic boundary conditions here makes no difference in their proof.
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THEOREM 3.3 Letn < 8. If u0 is anL1-local minimizer of (PIP)′ with associated setA of finite
perimeter, then∂A is an analytic(n − 1)-dimensional manifold.

A similar result holds in higher space dimension except for a singular set with Hausdorff
dimension at mostn − 8 (cf. [21]). With the regularity in hand, a classical calculation (see for
example [34, 52]) implies that the phase boundary associated with anyL1-local minimizer of (PIP)′

has constant mean curvature—a direct consequence of vanishing first variation.

4. Global minimizers of (PCH) and (PIP)

4.1 Global minimizers in 2-d

The following theorem is surely classical. We present the proof given by Howards, Hutchings and
Morgan in [31].

THEOREM 4.1 Let n = 2. The minimizers of (PIP) are either a disc or a strip (i.e. the region
enclosed by two parallel 1-tori). In fact, the minimizer is

• a disc if either 0< a 6 1/π or 1− 1/π 6 a 6 1. ;
• a strip (two parallel 1-d tori) if 1/π 6 a 6 1 − 1/π .

Proof. That a minimizer must exist follows by the direct method of the calculus of variations, in
particular the weak compactness property of the spaceBV and the weak lower semicontinuity of
the total variation. Consider such a minimizer. By Theorem 3.3, its boundary must be regular, and
hence must be of constant mean curvature. In two dimensions this forces the boundary to consist
of either a (finite) union of circles or of line segments. In the case of circles, there can only be
one; otherwise one could translate one circle towards another, without changing the perimeter or the
enclosed area, until the two circles touch. This would produce a singular minimizer which violates
the regularity. For the case of line segments, it is clear that the optimal situation occurs when the
boundary consists of exactly two parallel line segments. The regimes for the two cases are obtained
by considering the two critical values ofa: when 2π

√
a/π = 2 and when 2π

√
(1 − a)/π = 2. 2

We can now argue that forε small, the minimizers of (PCH) must exhibit a profile asymptotic to
the solutions of (PIP). To this end, we introduce functionsuL : T2

→ R1, u+

D : T2
→ R1 and

u−

D : T2
→ R1 taking values±1 on the set and its complement solving (PIP). (The subscriptL

stands for lamellas andD stands for disc.) Specifically, we define

uL(x, y) :=

{
+1 if 0 < x < (m + 1)/4 or (3 − m)/4 < x < 1,

−1 if (m + 1)/4 < x < (3 − m)/4,
(4.18)

u+

D(x, y) :=

{
+1 if |(x, y)| >

√
(1 − m)/2π,

−1 if |(x, y)| <
√

(1 − m)/2π,
(4.19)

u−

D(x, y) :=

{
+1 if |(x, y)| <

√
(m + 1)/2π,

−1 if |(x, y)| >
√

(m + 1)/2π.
(4.20)

Then we can establish
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COROLLARY 4.2 Let{uε} denote any sequence of minimizers of (PCH).

• If 2/π − 1 < m < 1− 2/π , then there exists a sequence{cε} of numbers between−1/2 and 1/2
and a sequence{kε} with kε ∈ {0, 1} such that

ũε → uL in L1(T2)

whereũε(x, y) := uε(R
kε ((x, y) + cε(1, 0))) andR represents a clockwise rotation byπ/2.

• If −1 < m < 2/π − 1, then there exists a sequence{(xε, yε)} ⊂ T2 such that

ũε → u−

D in L1(T2)

whereũε(x, y) := ũε(x − xε, y − yε).
• If 1 − 2/π < m < 1, then there exists a sequence{(x′

ε, y
′
ε)} ⊂ T2 such that

ũε → u+

D in L1(T2)

whereũε(x, y) := ũε(x − x′
ε, y − y′

ε).

