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Abstract

We identify the optimal scaling law for a nonconvex, nonlocal variational problem representing
the magnetic energy of a uniaxial ferromagnet. Our analysis is restricted to a certain parameter
regime, in which the surface tension is sufficiently small relative to the other parameters of the
problem. c© 1998 John Wiley & Sons, Inc.

1 Introduction

This article addresses the following nonconvex and nonlocal variational prob-
lem: Minimize

E(m) = α

∫
Ω
m2

2 dx dy + ε

∫
Ω
|∇m|dx dy + β

∫
R2
|∇u|2 dx dy(P1)

over all m = (m1,m2) ∈ BV (R2,R2) such that |m| = 1 in Ω and m = 0 in
Ωc. The integrand of the last term is determined by m through the differential
equation 4u = div m in R2. We choose the domain to be a rectangle:
Ω = (−L,L)× (0, 1).

Our functional is a two-dimensional and sharp-interface reduction of the
magnetic energy of a uniaxial ferromagnet (see, e.g., Landau and Lifshitz
[13]). The unknown m represents the spontaneous magnetization. The first
term accounts for the effect of crystalline anisotropy, the second assigns surface
energy to sharp changes in the direction of m, and the third is the magnetic
field energy generated by m. The third term can alternatively be thought of as
a penalization favoring div m = 0, since ∇u is the Helmholtz projection of m
(its L2 projection onto the subspace of gradients). Our functional (P1) is not
quite the usual micromagnetic energy, because the second term involves |∇m|
rather than |∇m|2. However, it is (at least formally) operationally equivalent,
as we shall explain later.

There is an extensive physics literature on micromagnetics. One of its goals
is to explain the formation and morphology of magnetic domains—regions
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in which the magnetization is smoothly varying or even essentially constant,
separated by sharp walls where it is discontinuous. These domain structures
are believed to be (local or global) minimizers of the magnetic energy. This
idea goes back at least to Landau, Lifshitz, and Kittel, see, e.g., [14], [15],
[9], and [10]. More recent work related to the uniaxial case includes that
of Privorotskiı̆ [17], Hubert [5], Kaczer [8], Marchenko [16], and Gabay and
Garel [4].

One would like to optimize the energy among all magnetic domain pat-
terns. In practice, however, it has been customary to do something much more
limited—namely, optimize the energy within a specific class of patterns pa-
rameterized by just a few degrees of freedom. For example, it is well-known
that the optimal one-dimensional pattern has energy of order ε1/2L1/2 and do-
main width proportional to L1/2; we shall review this calculation below (see
Figures 1.2 and 1.3). Optimizing in a more complicated class of “branched”
domain structures achieves an energy of order ε2/3L1/3 and a basic domain
width proportional to L2/3: this was shown in slightly different settings by
Lifshitz [15], Privorotskiı̆ [17], and Hubert [5]. This calculation has been used
to explain why magnetic domains branch and their widths scale as L2/3 when
ε/L is sufficiently small.

Such calculations give a lot of insight, but they fall far short of identifying
the minimum energy state. They leave open the possibility that there might be
other, as yet undiscovered classes of domain structures with different scaling
laws and smaller energies. An entirely different type of argument is needed
to rule this out. Optimizing the energy within a suitable ansatz amounts to
finding an upper bound for (P1). Showing that this gives the right scaling law
amounts to consideration of the corresponding lower bound.

This paper provides the missing lower bound for the functional (P1). We
also give a fully rigorous treatment of the upper bound. Thus we identify the
precise scaling law for the minimum energy in a certain parameter regime.
Our main result, Theorem 4.1, says that

minE ∼ η1/3ε2/3L1/3(1.1)

with η = min{α, β} provided that L > 1 and the parameters α, ε, β, and
L satisfy a certain condition (4.1). That condition requires ε1/3L2/3 to be
sufficiently small relative to α and β. It is essentially the hypothesis that our
branched domain construction be realizable in a rectangle of unit width.

The restriction imposed by condition (4.1) is natural, but the restriction
L > 1 is not. We believe that (1.1) holds even for L < 1, provided that
L > ε/min{α, β}. Our constructions, which give upper bounds on the energy,
work for such L. However, our techniques for proving lower bounds seem
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limited to L > 1 (or more precisely to L > b with b independent of ε, α, and
β).

Our work is closely related to that of Kohn and Müller concerning branch-
ing of twins near an austenite–twinned-martensite interface [11, 12]. That work
identified the scaling law of the minimum energy for a certain nonconvex but
local variational problem regularized by small surface energy. Here we achieve
a similar goal for the nonconvex, nonlocal problem (P1). Our methods build
on those of [11]; however, there are many significant differences due to the
nonlocal character of the field energy

∫
|∇u|2 dx dy. See Remarks 2.4 and 3.3

for further comments.
We turn now to a discussion of the physical problem to motivate our interest

in (P1). The structure of a ferromagnet is characterized by its magnetization
vector field M, the ionic magnetic moment per unit volume. Below the Curie
temperature TC the material experiences spontaneous magnetization; in other
words, M 6= 0 even in the absence of an applied magnetic field. For T � TC
the degree of magnetization is constant, i.e., |M| = f(T ) is constant in space,
so the interesting variable is the normalized magnetization

m =
M
|M| .

