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Abstract. We consider a nonlocal perturbation of an isoperimetric variational prob-
lem. The problem may be viewed as a mathematical paradigm for the ubiquitous phenom-
enon of energy-driven pattern formation associated with competing short and long-range
interactions. In particular, it arises as a G-limit of a model for microphase separation
of diblock copolymers. In this article, we establish precise conditions for criticality and
stability (i.e. we explicitly compute the first and second variations). We also present some
applications.

1. Introduction

This article is devoted to the computation and application of formulas for the first
and second variation of the following nonlocal variational problem: For fixed m A ð�1; 1Þ,

minimize EgðuÞ :¼
1

2

Ð
W

j‘uj þ g
Ð
W

j‘vj2 dx;ðNLIPÞ

over all

u A BVðW; fG1gÞ with
1

jWj
Ð
W

u dx ¼ m and �hv ¼ u � m in W:

We consider both the periodic case, where W ¼ Tn, the n-dimensional flat torus of unit vol-
ume, and the homogeneous Neumann case where W is a general bounded domain in Rn. In
the former, the di¤erential equation is solved over the torus Tn, and in the latter we impose
Neumann boundary conditions (i.e. ‘v � n ¼ 0 on qW). The first integral in (NLIP) repre-
sents the total variation of u, which for a function taking only valuesG1 is simply the pe-
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rimeter of the set fx : uðxÞ ¼ 1g. Thus, we refer to this problem as the nonlocal isoperimet-

ric problem (NLIP), since it is a volume-constrained, nonlocal perturbation of the area
functional. Problem (NLIP) is directly related to modeling microphase separation of di-
block copolymers (cf. [2], [9], [22], see also the Appendix) and is closely related to models
arising in the study of magnetic domains and walls (cf. [11], [17]). Melts of diblock copoly-
mers represent a physical system which exhibits the following phase separation morphology
(cf. [6], [34]): the phase separation is periodic on some fixed mesoscopic scale, and within a
period cell, the interfaces are close to being area-minimizing.

The modeling of (nearly) periodic pattern morphologies via energy minimization
involving long and short-range competitions is well-established and ubiquitous in science
(cf. [15], [20], [30] and the references therein). Alternatively, problem (NLIP) can be viewed
as a simple mathematical paradigm for this type of pattern morphology. Let us be clear
on which periodicity we are referring to here. There are two length scales for minimizers
of (NLIP). The first is set by the size of the domain W, so that for example in the case
W ¼ Tn any minimizer can naturally be regarded as periodic with period one. This is not

the periodicity we allude to, and the choice of periodic boundary conditions imposed by
working on the torus is made for convenience only: Indeed, in Remark 2.8 we indicate
how all of our results can be readily adapted to the homogeneous Neumann setting. For g
su‰ciently large, a smaller scale is enforced as a weak constraint via interactions between
the perimeter and the nonlocal term.

Heuristically, it is not hard to see that minimization of the nonlocal term favors oscil-
lation: the constraint

Ð
u dx ¼ m fixes the measure of the sets fx : uðxÞ ¼G1g and distribut-

ing these two sets in an oscillatory way leads to oscillation of the Laplacian of v through the
Poisson equation, thus keeping down the value of the L2-norm of ‘v. Accepting that oscil-
lations are preferred, it is not unreasonable to anticipate periodic or nearly periodic struc-
tures emerging as the value of g increases. In one space dimension, it has been proven that
minimizers of (NLIP) and its di¤use interface version (cf. (4.1) in Appendix) are periodic
on a scale determined by g (see [3], [19], [35] for the case m ¼ 0 and [24] for general m).
In higher space dimensions, there is evidence to support the contention that minimizers
are at least nearly periodic (see [1] and the references therein). Whether or not minimizers
are exactly periodic and the precise nature of their geometry within a periodic cell remains
an open problem. We expect that minimizers are at least nearly periodic for large g, and
this inherent mesoscopic periodicity is one of the reasons why (NLIP) is of interest.

Setting g ¼ 0 leads to a fixed volume, area-minimization (isoperimetric) problem
(cf. [29]). Posing this problem on the torus gives the periodic isoperimetric problem which,
together with its di¤use interface counterpart (the periodic Cahn-Hilliard problem), is the
focus of an earlier paper of ours [10]. Note that for these local problems, the imposed peri-
odic boundary conditions associated with working on the torus are crucial—greatly influ-
encing the nature of minimizers.

One of the points of this article concerns the observation that in addition to favoring
periodicity on a smaller scale, the long-range (nonlocal) term will also a¤ect the geometry
of minimizing structures. In fact the phase boundary of minimizers will not, in general, be
of constant mean curvature (CMC) as it is for the classical isoperimetric problem where
g ¼ 0. This observation is made precise in Theorem 2.3, where a first variation calculation
reveals that along the phase boundary of a critical point u one has the condition
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ðn � 1ÞHðxÞ þ 4gvðxÞ ¼ l for all x A qfx : uðxÞ ¼ 1g

for some constant l. Here HðxÞ denotes the mean curvature of qfx : uðxÞ ¼ 1g.

From the criticality condition above, one sees that the phase boundary will be nearly
of constant mean curvature precisely when it is close to being a level set of v. Indeed, one of
our long term goals is to rigorously address the extent to which minimizers of (NLIP) are
close to having CMC interfaces. The connection between CMC surfaces and phase bound-
aries in diblock copolymer melts is well-established in the literature (see for example [1], [4],
[34]). The problem (NLIP) is perhaps the simplest energetic model for phase separation in
diblock copolymers which takes into account long-range interactions due to the connectiv-
ity of the di¤erent monomer chains. Numerical experiments on the gradient flow for (4.1)
also suggest that its minimizers are close to being CMC ([33]). Since in the appropriate re-
gime the G-limit of (4.1) is (NLIP) (cf. [9], [23]), one expects similar behavior for (NLIP). In
[27], [26], a spectral analysis of some simple CMC structures (stripes and spots, and rings) is
presented to establish instability for su‰ciently large g (so called ‘‘wiggled’’ stripe and spot
instabilities) for (4.1). Not surprisingly, this closeness to CMC has also been observed in
general reaction-di¤usion-type models for Turing patterns (see [12], [14] and the references
therein).

In part to address this issue further, a second and technically more involved point of
emphasis for this article is the calculation of the second variation of (NLIP). While it is
clearly the case that a full understanding of the complex energy landscape for such a non-
local problem will undoubtedly require tools beyond the second variation, which is inher-
ently local, this calculation seems a reasonable starting point for any stability analysis. Of
course the second variation formula for the area functional ðg ¼ 0Þ is a standard calcula-
tion leading to the well-known and useful criterion for the stability of constant mean cur-
vature surfaces:

Ð
qA

ðj‘qAzj2 � kBqAk2z2Þ dHn�1ðxÞf 0

for all smooth functions z satisfying
Ð
qA

zðxÞ dx ¼ 0, cf. e.g. [5], [31]. Here we have let A

denote the set fx : uðxÞ ¼ 1g, ‘qA denotes the gradient relative to the manifold qA and
kBqAk2 denotes the square of the second fundamental form of qA, i.e. the sum of the
squares of the principal curvatures. However, in addition to the incorporation of the non-
local term, we must re-compute the second variation of area since we are taking it about a
critical point of Eg, not about a critical point of the pure area functional E0. We find in our
main result, Theorem 2.6, that the stability criterion of non-negative second variation for
(NLIP) in the case W ¼ Tn takes the form of the following inequality:

Ð
qA

ðj‘qAzj2 � kBqAk2z2Þ dHn�1ðxÞ þ 8g
Ð
qA

Ð
qA

Gðx; yÞzðxÞzðyÞ dHn�1ðxÞ dHn�1ðyÞ

þ 4g
Ð
qA

‘v � nz2 dHn�1ðxÞf 0;

for all smooth functions z : Tn ! R satisfying
Ð
qA

zðxÞ dx ¼ 0. Here G denotes the Green’s

function associated with the Laplacian on the torus and n denotes the unit normal to qA
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pointing out of A. A slightly modified version also holds on a general bounded domain
with homogeneous Neumann boundary conditions; see Remark 2.8.

The paper is organized as follows. We carry out the calculation of the first and second
variations in Section 2. In Section 3, we present some applications of these formulas, in-
cluding an analysis of the stability of lamellar structures for small and large values of g

(Propositions 3.5 and 3.6). Our hope is that the first and second variation formulas will
prove to be useful tools in the stability analysis of critical points of (NLIP) of non-constant
mean curvature as well. Finally, in the Appendix we describe the di¤use version of the
functional Eg.

Acknowledgments. Part of the work for this project was carried out while P.S. was
visiting the Institute for Mathematics and its Applications in Minneapolis. He would like to
thank the I.M.A. for its hospitality during this visit.

2. The first and second variations of (NLIP)

In this section, we calculate both the first and second variation of the nonlocal iso-
perimetric problem. For the majority of this section, we choose W ¼ Tn and work with pe-
riodic boundary conditions. This is for convenience only and in Remark 2.8, we address the
necessary modifications for working with homogeneous Neumann boundary conditions in
a general domain W. To fix notation, we will analyze the functional Eg given by

EgðuÞ :¼ EðuÞ þ gFðuÞ;ð2:1Þ

where E : L1ðTnÞ ! R is defined by

EðuÞ ¼
1

2

Ð
Tn

j‘uj if juj ¼ 1 a:e:; u A BVðTnÞ;
Ð
Tn

u ¼ m;

þy otherwise;

8><
>:

and F : L1ðTnÞ ! R denotes the functional

FðuÞ ¼

Ð
Tn

j‘vj2 dx if juj ¼ 1 a:e:; u A BVðTnÞ;
Ð
Tn

u ¼ m;

þy otherwise;

8<
:

where v : Tn ! R1 depends on u as the solution to the problem

�Dv ¼ ðu � mÞ in Tn;
Ð
Tn

v ¼ 0:ð2:2Þ

In the definition of E, we use
Ð
Tn

j‘uj to denote the total variation measure of u evaluated on
Tn (cf. [13]).