Proof. The three cases are all handled in a similar manner. We will present the second case. The
argument proceeds by contradiction, so we suppose there exists a numberδ > 0 and a sequence
{εj } → 0 such that

inf
(x′,y′)∈T2

‖uεj (· − (x′, y′)) − u−

D‖L1(T2) > δ. (4.21)

In light of the compactness result of Proposition 3.1 there is a further subsequence (which we still
denote by{εj }) and anL1-function v minimizing E0 such thatuεj → v in L1(T2). For m ∈

(−1, 2/π − 1), Theorem 4.1 says thatv must take the form

v(x, y) :=

{
+1 if |(x, y) − (x0, y0)| <

√
(m + 1)/2π,

−1 if |(x, y) − (x0, y0)| >
√

(m + 1)/2π,

for some(x0, y0) ∈ T2. But then sincev(x, y) = u−

D(x − x0, y − y0), we have

‖uεj (· + (x0, y0)) − u−

D‖L1(T2) → 0,

contradicting (4.21). 2

4.2 Global minimizers in 3-d

Surprisingly enough, there are few rigorous results yielding the solution to the three-dimensional
periodic isoperimetric problem. Indeed, we know of only the following two results.

THEOREM 4.3 (Hadwiger [27]) Ifa = 1/2 then any minimizer of (PIP) must be either a horizontal
or vertical strip, i.e. two parallel 2-tori.

THEOREM 4.4 (see, for example, Theorem 18 and the comments which follow in Ros [49]) For
the valuea sufficiently small, any minimizer of (PIP) must be a sphere (ball).

A full result characterizing all minimizers of (PIP) for differenta remains an open problem in
classical geometry. For our cubic flat torusT3, the following conjecture is well accepted and well
tested (cf. [29, 49]):
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CONJECTURE4.5 If n = 3, minimizers of (PIP) are—in terms of the phase boundaries—either a
sphere, (quotient of) a cylinder, or two parallel flat tori (i.e. lamellas).

For more general flat 3-tori, the conjecture is less clear and experiments using Brakke’s Surface
Evolver [8] suggest that there may well exist nonstandard global minimizers (A. Ros, personal
correspondence, and [29]). We should mention that Ritore has shown that for any rectangular torus
in 3-d and for any fixed volume fraction, the global minimizer must be one of five candidates
including the three candidates listed above and two other CMC surfaces, a Lawson surface and
a Schwarz surface (see [49, Section 1.5]).

Combining Theorems 4.3 and 4.4 with Proposition 3.1 we have the following results for the 3-d
(PCH). For(x, y, z) ∈ Q3, let

uL3(x, y, z) :=

{
+1 if −1/2 < x < −1/4 or 1/4 < x < 1/2,

−1 if −1/4 < x < 1/4,

u+

S (x, y, z) :=

{
+1 if |(x, y, z)| > (3/π(1 − m))1/3/2,

−1 if |(x, y, z)| < (3/π(1 − m))1/3/2,

u−

S (x, y, z) :=

{
−1 if |(x, y, z)| > (3/π(1 + m))1/3/2,

+1 if |(x, y, z)| < (3/π(1 + m))1/3/2.

COROLLARY 4.6 Let{uε} denote any sequence of minimizers of (PCH).

• If m = 0 (a = 1/2), then there exists a sequence{cε} of numbers between−1/2 and 1/2 and a
sequence{Rε} of rotations such that

ũε → uL3 in L1(T3)

whereũε(x, y, z) := uε (Rε ((x, y, z) + cε(1, 0, 0))) andRε is either the identity, a rotation of
Q3 by π/2 with respect to thex-axis, or a rotation ofQ3 by π/2 with respect to they-axis.

• If m is sufficiently close to 1 (hencea is sufficiently close to 1) then there exists a sequence
{(xε, yε, zε)} ⊂ T3 such that

ũε → u+

S in L1(T3)

whereũε(x, y, z) := ũε(x − xε, y − yε, z − zε).
• If m is sufficiently close to−1 (hencea is sufficiently close to 0), then there exists a sequence

{(x′
ε, y

′
ε, z

′
ε)} ⊂ T3 such that

ũε → u−

S in L1(T3)

whereũε(x, y, z) := ũε(x − x′
ε, y − y′

ε, z − z′
ε).

Proof. The proof is analogous to the proof of Corollary 4.2. 2

5. Local minimizers of (PCH) and (PIP)

We have already defined the notion of anL1-local minimizer. A notion closely related to local
minimality is stability, i.e. positivity of the second variation. Since for (PIP) this is usually phrased



382 R. CHOKSI AND P. STERNBERG

in terms of the phase boundary, we define the notion of astable surface. Let n = 2 or 3. For any
smooth (C2) (n − 1)-surfaceΣ in Tn, we letBΣ denote the second fundamental form so that

‖BΣ‖
2

=

n−1∑
i=1

κ2
i , whereκ1, . . . , κn−1 are the principal curvatures.