In many settings m is observed to be more or less “piecewise smooth.” That
is, the material is divided into regions where m is smooth (magnetic domains)
separated by layers where m experiences sharp changes of direction (Bloch
walls). Micromagnetics aims to explain the formation of these domains—and
their specific morphology—on the basis of energy minimization.

We specialize to the case of a uniaxial material oriented so that the x-
axis is its easy axis (the preferred direction for m). Let Ω ⊂ R3 be the
region occupied by the ferromagnet. We take the convention that m(x, y, z) =
(m1(x, y, z),m2(x, y, z),m3(x, y, z)) is defined on all of R3, with |m| = 1
on Ω and m = 0 on Ωc = R3−Ω. In the absence of an applied magnetic field
and ignoring magnetostriction, the micromagnetic energy is the sum of these
three terms:

The Anisotropy Energy.

Ea(M) = κ

∫
Ω
M2

2 +M2
3 dx dy dz

or Ea(m) = α

∫
Ω
m2

2 +m2
3 dx dy dz ,

which favors m1 = ±1. Here κ is the anisotropy constant and α = κ |M|2.
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The Exchange Energy.

Eex(M) = δ

∫
Ω
|∇M|2 dx dy dz

or Eex(m) = δ|M|2
∫
Ω
|∇m|2 dx dy dz ,

which penalizes changes in the direction of m. Here δ is the exchange constant.

The Self Field (or Nonlocal) Energy.

Ef (M) =
∫
R3
|H|2 dx dy dz =

∫
R3
|∇v|2 dx dy dz ,(1.2)

which favors div m = 0. Here H = −∇v is the (self-) magnetic field asso-
ciated with the magnetization M. It is determined, along with the magnetic
induction B, by Maxwell’s equations, which assert that

div B = 0 , curl H = 0 , B = H + M .(1.3)

Since curl H = 0, we can write H = −∇v. Observing that (1.2) gives
the Helmholtz decomposition of M, we see that ∇v is the L2 orthogonal
projection of M onto the subspace of gradients. In particular, the potential v
is determined (up to an additive constant) by the equation

4v = div M(1.4)

supplemented by the condition that ∇v ∈ L2(R3). The definition (1.2) of Ef
expresses it in terms of M, but of course it can also be expressed in terms of
m:

Ef (m) = β

∫
R3
|∇u|2 dx dy dz ,

where β = |M|2 and ∇u satisfies

4u = div m.(1.5)

The field energy Ef depends continuously on the magnetization M in the
L2 norm, because the Helmholtz projection is a bounded, linear operator from
L2 to L2. We will make extensive use of this elementary and well-known fact,
so we record it here as a lemma:

LEMMA 1.1 For any magnetization M ∈ L2(R3,R3), let H = −∇v be the
associated magnetic field determined by (1.2). Then |H|L2 ≤ |M|L2 .
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To arrive at our variational problem (P1) from the standard micromagnetic
energy presented above, we must make two changes. First, we want to treat
the Bloch walls as sharp interfaces rather than thin layers of rapidly varying
magnetization. Second, we want to consider a two-dimensional reduction.

We prefer a sharp-interface treatment of the Bloch walls because it permits
us to focus on the morphology of domain structure without simultaneously
having to resolve the internal structure of the walls. To get such a treatment,
we replace the exchange energy Eex by a term of the form

Es(m) = ε

∫
Ω
|∇m|dx dy ,

representing surface energy. Since the integrand is |∇m| rather than |∇m|2,
this term permits m to be discontinuous, but it penalizes discontinuities by
assigning them a certain energy—namely, the surface integral of ε|[m]|, where
[m] is the jump in m.

The use of sharp-interface models is common in the physics literature. For
the physical problem to remain unchanged, one must choose ε so that Es
represents the micromagnetic energy of a Bloch wall. The formal calculation
goes back at least to Landau and Lifshitz [13]. Assuming that (a) m jumps
from (1, 0, 0) to (−1, 0, 0) across the wall, (b) m depends only on the variable
transverse to the wall, and (c) m is divergence free within the wall, one
arrives at a one-dimensional variable problem that is easily solved. The upshot
is a formula for the “surface tension” ε in terms of the basic micromagnetic
parameters, which scales as

ε ∼ |M|2
√
κδ .(1.6)

One also gets a formula for the thickness w of the Bloch wall, which scales
as

w ∼
√
δ

κ
∼ ε

α
.(1.7)

We are interested in w as well as ε, because the sharp-interface model loses
physical validity as the length scale of its magnetic domains approaches w.