Note in particular that v satisfies periodic boundary conditions on the boundary of
½0; 1�n. We can write v in terms of the Green’s function G ¼ Gðx; yÞ associated with the pe-
riodic Poisson problem (2.2). Precisely, for each x A Tn, let Gðx; yÞ be the solution to
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�hyGðx; yÞ ¼ ðdx � 1Þ on Tn;
Ð
Tn

Gðx; yÞ dx ¼ 0;ð2:3Þ

where dx is a delta-mass measure supported at x. In particular, if we introduce the funda-
mental solution

FðxÞ :¼
� 1

2p
logjxj if n ¼ 2;

1

onðn � 2Þjxjn�2
if n > 2;

8>>><
>>>:

then, for any fixed x A Tn,

Gðx; yÞ �Fðx � yÞ is a Cy function ðof yÞ in a neighborhood of x:ð2:4Þ

The functions G and v are then related by

vðxÞ ¼
Ð
Tn

Gðx; yÞuðyÞ dy:ð2:5Þ

Calculation of the first and second variations of E alone about a critical point of E is
a standard procedure (see e.g. [31]) that corresponds simply to the first and second varia-
tions of area subject to fixed volume. However, what makes this particular part of our cal-
culation non-standard is that we are not computing this second variation about a critical
point of E but rather about a critical point of Eg; hence the phase boundary will not be of
constant mean curvature and the formula will necessarily include an extra term that reflects
this change. More significantly, to our knowledge, the variations of F have not been previ-
ously computed in this context. Before presenting the result, we should mention that in case
the requirement juj ¼ 1 a.e. is dropped, then the calculation of the second variation of F is
trivial. To this end, note that

FðuÞ ¼
Ð
Tn

j‘vj2 dx ¼ �
Ð
Tn

vðxÞDvðxÞ dx ¼
Ð
Tn

vðxÞ
�
uðxÞ � m

�
dxð2:6Þ

¼
Ð
Tn

vðxÞuðxÞ dx ¼
Ð
Tn

Ð
Tn

Gðx; yÞuðxÞuðyÞ dx dy:

With this representation in hand, one can easily compute

d2Fðu; ~uuÞ :¼ d 2

de2je¼0

Fðu þ e~uuÞ ¼
Ð
Tn

Ð
Tn

Gðx; yÞ~uuðxÞ~uuðyÞ dx dy;

where the variations ~uu run over all functions in L1ðTnÞ satisfying
Ð
Tn

~uuðxÞ dx ¼ 0 so as

to respect the mass constraint
Ð
Tn

u ¼ m. However, taking the constraint juj ¼ 1 a.e. into

account puts a severe restriction on the variations. Indeed one should really view Eg as a
functional depending on a set, say AHTn, through the formula

uðxÞ ¼ 1 if x A A;

�1 if x A Ac:

�
ð2:7Þ
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Here Ac denotes the complement of A, i.e. Ac ¼ TnnA, and the n-dimensional measure of
A, which we write as jAj, is compatible with the mass constraint on u, so that 2jAj � 1 ¼ m.

Our goal is to compute the first and second variations of Eg as we allow a critical
point AHTn to vary smoothly in such a way as to preserve its volume to second order.
Given a set AHTn with C2 boundary, we say a family of sets fAtgt A ð�t; tÞ for some t > 0
represents an admissible perturbation (or flow) of A for the purpose of calculating a first
variation if the family fAtgHTn satisfies the following three conditions:

wAt
! wA as t ! 0 in L1ðTnÞ;ð2:8Þ

qAt is of class C2;ð2:9Þ

d

dtjt¼0

jAtj ¼ 0;ð2:10Þ

where w denotes the characteristic function of a set. Note that necessarily A0 ¼ A. For the
purpose of calculating a second variation, we will need to consider a family of sets f ~AAtg
that in addition to (2.8)–(2.10) satisfies the second order condition

d 2

dt2jt¼0

j ~AAtj ¼ 0:ð2:11Þ

Corresponding to each of these families, we define Uðx; tÞ and ~UUðx; tÞ respectively by

Uðx; tÞ ¼
1 if x A At;

�1 if x A Ac
t ;

�
and ~UUðx; tÞ ¼ 1 if x A ~AAt;

�1 if x A ~AAc
t :

(
ð2:12Þ

Note that Uðx; 0Þ ¼ ~UUðx; 0Þ ¼ uðxÞ given by (2.7). Also, for any t A ð�t; tÞ, we define
Vð�; tÞ and ~VVð�; tÞ to be solutions of

�DVð�; tÞ ¼ Uð�; tÞ �
Ð
Tn

Uðy; tÞ dy;
Ð
Tn

Vðx; tÞ dx ¼ 0;ð2:13Þ

�D ~VVð�; tÞ ¼ ~UUð�; tÞ �
Ð
Tn

~UUðy; tÞ dy;
Ð
Tn

~VVðx; tÞ dx ¼ 0;ð2:14Þ

respectively. Note that Vðx; 0Þ ¼ ~VVðx; 0Þ ¼ vðxÞ where v : Tn ! R1 satisfies

�Dv ¼ ðu � mÞ;
Ð
Tn

vðxÞ dx ¼ 0;ð2:15Þ

with u given by (2.7).

We now state precisely our notion of criticality and stability.

Definition 2.1. A function u given by (2.7) is a critical point of Eg if

d

dtjt¼0

Eg

�
Uð�; tÞ

�
¼ 0ð2:16Þ

for every U ¼ Uðx; tÞ associated with an admissible family fAtg satisfying (2.8)–(2.10).
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Definition 2.2. A critical point u of Eg is stable if

d 2

dt2jt¼0

Eg

�
~UUð�; tÞ

�
f 0ð2:17Þ

for every ~UU ¼ ~UUðx; tÞ associated with an admissible family f ~AAtg satisfying (2.8)–(2.11).

Clearly if u is a local minimizer in L1 of Eg such that qA is C2 then in particular u will
be stable in this sense.

For the remainder of the paper, we use Hn�1 to denote ðn � 1Þ-dimensional Haus-
dor¤ measure. Our two main results are the following:

Theorem 2.3. Let u be a critical point of Eg given by (2.7) such that qA is C2 with

mean curvature H : qA ! R. Let z be any smooth function on qA satisfying the conditionÐ
qA

zðxÞ dHn�1ðxÞ ¼ 0:

Then for v solving (2.2) one has the conditionÐ
qA

�
ðn � 1ÞHðxÞ þ 4gvðxÞ

�
zðxÞ dHn�1ðxÞ ¼ 0:ð2:18Þ

Hence there exists a constant l such that

ðn � 1ÞHðxÞ þ 4gvðxÞ ¼ l for all x A qA:ð2:19Þ

Remark 2.4. When g ¼ 0, one is simply studying critical points of area subject to a
volume constraint so, as is well-known, one gets constant mean curvature as a condition of
criticality. For g > 0 but small one sees from (2.1) that the curvature is almost constant, but
it will not actually be constant unless it happens that qA is a level set of v solving (2.2). This
will be the case for a periodic lamellar structure (see Proposition 3.3) but note, for example,
that a sphere (or periodic array of spheres) will never be a critical point—unless one works,
as in [26], within the ansatz of radial symmetry.

Remark 2.5. A comment needs to be made regarding the assumed regularity of the
critical point in Theorem 2.3, as well as that to be made in Theorem 2.6 to follow. When
g ¼ 0, it is well-known (see for example [16]) that in dimensions n < 8, the phase boundary
associated with any L1-local minimizer must have constant mean curvature and be an
analytic ðn � 1Þ-dimensional manifold, while in dimensions nf 8, the same is true o¤ of
a (perhaps empty) singular set of Hausdor¤ dimension at most n � 8. While the phase
boundary associated with a local minimizer for g > 0 will, in general, no longer have con-
stant mean curvature, we strongly suspect that this lower-order, compact perturbation will
not destroy regularity, so we expect that the phase boundary associated with a local mini-
mizer of Eg is still an analytic ðn � 1Þ-dimensional manifold in dimensions n < 8, and in
particular is C2. In any event, the hypothesis of a critical point with C2 boundary is hence-
forth adopted, though accomodation could be made for a low dimensional singular set as
was done in [32].

Computation of a second variation about a critical point u then leads to:
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Theorem 2.6. Let u be a stable critical point of Eg given by (2.7) such that qA is C2.

Let z be any smooth function on qA satisfying the conditionÐ
qA

zðxÞ dHn�1ðxÞ ¼ 0:

Then for v solving (2.2) one has the condition

JðzÞ :¼
Ð
qA

ðj‘qAzj2 � kBqAk2z2Þ dHn�1ðxÞð2:20Þ

þ 8g
Ð
qA

Ð
qA

Gðx; yÞzðxÞzðyÞ dHn�1ðxÞ dHn�1ðyÞ

þ 4g
Ð
qA

‘v � nz2 dHn�1ðxÞf 0:

Here ‘qAz denotes the gradient of z relative to the manifold qA, BqA denotes the second

fundamental form of qA so that kBqAk2 ¼
Pn�1

i¼1

k2
i where k1; . . . ; kn�1 are the principal curva-

tures and n denotes the unit normal to qA pointing out of A.

A formal derivation of essentially the same formula appears in the appendix of [20].

Remark 2.7. We remark that for any z,Ð
qA

Ð
qA

Gðx; yÞzðxÞzðyÞ dHn�1ðxÞ dHn�1ðyÞf 0;

and hence this term is stabilizing. To see this, let m denote the measure given by
zHn�1

K qA. Since m so defined obviously satisfies mfHn�1
K qA, it is easy to check

that the potential w given by

wðxÞ ¼
Ð
Tn

Gðx; yÞ dmðyÞ

is bounded. Then it follows from classical potential theory that in fact w is an H 1 (weak)
solution to the equation

�Dw ¼ m on Tn;ð2:21Þ

and satisfies

Ð
qA

Ð
qA

Gðx; yÞzðxÞzðyÞ dHn�1ðxÞ dHn�1ðyÞ ¼
Ð
Tn

Ð
Tn

Gðx; yÞ dmðxÞ dmðyÞ ¼
Ð
Tn

j‘wj2 dx

(cf. [18], Chapter 1). Alternatively, one may view the above as kmk2
H�1ðTnÞ, a version of the

H�1-norm squared of the measure m (cf. [28]).