Given a setA ⊂ Tn with smooth boundaryΣ , we sayΣ is astable surfaceif it minimizes the area
up to second order under the volume constraint, meaning that

(i) Σ has constant mean curvature (CMC),
(ii) Q(f, f ) > 0 for any functionf in the Sobolev spaceH 1(Σ) satisfying

∫
Σ

f dHn−1
= 0. Here

Q denotes the quadratic form

Q(f, f ) =

∫
Σ

(|∇Σf |
2
− ‖BΣ‖

2f 2) dHn−1, (5.22)

and∇Σf denotes the gradient off relative toΣ .

Conditions (i) and (ii) above are direct consequences of vanishing first and nonnegative second
variations respectively (cf. [34, 52]). In light of the regularity theory laid out in Theorem 3.3, it
follows from a direct calculation of the second variation that local minimizers of (PIP) have stable
boundaries.

The natural question arises as to whether positive second variation (stability) implies local
minimality with respect to small perturbations in some topology (e.g.C0, C1, C∞, or L1). This
question has been well explored in the context of minimal surfaces (see for example [41]). In the
present context of the volume constraint, it has been addressed by Grosse-Brauckmann [22] who,
building on work of White [59], shows local minimality with respect toC0-close perturbations.
Here we are concerned withL1-perturbations since it is through this topology that we can make a
connection with the diffuse interface problem (cf. Prop. 3.2).

In three dimensions, there exist a remarkable collection of nonstandard CMC surfaces which
have been shown to be stable on various 3-tori. Such surfaces include Schwarz’ P and D surfaces
and Schoen’s gyroid surface (cf. [23–25, 33, 49–51]). Though exhaustive work has yet to be done
for stable CMC surfaces, it is known that such surfaces must have genus at most 4 (cf. [48, 49]).
These surfaces and related questions on stability have also appeared in the physics literature (see
for example [1, 4, 5, 13–15] and the references therein). Determining whether or not there exist
corresponding diffuse-interface local minimizers to the Cahn–Hilliard problem rests on showing, in
dimension three, that stable surfaces (or more precisely strictly stable with an appropriate positive
lower bound on the second variation) correspond to strictL1-local minimizers of (PIP) in the sense
of Proposition 3.2. We believe they do but are not yet able to prove this.

In two dimensions, the situation is considerably simplified by the fact that the CMC condition
reduces the consideration of eligible phase boundaries to either circles or lines. In the following two
propositions we argue that a single horizontal strip and a single disc always locally minimize (PIP)
in a sense strong enough to allow application of Proposition 3.2.

PROPOSITION5.1 LetA0 ⊂ T2 denote the strip whose restriction to the unit cubeQ2 occupies
the set{(x, y) : −a/2 < y < a/2} for somea ∈ (0, 1). ThenA0 is a local minimizer of (PIP) in
the sense that for some positiveδ one has the condition

P(A0, T2) 6 P(A, T2) (5.23)
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for all sets of finite perimeterA ⊂ T2 satisfying

|A0 4 A| < δ and |A| = |A0| = a. (5.24)

Furthermore, equality holds in (5.23) only whenA differs fromA0 by a translation.
Equivalently, ifu0 : T2

→ R1 is given by

u0(x, y) =

{
1 if (x, y) ∈ A0,

−1 if (x, y) ∈ Ac
0,

(5.25)

andS1 ⊂ L1(T2) is given by

S1 = {u0(x, y − c) : c ∈ [−1/2, 1/2]}, (5.26)

then for allu ∈ S1 one has

E0(v) > E0(u) = 2 provided
∫

T2
v =

∫
T2

u0 and 0< dL1(v, S1) < δ.

Proof. Let A be a set of finite perimeter satisfying (5.24) and letλ := min {a/4, 1/2(1 − a/2)}.
We will first argue that in a neighborhood of the top of the stripA0, the boundary ofA must project
almost fully onto the boundary ofA0. To this end, we introduce the setS ⊂ (−1/2, 1/2) given by

S := {x ∈ (−1/2, 1/2) : (x, y) ∈ ∂MA for somey ∈ (a/2 − λ, a/2 + λ)}.

