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1 Introduction

The modeling of pattern morphologies via energy minimization involving long and short-
range competitions is well-established and ubiquitous in science (cf. [47, 23, 33] and the ref-
erences therein). It also provides mathematicians with a wealth of rich variational problems
consisting of both local (associated with short-range interactions) and nonlocal (associated
with long-range interactions) terms (see for example [29] and the references therein).

Here we are concerned with two nonlocal variational problems which describe the simplest
morphology class within this general setting, that of periodic phase separation. Many physical
systems exhibit a phase separation which, according to experiments, can be roughly described
as follows:

P1 The phase separation is (nearly) periodic on some fixed (mesoscopic) scale.

P2 Within a period cell, the structure seems to want to minimize surface area between
the two phases.

1.1 The Physical paradigm: Diblock copolymers

A paradigm for P1 and P2 is provided by microphase separation of diblock copolymers (cf.
[6, 50, 5]). A diblock copolymer is a linear-chain molecule consisting of two sub-chains joined
covalently to each other. One of the sub-chains is made of monomers of type A and the other
of type B. Below a critical temperature, even a weak repulsion between unlike monomers A
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THE ISOPERIMETRIC PROBLEM 15

Figure 12. Edwin Thomas talk on material science, MSRI (Berke-
ley), 1999

of the system, which, assuming suitable ideal conditions, is given by the area of the
interface Σ separating both materials. As the volume fraction of the liquids is given,
we see that Σ is a local solution of the isoperimetric problem (i. e. a stable surface).
It happens that there are several pairs of substances of this type that (for chemical
reasons) behave periodically. These periods hold at a very small scale (on the scale
of nanometers) and the main shapes which appear in the laboratory, under our
conditions, are described in Figure 12. The parallelism between these shapes and
the periodic stable surfaces listed above is clear. For more details see [75] and [35].
Instead of the area, the bending energy, see §2.3, is sometimes considered to explain
these phenomena. However, from the theoretical point of view, this last functional is
harder to study, and it does not seem possible at this moment to classify its extremal
surfaces.

2. The isoperimetric problem for Riemannian 3-manifolds

In this section M will be a 3-dimensional orientable compact manifold without
boundary. The volume of M will be denoted by v = V (M). Some of the results below
are also true in higher dimension. However we will only consider the 3-dimensional
case for the sake of clarity.

Figure 1: Periodic phase separation. Cartoon taken from Edwin Thomas’ talk at MSRI 1999
— taken from reference [46]

and B induces a strong repulsion between the sub-chains, causing the sub-chains to segregate.
A macroscopic segregation whereby the sub-chains detach from one another cannot occur
because the chains are chemically bonded: Rather, a phase separation on a mesoscopic
scale with A and B-rich domains emerges. The observed mesoscopic domains, illustrated in
Figure 1, are highly regular periodic structures with interfaces strongly resembling surfaces
with constant mean curvature; for example lamellar, spheres, cylindrical tubes, and single
and double-gyroids (see for example, [6]). The connection between observed structures and
triply periodic constant mean curvature surfaces (many of which are stable in a suitable
sense) has been well-established in the literature (see for example, [50, 27, 3]).

1.2 Mathematical Paradigms

The Periodic Cahn-Hilliard and Isoperimetric Problems

The simplest mathematical model for capturing P1 and P2 would be to a propri inforce
the periodicity (a hard constraint) and look at the resulting interfacial problems; thus the
long-range interactions no longer play any role . One is thus led to the periodic Cahn-Hilliard
and isoperimetric problems. Let

Eε(u) =

∫
Tn

(1− u2)2

4
+

ε2

2
|∇u|2 dx
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for u ∈ H1(Tn),
∫

Tn u = m, and

E0(u) = c0

∫
Tn

|∇u|

for u ∈ BV (Tn,±1),
∫

Tn u = m. Only can easily extend Eε and E0 to all function in L1(Tn)
by defining them to be zero if u is not in H1(Tn) and BV (Tn,±1), respectively. By the the
Periodic Cahn-Hilliard Problem we mean

(PCH) Minimize Eε(u) over all u ∈ L1(Tn).

By the Periodic Isoperimetric Problem we mean

(PIP ) Minimize E0(u) over all u ∈ L1(Tn).