Before beginning the proofs of our two theorems, we indicate a way to construct ad-
missible families (flows) fAtg and f ~AAtg satisfying (2.8)–(2.10) and (2.8)–(2.11) respectively.
Our approach here is rather explicit and is therefore e‰cient for pursuing our goals. We use
an ODE to produce a flow deformation of A whose boundary instantaneously moves ac-
cording to a perturbation vector field X , and which instantaneously preserves volume (in
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the sense of (2.10)). We then apply a correction to insure it instantaneously preserves vol-
ume to second order as well (i.e. (2.11) is satisfied). This is essentially the approach of [32]
where, in fact, a flow was obtained which identically preserved volume for a finite time in-
terval. However, for the purposes there and here, the instantaneous notions of (2.10) and
(2.11) su‰ce. We should note that if one only wanted to establish the existence of a volume
preserving flow, instantaneously associated with a perturbation vector field X , a simple ap-
plication of the implicit function theorem, as was done in [5], would su‰ce. However, this
construction would not make the computations necessary for the second variation explicit.
In any event, our hands-on approach via the correction ~AAt does not significantly expand the
proofs.

Let X : Tn ! Rn be a C2 vector field such thatÐ
qA

X � n dHn�1ðxÞ ¼ 0;ð2:22Þ

where n denotes the outer unit normal to qA. Then let C : Tn � ð�t; tÞ ! Tn solve

qC

qt
¼ XðCÞ; Cðx; 0Þ ¼ x;ð2:23Þ

for some t > 0 and define

At :¼ CðA; tÞ:ð2:24Þ

Expanding in t we find that

DCð�; tÞ ¼ I þ t‘X þ 1

2
t2‘Z þ oðt2Þ;ð2:25Þ

where Z :¼ q2C

qt2 jt¼0

has i th component given by

ZðiÞ ¼ X ðiÞ
xj

X ð jÞ:ð2:26Þ

Here and throughout, we invoke the summation convention on repeated indices.

Letting JC denote the Jacobian of C, we then invoke the matrix identity

det I þ tA þ 1

2
t2B þ oðt2Þ

� �
ð2:27Þ

¼ 1 þ t trace A þ 1

2
t2½trace B þ ðtrace AÞ2 � traceðA2Þ� þ oðt2Þ;

which holds for any square matrices A and B. This yields

q

qtjt¼0

JC ¼ trace‘X ¼ div X :ð2:28Þ

Consequently, (2.22) and the Divergence Theorem imply that
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d

dtjt¼0

jAtj ¼
d

dtjt¼0

Ð
A

JC dx ¼ 0;ð2:29Þ

and the family of sets fAtg constitutes an admissible perturbation of A for the purpose of
calculating a first variation, cf. (2.10). However, we note that further use of (2.25) and (2.27)
yields

d 2

dt2jt¼0

jAtj ¼
Ð
A

q2JC

qt2 jt¼0

dxð2:30Þ

¼
Ð
A

div Z þ ðdiv XÞ2 � X ðiÞ
xj

X ð jÞ
xi

dx

¼
Ð
qA

�
div XðxÞ

��
XðxÞ � n

�
dHn�1ðxÞ;

where we obtained the last line through the two identities

div Z ¼ X ðiÞ
xixj

X ð jÞ þ X ðiÞ
xj

X ð jÞ
xi

ð2:31Þ

and

div
�
ðdiv XÞX

�
¼ ðdiv XÞ2 þ X ðiÞ

xixj
X ð jÞ:ð2:32Þ

Hence, in light of the requirement (2.11), we see through (2.30) that fAtg is not, in general,
admissible when calculating a second variation, and we must modify it.

If it turns out that
d 2

dt2jt¼0

jAtj3 0, then we define the modified perturbation f ~AAtg as

follows. We first introduce the distance function d : Tn � ðt; tÞ ! R by

dðx; tÞ ¼ distðx; qAtÞ;ð2:33Þ

which will be smooth on ½0; tÞ and ð�t; 0� for small enough t in light of the assumed regu-
larity of qA. We will make frequent use of the fact that j‘dðx; tÞj ¼ 1. We next note that for
At constructed as above, the quantity jAtj is a C2 function of t. Hence by (2.29) and (2.30),
there must be a t 0 > 0 such that for jtj < t 0 either jAtj < jAj or jAtj > jAj. If jAtj < jAj,
then for jtj < t 0 we let

~AAt :¼ At W fx A Ac
t : dðx; tÞ < c1t2g;ð2:34Þ

while if jAtj > jAj, we let

~AAt :¼ Atnfx A At : dðx; tÞ < �c1t2g:ð2:35Þ

Here the constant c1 is given by

c1 ¼ � 1

2

Ð
qA

�
div XðxÞ

��
XðxÞ � n

�
dHn�1ðxÞ;ð2:36Þ

where the average
Ð
qA

denotes the integral divided by Hn�1ðqAÞ.
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We will verify that condition (2.11) holds in the case jAtj < jAj. The other case is
handled similarly. Writing j ~AAtj ¼ jAtj þ ðj ~AAtj � jAtjÞ we use the co-area formula (cf. [13]
or [31]) to see that

d 2

dt2jt¼0

ðj ~AAtj � jAtjÞ ¼
d 2

dt2jt¼0

Ð
A c

t Xf0<dðx; tÞ<c1t2g
j‘dðx; tÞj dx

¼ d 2

dt2jt¼0

Ðc1t2

0

Hn�1
�
fx A Ac

t : dðx; tÞ ¼ sg
�

ds ¼ 2c1H
n�1ðqAÞ:

Then (2.30) and (2.36) combine to imply (2.11), making f ~AAtg admissible for the purpose of
calculating a second variation.

Proof of Theorem 2.3. Let z be a smooth function on qA such thatÐ
qA

zðxÞ dHn�1ðxÞ ¼ 0:ð2:37Þ

Then take X ¼ Xz A C2ðTn;RnÞ such that

XzðxÞ ¼ zðxÞnðxÞ on qA:ð2:38Þ

Such a vector field will then satisfy (2.22) and through (2.23), (2.24), (2.12) and (2.13), we
obtain the admissible family fAtg verifying (2.8)–(2.10) and corresponding functions Uðx; tÞ
and Vðx; tÞ. Then we have

Eg

�
Uð�; tÞ

�
¼ 1

2

Ð
Tn

j‘Uðx; tÞj þ g
Ð
Tn

j‘Vðx; tÞj2 dx

¼: EðtÞ þ gFðtÞ:

Our goal is to compute the first variation E 0ðtÞ þ gF 0ðtÞ at t ¼ 0.

We begin with the calculation of E 0ð0Þ. Let F : qA � ð�t; tÞ ! Tn be defined as the
restriction of C to the ðn � 1Þ-manifold qA. Then we have

E 0ð0Þ ¼
Ð
qA

qJFðxÞ
qt jt¼0

dHn�1ðxÞ;

where JF is the Jacobian map (relative to qA) for F. Let ftiðxÞgi¼1;...;n�1 be an orthonor-

mal basis for TxðqAÞ, the tangent space of qA at x. Then following [31], Chapter 2, and
making further use of (2.27), one finds

JF ¼ 1 þ t divqA X þ 1

2
t2

�
divqA Z þ ðdivqA XÞ2 þ

Pn�1

i¼1

jðDti
X Þ?j2ð2:39Þ

�
Pn�1

i; j¼1

ðti � Dtj
X Þðtj � Dti

XÞ
�
þ oðt2Þ

where ðDti
XÞ? :¼

�
ðDti

XÞ � n
�
n and divqA X ¼ ðDti

X Þ � ti. Hence, in particular we see that
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E 0ð0Þ ¼
Ð
qA

divqA X dHn�1ðxÞð2:40Þ

¼
Ð
qA

ðdivqA X? þ divqA X TÞ dHn�1ðxÞ;

where X? :¼ ðX � nÞn and X T :¼ X � X?. Using (2.38), we find X T ¼ 0 on qA, while

divqA X? ¼ Dti

�
ðX � nÞn

�
� ti ¼ ðX � nÞðDti

nÞ � ti ¼ ðn � 1ÞHðX � nÞ;

so that (2.40) gives the familiar formula for the first variation of area:

E 0ð0Þ ¼ ðn � 1Þ
Ð
qA

HðxÞzðxÞ dHn�1ðxÞ;ð2:41Þ

where HðxÞ denotes the mean curvature of qA at x.

Now we compute F 0ðtÞ at t ¼ 0. We find through integration by parts that

F 0ðtÞ ¼ 2
Ð
Tn

‘Vðx; tÞ � ‘ q

qt
Vðx; tÞ

� �
dxð2:42Þ

¼ �2
Ð
Tn

hVðx; tÞ q

qt
Vðx; tÞ

� �
dx

¼ 2
Ð
Tn

�
Uðx; tÞ � mt

� q

qt
Vðx; tÞ

� �
dx;

where mt :¼
Ð
Tn

Uðy; tÞ dy. Note that

Vðx; tÞ ¼
Ð
Tn

Gðx; yÞUðx; tÞ dy ¼
� Ð

At

�
Ð

A c
t

�
Gðx; yÞ dy;

where G is defined by (2.3). Hence

q

qt
Vðx; tÞ ¼ q

qt

� Ð
At

Gðx; yÞ dy

�
� q

qt

� Ð
A c

t

Gðx; yÞ dy

�
:ð2:43Þ

Changing variables we find:

q

qt

Ð
At

Gðx; yÞ dyð2:44Þ

¼ q

qt

Ð
CðA; tÞ

Gðx; yÞ dy

¼ q

qt

Ð
A

G
�
x;Cðz; tÞ

�
JCðz; tÞ dz

¼
Ð
A

‘yG
�
x;Cðz; tÞ

� q

qt
Cðz; tÞJCðz; tÞ þ G

�
x;Cðz; tÞ

� q

qt

�
JCðz; tÞ

�
dz:
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Using (2.23) and (2.28), we find

q

qtjt¼0

� Ð
At

Gðx; yÞ dy

�
¼

Ð
A

‘yGðx; yÞ � XðyÞ þ Gðx; yÞ div X ðyÞ dy

¼
Ð
A

divy

�
Gðx; yÞX ðyÞ

�
dy ¼

Ð
qA

Gðx; yÞ
�
XðyÞ � ny

�
dHn�1ðyÞ:

Going back to (2.43), we combine this with the analogous calculation on Ac
t to obtain

q

qtjt¼0

Vðx; tÞ ¼ 2
Ð
qA

Gðx; yÞ
�
X ðyÞ � ny

�
dHn�1ðyÞ:ð2:45Þ

Then (2.42) and (2.45) yield

F 0ð0Þ ¼ 4
Ð
Tn

��
uðxÞ � m

� Ð
qA

Gðx; yÞ
�
XðyÞ � ny

�
dHn�1ðyÞ

�
dx:ð2:46Þ

Hence by (2.41), (2.46) and the definition of a critical point (2.16), we have

0 ¼ E 0ð0Þ þ gF 0ð0Þð2:47Þ

¼
Ð
qA

�
ðn � 1ÞHðyÞ þ 4g

Ð
Tn

�
uðxÞ � m

�
Gðx; yÞ dx

�
zðyÞ dHn�1ðyÞ

¼
Ð
qA

fðn � 1ÞHðyÞ þ 4gvðyÞgzðyÞ dHn�1ðyÞ:

Since (2.47) holds for any smooth z satisfying (2.37), equality (2.1) follows. r

Proof of Theorem 2.6. We again let z be any smooth function on qA such that

Ð
qA

zðxÞ dHn�1ðxÞ ¼ 0:

This time, however, we will extend z to a neighborhood of qA such that the extension ẑz

satisfies

‘ẑz � n ¼ 0:ð2:48Þ

That is, ẑz is locally constant along normals to qA. There also exists a smooth vector field n̂n
extending the unit normal n to qA such that

jn̂nj ¼ 1;ð2:49Þ

in some neighborhood of qA. Consequently, there exists Xz A C2ðTn;RnÞ such that

XzðxÞ ¼ ẑzðxÞn̂nðxÞ in some neighborhood of qA:ð2:50Þ

We proceed by taking X ¼ Xz and then define fAtg, f ~AAtg, Uðx; tÞ, ~UUðx; tÞ, Vðx; tÞ and
~VVðx; tÞ according to (2.24), (2.34), (2.35), (2.12), (2.13) and (2.14).
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Writing

EðtÞ :¼ 1

2

Ð
Tn

j‘Uðx; tÞj; ~EEðtÞ :¼ 1

2

Ð
Tn

j‘ ~UUðx; tÞj;

FðtÞ :¼
Ð
Tn

Vðx; tÞUðx; tÞ dx and ~FFðtÞ :¼
Ð
Tn

~VVðx; tÞ ~UUðx; tÞ dx

(cf. (2.6)), the second variation of Eg with respect to the admissible perturbation f ~AAtg is ex-
pressed as ~EE 00ð0Þ þ g ~FF 00ð0Þ.

We will begin with the calculation of ~EE 00ð0Þ. We wish to emphasize here that while
the calculation of the second variation of area is a well-known procedure, there are two com-
plicating factors here. The first is that we are computing it with respect to the specific volume-
preserving variations f ~AAtg. The second is that we are computing a second variation of area
about an ðn � 1Þ-manifold qA that is not in general a critical point of the area functional.

Step 1: Calculation of the di¤erence ~EE 00ð0Þ � E 00ð0Þ. Let us assume, without loss of
generality, that jAtj < jAj for jtj small so that ~AAt is given by (2.34). The other case is handled
similarly. In light of the fact that q ~AAt is the level set Ac

t X fx : dðx; tÞ ¼ c1t2g, and since
j‘dðx; tÞj ¼ 1, we can apply the Divergence Theorem and the co-area formula to obtain

~EEðtÞ � EðtÞ ¼
Ð

q ~AAt

‘d � nq ~AAt
dHn�1ðxÞ þ

Ð
qAt

‘d � nqAt
dHn�1ðxÞ ¼

Ð
~AAtnAt

Ddðx; tÞ dx

¼
Ðc1t2

0

Ð
fx:dðx; tÞ¼tg

Ddðx; tÞ dHn�1ðxÞ dt ¼:
Ðc1t2

0

f ðt; tÞ dt:

In the first line above, nq ~AAt
and nqAt

denote unit normals pointing out of the set ~AAtnAt. Di-
rect calculation and (2.36) then yield

~EE 00ð0Þ � E 00ð0Þ ¼ 2c1 f ð0; 0Þ ¼ 2c1ðn � 1Þ
Ð
qA

HðxÞ dHn�1ðxÞð2:51Þ

¼ �ðn � 1Þ2
H

Ð
qA

HðxÞz2ðxÞ dHn�1ðxÞ;

where we have used H to denote the average of mean curvature
Ð
qA

HðxÞ dHn�1ðxÞ and we
have computed

Ddðx; 0Þ ¼ div n ¼ ðn � 1ÞHðxÞ for x A qA:

Step 2: Calculation of E 00ð0Þ. We appeal again to the expansion (2.39) to see that

E 00ð0Þ ¼
Ð
qA

q2JFðxÞ
qt2 jt¼0

dHn�1ðxÞð2:52Þ

¼
Ð
qA

�
divqA Z þ ðdivqA XÞ2 þ

Pn�1

i¼1

jðDti
X Þ?j2

�
Pn�1

i; j¼1

ðti � Dtj
XÞðtj � Dti

X Þ
�

dHn�1ðxÞ:
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Writing divqA Z ¼ divA ZT þ divA Z? where

ZT :¼
Pn�1

i¼1

ðZ � tiÞti and Z? :¼ ðZ � nÞn;

a straightforward calculation leads to the conclusion thatÐ
qA

divqA Z dHn�1ðxÞ ¼
Ð
qA

divqA Z? dHn�1ðxÞð2:53Þ

¼ ðn � 1Þ
Ð
qA

HðxÞðZ � nÞ dHn�1ðxÞ ¼ 0

since (2.26), (2.48), (2.50), and di¤erentiation of the expression in (2.49) imply that
Z � n ¼ 0 on qA. Here we have also used the Divergence Theorem on qA ([31]) to conclude
that

Ð
qA

divqA ZT dHn�1ðxÞ ¼ 0 since qA itself has no boundary.

The other three terms in expression (2.52) are easily evaluated using (2.50) to obtainÐ
qA

ðdivqA XÞ2
dHn�1ðxÞ ¼ ðn � 1Þ2 Ð

qA

H 2z2 dHn�1ðxÞ;

Ð
qA

Pn�1

i¼1

jðDti
X Þ?j2 dHn�1ðxÞ ¼

Ð
qA

j‘qAzj2 dHn�1ðxÞ

and

Ð
qA

Pn�1

i; j¼1

ðti � Dtj
X Þðtj � Dti

XÞ dHn�1ðxÞ ¼
Ð
qA

kBqAk2z2 dHn�1ðxÞ:

Combining these identities with (2.53), we see through (2.52) that

E 00ð0Þ ¼
Ð
qA

�
j‘qAzj2 � kBqAk2z2 þ ðn � 1Þ2

H 2z2
�

dHn�1ðxÞ:

Hence, in light of (2.51), we have

~EE 00ð0Þ ¼
Ð
qA

ðj‘qAzj2 � kBqAk2z2Þ dHn�1ðxÞð2:54Þ

þ ðn � 1Þ2 Ð
qA

ðH � HÞHz2 dHn�1ðxÞ:

Having completed the calculation of the second variation of the perimeter term, we
now turn to the evaluation of the second variation of the nonlocal term, i.e. ~FF 00ð0Þ. To this
end, we decompose ~FF as follows:

~FFðtÞ ¼ FðtÞ þ
Ð
Tn

Vðx; tÞ
�
~UUðx; tÞ � Uðx; tÞ

�
dxð2:55Þ

þ
Ð
Tn

~UUðx; tÞ
�
~VVðx; tÞ � Vðx; tÞ

�
dx

¼: FðtÞ þ F1ðtÞ þ F2ðtÞ:
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Step 3: Calculation of F 00ð0Þ. To calculate F 00ðtÞ, we note that

FðtÞ ¼
� Ð

At

�
Ð

A c
t

�
Vðx; tÞ dx ¼

�Ð
A

�
Ð

A c

�	
V
�
Cðz; tÞ; t

�
JCðz; tÞ



dz:

Hence,

F 0ðtÞ ¼
�Ð

A

�
Ð

A c

��
‘xV

�
Cðz; tÞ; t

�
�Ctðz; tÞJCðz; tÞ þ V

�
Cðz; tÞ; t

� q

qt
JCðz; tÞ

þ Vt

�
Cðz; tÞ; t

�
JCðz; tÞ

�
dz:

Then adopting the summation convention,

F 00ðtÞ ¼
�Ð

A

�
Ð

A c

��
Vxixj

�
Cðz; tÞ; t

�
C

ðiÞ
t ðz; tÞCð jÞ

t ðz; tÞJCðz; tÞ

þ 2‘xVt

�
Cðz; tÞ; t

�
�Ctðz; tÞJCðz; tÞ

þ 2‘xV
�
Cðz; tÞ; t

�
�Ctðz; tÞ q

qt
JCðz; tÞ

þ ‘xV
�
Cðz; tÞ; t

�
�Cttðz; tÞJCðz; tÞ þ 2Vt

�
Cðz; tÞ; t

� q

qt
JCðz; tÞ

þ V
�
Cðz; tÞ; t

� q2

qt2
JCðz; tÞ þ Vtt

�
Cðz; tÞ; t

�
JCðz; tÞ

�
dz:

Recalling (2.26), we can then write

F 00ð0Þ ¼
�Ð

A

�
Ð

A c

��
Vyiyj

ðy; 0ÞX ðiÞðyÞX ð jÞðyÞ þ 2‘yVtðy; 0Þ � XðyÞð2:56Þ

þ 2‘yVðy; 0Þ � X ðyÞ div XðyÞ þ ‘yVðy; 0Þ � ZðyÞ

þ 2Vtðy; 0Þ div XðyÞ þ Vðy; 0Þ q
2

qt2
JCðy; 0Þ þ Vttðy; 0Þ

�
dy:

We now proceed to compute all seven terms in (2.56). We will often exploit, without cita-
tion, the Divergence Theorem.