Now for everyx 6∈ S note that the vertical segment{x} × (a/2 − λ, a/2 + λ) either lies entirely
within A or entirely outside ofA. In either case, half of the line segment lies within the symmetric
differenceA0 4 A. Consequently we have

1
2λH1((−1/2, 1/2) \ S) 6 |A0 4 A| < δ. (5.27)

At this point we chooseδ = λ2/8 to conclude that

H1(S) > 1 − 2δ/λ = 1 − λ/4. (5.28)

From here, our strategy will be to show that in the set{y > 0}, the setA has at least perimeter 1.
Combining this with a similar argument in{y < 0} will lead to the desired conclusion that the strip
has least perimeter among nearby competitorsA.

To pursue this, we quantify the number of intersections between∂MA and horizontal lines above
y = 1/2 − λ and belowy = a/2 − λ. We introduce the setS′

∈ (0, 1/2) given by

S′ := {y ∈ (0, λ) ∪ (1/2 − λ, 1/2) : (x, y) ∈ ∂MA for somex ∈ (−1/2, 1/2)},

and distinguish two cases: either
H1(S′) > λ/2 (5.29)

or
H1(S′) < λ/2. (5.30)

First suppose that (5.29) occurs. Then combining (5.28) and (5.29) we see thatH1(∂MA ∩ {y > 0})

> 1+λ/4 > 1. Assuming (5.30) holds, consider the collection of all curvesΓj in the decomposition
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(2.6) of∂MA such that(x, y) ∈ Γj for somex ∈ S. Using the definition ofS′ it must then be the case
that anyΓj in this set is a closed curve onT2 that avoids the sets{y < λ/2} and{y > 1/2 − λ/2}.
If Γj is homotopically trivial then its length must be at least double its projection onto{y = a/2}.
Furthermore, if all curvesΓj in this collection are homotopically trivial, then by this reasoning
condition (5.28) would imply that the total length of these curves would exceed 2− λ/2 > 1.
Finally, if at least oneΓj in this collection fails to be homotopically trivial, then it would have
to span the unit squareQ2 from left to right, making its total length greater than 1 (unless it was
parallel toy = a/2, in which case its length would equal 1).

The upshot of pursuing these two cases is that necessarily the total perimeter ofA in the set
{y > 0} exceeds 1 unless∂MA consists of a horizontal segment, making its length exactly 1. Since
the same line of reasoning holds for∂MA ∩ {y < 0}, we conclude thatP(A, T2) > P (A0, T2) = 2
unlessA is a translate ofA0. 2

COROLLARY 5.2 There exists a valueε0 > 0 and a sequence{uε} of local minimizers ofEε such
thatdL1(uε, S1) → 0 asε → 0, where the setS1 is given by (5.26). Furthermore, for any sequence
{εj } → 0, there exists a subsequence{εjk

} and an elementu of S1 such thatuεjk
→ u in L1.

Proof. The corollary follows immediately from Propositions 3.2 and 5.1. 2

REMARK 5.3 The proof ofL1-local minimality of a single horizontal, or for that matter, vertical
strip given in Proposition 5.1 can be immediately adapted to the case where the setA0 consists of a
finite number of horizontal or vertical strips. This is due to the fact that the argument is entirely local.
More precisely, one could simply pick any particular component ofA0 and then select the tolerance
δ to be sufficiently small in terms of the distance from this one strip to the next nearest strip and
argue along the lines just presented. However, we hasten to add that through such an argument we
would only conclude that this union of stripsA0 satisfies the conditions (5.23)–(5.24). For multi-
component sets of strips, it is no longer the case that the only nearby competitors with the same
perimeter are translates ofA0 as it is now possible to shrink one strip while expanding another so as
to preserve the enclosed area. This extra freedom precludes the formation of a compact set analogous
to the set of translatesS1 given by (5.26) and so one cannot apply Proposition 3.2 to obtain diffuse
counterparts in the Cahn–Hilliard setting to arbitrary collections of horizontal or vertical strips. We
presume that this is not simply an indication of the failure of the method but that indeed no such
local minimizers exist to Cahn–Hilliard.

REMARK 5.4 Within the class of critical points for the 2-d periodic isoperimetric problem having
zero curvature, the only other case to consider would be setsA ⊂ T2 having boundary consisting of
a finite union of parallel but not necessarily vertical or horizontal line segments. This is because if
the boundary segments are not all parallel, singularities must be present given the periodicity of the
torus. Even for competitors with parallel boundary segments, the slopes would have to be rational
for such a configuration to be smooth and have finitely many components. Since its boundary has
curvature identically zero, it is again immediately seen to be stable (cf. (5.22)). One could then also
argue as in Proposition 5.1 that such a collection of strips will be anL1-local minimizer of (PIP).
The extra step here not present in the case of horizontal or vertical strips, however, is the observation
that the onlyL1 close competitors will be collections of parallel strips with boundary slopes equal to
that of the collection in question. Otherwise, inevitably such a competitor would possess a different
number of components, making it far away inL1. We also mention that for slanted strips with
multiple components, we cannot apply Proposition 3.2 (see Remark 5.3 above).