Both problems are clearly well-posed and the rigorous connection between them (for an
appropriate choice of constant c0 and rescaling of Eε) is via Gamma convergence. Our main
interest here is not to treat the periodicity as a hard constraint, but rather when it results
from an interplay between minimizing nonlocal and local terms. However, we do make a few
comments concerning (PCH) and (PIP) based upon recent work with P. Sternberg ([14]).
Our primary concern in [14] was the wealth of nontrivial stable local minimizers of (PIP)
(stable constant mean curvature surfaces), and whether or not these surfaces have diffuse
interface analogues (local minimizers of (PCH))1. Our primary tool was the notion of a
strict (up to translation) L1− local minimizer in the sense of [30] which carries through to
the diffuse problem via Gamma convergence. Hence the relevant question was whether or
not stability (i.e. a positive bound on the second variation) was equivalent to being a strict
L1− local minimizer. In 2D the situation is greatly simplified, and we proved the equivalence
of the two notions. The 3D case remains open.

The Nonlocal Cahn-Hilliard2 and Isoperimetric Problems

Any model for microphase separation of diblock copolymers can not be based solely on
minimization of A-B monomer interfaces, and must take into account the nature of the
joined A- and B-subchain interactions. Indeed, a density functional theory, first proposed
by Ohta and Kawasaki [35], entails the minimization of a nonlocal Cahn-Hilliard like energy
(cf. [34]) whereby the standard Cahn-Hilliard free energy is augmented by a long-range

1We should mention here that Pacard and Ritore [37] prove a result connecting critical points of the sharp
and diffuse interface problems. With a completely different machinery, they address the problem in great
generality. However, our question is different as it pertains to structures which are in some sense minimizing
(not just critical points).

2The term the Nonlocal Cahn-Hilliard Equation has already been extensively used. It pertains to a
different problem and should not be confused with either the variational problem (NLCH) or the gradient
flow PDE (4.4).
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interaction term – associated with the connectivity of the sub-chains in the diblock copolymer
macromolecule3. Let Ω be the unit cube (0, 1)n in Rn and fix m ∈ (−1, 1). Minimize

(NLCH) Minimize
ε2

2

∫
Ω
|∇u|2 dx +

∫
Ω

(1− u2)2

4
dx +

σ

2

∫
Ω
|∇v|2 dx,

over all u ∈
{

u ∈ H1(Ω, [−1, 1])

∣∣∣∣ ∫
Ω

u = m.

}
. Here, v is related to u via the BVP

−4 v = u − m, (1.1)

in the sense of distributions with either Neumann or periodic boundary conditions for v on
∂Ω. The relevant parameter regimes are either ε ∼ σ << 1 or ε << σ << 1. From the
(NLCH), the incentive for pattern formation is clear: The first term wants uniform phases,
with the second term penalizing transitions between phases. However the nonlocal term is
lowered by oscillations between the two phases. The effect of the three is to set a fine scale
(probably periodic) structure.

If one focuses on the strong segregation limit, wherein the interfacial thickness of the
phase boundaries tends to zero, one can easily show (cf. [39], [12], [1]) that the relevant
sharp interface problem can be written as:

(NLIP ) Minimize

∫
Ω
|∇u| dx + γ

∫
Ω
|∇v|2 dx,

over all u ∈
{

u ∈ BV (Ω, {−1, 1})
∣∣∣∣ ∫

Ω
u = m.

}
. Here γ is a parameter which will deter-

mine the length scale of minimizers, and again v is related u via (1.1). We refer to this
problem as the Nonlocal Isoperimetric Problem.

We are interested in the following three issues surrounding (NLCH) and (NLIP):

(i) The periodicity resulting from competing local and nonlocal terms

(ii) The geometry of minimizers: the effect of the nonlocal term, perturbation from the
phase boundary being area-minimizing / constant mean curvature

(iii) The PDE resulting from the H−1 gradient flow for (NLCH): numerical simulation of
steady states and the dynamic stages of the phase separation (spinodal decomposition,
coarsening etc.)

In Section 2, we describe a rigorous results addressing issue (i) for (NLIP) – joint work
with G. Alberti and F. Otto. In Section 3, we provide a first attempt at a general method
for addressing issue (ii) via some recent results on the consequences of stability for (NLIP)
– joint work with P. Sternberg. Finally in Section 4, we discuss issue (iii) and present some
simulations, focusing more on questions than on answers.