It would be natural to seek a more rigorous passage from micromagnetics
to a sharp-interface model. The recent work of Anzellotti, Baldo, and Visintin
[1] represents important progress. However, their analysis is restricted to a
special scaling in which the nonlocal energy is relatively unimportant. The
cases of interest here are not restricted to that regime.
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The attentive reader will have noticed that besides treating the interfaces
differently, Eex and Es also behave differently inside the “magnetic domains.”
Indeed, in regions where |∇m| ∼ 1, the exchange energy Eex has order
δ|M|2 while Es has order

√
δκ |M|2. But these terms will be negligible, in

other words, much smaller than the total energy. So this difference between
Eex and Es is insignificant.

Our second reduction is from three dimensions to two. This, too, is common
in the physics literature. We suppose that the uniaxial ferromagnet occupies
a rectangular slab infinite in the z-direction: (−L,L) × (0, 1) × (−∞,∞).
We suppose further that the magnetization m is independent of z, and its
direction remains in the xy–plane: m = (m1(x, y), m2(x, y), 0). The energy
is formally infinite because of invariance in the z-direction, so the sensible
goal is to minimize the two-dimensional energy density (the energy per unit
length in the z direction). For the local terms—the anisotropy energy Ea and
the surface energy Es—the interpretation of this reduction is obvious. For the
nonlocal term Ef it is a bit less obvious, because the potential u defined by
(1.5) no longer has∇u ∈ L2(R3). The proper interpretation is that u = u(x, y)
has ∇u ∈ L2(R2), and ∇u is the two-dimensional Helmholtz projection of
(m1,m2) onto the subspace of gradients.

Our sharp-interface and two-dimensional reductions have rather different
status. The former leaves the essential physical problem unchanged (or so
we conjecture). The latter does not: In truth, the magnetization of a uniaxial
slab forms interesting, fully three-dimensional patterns near the “basal plane”
x = ±L (see, e.g., [8]). However, our two-dimensional reduction captures
many features of the three-dimensional behavior, including the length scale
and branching of magnetic domains. This fact and other three-dimensional
extensions of the present analysis will appear in a subsequent article ([2]).

These reductions lead directly to our two-dimensional variational problem
(P1). We now discuss it more precisely, addressing issues such as the space
of admissible m and the existence of minimizers. From now on, the domain
Ω represents the cross section of our slab, Ω = (−L,L) × (0, 1). Since our
surface energy has the form

∫
Ω |∇m|dx dy, the natural space for m is BV,

the class of functions with bounded variation (see, e.g., [3] or [18]). Our
variational problem is

min
m∈A

E(m) =
∫
Ω
αm2

2 + ε|∇m|dx dy + β

∫
R2
|∇u|2 dx dy ,(P1)

where 4u = div m, Ω = (−L,L)× (0, 1), and

A := {m ∈ BV(R2,R2) | |m| = 1 a.e. in Ω, m = 0 on Ωc} .(1.8)
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We note that in this language, |∇m| is a finite Borel measure, the surface
energy is ε times the total variation of m on Ω, and the equation for u is
interpreted in the sense of distributions. Throughout this article, boundary
values of m · n are to be interpreted in the sense of inner trace.

THEOREM 1.2 Problem (P1) attains its minimum.

PROOF: Let mn be a minimizing sequence. We have mn bounded in
BV(Ω) and hence (cf. [3]) there exists a subsequence (not relabeled) such that

mn →m in L1 and
∫
Ω
|∇m|dx dy ≤ lim inf

n→∞

∫
Ω
|∇mn|dx dy .

Passing to a further subsequence (to obtain almost everywhere convergence of
mn), we obtain |m| = 1 a.e. in Ω and m = 0 outside Ω. Lemma 1.1 implies
that

lim
n→∞

Ef (mn) = Ef (m) ,

and the result follows.

The presence of nonzero surface energy is crucial for the existence of
minimizers. When ε = 0 the situation is different. Then the anisotropy energy
and the nonconvex constraint |m| = 1 prefer m = (±1, 0), and the absence
of surface energy permits arbitrary oscillation between these. One can easily
construct a sequence whose energies tend to 0: Consider ma(x, y) = ma(y)
which alternates between (±1, 0) in intervals of length a (see Figure 1.2).
The associated energy, which in this case is purely field energy, is of order
a (see below) and tends to 0 with a. Thus the minimum energy is 0, and it
is not attained, since no element of A has energy 0. Analogous questions of
attainment and nonattainment for micromagnetics without the exchange energy
have been discussed by several authors; see, e.g., James and Kinderlehrer [6, 7].

We end this introduction by discussing three basic “one-dimensional” do-
main structures, and the scaling laws giving their energies E in terms of the
parameters α, ε, β, and L. These constructions are not optimal for the pa-
rameter regimes considered in this paper; the branched structures introduced
in Sections 2 and 3 do better. It is nevertheless useful to discuss them, partly
to review some important ideas such as “closure domains” and partly to em-
phasize that these familiar, unbranched structures are suboptimal.

Our first example is that of uniform magnetization; see Figure 1.1. This
structure has field energy of order βL, attributable to the left and right non-
divergence-free boundaries. There is no anisotropy or surface energy. The
total energy is therefore of order βL.
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-L L

Figure 1.1. Homogeneous magnetization.