Recall from formula (2.45) of the proof of Theorem 2.3 that

Vtðx; 0Þ ¼ 2
Ð
qA

Gðx; yÞ
�
XðyÞ � ny

�
dHn�1ðyÞ:

Consequently, grouping together the second and fifth terms of (2.56) we find

2

�Ð
A

�
Ð

A c

�
f‘yVtðy; 0Þ � XðyÞ þ Vtðy; 0Þ div XðyÞg dyð2:57Þ

¼ 2

�Ð
A

�
Ð

A c

�
div

�
Vtðy; 0ÞX ðyÞ

�
dy
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¼ 4
Ð
qA

Vtðy; 0ÞX ðyÞ � ny dHn�1ðyÞ

¼ 8
Ð
qA

Ð
qA

Gðx; yÞ
�
XðxÞ � nx

��
XðyÞ � ny

�
dHn�1ðxÞ dHn�1ðyÞ:

Next, using (2.26), we note that

div
�
½‘yVðy; 0Þ � XðyÞ�X ðyÞ

�
¼

�
‘yVðy; 0Þ � XðyÞ

�
div X ðyÞ þ Vyiyj

ðy; 0ÞX ðiÞðyÞX ð jÞðyÞ þ ‘yVðy; 0Þ � ZðyÞ:

Hence, the first and fourth terms of (2.56), along with one factor of the third term gives

�Ð
A

�
Ð

A c

�
Vyiyj

ðy; 0ÞX ðiÞðyÞX ð jÞðyÞ þ ‘yVðy; 0Þ � XðyÞ div XðyÞð2:58Þ

þ ‘yVðy; 0Þ � ZðyÞ dy

¼ 2
Ð
qA

�
‘vðyÞ � X ðyÞ

��
XðyÞ � ny

�
dHn�1ðyÞ:

By (2.25), (2.27), (2.31) and (2.32) we have

q2

qt2
JCðx; 0Þ ¼ div ZðxÞ þ

�
div X ðxÞ

�2 � X ðiÞ
xj

X ð jÞ
xi

ð2:59Þ

¼ X ðiÞ
xixj

X ð jÞ þ
�
div XðxÞ

�2

¼ div
�
ðdiv XÞX

�
:

Hence the sixth term in (2.56) can be computed as

�Ð
A

�
Ð

A c

�
Vðx; 0Þ q

2

qt2
JCðx; 0Þ dxð2:60Þ

¼
�Ð

A

�
Ð

A c

�
v div

�
ðdiv XÞX

�
dx

¼ 2
Ð
qA

vðdiv XÞðX � nÞ dHn�1ðxÞ �
�Ð

A

�
Ð

A c

�
ð‘v � XÞ ðdiv XÞ dx:

Note that the last term in (2.60) will cancel with the remaining factor of the third term of
(2.56).

It remains to compute the last term of (2.56). Recall from (2.43) and (2.44) that

Vtðx; tÞ ¼
�Ð

A

�
Ð

A c

�
‘yG

�
x;Cðz; tÞ

� q

qt
Cðz; tÞJCðz; tÞ þ G

�
x;Cðz; tÞ

� q

qt
JCðz; tÞ

� �
dz:
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We must take some care in di¤erentiating again with respect to t: since the second deriva-
tives of G are not integrable close to the singularity, di¤erentiation under the integral sign is
illegal. In the end, we care only about the integral of Vttðx; 0Þ, and hence we circumvent
di¤erentiating G twice by first integrating over x, applying the divergence theorem, and
then performing the t-di¤erentiation. We wish to compute

�Ð
A

�
Ð

A c

�
Vttðx; 0Þ dxð2:61Þ

¼ d

dtjt¼0

�Ð
A

�
Ð

A c

�
Vtðx; tÞ dx

¼ d

dtjt¼0

�Ð
A

�
Ð

A c

��Ð
A

�
Ð

A c

��
‘yG

�
x;Cðz; tÞ

� qC
qt

ðz; tÞJCðz; tÞ

þ G
�
x;Cðz; tÞ

� q

qt
JCðz; tÞ

�
dz dx:

Focusing on the first term, note that

‘zG
�
x;Cðz; tÞ

�
¼ ‘yG

�
x;Cðz; tÞ

�
DCðz; tÞ

so that

‘yG
�
x;Cðz; tÞ

�
¼ ‘zG

�
x;Cðz; tÞ

�
½DCðz; tÞ��1:

Hence,

�Ð
A

�
Ð

A c

��Ð
A

�
Ð

A c

�
‘yG

�
x;Cðz; tÞ

� qC
qt

ðz; tÞJCðz; tÞ
� �

dz dxð2:62Þ

¼
�Ð

A

�
Ð

A c

��Ð
A

�
Ð

A c

�
‘zG

�
x;Cðz; tÞ

�
½DCðz; tÞ��1 qC

qt
ðz; tÞJCðz; tÞ

� �
dz dx

¼ �
�Ð

A

�
Ð

A c

��Ð
A

�
Ð

A c

�

�
�

G
�
x;Cðz; tÞ

�
div

�
½DCðz; tÞ��1 qC

qt
ðz; tÞJCðz; tÞ

��
dz dx

þ 2

�Ð
A

�
Ð

A c

� Ð
qA

G
�
x;Cðz; tÞ

�
½DCðz; tÞ��1 qC

qt
ðz; tÞJCðz; tÞ

� �

� nz dHn�1ðzÞ dx:

Having performed the integration by parts above, we are now free to take the t-
derivative inside the integrals in (2.61). We first note that

DCðx; tÞ ¼ I þ DXðxÞt þ Oðt2Þ so that ½DC��1 ¼ I � DXðxÞt þ Oðt2Þ
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and hence,

d

dt
ð½DC��1Þjt¼0

¼ �DX :

Using this, along with (2.23), (2.28) and (2.26), one has

d

dtjt¼0

G
�
x;Cðz; tÞ

�
div ½DCðz; tÞ��1 qC

qt
ðz; tÞJCðz; tÞ

� �� �
ð2:63Þ

¼ Gðx; yÞ div
�
XðyÞ div X ðyÞ

�
þ ‘yGðx; yÞ � XðyÞ div XðyÞ

¼ divy

�
Gðx; yÞXðyÞ div X ðyÞ

�
:

We also note that

d

dtjt¼0

G
�
x;Cðy; tÞ

�
½DCðy; tÞ��1 qC

qt
ðy; tÞJCðy; tÞ

� �
ð2:64Þ

¼
�
‘yGðx; yÞ � X ðyÞ

�
XðyÞ þ Gðx; yÞXðyÞ div X ðyÞ

¼ XðyÞ divy

�
Gðx; yÞXðyÞ

�
and, through an appeal to (2.59), that

d

dtjt¼0

G
�
x;Cðy; tÞ

� q

qt
Jðy; tÞ

� �
ð2:65Þ

¼ ‘yGðx; yÞ � XðyÞ div X ðyÞ þ Gðx; yÞ divðX div X Þ

¼ divy

�
Gðx; yÞXðyÞ div X ðyÞ

�
:

Working with identities (2.63)–(2.65) to carry out the di¤erentiation of the integrals
in (2.61) with respect to t, we can return to (2.61) to find

�Ð
A

�
Ð

A c

�
Vttðx; 0Þ dxð2:66Þ

¼ 2

�Ð
A

�
Ð

A c

� Ð
qA

divy

�
Gðx; yÞXðyÞ

��
X ðyÞ � ny

�
dHn�1ðyÞ dx

¼ 2
Ð
qA

divy

��Ð
A

Gðx; yÞ dx �
Ð

A c

Gðx; yÞ dx

�
� XðyÞ

�
X ðyÞ

� ny dHn�1ðyÞ

¼ 2
Ð
qA

div
�
vðxÞXðxÞ

�
XðxÞ � nx dHn�1ðxÞ;

thus obtaining an expression for the seventh term of (2.56).
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Combining (2.57), (2.58), (2.60) and (2.66), along with an appeal to (2.50), we then
see that (2.56) implies

F 00ð0Þ ¼ 8
Ð
qA

Ð
qA

Gðx; yÞzðxÞzðyÞ dHn�1ðxÞ dHn�1ðyÞð2:67Þ

þ 4
Ð
qA

div½vðxÞXðxÞ�zðxÞ dHn�1ðxÞ:

Step 4: Calculation of F 00
1 ð0Þ and F 00

2 ð0Þ. Recall from (2.55) that

F1ðtÞ ¼
Ð
Tn

Vðx; tÞ
�
~UUðx; tÞ � Uðx; tÞ

�
dx

¼ 2
Ð

~AAtnAt

Vðx; tÞ dx � 2
Ð

Atn ~AAt

Vðx; tÞ dx:

From the construction of ~AAt, recall that either At H ~AAt or ~AAt HAt. We will again address
the case where At H ~AAt. The other case is handled in a similar manner. Using the co-area
formula and (2.33), we have

F1ðtÞ ¼ 2
Ð

~AAtnAt

Vðx; tÞ dx ¼ 2
Ðc1t2

0

Ð
A c

t Xfx:dðx; tÞ¼tg
Vðx; tÞ dHn�1ðxÞ dt:

¼ 2
Ðc1t2

0

Lðt; tÞ dt;

where

Lðt; tÞ :¼
Ð

A c
t Xfx:dðx; tÞ¼tg

Vðx; tÞ dHn�1ðxÞ:

Hence di¤erentiating with respect to t, one finds

F 0
1ð0Þ ¼ 0 while F 00

1 ð0Þ ¼ 4c1Lð0; 0Þ ¼ 4c1

Ð
qA

vðxÞ dHn�1ðxÞ:

Thus, by (2.36), we have

F 00
1 ð0Þ ¼ �2

� Ð
qA

vðxÞ dHn�1ðxÞ
�� Ð

qA

�
div XðxÞ

�
zðxÞ dHn�1ðxÞ

�
:ð2:68Þ

Now recall that

F2ðtÞ ¼
Ð
Tn

~UUðx; tÞ
�
~VVðx; tÞ � Vðx; tÞ

�
¼

Ð
~AAt

�
~VVðx; tÞ � Vðx; tÞ

�
dx �

Ð
~AA c
t

�
~VVðx; tÞ � Vðx; tÞ

�
dx:

As before, we will only pursue the case where At H ~AAt. Hence, we have

94 Choksi and Sternberg, Nonlocal isoperimetric problem



F2ðtÞ ¼ 2
Ð

~AAtnAt

�
~VVðx; tÞ � Vðx; tÞ

�
dx þ

� Ð
At

�
Ð

A c
t

��
~VVðx; tÞ � Vðx; tÞ

�
dx

¼ 2
Ðc1t2

0

Ð
A c

t Xfx:dðx; tÞ¼tg

�
~VVðx; tÞ � Vðx; tÞ

�
dHn�1ðxÞ dt

þ
�Ð

A

�
Ð

A c

��
~VV
�
Cðy; tÞ; t

�
� V

�
Cðy; tÞ; t

��
JCðy; tÞ dy

¼: G1ðtÞ þ G2ðtÞ:

Since ~VVðx; 0Þ ¼ Vðx; 0Þ ¼ vðxÞ, we find as in the calculation of F 00
1 ð0Þ above that

G 00
1 ð0Þ ¼ 4c1

Ð
qA

�
~VVðx; 0Þ � Vðx; 0Þ

�
dHn�1ðxÞ ¼ 0:

On the other hand, setting wðx; tÞ :¼ ~VVðx; tÞ � Vðx; tÞ, we have

G 0
2ðtÞ ¼

�Ð
A

�
Ð

A c

��
‘xw

�
Cðy; tÞ; t

�
�Ctðy; tÞJCðy; tÞð2:69Þ

þ wt

�
Cðy; tÞ; t

�
JCðy; tÞ þ w

�
Cðy; tÞ; t

� q

qt
JCðy; tÞ

�
dy:

To di¤erentiate (2.69) again, first note that wðx; 0Þ ¼ 0 and hence ‘xwðx; 0Þ ¼ 0 ¼ wxixj
ðx; 0Þ

for i; j ¼ 1; . . . ; n. Moreover,

wtðx; tÞ ¼ 2
q

qt

Ð
~AAtnAt

Gðx; yÞ dy ¼ 2
q

qt

Ðc1t2

0

Ð
A c

t Xfx:dðx; tÞ¼tg
Gðx; yÞ dHn�1ðyÞ dt:

It follows that wtðx; 0Þ ¼ 0, and

wttðx; 0Þ ¼ 4c1

Ð
qA

Gðx; yÞ dH n�1ðyÞ

¼ �2

� Ð
qA

�
div XðxÞ

�
zðxÞ dHn�1ðxÞ

�� Ð
qA

Gðx; yÞ dHn�1ðyÞ
�
:

As in (2.56), we di¤erentiate (2.69) with respect to t and evaluate at t ¼ 0. However, this
time, only one term survives:

G 00
2 ð0Þ ¼

�Ð
A

�
Ð

A c

�
wttðx; 0Þ dxð2:70Þ

¼ �2

� Ð
qA

�
div XðxÞ

�
zðxÞ dHn�1ðxÞ

� Ð
qA

�Ð
A

�
Ð

A c

�
Gðx; yÞ dx dHn�1ðyÞ

¼ �2

� Ð
qA

�
div XðxÞ

�
zðxÞ dHn�1ðxÞ

� Ð
qA

vðyÞ dHn�1ðyÞ:
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Step 5: Calculation of ~FF 00ð0Þ. Returning to (2.55), we combine (2.67), (2.68), and
(2.70) to find

~FF 00ð0Þ ¼ 8
Ð
qA

Ð
qA

Gðx; yÞzðxÞzðyÞ dHn�1ðxÞ dHn�1ðyÞð2:71Þ

þ 4
Ð
qA

div½vðxÞXðxÞ�zðxÞ dHn�1ðyÞ

� 4

� Ð
qA

�
div XðxÞ

�
zðxÞ dHn�1ðxÞ

� Ð
qA

vðyÞ dHn�1ðyÞ:

Again invoking (2.48)–(2.50), we have

div XðxÞ ¼ ðn � 1ÞzðxÞHðxÞ for x A qA

and so

~FF 00ð0Þ ¼ 8
Ð
qA

Ð
qA

Gðx; yÞzðxÞzðyÞ dHn�1ðxÞ dHn�1ðyÞð2:72Þ

þ 4
Ð
qA

‘vðxÞ � nðxÞz2ðxÞ dHn�1ðxÞ

þ 4ðn � 1Þ
Ð
qA

vðxÞHðxÞz2ðxÞ dHn�1ðxÞ

� 4ðn � 1Þ
� Ð

qA

vðyÞ dHn�1ðyÞ
�� Ð

qA

HðxÞz2ðxÞ dHn�1ðxÞ
�

¼ 8
Ð
qA

Ð
qA

Gðx; yÞzðxÞzðyÞ dHn�1ðxÞ dHn�1ðyÞ

þ 4
Ð
qA

‘vðxÞ � nðxÞz2ðxÞ dHn�1ðxÞ

þ 4ðn � 1Þg
Ð
qA

�
vðxÞ �

Ð
qA

vðyÞ dHn�1ðyÞ
�

HðxÞz2ðxÞ dHn�1ðxÞ:

Lastly, we invoke the hypothesis that u is a critical point of Eg. By Theorem 2.3 this
means for some constant l and every x A qA,

ðn � 1ÞHðxÞ þ 4gvðxÞ ¼ l:

Hence the last term in (2.72) reduces to simply

�ðn � 1Þ2 Ð
qA

�
HðxÞ � H

�
HðxÞz2ðxÞ dHn�1ðxÞ:

Taking this observation into account, we see that (2.54) and (2.72) combine to yield
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d 2Eg

�
~UUð�; tÞ

�
dt2 jt¼0

¼ ~EE 00ð0Þ þ g ~FF 00ð0Þð2:73Þ

¼
Ð
qA

ðj‘qAzj2 � kBqAk2z2Þ dHn�1ðxÞ

þ 8g
Ð
qA

Ð
qA

Gðx; yÞzðxÞzðyÞ dHn�1ðxÞ dHn�1ðyÞ

þ 4g
Ð
qA

‘v � nz2 dHn�1ðxÞ:

By the definition of stability (2.17), we obtain the desired inequality (2.20). r

Remark 2.8 (Natural boundary conditions). Throughout this section we have posed
the nonlocal problem on a torus; that is, we have taken periodic boundary conditions. The
motivation for this choice is two-fold. First, it represents perhaps the easiest setting in
which to carry out the somewhat involved calculation of the second variation. Second, the
periodic boundary conditions represent what is perhaps the most relevant choice when at-
tempting to model the behavior of phase boundaries in diblock copolymers, one of our
goals in an on-going investigation.

We wish to emphasize here, however, that there is nothing essential about this choice.
For example, having carried out the calculations of this section, we can now readily adopt
the results to the setting of the natural homogeneous Neumann boundary conditions on an
arbitrary bounded, smooth domain WHRn. For such an W, we may consider:

Minimize
1

2

Ð
W

j‘uj þ g
Ð
W

j‘vj2 dx;ðNLIPÞ

over all

u A BVðW; fG1gÞ; 1

jWj
Ð
W

u dx ¼ m

with

�hv ¼ u � m in W; ‘v � n ¼ 0 on qW and
Ð
W

v ¼ 0:ð2:74Þ

Then one simply replaces the condition of periodicity on the deforming vector field X by
the condition that XðxÞ is tangent to qW for all x A qW, as was done for the local problem in
[32]. Note that in light of this tangency, every application of the Divergence Theorem in the
calculation of the first and second variations of the nonlocal term will not produce any new
boundary terms. Indeed, the only deviation from the results of Theorems 2.3 and 2.6 when
adapting them to the Neumann setting comes from consideration of the local term E. From
the first variation of E, one will find that if A is critical, then qA must meet qW orthogonally
(if at all), but condition (2.1) will still hold inside W. From the second variation, one finds
that the quantity JðzÞ defined by (2.20) will additionally include the term

�
Ð

qAXqW

BqWðn; nÞz2 dHn�2ðxÞ;
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where as before, BqW represents the second fundamental form associated with qW, and n
represents the outer unit normal to qA. As was just mentioned, criticality of A implies
that n lies in the tangent plane to the boundary of W so that the quantity BqWðn; nÞ is sensi-
ble. This additional term can be traced back to (2.53) where now there will be a non-zero
contribution from

Ð
qA

divqA ZT dHn�1ðxÞ in the form of an integral over qAX qW. See [32]
for more details.

Thus, in a manner analogous to that used for the (NLIP) on Tn, we may define crit-
ical points and stable critical points of the Neumann boundary (NLIP) as formulated
above on a general domain W. Let u A BVðW;G1Þ with A :¼ fuðxÞ ¼ 1g having C2 bound-
ary qA with mean curvature H, and let v solve (2.74). Then if u is a critical point of (NLIP),
we have for all x A qAXW and some constant l,

ðn � 1ÞHðxÞ þ 4gvðxÞ ¼ l;ð2:75Þ

and for each x A qAX qW,

qA is orthogonal to qW:ð2:76Þ

Moreover, if u is stable then for every smooth z defined on qA with

Ð
qA

zðxÞ dHn�1ðxÞ ¼ 0;

one has the condition

JðzÞ :¼
Ð
qA

ðj‘qAzj2 � kBqAk2z2Þ dHn�1ðxÞ �
Ð

qAXqW

BqWðn; nÞz2 dHn�2ðxÞð2:77Þ

þ 8g
Ð
qA

Ð
qA

Nðx; yÞzðxÞzðyÞ dHn�1ðxÞ dHn�1ðyÞ

þ 4g
Ð
qA

‘v � nz2 dHn�1ðxÞf 0;

where Nðx; yÞ is the Green’s function satisfying �hN ¼ d� 1

jWj on W with Neumann

boundary conditions.