3See [12] for full derivation and [13] for a derivation of a vector-valued analogue describing diblock
copolymer–homopolymer blends.
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2 The Nonlocal Isoperimetric Problem: Uniform En-

ergy Distribution

For dimension n = 1, one can show (either for (NLCH) or (NLIP)) that minimizers are peri-
odic (see [32] for the case m = 0 and [41] for general m). Heuristically, it is straightforward
to see that the scale of the periodicity is set by the nonlocal term; For σ sufficiently large,
the periodicity on a scale smaller than the domain size is enforced as a weak constraint via
interactions between the perimeter and the nonlocal terms. The natural question is to what
extend are minimizers periodic in higher-D. Here we present a rigorous result to support the
conjecture that in higher-D, minimizers are “nearly” periodic on a length scale set by γ, the
dimension n, and volume fraction m. We do so via the energy associated with a minimizer,
and its uniform distribution in space.

The length scale for minimizers is set by γ. Since in this section, we are interested in a
qualitative ”periodicity” result on sufficiently large domains, we may just as well set it to
unity. We will however need the following equivalent reformulation of (NLIP). Let Ω be a
cube in Rn and m ∈ (−1, 1). Then for any u ∈ BV (ΩL,±1), there exits b ∈ L2(Ω, Rn) such
that ∇ · b = u −m in the sense of distributions, with either Neumann (i.e. b · n = 0) or
periodic boundary conditions for b. Minimizing over all such vector fields b, we find

min

∫
Ω

|b|2 =

∫
Ω

|∇v|2,

where as usual v solves (1.1) on Ω, i.e. −4v = u − m, in the sense of distributions with
the respective boundary conditions (Neumann or periodic). This reformulation has several
advantages. For example, it localizes the functional and facilitates the use of cutting and
pasting arguments. It further allows us to demonstrate that the particular choice of boundary
conditions do not influence the structure away from the boundary – Theorem 2.1 and its
proof will support this.

We now present the reformulation of (NLIP): Let ΩL = [0, L]n, L >> 1. Consider

min
u∈Aper

E(u,b, ΩL) =

∫
ΩL

|∇u| +

∫
ΩL

|b|2dx.

Aper =
{
(u,b) : u ∈ BV (ΩL,±1),b ∈ L2(ΩL, Rn)

∇ · b = u−m, periodic b. c. for b · n} .

Before presenting our result on the uniform distribution of energy for minimizers, we
provide some motivation for the result. Suppose the minimizer (up,bp) on ΩL (L >> 1) was
exactly periodic, say up represents a lamellar structure with period p, where L = kp for some
integer k – see Figure 2. It is straightforward to see that there exist a constant Ē0 (which
depends on p but not on k) such that

E(up,bp, Qkp)

(kp)n
= Ē0.
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Figure 2:

Now consider the structure on some smaller cube, Ql with size l, L > l � 1, i.e. consider
(up,bp) restricted to Ql (see Figure 2). Computing its the energy density, we may not get
exactly Ē0, however one finds∣∣∣∣E(uper,bper, Ql(x))

ln
− Ē0

∣∣∣∣ ≤ C

l
,

for some constant C.
Our result is to prove the same estimate but for any minimizer:

Theorem 2.1. There exist constants σ∗ > 0, C > 0 depending only on m, n s.t. if (u0,b0)
is a minimizer of E on Aper, then for every l ≤ L and x ∈ ΩL,∣∣∣∣E(u0,b0, Ql(x))

ln
− σ∗

∣∣∣∣ ≤ C

l
,

where Ql(x) = cube if size l, centered at x. In fact,

σ∗ = lim
L→∞

(
min

(u0,b0)∈Aper

E(u0,b0, QL)

Ln

)
.

Not surprisingly, the same limit (definition of σ∗ above) would be achieved for other
boundary conditions (Neumann, free, etc.). One can also prove a similar estimate for the
separate terms in the energy, in particular for just the surface energy.

3 The Nonlocal Isoperimetric Problem: Stability and

the Second Variation

The structures which one observes in microphase separation are mostly constant mean curva-
ture (CMC) surfaces. This fact is documented in both the science and mathematics literature
(cf. [6], [50], [5], and [46]). If one believes that the variational problem (NLCH), and hence
(NLIP), captures the essential physics of the phase separation, then one would expect that
minimizers of (NLIP), are close to minimizers of (PIP).
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In a series of paper ([40, 42, 43, 44, 45]), Ren and Wei consider the stability of lamel-
lar, ring/cylindrical, and spot/spherical solutions (the latter two considered on a radially
symmetric domain). The approach here was to linearize the Euler-Lagrange equation (or
gradient flow equation) about one of these critical points, and consider the spectrum of the
linearized operator. One obtains stability of several structures for small γ and instability
for γ sufficiently large. Interestingly, they also prove that certain non CMC structures (so
called wiggled lamelar and spot solutions) were stable for a suitable values of γ.