Next we show the desired local minimality property holds for any disc onT2.
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PROPOSITION5.5 For anyR < 1, the discB(0, R) is a local minimizer of (PIP) inT2 in the sense
that for some positiveδ one has the condition

P(B(0, R), T2) 6 P(A, T2) (5.31)

for all sets of finite perimeterA ⊂ T2 satisfying

|B(0, R) 4 A| < δ and |A| = |B(0, R)| = πR2. (5.32)

Furthermore, equality holds in (5.31) only whenA differs fromB(0, R) by a translation.
Equivalently, ifu0 : T2

→ R1 is given by

u0(x, y) =

{
1 if (x, y) ∈ B(0, R),

−1 if (x, y) ∈ B(0, R)c,

andS2 ⊂ L1(T2) is given by

S2 = {u0(x − c1, y − c2) : c1, c2 ∈ [−1/2, 1/2]}, (5.33)

then for allu ∈ S2 one has

E0(v) > E0(u) = 2 provided
∫

T2
v =

∫
T2

u0 and 0< dL1(v, S2) < δ.

Proof. Let A be a set of finite perimeter satisfying (5.32). Our first goal is to argue that necessarily,
A has perimeter nearly 2πR in the thin annulusAα := {(r, θ) : (1 − α)R < r < (1 + α)R, 0 6
θ < 2π}, providedα andδ are chosen sufficiently small. To this end, we introduce the setS via

S := {θ ∈ [0, 2π) : (r, θ) ∈ ∂MA for some r ∈ ((1 − α)R, (1 + α)R)}.

Then for anyθ 6∈ S, the entire segment of points(r, θ) with r ∈ ((1 − α)R, (1 + α)R) either lies
entirely inA or entirely in its complement. Hence half of such a segment lies inB(0, R) 4 A and
from (5.32) we find

αRH1([0, 2π) − S) 6 |B(0, R) 4 A| < δ.

Consequently,

H1(S) > 2π −
δ

αR
. (5.34)

Inequality (5.34) says that inAα, ∂MA projects almost fully onto∂B(0, R).

With (5.34) in hand, it is intuitively clear that∂MA must have nearly 2πR in perimeter when
restricted to the annulusAα. This can be established rigorously by, for example, viewingA as a 2-
current and then viewing∂MA restricted to the annulusAα as a 1-current, sayT . Inequality (5.34)
says that∂MA intersects most level sets of the functionf (r, θ) := θ within the thin annulus. Phrased
in terms of currents, this means that the mass of the slice ofT by f , denoted byM(〈T , f, θ〉), is at
least 1 forθ ∈ S. Then we invoke the inequality (2.8), noting that sup(r,θ)∈Aα

|∇f | = 1/(1 − α)R,
along with (5.34) to conclude that

H1(∂MA ∩Aα) = M(T ) > 2πR(1 − α) −
δ

α
. (5.35)
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Next we argue that the perimeter ofA will exceed 2πR if ∂MA meets a substantial fraction of
the circles∂B(0, r) for r > (1 + α)R. For example, suppose to the contrary, that for say half of
the r-values in the interval(1 + α)R < r < 1, one has the condition∂MA ∩ ∂B(0, r) 6= ∅. Then
necessarily

H1(∂MA ∩ {(r, θ) : (1 + α)R < r < 1}) > 1
2(1 − (1 + α)R). (5.36)

(This estimate can also be established by slices as was done in obtaining (5.35), though one would
use circular slices withf above replaced byg(r, θ) = r.) Let us now make the choices

α =

(
1

8π + 2

)(
1 − R

R

)
and δ =

1
8(1 − R)α.

There is of course flexibility in selectingα andδ, but with these values, one can sum (5.35) and
(5.36) to conclude after a little algebra that

P(A, T2) > H1(∂MA ∩Aα) +H1(∂MA ∩ {(r, θ) : (1 + α)R < r < 1})

> 2πR +
1

8
(1 − R) > P(B(0, R), T2).