3. Applications of the first and second variation formulas

In this section we present a few applications of Theorems 2.3 and 2.6 posed on Tn

and in the Neumann setting of Remark 2.8.

We begin with an identity coming from the translation invariance of Eg.

Proposition 3.1. Let u : Tn ! R be a critical point of Eg with A :¼ fx : uðxÞ ¼ 1g
and assume qA is C2. Then the following identity holds:
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Pn

i; j¼1

Ð
qA

Ð
qA

Gðx; yÞnðiÞðxÞnð jÞðyÞHn�1ðxÞHn�1ðyÞ ¼ ð1 � jAjÞjAj;ð3:1Þ

where n ¼ ðnð1Þ; . . . ; nðnÞÞ denotes the outer unit normal to qA.

Proof. In light of the Divergence Theorem, we begin by observing that

Ð
qA

nðiÞ dHn�1ðxÞ ¼
Ð
A

div ei dx ¼ 0;

where ei is the unit vector pointing in the positive i th coordinate direction. Hence, the choice
z ¼ nðiÞ is allowable in the second variation formula (2.20). This choice corresponds to pure
translation in that arises by taking the deforming vector field X introduced above (2.22) to
be simply ei. In light of the invariance of the energy Eg under translation of A, we note that
necessarily one has the condition

JðnðiÞÞ ¼ 0 for i ¼ 1; . . . ; n:ð3:2Þ

Now we invoke the identity

DqAn
ðiÞ ¼ �kBqAk2nðiÞ þ ðn � 1Þei � ‘qAH;

(where DqA is the surface Laplacian), which holds along any C2 hypersurface (cf. [13]).
Multiplying both sides by nðiÞ and integrating then yields

Ð
qA

�
j‘qAn

ðiÞj2 � kBqAk2ðnðiÞÞ2�
dHn�1ðxÞ ¼ �ðn � 1Þ

Ð
qA

‘qAH � ðnðiÞeiÞ dHðn�1ÞðxÞ:

Then since ‘qAH � n ¼ 0, we can sum over i in this identity to see that

Ð
qA

�
j‘qAn

ðiÞj2 � kBqAk2ðnðiÞÞ2�
dHn�1ðxÞ ¼ 0:

Thus, we find from (2.20) that

0 ¼
Pn

i¼1

JðnðiÞÞ

¼ 8g
Pn

i¼1

Ð
qA

Ð
qA

Gðx; yÞnðiÞðxÞnðiÞðyÞ dHn�1ðxÞ dHn�1ðyÞ þ 4g
Ð
qA

‘v � n dHn�1ðxÞ:

Finally, we apply the divergence theorem to see that

Ð
qA

‘v � n dHn�1ðxÞ ¼
Ð
A

Dv dxð3:3Þ

¼
Ð
A

ðm � uÞ dx ¼ ðm � 1ÞjAj ¼ 2ðjAj � 1ÞjAj;

since u1 1 on A and (3.1) follows. r
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Remark 3.2. Applied to the case of a single vertical strip A :¼ ½b; a� � ½0; 1�, Propo-
sition 3.1 yields the following identity for the two-dimensional periodic Green’s function:

Ð1
0

Ð1
0

G
�
ðb; x2Þ; ðb; y2Þ

�
þ G

�
ða; x2Þ; ða; y2Þ

�
dx2 dy2ð3:4Þ

þ 2
Ð1
0

Ð1
0

G
�
ðb; x2Þ; ða; y2Þ

�
dx2 dy2 ¼ ða� bÞ � ða� bÞ2:

An analogous identity holds in for strips in dimension n > 2.

We now turn our attention to investigating the criticality and stability of horizontal
or vertical strips. Following Remark 2.4, one readily finds that lamellar structures are crit-
ical points if and only if they are periodic in the following sense:

Proposition 3.3. Let N be a positive integer, m A ð�1; 1Þ, and

0 ¼ a0 < a1 < a2 < � � � < a2N�1 < a2N ¼ 1;

such that

PN�1

i¼0

ða2iþ1 � a2iÞ ¼
m þ 1

2
;

PN�1

i¼0

ða2iþ2 � a2iþ1Þ ¼
1 � m

2
:

Suppose uðxÞ ¼ uðx1; . . . ; xnÞ ¼ f ðx1Þ where

f ðx1Þ :¼
1 if x1 A ½a2i; a2iþ1Þ; for i ¼ 0; 1; . . . ;N � 1;

�1 if x1 A ½a2iþ1; a2iþ2Þ; for i ¼ 0; 1; . . . ;N � 1:

�

Then for any g > 0, u is a critical point of Eg if and only if for i ¼ 0; 1; . . . ;N � 1,

ða2iþ1 � a2iÞ ¼
m þ 1

2N
; ða2iþ2 � a2iþ1Þ ¼

1 � m

2N
:

Proof. Let S :¼ fx A Tn j uðxÞ ¼ 1g. Since HðxÞ ¼ 0 for all x A qS, Theorem 2.3 im-
plies that if u is a critical point, then qS must be a level set of the associated v solving (2.2).
Clearly, vðxÞ ¼ vðx1Þ and without loss of generality, we may assume vð0Þ ¼ 0. Hence we
require vðaiÞ ¼ 0 for all i ¼ 0; . . . ; 2N. Since

�v 00ðx1Þ ¼ f ðx1Þ � m on T1;

v consists of piecewise parabolas defined on the subinterval ðai; aiþ1Þ which alternate point-
ing upwards (with convexity 1 � m) and pointing downwards (with concavity �1 � m). The
conditions that vðaiÞ ¼ 0 for each i, and the fact that v must be C1 at each ai directly imply
that the parabolas must repeat themselves every second step. This is illustrated in Figure 1.

r

100 Choksi and Sternberg, Nonlocal isoperimetric problem



Remark 3.4. We point out that the conditions for criticality of strips described in
Proposition 3.3 are independent of g. Thus, a lamellar critical point for one value of g is
automatically a critical point for all values of g. We presume that this is the only example
of a subset of Tn that is critical for two di¤erent g values. Observe from the criticality con-
dition (2.19) that any such subset would necessarily have to possess a boundary of constant
mean curvature with that boundary being a level set of the associated v solving Poisson’s
equation.

We now examine the stability of lamellar critical points of Eg. In particular, we study
how the value of g a¤ects stability. One certainly expects that as g increases, stability will
require a smaller length scale for periodic structures. We will focus on the case of a single
strip S. We will argue that S is stable for small g and unstable for g su‰ciently large. For
simplicity of presentation only, we will work in two space dimensions. Both the stability
and the instability result below readily generalize to strips in higher dimensions with only
minor changes. For 0 < b < a < 1, let S HT2 denote the set ½b; a� � ½0; 1�. Then

qS ¼ ðfbg � ½0; 1�ÞW ðfag � ½0; 1�Þ:

Also note that the function u associated with S via (2.7) is given by

uðx1; x2Þ ¼
1 for x1 A ðb; aÞ;
�1 for x1 B ðb; aÞ:

�

Proposition 3.5. Let S HT2 be a horizontal or vertical strip. Then there exists a value

g0 such that S is a stable critical point of Eg for all positive g < g0.

Proposition 3.6. For g su‰ciently large, S is unstable.

We first prove Proposition 3.5.

Proof. We first note that since u ¼ uðx1Þ, one has v ¼ vðx1Þ satisfying
�v 00 ¼ u � m A Lp for all p > 2. It then follows from standard regularity theory that
v A W 2;p for all p > 2, and in particular that v A C1. If we write qS ¼ G1 WG2 where
G1 ¼ fbg � ½0; 1� and G2 ¼ fag � ½0; 1�, then the first component of the outer unit normal
to S, which we denote here by z0, is given by

Figure 1. A function v corresponding to a lamellar critical point.
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z0ðxÞ ¼
�1 for x A G1;

þ1 for x A G2:

�

We can then invoke Proposition 3.1 and (3.3) to see that

0 ¼ Jðz0Þ ¼ 8g
Ð
qS

Ð
qS

Gðx; yÞz0ðxÞz0ðyÞ dH1ðxÞ dH1ðyÞ þ 4g
Ð
qS

‘v � n dH1ðxÞ;ð3:5Þ

since of course, BqA 1 0 for the strip. Now let z : qS ! R be any smooth function satisfying

Ð
qS

z dH1ðxÞ ¼ 0:ð3:6Þ

We will write z as

z ¼ f � cz0

where c :¼
Ð
G1

zðxÞ dH1ðxÞ and f is given by

f ðxÞ ¼ z� c for x A G1;

zþ c for x A G2:

�
ð3:7Þ

Denoting f1 :¼ f KG1 and f2 :¼ f KG2 we observe that
Ð1
0

fiðx2Þ dx2 ¼ 0 for i ¼ 1; 2. We

will argue that JðzÞ > 0 for g su‰ciently small, provided f E 0, that is, provided z does not
correspond to a translation. To this end, we compute

JðzÞ ¼
Ð1
0

ð f 0
1 Þ

2 dx2 þ
Ð1
0

ð f 0
2 Þ

2 dx2ð3:8Þ

þ 8g
Ð
qS

Ð
qS

Gðx; yÞ f ðxÞ f ðyÞ dH1ðxÞ dH1ðyÞ þ 4g
Ð
qS

‘v � nf 2 dH1ðxÞ

þ c2

�
8g

Ð
qS

Ð
qS

Gðx; yÞz0ðxÞz0ðyÞ dx dy þ 4g
Ð
qS

‘v � n dH1ðxÞ
�

þ 8gc

� Ð
qS

Ð
qS

Gðx; yÞ f ðxÞz0ðyÞ dH1ðxÞ dH1ðyÞ

þ
Ð
qS

Ð
qS

Gðx; yÞz0ðxÞ f ðyÞ dH1ðxÞ dH1ðyÞ
�

þ 8gc
Ð
qS

‘v � nf z0 dH1ðxÞ

f p2
Ð
qS

f 2 dH1ðxÞ þ 8g
Ð
qS

Ð
qS

Gðx; yÞ f ðxÞ f ðyÞ dH1ðxÞ dH1ðyÞð3:9Þ

þ 4g
Ð
qS

‘v � nf 2 dH1ðxÞ
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þ 8gc

� Ð
qS

Ð
qS

Gðx; yÞ f ðxÞz0ðyÞ dH1ðxÞ dH1ðyÞ

þ
Ð
qS

Ð
qS

Gðx; yÞz0ðxÞ f ðyÞ dH1ðxÞ dH1ðyÞ
�

þ 8gc
Ð
qS

‘v � nf z0 dH1ðxÞ;

through (3.5) and the Poincaré inequality.