As a first step towards a global approach to the consequences of stability, we provide a
rigorous statement of the first and second variations on (NLIP). This is joint work with P.
Sternberg, see [15] for details. For simplicity let us work with periodic boundary conditions
(i.e. Ω = Tn, the n-dimensional flat torus). See [15] for the analogous results with Neumann
boundary conditions. Let

Eγ(u) :=

∫
Tn

|∇u| + γ

∫
Tn

|∇v|2 dx

We minimize Eγ over all u ∈ BV (Tn,±1) with
∫

Tn u = m and −4v = u−m in Tn.
For u ∈ BV (Tn,±1) we can naturally associate a set of finite perimeter A := {u = 1}

and visa versa. Given any such u ⇐⇒ set of finite perimeter A, we define an appropriate
admissible perturbation At (i.e. associated with the volume constraint, see Remark 3.4 (i))
and define

U(x, t) =

{
1 if x ∈ At

−1 if x ∈ Ac
t .

Then we say A is a critical point if

d

dt

∣∣∣∣
t=0

Eγ(U(·, t)) = 0,

and is further stable if:
d2

dt2

∣∣∣∣
t=0

Eγ(U(·, t)) ≥ 0.

Regularity Assumption: When γ = 0, it is well-known (see for example [24]) that in
dimensions n < 8, the phase boundary associated with any L1−local minimizer must have
constant mean curvature and be an analytic (n−1)-dimensional manifold, while in dimensions
n ≥ 8, the same is true off of a (perhaps empty) singular set of Hausdorff dimension at most
n−8. While the phase boundary associated with a local minimizer for γ > 0 will, in general,
no longer have constant mean curvature, we strongly suspect that this lower-order, compact
perturbation will not destroy regularity, so we expect that the phase boundary associated
with a local minimizer of Eγ is still an analytic (n− 1)-dimensional manifold in dimensions
n < 8, and in particular is C2. Where as it quite natural to expect that the nonlocal
perturbation does not destroy regularity, a more interesting question is whether or not it can
help. That is, can it reduce the Hausdorff dimension of the singular set for n ≥ 8?
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Proposition 3.1. (The First Variation) Let u be a critical point of Eγ such that for
A := {u = 1}, ∂A is C2 with mean curvature H(x). Then for v solving −4v = u −m in
Tn there exists a constant λ such that

(n− 1) H(x) + 4γ v(x) = λ for all x ∈ ∂A. (3.2)

Remark 3.2. When γ = 0, one is simply studying critical points of area subject to a
volume constraint so, as is well-known, one gets constant mean curvature as a condition of
criticality. For γ > 0 one sees from (3.2) that the curvature will not actually be constant
unless it happens that ∂A is a level set of v solving (1.1). This will be the case for a periodic
lamellar structure but note, for example, that a sphere (or periodic array of spheres) will
never be a critical point – unless one works, as in [42], within the ansatz of radial symmetry.

Next we present the second variation. A formal derivation of essentially the same formula
was previously presented in the appendix of [33].

Theorem 3.3. (The Second Variation) Let u be a stable critical point of Eγ such that
for A = {u = 1}, ∂A is C2 with mean curvature H(x). Let ζ be any smooth function on ∂A,
with∫

∂A
ζ(x) dHn−1(x) = 0. Then for v solving −4v = u−m in Tn one has the condition

J(ζ) :=

∫
∂A

(
|∇∂Aζ(x)|2 (x)− ‖B∂A‖2 ζ2

)
dHn−1(x) +

8γ

∫
∂A

∫
∂A

G(x, y) ζ(x) ζ(y) dHn−1(x) dHn−1(y) +

4γ

∫
∂A

∇v(x) · ν(x) ζ2(x) dHn−1(x) ≥ 0. (3.3)

where, ∇∂Aζ is the gradient of ζ relative to ∂A; B∂A is the second fundamental form of ∂A,
i.e. ‖B∂A‖2 =

∑n−1
i=1 κ2

i , κ1, . . . , κn−1 principal curvatures; and ν is the unit normal to ∂A
pointing out of A.