We are left to examine the situation where∂MA fails to intersect at least half of the circles
of radiusr ∈ ((1 + α)R, 1). In this case, there must exist a radiusr0 with (1 + α)R < r0 6
1 −

1
2[1 − (1 + α)R] such that∂MA ∩ ∂B(0, r0) = ∅. Furthermore, one must have the condition

A ∩ ∂B(0, r0) = ∅ as well. Otherwise,∂MA would have to intersect most rays{(r, θ) : r0 < r < 1}

in order to keep the measure of the symmetric differenceB(0, R) 4 A small and this would in turn
drive the perimeter ofA above 2πR when combined with (5.35).

Examining the conditionsA ∩ ∂B(0, r0) = ∂MA ∩ ∂B(0, r0) = ∅, we can now consider the
components ofA within and outside of the circle∂B(0, r0) separately. If there are no components
of A outside this circle, then we are reduced to the standard isoperimetric inequality on the plane
and so the only competitorA matching the perimeter ofB(0, R) would be a nearby translate of the
ball. If, on the other hand,A has components outside of the circle∂B(0, r0), then (5.32) forces the
measure ofA∩(T2

\B(0, r0)) to be small. Again, in this case one knows a better competitor outside
of B(0, r0) would be a ball of measure|A ∩ (T2

\ B(0, r0))| so we can lower perimeter by replacing
A outside ofB(0, r0) with such a small ball. Likewise, since the components ofA are separated by
the circle∂B(0, r0) one can improve the competitorA inside the ball by replacing it with a ball,
say centered at the origin, whose area equals|A ∩ B(0, r0)|. But clearly the single ballB(0, R) has
less perimeter than the total perimeter of two balls whose total measure is alsoπR2. We have now
exhausted all possibilities and the proof is complete. 2

COROLLARY 5.6 There exists a valueε0 > 0 and a sequence{uε} of local minimizers ofEε such
thatdL1(uε, S2) → 0 asε → 0, where the setS2 is given by (5.33). Furthermore, for any sequence
{εj } → 0, there exists a subsequence{εjk

} and an elementu of S2 such thatuεjk
→ u in L1.

Proof. The corollary follows immediately from Propositions 3.2 and 5.5. 2

REMARK 5.7 Besides collections of strips, a case that has been completely exhausted through
Proposition 5.1 and Remarks 5.3 and 5.4, the only other critical points of the 2-d (PIP) we have not
yet discussed are sets consisting of two or more congruent discs. It is elementary to check that these
critical points are never stable, and therefore certainly not local minimizers. For example, one can
choosef in the second variation (5.22) to be 1 on one boundary component (circle) and−1 on any
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other to yield a negative second variation. In fact, this type of reasoning goes to show that a stable
phase boundary must be connected unless its curvature is everywhere zero in any dimension (see
Remark 7.2).

To sum up, through Propositions 5.1, 5.5 and Remarks 5.3, 5.4 and 5.7, we have found all stable
critical points of (PIP) in 2-d. They are all found to beL1-local minimizers in the sense of (3.16).
Except for the case of more multi-component strips, these local minimizers are in fact strict in the
sense of Proposition 3.2 , thus leading to diffuse analogues.

As we have indicated, the situation in 3-d is far more complicated. The case of 2-d multi-
component strips suggests that in 3-d, stability alone will again not be sufficient to guarantee a
strict L1-local minimizer in the sense of Proposition 3.2. It is therefore quite likely that we will
need some notion of strict stability, e.g. a second variation with a positive lower bound for non-
translational variations.

6. Small nonlocal perturbations

Following our discussions in Section 1, we formally introduce the nonlocal analogues of (PCH) and
(PIP). Here, we will simply note the relationships between the local and nonlocal problems when
the relevant parameters are small.

For ε > 0 andm ∈ (−1, 1), we define

Eε,γ :=


∫

Tn

(
ε

2
|∇u|

2
+

1

ε

(1 − u2)2

4
+

γ

2
|∇v|

2
)

dx if u ∈ H 1(Tn) and
∫
Tn u = m,

+∞ otherwise,

(6.37)

wherec0 is a positive constant. Herev is related tou andm via

−∆v = u − m onTn,

∫
Tn

v(x) dx = 0.