Now

Ð
qS

‘v � nf z0 dx ¼ vx1
ðaÞ

Ð1
0

f2ðx2Þ dx2 þ vx1
ðbÞ

Ð1
0

f1ðx2Þ dx2 ¼ 0

since
Ð1
0

fiðx2Þ dx2 ¼ 0, and so the last term in (3.9) vanishes. Also, note that the function

wðyÞ :¼
Ð
qS

Gðx; yÞz0ðxÞ dH1ðxÞ

is a (weak) solution to the problem

�Dwðx1; x2Þ ¼ mz0

where mz0
¼ mz0

ðx1Þ is the measure given by

mz0
¼ 1H1

K fðx1; x2Þ : x1 ¼ ag � 1H1
K fðx1; x2Þ : x1 ¼ bg:

Hence, in particular, w ¼ wðx1Þ which means that

Ð
qS

Ð
qS

Gðx; yÞz0ðxÞ f ðyÞ dH1ðxÞ dH1ðyÞ ¼
Ð
qS

wðyÞ f ðyÞ dH1ðyÞ

¼ wðaÞ
Ð1
0

f2ðx2Þ dx2 þ wðbÞ
Ð1
0

f1ðx2Þ dx2 ¼ 0:

Therefore, the second to last line of (3.9) vanishes as well. Since

Ð
qS

Ð
qS

Gðx; yÞ f ðxÞ f ðyÞ dH1ðxÞ dH1ðyÞf 0;

we arrive at the inequality

JðzÞf ðp2 � 4gkv 0kLyÞ
Ð
qS

f 2ðxÞ dH1ðxÞ:

Thus, choosing g0 ¼ p2

4kv 0kLy

, we have the desired result. r

We now prove Proposition 3.6.
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Proof. Note that by the divergence theorem,

Ð
fbg�½0;1�Wfag�½0;1�

‘vðy1; y2Þ � n dy2 ¼
Ð
S

hvðyÞ dyð3:10Þ

¼
Ð
S

m � uðyÞ dy

¼ ðm � 1ÞjSj < 0:

Hence, setting

gðy2Þ :¼ ‘vða; y2Þ � n;

we may assume without loss of generality that

Ð1
0

gðy2Þ dy2 ¼: c1 < 0:ð3:11Þ

Let k > 1 be a positive integer to be chosen shortly, and consider the function zk set to be
identically zero on fbg � ½0; 1� and set to equal sinð2pky2Þ on fag � ½0; 1�. There are three
non-zero terms in JðzkÞ of (2.20) since BqS 1 0. The first involving ‘qAzk is readily calcu-
lated to equal 2p2k2. The next non-zero term can be written as g times

8
Ð1
0

�Ð1
0

G
�
ða; x2Þ; ða; y2Þ

�
sinð2pkx2Þ dx2

�
sinð2pky2Þ dy2:ð3:12Þ

We claim that (3.12) can be made arbitrarily small by choosing k su‰ciently large. To this
end, denote the function in the square parenthesis of (3.12) by fkðy2Þ. Note that (cf. (2.4))

Ð1
0

��G�
ða; x2Þ; ða; y2Þ

��� dx2 < y for every y2 A ½0; 1Þ;ð3:13Þ

and further

Ð1
0

Ð1
0

��G�
ða; x2Þ; ða; y2Þ

��� dx2 dy2 < y:ð3:14Þ

By (3.13) and the Riemann-Lebesgue Lemma, for each y2 we have

fkðy2Þ ! 0 as k ! y:

Hence by (3.14) and the Lebesgue Dominated Convergence Theorem,

Ð1
0

fkðy2Þ sinð2pky2Þ dy2 ! 0 as k ! y:ð3:15Þ
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The third and last remaining non-zero term in (2.20) takes the form

4g
Ð1
0

gðy2Þ sin2ð2pky2Þ dy2 ¼ 4g
Ð1
0

gðy2Þ
1 � cosð4pky2Þ

2
dy2;

and hence by (3.11) and the Riemann-Lebesgue Lemma, we have

lim
k!y

Ð1
0

gðy2Þ sin2ð2pky2Þ dy2 ¼ c1

2
< 0:ð3:16Þ

Therefore, we can choose k su‰ciently large such that for any g > 0 the sum of the last
two terms of (2.20) is, say, less than gc1=4. Fixing such a k, we take g0 to be the smallest
value of g such that gjc1j=4 > 2p2k2. Hence JðzkÞ < 0 and the stability criterion (2.20) is
violated. r

Remark 3.7. Proposition 3.6 can easily be extended to the case of N strips. In this
case, consider S and the associated u as defined in Proposition 3.3. Then following (3.10),
one finds that for some y1 ¼ aj,

Ð
fy1¼ajg

‘vðaj; y2Þ � n <
ðm � 1ÞjSj

N
;

and hence the c1 in (3.11) scales with 1=N. This argument then implies that g0 @N,
supporting our intuition that as the number of strips increase, the cut o¤ for instability g0

also increases.

Remark 3.8 (spots and annuli). As we mentioned in Remark 2.4, there are no radial
critical points on the torus. However, if one studies the Neumann setting of (NLIP) in the
case where W is a ball, then one can look for critical points u of Eg that are radial. In [24],
[26], these structures are considered in two dimensions for the Neumann boundary (NLIP)
and its di¤use interface version (cf. Appendix). In particular, critical points of both prob-
lems are produced corresponding to fx : uðxÞ ¼ 1g being a ball (so-called ‘‘spot solutions’’)
as well as concentric annuli (‘‘k-ring solutions’’). For the latter, 2-annuli (2-ring) critical
points were shown to exist for certain values of g only. They further carried out an involved
spectral calculation, showing among other things that a threshold exists (in terms of g) for
the (spectral) stability of spot and 2-ring solutions.

Here we briefly comment that the second variation inequality yields some analogous
results.

(a) First let us consider single spot solutions. The instability results for large g

easily follow from the same reasoning as in Proposition 3.6. To this end, in what follows
fx : uðxÞ ¼ 1g will consist of a fixed ball. For example, take the case where W is the unit
ball in R2 and consider the function

uðr; yÞ ¼ 1 for r < r1;

�1 for r1 < r < 1;

�
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for any positive value r1 < 1. We observe through (2.75) that such a function will be a crit-
ical point of Eg regardless of the value of g since necessarily, v ¼ vðrÞ for such a function u,
forcing the set fr ¼ r1g to be a level set. Then since the second term in the first integral of
(2.77) is negative while the second integral is absent since fx : uðxÞ ¼ 1gX qW ¼ j, the ar-
gument presented above using the choice z ¼ sinðkyÞ with k large again applies to establish
instability for big enough values of g. The same argument can be applied to single spot so-
lutions (i.e. balls) in any dimension.

(b) For 2-ring annuli critical points corresponding to u of the form

uðr; yÞ ¼
1 for r < r1;

�1 for r1 < r < r2;

1 for r2 < r < 1;

8<
:

for some r1 < r2, the arguments of Proposition 3.3 are more involved since the curvature
now varies from boundary to boundary, and one must solve the ode corresponding to the
radially symmetric Laplacian. Note that a particular 2-ring solution, for example, will only
be a critical point for at most one value of g. The existence of such critical points was estab-
lished in [24] where it was shown that for g su‰ciently large, 2-ring critical points exist. In
[26], they considered the stability of such 2-ring structures. We note that from the second
variation, one obtains the following analogous instability result for large g:

There exists g� such that if g > g� and ug is a 2-ring critical point for this value of g,
then ug is unstable.

The proof follows the same line of reasoning as Proposition 3.6. Fixing an m A ð�1; 1Þ
and considering any 2-ring structure with relative volume fraction m, we can apply the
same argument as in (3.10) to find one circular boundary (with bounded length) upon
which (3.11) holds. Then again choosing zk with support on this one boundary, we find a
cuto¤ g� beyond which the second variation becomes negative. The key here is that this g�

is independent of the precise 2-ring structure—it depends only on the volume fraction m.

4. Appendix. Di¤use interface version of (NLIP)

Our problem (NLIP) can be regarded as the sharp interface version of the minimiza-
tion problem involving the following functional: for � > 0, consider

E�; g :¼
Ð
W

�

2
j‘uj2 þ 1

�

ð1 � u2Þ2

4
þ gj‘vj2 dx if u A H 1ðWÞ and

1

W

Ð
W

u ¼ m;

þy otherwise:

8><
>:ð4:1Þ

Here W is again either the torus Tn or a general domain with smooth boundary, and v is
related to u and m via

�hv ¼ u � m on W;
Ð
W

vðxÞ dx ¼ 0;
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with the di¤erential equation solved on Tn in the former case, and with homogeneous Neu-
mann boundary conditions in the latter. This functional is essentially the energy first de-
rived by Ohta and Kawasaki [22] to model microphase separation of diblock copolymers.
As written in its non-dimensional, appropriately re-scaled form, it may be viewed as a non-
local Cahn-Hilliard type functional (cf. [7], [8], [9], [21], [23], [25]). A full derivation can be
found in [9].

Note that the third term in (4.1) represents a compact perturbation with respect
to the basic L2 (or L1) topology. Hence it easily follows (cf. [23]) from the definition of
G-convergence that the G-limit problem (as � ! 0 and in the L1-topology) is equivalent
to (NLIP).
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