L-L

a

Figure 1.2. Kittel structure.

Our second example is often referred to as the Kittel structure; see Figure
1.2. It achieves a smaller value of the field energy by having the magnetization
oscillate between (±1, 0) in layers. Of course, this costs surface energy. When
the layers have width a, the extra surface energy is of order εLa . The field
energy becomes essentially independent of L, of order βa. (An upper bound
with this scaling law can be given, for example, through a calculation based
on Fourier series.) Thus for given a the energy E(a) scales as

E(a) ∼ βa+ ε
L

a
.

Optimization over a gives

aopt ∼
ε1/2L1/2

β1/2 , Eopt ∼ ε1/2β1/2L1/2 .

Our third example is often referred to as the Landau-Lifshitz structure;
see Figure 1.3. It differs from the second example by the introduction of
“closure domains” at the right- and left-hand boundaries so that div m = 0 in
Ω and m · n = 0 at ∂Ω. This eliminates the field energy entirely, trading it
for anisotropy energy and a little extra surface energy. When the layers have
width a, the sum of surface and anisotropy energy scales as

E(a) ∼ αa + ε
L

a
.
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-L L

a

Figure 1.3. Landau-Lifshitz structure.

Optimization over a gives

aopt ∼
ε1/2L1/2

α1/2 , Eopt ∼ ε1/2α1/2L1/2 .

The structure of Figure 1.3 is energetically preferable over that of Figure 1.2
when anisotropy is less expensive than field energy, in other words, when
α < β or (equivalently) κ < 1.

For the parameter regimes considered in this article, these one-dimensional
structures are not optimal. In the subsequent sections we will give alternative
structures achieving energies of order ε2/3α1/3L1/3 and ε2/3β1/3L1/3. These
alternative scaling laws are better whenever L > max(ε/α, ε/β). The inequal-
ity L > ε

α holds whenever a sharp-interface model is physically justified, i.e.,
whenever the sample size L is larger than the Bloch wall width w (see (1.7)).

Finally, a word about the organization of the paper. Sections 2 and 3 are
devoted to a pair subproblems (P2) and (P3). They are derived from (P1)
by constraining either the field energy or the anisotropy energy to be zero.
These subproblems represent, at least formally, the asymptotic behavior of
(P1) in the limits of small and large anisotropy. They require rather differ-
ent arguments, both for the upper bound (obtained in each case by a suitable
branched construction) and for the lower bound (which must consider an arbi-
trary divergence-free magnetization in one case, and an arbitrary anisotropy-
free magnetization in the other). The branched construction we use for (P2) is
essentially due to Privorotskiı̆ [17].

Then we turn, in Section 4, to the full problem (P1). The ideas required
to handle the general case are essentially the union of the ideas required for
the two subproblems. In fact, there are basically two regimes. When α < β
the behavior of (P1) is very much like the small-anisotropy limit, and when
α > β it is very much like the large-anisotropy limit.

Our goal throughout is to get the scaling laws, not sharp estimates for the
constants implicit in them. Therefore, in discussing the constructions we often
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a

Figure 2.1. Rough sketch of the Privorotskiı̆ construction m0.

let C be a generic constant whose value varies from line to line (but does not
depend on α, β, ε, κ, or L). In discussing the lower bounds, we will make
the constants explicit since it is easy to do so; however, we have not tried to
optimize them.

2 The Case of Small Anisotropy: β →∞

This section addresses a constrained version of (P1) in which we impose the
additional conditions div m = 0 in Ω and m · n = 0 at ∂Ω—in other words
div m = 0 everywhere, in the sense of distributions:

min
m∈A

div m=0

∫
Ω
αm2

2 + ε|∇m|dx dy .(P2)

Our goal is to identify the optimal scaling law for (P2). We will show, roughly
speaking, that when L > 1 and ε1/3L2/3α−1/3 < 1 the minimum energy scales
like α1/3ε2/3L1/3.

Remembering that the field energy Ef = β
∫
Ω |∇u|2 dx dy is a penalization

for div m = 0, we see that (P2) is the formal limit of (P1) as β →∞. The ratio
α/β is the magnetic anisotropy κ; hence in physical terms we are considering
the limit of small anisotropy (and correspondingly small exchange energy).
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2.1 An Upper Bound: The Privorotskiı̆ Construction

We shall prove an upper bound with the desired scaling law by displaying
a suitable divergence-free test field m0. Our construction is a formaliza-
tion of one given by Privorotskiı̆ [17]. It bears some resemblance to the
Landau-Lifshitz structure (Figure 1.3), for example, in the use of closure do-
mains. But it has much less surface energy, because the basic domain width is
ε1/3L2/3α−1/3 rather than ε1/2L1/2α−1/2. To keep the energy of the closure
domains small, the magnetic domains must refine by branching near |x| = L.
This costs anisotropy energy, and it is the interplay of anisotropy versus surface
energy that drives the construction.