Note that the third term in (6.37) represents a compact perturbation with respect to the basicL2

(or L1) topology. Hence it easily follows (cf. [43]) from the definition ofΓ -convergence (cf. [7])
that theΓ -limit is

E0,γ :=

c0

∫
Tn

(
|∇u| +

γ

2
|∇v|

2
)

dx if u ∈ BV (Tn), |u| = 1 a.e.,
∫
Tn u = m,

+∞ otherwise.
(6.38)

Thenonlocal Cahn–Hilliardandisoperimetric problemsare defined as follows:

(NLCH) Minimize Eε,γ (u) over allu ∈ L1(Tn),

(NLIP) Minimize E0,γ (u) over allu ∈ L1(Tn).

The coefficientc0 plays no role and in what follows we setc0 = 1.
Following the discussion of the introduction (see the references therein), (6.37) and (6.38)

can be viewed as models for periodic phase separation induced by long and short-range energetic
competitions. As with (PCH) and (PIP), we have chosen to adopt periodic boundary conditions, and
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hence any minimizer can still be regarded as periodic with period one. However, in this instance,
the choice is simply for convenience. As regardsperiodicity, what is significant here is that for
γ sufficiently large, a smaller scale is enforced as a weak constraint via interactions between
the perimeter and the nonlocal terms. One conjectures (see the discussion in the introduction)
that minimizers are nearly periodic, and it is this inherentmesoscopic peridocitywhich makes
this functional of interest. Here we are interested in the regime of smallγ , and the connection
with (PCH) and (PIP)—this is naturally facilitated by the universal adoption of periodic boundary
conditions.

For smallγ , one would expect the effect of the nonlocal term to be minimal. In fact, this has
been confirmed by Ren and Wei (see for example [45–47]), where in 2-d forγ small, it has been
shown that some simple solutions to (PCH) and (PIP) are still stable (for example, a circular disc).
In the same spirit, we note that one can easily obtain the following asymptotic result.

PROPOSITION6.1 Letn = 2, 3 and−1 < m < 1. Letη > 0. There existε0 > 0 andγ0 > 0 such
that for allε < ε0 andγ < γ0, if uε,γ is a minimizer of (NLCH) then

inf
y∈Tn

‖uε,γ (· − y) − u∗
‖L1(T2) < η, (6.39)

whereu∗ is a minimizer of (PIP).

An analogous result to Proposition 6.1 also holds forL1-local minimizers.

Proof. Suppose (6.39) is false. Then there existη0 > 0 and sequences{εj }, {γk} tending to 0 such
that

inf
y∈Tn

‖uεj ,γk
(· − y) − u∗

‖L1(Tn) > η0, ∀j, k. (6.40)

It is trivial to verify that
E0,γ Γ -converges toE0,0 asγ → 0.

Note thatE0,0 is simplyE0 as defined in (3.10). Hence, for everyη > 0, there existsγ (η) such that
for all γ < γ (η) andvγ minimizingE0,γ , one has

inf
y∈Tn

‖vγ (· − y) − u∗
‖L1(Tn) 6 η. (6.41)

Now fix k such thatγk < γ (η0/2). Since for anyγ ,

Eε,γ Γ -converges toE0,γ asε → 0,

there existj andvk minimizingE0,γk
such that

‖uεj ,γj
− vk‖L1(Tn) < η0/2. (6.42)

With these choices ofk andj , (6.41) and (6.42) contradict (6.40). 2

Naturally, the interesting regimes will be forγ large and it will be here that a mesoscopic
scale for the periodicity (alluded to above and in the introduction) is weakly enforced by energetic
competitions. This regime is the focus of [2] and [12].
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7. Remarks

7.1 Open problems

Returning to (PCH) and (PIP), we summarize some important remaining questions mentioned in
this article.

(i) Conjecture 4.5 remains a basic assertion regarding the classification of global minimizers of
(PIP) according to the volume constraint for the cubic flat 3-torus. For other flat 3-tori, one
would like to have similar characterizations.

(ii) If one could establish a general principle stating that sets possessing (strictly) stable CMC
boundaries must necessarily locally minimize (PIP) in theL1 sense of Proposition 3.2 then it
would open the door to a rich new collection of local minimizers of the 3-d (PCH). Along with
this, we would like a better understanding of which stable surfaces are isolated in the sense
of Proposition 3.2. Perhaps a natural approach to this problem would be via acalibration-like
method whereby one foliates a neighborhood of a stable surface with CMC surfaces. Needless
to say, one would benefit from a more exhaustive study of triply periodic stable surfaces,
especially within the context of notions of strict stability.