Remark 3.4. (i) We briefly mention the construction of admissible perturbations. The
construction is very similar to [48]). We let X : Tn → Rn be C2 with

∫
∂A

X · ν = 0, and let
Ψ : Tn × (−τ, τ) → Tn solve

∂Ψ

∂t
= X(Ψ) Ψ(x, 0) = x.

Defining At := Ψ(A, t), one finds that the perturbation does not (instantaneously) preserve
volume up to second order, in fact:

d2

dt2 |t=0

|At| =
∫

∂A

(div X(x)) (X(x) · ν) dHn−1(x).

Hence we modify explicitly At via distance function to achieve the admissible perturbation.
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(ii) The second variation is computed about a critical point of (NLIP) which is in general,
a non-CMC surface. Hence perimeter term contributes an additional:

(n− 1)2

∫
∂A

(
H −H

)
Hζ2 dHn−1(x),

where H denotes the average of H(x) over ∂A. This term is exactly cancelled when com-
puting the second variation of the nonlocal term.

(iii) We note that the term in the second line of (3.3) is always positive. Hence to
apply (3.3) for structures with CMC, one is simply comparing the gradient term of (3.3)
to the term involving v. Note that the latter generates the instability: it is negative for
highly oscillatory ζ. Quantifying this comparison yields certain basic statements about, for
example, the stability and instability of periodic lamellar structures (see [15]). What would
be more interesting is to apply (3.3) to structures whose curvature (or mean curvature) is
not constant.

4 The Modified Cahn-Hilliard Equation

It is well-known (see for example [18]) that the Cahn-Hilliard equation can be derived as
a gradient flow with respect to the H−1 norm of the Cahn-Hilliard energy (the functional
in (PCH)). Ignoring for the moment that the Cahn-Hilliard equation can also be derived
from more basic physical principles ([9]), one can compute the same H−1 gradient flow for
(NLCH), obtaining the PDE

ut = 4
(
−ε24u− u + u3

)
− σ(u−m). (4.4)

We refer to the (4.4) as the Modified Cahn-Hilliard Equation. Note that with the gradient
flow computed with respect to H−1, the nonlocal term in NLCH only adds a zero-th order
perturbation to the Cahn-Hilliard Equation. This new term, however, now drives the solution
to have spatial average m. Consider (4.4) on the unit torus (i.e. implement the appropriate
periodic boundary conditions). As with the Cahn-Hilliard equation, (4.4) preserves the total
mass

∫
Ω

u of the solution provided the initial data u0 satisfies
∫

Ω
u0 = m. Otherwise, one

readily sees that the total mass will adjust to m exponentially fast.

4.1 Simulation of Steady States

One can readily use (4.4) to simulate steady states in 2D. Such simulations have appeared
through-out the literature, perhaps the ealiest ones were in [7]. For a suitable range of m, one
can either start with random initial data or with the constant state m, randomly perturbed
by noise. One simulates the expected stripes and spots with interesting geometries traversed
on the path to steady state. Figures 3 and Figures 4 show a few such experiments using a
pseudo spectral code written by J.F. Williams at SFU.
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Figure 3: 2-D simulation with ε = 0.8, m = 0.5, σ = 4 on a torus of size 2π with random
initial data

Figure 4: 2-D simulation with ε = 0.8, m = 0.5, σ = 4 on a torus of size 2π with single disk
initial data.
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While the situation in 3D is interesting in its own right, it is also important from the
point of view of the diblock copolymer application. The phase diagram for microphase
separation has received much attention. Here one seeks to predict the general qualitative
nature of the structure (spherical, lamellar, gyroid-like) for the given material parameters.
There are three such parameters which describe a diblock copolymer melt: the Flory-Huggins
interaction parameter χ, the index of polymerization N , and the molecular weight f = m+1

2
.

The exact relationship between these dimensionless parameters and ε, σ and m is given in
[12].