We assume throughout this subsection that

ε1/3L2/3

α1/3 < 1 and L >
ε

α
.(2.1)

We note that both L and ε/α have dimensions of length. The first inequality
has a natural interpretation: It is precisely the condition that the basic width
of the branched construction (see (2.4)) be small enough for the construction
to make sense in our unit-width rectangular domain Ω. The second inequality
implies that the scaling law achieved in this section is better than that of the
Landau-Lifshitz construction, i.e., ε2/3L1/3α1/3 < ε1/2L1/2α1/2.

A sketch of Privorotskiı̆’s m0 is given in the slightly misleading Figure
2.1. The central region consists of parallel domains of width a in which m0 =
(±1, 0). Close to the vertical boundaries, each domain branches repeatedly
into three domains. The branching continues N times until the final domain
width a/3N is sufficiently small so that closure domains (as in Figure 1.3)
have total energy no greater than that of the rest of the structure. Note that in
Figure 2.1 we have not drawn the closure domains at the right and left edges
of the rectangle. Figure 2.1 is not quite accurate in the following respects:
The domain walls created by the branching are not really straight, and the
magnetization in the branched region is not really parallel to the easy axis.
Rather, the domain walls and the magnetization must be chosen such that m0
is divergence free.

To give the details, we describe the structure of the basic cell enclosed in
bold on Figure 2.1 and illustrated in Figure 2.2. For convenience, we have
rotated the cell counterclockwise by 90 degrees, hence the easy axis is vertical.
The magnetization is parallel to the easy axis in the central domain. At a point
(x, y) outside this region, it is the unit tangent vector to the circle passing
through (x, y) with center either O or O′ depending on whether the point
(x, y) is below or above the line OO′, respectively. We let Rn be the length
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θn

h

 

n

n

O’

OP
a

n

Figure 2.2. The Privorotskiı̆ cell.

of the line segment PO. Each central wall curve on which m experiences
a jump discontinuity is such that the tangent vector to the curve bisects the
angle between m immediately to either side. One can check that the part of
the right wall curve below OO′ has equation (in polar coordinates with origin
O)

r cos2
(
θ

2

)
= Rn ,

and the part above OO′ has equation (with origin O′)

r cos2
(
θ

2

)
=
an
6
.

The requirement that the two curves meet at θ = θn implies that

an
3

= Rn

(
1

cos θn
− 1

)
.

Under the assumption that θn < 1, we have 1
cos θn−1 > 1

3θ
2
n and tan θn < 2θn,

so

Rn <
an
θ2
n

and hn = Rn tan θn < 2
an
θn
.
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The geometry dictates that an = a/3n−1. The parameter θn (hence Rn
and hn) will be determined in terms of an and the material parameters by
minimization of the energy associated with splitting in the basic cell. This
amounts to an equipartition between the anisotropy and surface energy of the
cell. With this in hand, we will sum a geometric series to obtain the energy
E(a) of the structure in terms of a. Then we will optimize in a. As a result of
this procedure, our construction has its energy roughly equipartitioned between
the unbranched, branched, and closure regions of the ferromagnet.

To compute the energy of the nth cell, i.e., the structure shown in Figure
2.2, we note that the length of the two domain walls is bounded by a constant
times the height of the cell hn. The contribution of the surface energy due to
the domain walls is bounded by twice the perimeter of the interface. Thus the
surface energy of the domain wall is bounded above by Cεhn. An elementary
argument (given in detail by Privorotskiı̆ in [17]) shows that anisotropy energy
is bounded above by Cαa2

nθn. Thus the sum of anisotropy and wall energy in
the cell is roughly minimized when

θn = c1

√
ε

√
αan

(2.2)

for some constant c1. Note that we did not include the contribution of the
“surface energy” term away from the walls. Strictly speaking, this term will
of course have a positive contribution in the smooth regions. However, one
can check that this contribution is negligible, that is, for the chosen values of
Rn and θn, this energy is of lower order than the surface energy concentrated
on the domain walls. The energy of the unit cell now satisfies

En ≤ Cεhn + Cαa2
nθn

≤ Cα1/2ε1/2a3/2
n .

The branching continues N times, at which point closure domains have an
energy bounded above by αaN+1. We write h =

∑N
1 hn for the length of the

branched region. Then the energy in the entire domain Ω satisfies

E(a) ≤ 1
a

(
ε2(L− h) + C

N∑
n=1

3n−1α1/2ε1/2a3/2
n + CαaaN+1

)

≤ Cε
L

a
+ C

∞∑
n=1

α1/2ε1/2a1/2
(

1
3n−1

)1/2
+ Cα

a

3N

≤ Cε
L

a
+ Cα1/2ε1/2a1/2 + Cα

a

3N
.
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We choose N such the closure energy is of the same order as the interior
energy, that is,

3N ∼ α1/2a1/2

ε1/2 so that E(a) ≤ C
(
ε
L

a
+ α1/2ε1/2a1/2

)
.(2.3)

Optimizing in a gives

aopt = c2
ε1/3 L2/3

α1/3 , Eopt ∼ α1/3ε2/3L1/3 ,(2.4)

for some constant c2.
A few points are in need of discussion. We should verify that θn < 1

for n = 1, . . . , N , that aopt < 1, and that the length of the branched region
h =

∑N
1 hn is less than L/2. This may require adjustments of the constants c1

and c2 in the definitions of θn and aopt, (2.2) and (2.4). Indeed, our construction
has

θn ≤ θN =
c1√
c2

ε1/6

L1/6 α1/6 and h =
c

3/2
2
c1

L .