7.2 Connectivity of the phase boundary

Returning to the model problem of microphase separation of diblock copolymers, many structures
have been observed which have discontinuous phase boundaries. An interesting case in point is
the double gyroid (cf. [6, 19, 28]). A similar structure with a diffuse interface has also been
observed in numerical simulations for minimizers of (NLCH) (cf. [55]). It is worth noting that
these structures are not stable solutions of (PIP). This follows immediately from consideration of
the second variation. Indeed, as long as‖BΣ‖ 6≡ 0, any multi-component surfaceΣ = Σ1 ∪ Σ2
would be unstable, as can be seen by substituting

f =

{
1 onΣ1,

−Hn−1(Σ1)/Hn−1(Σ2) onΣ2,

into (5.22). One might also ask whether local minimizers of (PCH) can have multi-component
transition layers where sayuε ≈ 0. For the case of Neumann boundary conditions in convex
domains, the answer was shown to be no in [54] and we suspect the same is true in this periodic
setting but we have not checked the details.

7.3 Varifolds and convergence of the phase boundaries

We are grateful to Y. Tonegawa for commenting that in the spirit of [32, 57, 58], one should be able
to use the notion of anassociated varifold(cf. [52]) to prove a stronger result on the convergence
of phase boundaries. Loosely speaking, a varifold associated to a minimizing sequenceuε of (PCH)
is a weighted average of the level sets ofuε , concentrating around the transition layer. There are
many advantages to this type of convergence, for example it yields information on the distribution
of energy as well as geometric and analytic information about the transition layer (see [32, 57, 58]
for more details).
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3. ALBERTI, G., & MÜLLER, S. A new approach to variational problems with multiple scales.Comm. Pure
Appl. Math.54 (2001), 761–825. Zbl 1021.49012 MR 1823420

4. ANDERSON, D., DAVIS , H., SCRIVEN, L., & N ITSCHE, J. C. Periodic surfaces of prescribed mean
curvature.Adv. Chem. Phys.77 (1990), 337.

5. ANDERSSON, S., HYDE, S. T., LARSSON, K., & L IDIN , S. Minimal surfaces and structures: from
inorganic and metal crystals to cell membranes and biopolymers.Chem. Rev.88 (1988), 221–242.

6. BATES, F. S., & FREDRICKSON, G. H. Block copolymers—designer soft materials.Physics Today52
(1999), no. 2, 32–38.

7. BRAIDES, A. Γ -convergence for Beginners. Oxford Lecture Ser. Math. Appl. 22, Oxford Univ. Press
(2002). Zbl pre01865939 MR 1968440

8. BRAKKE , K. The surface evolver.Experiment. Math.1 (1992), 141–165. Software available at:
http://www.susqu.edu/facstaff/b/brakke/evolver/evolver.html.

9. CAHN , J. W., & HILLIARD , J. E. Free energy of a nonuniform system I. Interfacial Free Energy.J. Chem.
Phys.28 (1958), 258–267.

10. CHOKSI, R. Scaling laws in microphase separation of diblock copolymers.J. Nonlinear Sci.11 (2001),
223–236. Zbl 1023.82015 MR 1852942

11. CHOKSI, R., & REN, X. On a derivation of a density functional theory for microphase separation of
diblock copolymers.J. Statist. Phys.113(2003), 151–176. Zbl 1034.82037 MR 2012976

12. CHOKSI, R., & STERNBERG, P. On the first and second variations of a nonlocal isoperimetric problem.
J. Reine Angew. Math., to appear.

13. COCHRAN, E. W., GARCIA-CEVERA, C. J., & FREDRICKSON, G. H. Stability of the gyroid phase in
diblock copolymers at strong segregation. Preprint (2006).

14. DAVIDOVITCH , B., ERTAS, D., & HALSEY, T. C. Ripening of porous media.Phys. Rev. E70 (2004),
031609.

15. DAVIDOVITCH , B., ERTAS, D., & HALSEY, T. C. Reaction-limited sintering in nearly saturated
environments.Philos. Mag.84 (2004), 1937.

16. FEDERER, H. Geometric Measure Theory. Springer, New York (1969). Zbl 0874.49001 MR 0257325
17. FIFE, P. Models for phase separation and their mathematics.Electron. J. Differential Equations2000, no.

48, 1–26. Zbl 0957.35062 MR 1772733
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