For the phase diagram, the state of art seems to be via the self-consistent mean field
theory (cf. [31, 6]), whereby given an ansatz for the basic structure (eg. sherical) with one
or two degrees of freedom, one is able to compute the free energy and minimize with respect
to the degrees of freedom. One then compares the optimal result within each known ansatz
to determine the overall winner. From [12], we see that the variational problem (NLCH)
is a consequence of the self-consistent mean field theory and a further crucial linearization
step. The latter step has created skepticism as to whether or not the essential physics is
preserved in the intermediate to strong segregation regime, wherein the interface thickness is
relatively small. My own belief, is that, yes indeed this linearization step throws away a lot
of information; however, from the point of view of determination of the phase diagram, all
the phases which have been (numerically) predicted purely from the SCMFT (cf. [31]), can
be (numerically) generated from the (4.4) theory within a far less ansatz-driven framework.
That is, in the end, one only needs to keep a rather crude approximation of the polymer A-
and B-chain interactions, in order to determine the basic qualitative geometry for a given set
of material parameters.

3D simulations for (4.4) were begun by Teramoto and Nishiura in [49], simulating both
gyroids and double-gyroids. However, to my knowledge, no thorough phase diagram calcula-
tion has been done via the gradient theory approach of (4.4), and in particular, none within
the context of the material parameters χ, N, f so that one can make direct comparison with
both the phase diagram of [31], and with experiments (cf. [20]). A preliminary investigation
using the code from J. Lowengrub’s group (Irvine) suggests that his adaptive, finite differ-
ence code may work well here. We give one example in Figure 5, a full investigation is in
progress.

Remark 4.1. Following on Remark 3.2, the steady states which one attempts to simulate in
Figures 3 amd 4 should not be exactly circular: For a rectangular domain, criticality alone
precludes interfaces having non-zero constant curvature. This could be either a resolution
issue and in fact minimizers look more like the wiggled spots of [42]-[45], or simply that
these perturbations from constant curvature (in general, CMC) are exponentially small.
Investigation of these issues is currently in progress with J.F. Williams (SFU). It might also
be interesting for 3D simulations (like the gyroid of Figure 5) to place the final structure
into the Surface Evolver ([8]) and see qualitatively and quantitatively the perturbation from
area-minimizing.
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Figure 5: The u = 0 level set for a numerical simulation of (4.4) for parameters σ = 10, m =
0.3 cf. Lowengrub group (Irvine).

4.2 Dynamics to Steady States: Questions on Spinodal Decompo-
sition and Coarsening

The dynamics associated with the Cahn-Hilliard equation has received a lot of attention. For
an appropriate regime on the mass constraint m, and starting from the constant state, the
dynamics is essentially described via two distinct temporal regimes (see for example [38]):

Stage I (short time scale): Nucleation/spinodal decomposition: here a fine grained mix-
ture of the two phases appears and fairly sharp interfaces between the two phases are formed.

Stage II (longer time scale): Interface coarsening via the Mullins-Sekerka law.
In this latter stage, there is a well-established coarsening rate of t1/3, i.e. in Stage II, the
length scale of the phases coarsens like t1/3.

The asymptotic dynamics as ε tends to zero are also well understood: solutions converge
to the solutions of the Mullins-Sekerka free boundary problem (see for example [38, 4]).

For (4.4), the third (long-range term) changes the dynamics but analogous issues remain.
Starting with a homogeneous state m, there are now three competing mechanisms for the
dynamics: (i) Nucleation/spinodal decomposition/formation of phases (still on a fast scale),
(ii) setting of the long-range periodicity scale, (iii) coarsening within this scale. A preliminary
asymptotic study of first phase was begun in [36]. Naturally the σ term plays a role here
when it is sufficiently large – it restricts both the spinodal regime (wherein the homogeneous
state is unstable to phase separation) and the extent of the phase separation – no longer will
completely pure phases of u = ±1 form.

The next stage of coarsening is more interesting. A (final) length scale is set by σ
preventing the coarsening from going on forever. It would be interesting to see if there is
some temporal regime associated with a new a scaling law for the basic length scale as a
function of time – this exponent should depend on σ. Certainly for this later stage, one
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can use the the appropriately scaled asymptotic dynamics (as ε tends to zero) which was
initially studied by Nishiura and Ohnishi in [34] (see also [19, 17, 21]). Here one obtains the
following modified Mullins-Sekerka free boundary problem. That is, setting A+ = {u = 1},
A− = {u = −1}, and f = m+1

2
, the evolution of ∂A+ is described via the free boundary

problem for ∂A+ and scalar velocity field v:

4v = γ

{
1− f in A+

−f in A−.

v = H on ∂A+

Vn =

[
∂v

∂n

]−
+

on ∂A+, (4.5)

where the normal velocity Vn and mean curvature H are computed with respect to the
outward normal to A+. This free boundary problem can naturally be connected with (NLIP).
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