Our hypothesis (2.1) gives ε1/6L−1/6α−1/6 < 1. So we can be sure that
a� 1, θn � 1, and h� L by choosing c3/2

2 � c1 � c
1/2
2 � 1.

Finally, we must pay special attention to the case when aopt, defined by
(2.4), satisfies

α1/2a
1/2
opt

ε1/2 < 3 .(2.5)

This is because we implicitly assumed the opposite in (2.3). When (2.5) holds
we do not need to branch; that is, the estimate for E(a) in (2.3) remains valid
since (2.5) implies that αa ≤ 3α1/2ε1/2a1/2. We have proved the following:

PROPOSITION 2.1 Let E0 denote the minimum energy associated with (P2).
There is a constant C0 such that

E0 ≤ C0α
1/3ε2/3L1/3

whenever L > ε/α and ε1/3L2/3α−1/3 < 1.
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2.2 A Lower Bound

Now we shall prove a lower bound with the same scaling law. The regime
where our bound applies is more restrictive than that of the construction, be-
cause we assume L > 1 rather than L > ε/α. In addition, for technical reasons
it is convenient to replace the inequality ε1/3L2/3α−1/3 < 1 with a slightly
sharper condition (2.6).

We must consider an arbitrary admissible magnetization m and show that
it has (up to a constant) at least as much energy as the Privorotskiı̆ construction
m0. It is convenient to work with the stream function for m rather than m
itself. The constraint div m = 0 is equivalent to the existence of a function
φ : R2 → R such that

m = (φy,−φx) whence E(m) =
∫
Ω
αφ2

x + ε|∇∇φ|dx dy .

We have |∇φ| = |m| = 1 in Ω, which implies that φ is Lipschitz continuous.
We also have m · n = 0 at ∂Ω, which implies that φ is constant on each of
the four segments comprising ∂Ω. Since φ is only determined by m up to an
additive constant, we may assume without loss of generality that φ = 0 on
∂Ω. Thus (P2) has the equivalent formulation

min
|∇φ|=1

φ=0 at ∂Ω

∫
Ω
αφ2

x + ε|∇∇φ|dx dy .(P2)

We shall show the following:

THEOREM 2.2 There exist constants c0 and C0 independent of ε, L, and α
such that if

ε1/3L2/3

α1/3 <
c0

4
(2.6)

and L > 1, then the minimum energy of (P2) satisfies

c0ε
2/3α1/3L1/3 ≤ E0 ≤ C0ε

2/3α1/3L1/3 .

PROOF: The upper bound is supplied by Proposition 2.1, so we need only
address the lower bound. Let φ be a minimizer of (P2). It clearly suffices to
give a lower bound for

∫
Ω αφ2

x + ε|φyy|dx dy, since |φyy| ≤ |∇∇φ|.
Our proof is by contradiction. We start by assuming that∫

Ω
αφ2

x + ε|φyy|dx dy ≤ c0ε
2/3α1/3L1/3(2.7)
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with c0 an arbitrary constant. Assuming (2.6) with the same value of c0, we
shall prove that c0 cannot be too small. It follows that when c0 is sufficiently
small, (2.7) must fail, and this is the desired lower bound.

Step 1. We know that ∇φ ∈ BV. By Tonelli’s theorem (see, e.g., theorem
5.3.5 of [18]), we have∫

Ω
|φyy|dx dy = ε

∫ L

−L
TV(φy)(x)dx ,

where TV(φy)(x) denotes the total variation of φy on the set {(x, y) | 0 ≤
y ≤ 1}. Thus inequality (2.7) implies the existence of x0 ∈ (−L,L) such that

∫ 1

0
αφ2

x dy + εTV (φy)(x0) ≤ c0
α1/3ε2/3L1/3

2L
.(2.8)

Step 2. We shall use (2.8) to prove a lower bound for∫ 1

0
φ2(x0, y) +

1
4(1− s) φ

2
x(x0, y)dy

for s ∈ (1
2 , 1). The idea is that if φx(x0, y) is small, then φ2

y(x0, y) = 1 −
φ2
x(x0, y) is close to 1, so the graph of y → φ(x0, y) must look like a sawtooth.

Furthermore, if
∫
|φyy(x0, y)|dy is small, then the number of “teeth” must be

small, so the function itself must be large, on average.
We make this argument quantitative. By the co-area formula (cf. [3] or

[18]), for almost every s ∈ (1
2 , 1) and after possible redefinition of φy on a

finite set, the set Sx0 := {(x0, y) | y ∈ [0, 1], |φy|(x0, y) ≥ s} consists of
a finite number of disjoint intervals. Moreover, the sets where φy ≥ s and
φy ≤ −s are, in turn, finite collections of disjoint intervals. We group these
intervals into new intervals Ji = (yi, yi+1) to form the following partition
of [0, 1]. For simplicity, we use φy(y) to denote φy(x0, y). Let y0 = 0. If
(x0, 0) ∈ Sx0 with φy ≥ s, let y1 denote the first point where φy ≤ −s (and
similarly if φy(0) ≤ −s). If (x0, 0) /∈ Sx0 , let y1 denote the first point y such
that (x0, y) ∈ Sx0 . Of course, if no such point exists, we let y1 = 1 and stop.
In general, if φy(yi) ≥ s, we let yi+1 denote the first point where φy ≤ −s.
Similarly, if φy(yi) ≤ −s, we let yi+1 denote the first point where φy ≥ s.
Thus on each interval (yi, yi+1), either −1 ≤ φy ≤ s or −s ≤ φy ≤ 1. In
addition, we have

TV(φy)(x0) ≥ 2s(# intervals− 2) .(2.9)
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By Lemma 2.3, stated and proved below, we have∫ 1

0
φ2(x0, y) +

1
4(1− s) φ

2
x(x0, y)dy ≥ 1

12

∑
|Ji|3

≥ 1
12N2 ,(2.10)

where N = N(x0) is the number of intervals Ji. From (2.8) and (2.9), we
have

N ≤ 1
2s

TV(φy)(x0) + 2 ≤ c0

4s
α1/3

ε1/3L2/3 + 2 .

Inequality (2.6) and the fact that s ≤ 1 give

1 ≤ c0

4s
α1/3

ε1/3L2/3 ,

and so

N ≤ 3c0

4s
α1/3

ε1/3L2/3 .

Combining this with (2.10) gives∫ 1

0
φ2(x0, y) +

1
4(1− s) φ

2
x(x0, y)dy ≥ 4s2

27c2
0
ε2/3L4/3α−

2
3 .(2.11)

Step 3. Now we use the fact that φ(±L, y) = 0 to deduce a lower bound
on the L2 norm of φx. The basic idea is that if φ is large at x = x0 but
identically zero at x = ±L, then φx must be large somewhere between x0 and
±L.

We may assume without loss of generality that x0 ∈ (−L, 0). For a.e.
y ∈ (0, 1),

|φ(x0, y)| = |φ(x0, y)− φ(−L, y)| ≤
∫ x0

−L
|φx|(x, y)dx

≤
(∫ x0

−L
|φx|2 dx

)1/2
(x0 + L)1/2 ,

where we have used Hölder’s inequality in the last step. Thus

|φ(x0, y)|2 ≤ L
∫ L

−L
φ2
x dx .
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Integrating over y and using (2.7) gives

∫ 1

0
|φ(x0, y)|2 dy ≤ L

∫ 1

0

∫ L

−L
φ2
x dx dy ≤ c0

ε2/3L4/3

α2/3 .

Combining this with (2.8), we have

∫ 1

0
φ2(x0, y) +

1
4(1− s)φ

2
x(x0, y)dy ≤ c0

ε2/3L4/3

α2/3 +
c0

8(1− s)
ε2/3

L2/3α2/3

= c0
ε2/3L4/3

α2/3

(
1 +

1
8(1− s)L2

)
.

Comparing this with (2.11), we conclude that

c3
0 ≥

4
27

8(1− s)L2s2

1 + 8(1− s)L2 .(2.12)

We may choose s so that 1− s = 1/8L2. Then (2.12) becomes

c3
0 ≥

2
27

(
1− 1

8L2

)2
≥ 2

27

(
7
8

)2
,

remembering the hypothesis that L > 1. The theorem holds for any c0 small
enough to violate this inequality, i.e., for c0 less than about 0.38.

We made use of the following lemma:

LEMMA 2.3 Let φ(y) be a Lipschitz-continuous function defined on an inter-
val I such that −s ≤ φy ≤ 1 for some positive s < 1. Then

∫
I
φ2(y) +

|I|2
4(1− s)

(
1− φ2

y

)
dy ≥ 1

12
|I|3 ,

where |I| is the length of I .

PROOF: We may assume without loss of generality that I = (−a, a) for
some a > 0. Since −s ≤ φy ≤ 1, we have

a2

(1− s)(1− φ2
y) ≥ a2(1− φy) ≥ (a2 − y2)(1− φy)
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for all y ∈ (−a, a). Thus, first integrating by parts and then completing the
square, we get∫ a

−a
φ2(y) +

a2

(1− s)(1− φ2
y)dy ≥

∫ a

−a
φ2(y) + (a2 − y2)(1− φy)dy

=
∫ a

−a
φ2(y)− 2yφ+ (a2 − y2)dy

≥
∫ a

−a
a2 − 2y2dy =

2
3
a3 .

REMARK 2.4 The paper [11] by Kohn and Müller gave a lower bound on∫
Ω αφ2

x + ε|φyy|dx dy with boundary condition φ = 0 at ∂Ω and constraint
φy = ±1. Here we have given a lower bound for the same energy and boundary
condition with the different constraint φ2

x + φ2
y = 1. Our method extends that

of [11], and, in particular, our Lemma 2.3 reduces essentially to lemma 2.7 of
[11] when φy = ±1.

3 The Case of Large Anisotropy: α→∞

This section considers a different constrained version of (P1) in which we
require m to be aligned with the easy axis everywhere in Ω:

min
m∈A

m2=0 a.e.

ε

∫
Ω
|∇m|dx dy + β

∫
R2
|∇u|2 dx dy(P3)

with the usual convention 4u = div m. Our goal is to identify the optimal
scaling law for (P3). We will show, roughly speaking, that when L > 1 and
ε1/3L2/3β−1/3 < 1, the minimum energy scales like β1/3ε2/3L1/3.

Remembering that the anisotropy energy Ea = α
∫
Ωm2

2 dx dy prefers
m2 = 0, we see that (P3) is the formal limit of (P1) as α → ∞. Since
α/β is the magnetic anisotropy κ, we are effectively considering the limit of
large anisotropy (and correspondingly small exchange energy).

3.1 An Upper Bound

We shall prove an upper bound with the desired scaling law by displaying a
suitable test field m∞. (We call it m∞ because this magnetization is adapted
to the limit of large anisotropy.) The construction is similar in some respects
to that of Section 2; in particular, it involves branching of magnetic domains in
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h

a

Figure 3.1. Domain structure of m∞.

a qualitatively self-similar pattern. However, the details are entirely different
from those of Section 2 because of the different constraint. Our construction
has much less surface energy than the Kittel structure (Figure 1.2)—which
is also admissible—because its basic domain width is ε1/3L2/3β−1/3 rather
than ε1/2L1/2β−1/2. This time the branching costs field energy, and it is the
interplay of field energy versus surface energy that drives the construction.

We assume throughout this subsection that

ε1/3L2/3

β1/3 < 1 and L >
ε

β
.(3.1)

This is the analogue of (2.1), and it plays a similar role. The first inequality
insures that the basic width of the branched construction is no larger than that
of our unit-width domain Ω. The second inequality implies that the scaling law
achieved by the branched construction is better than that of the Kittel structure.

The structure of m∞ is summarized by Figure 3.1, which shows just a
quarter of Ω (the top right corner). For x near 0 it resembles the Kittel
structure: m = (±1, 0) in parallel strips of width a. As x approaches ±L,
the domains split repeatedly. Each generation of splitting halves the domain
width, so after N steps the domain width is reduced to a/2N . We will choose
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N so that the field energy attributable to m · n being nonzero is of the same
order as the interior energy.

The detailed geometry of the splitting is given by the following figure
showing the nth basic cell:

θn  

hn  

an  an  /2

The geometry dictates that an = a
2n−1 . Motivated by the Privorotskiı̆ construc-

tion, we choose

θn = c1
ε1/2

β1/2a
1/2
n

,

for some constant c1. Assuming that θn < 1, we have

hn ≤ C
an
θn

for some constant C.
To estimate the field energy, we note that

div m∞ = div(m1 + m2 + m3) as measures,(3.2)

where m1 and m2 are structures with domains identical to that of m∞ but
with basic cells as illustrated below:

 

| m2 | = | m1| tan   θn| m1 | = 2 sin θn
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In both cases the field vanishes outside the interior triangle. Inside the triangle
the fields are, respectively, perpendicular and parallel to the domain walls with
|m1| = 2 sin θn and |m2| = |m1| tan θn. The domain structure associated
with m3 is illustrated below:

m3

aN

aN

Here |m3| = 1 in thin strips of width aN near x = ±1 and m3 = 0 elsewhere.
We can use (3.2) to estimate the field energy of m∞, since

Ef (m∞) = Ef (m1 + m2 + m3)

≤
(
Ef (m1)1/2 + Ef (m2)1/2 + Ef (m3)1/2

)2
.

Using Lemma 1.1 we have

Ef (m1) ≤ β
∫

Ω
|m1|2 dx dy ≤

1
a
β

N∑
n=1

2n−14 sin2 θn
an
4
hn

≤ C
1
a
β
∞∑
n=1

2n−1θna
2
n

= C
∞∑
n=1

β1/2ε1/2
(

a

2n−1

)1/2

= Ca1/2β1/2ε1/2.

Since for θn < 1 we have |m2| < C|m1|, Ef (m2) is also bounded above
by Ca1/2β1/2ε1/2. Applying Lemma 1.1 once more, Ef (m3) is bounded by
βaN = β(a/2N ). We choose N so that 2N ∼ a1/2β1/2ε−1/2, so this term has
the same order as the others. It follows that

Ef (m∞) ≤ Ca1/2β1/2ε1/2 .

For the surface energy, we note that the interface perimeter of the ba-
sic cell is bounded above by Cε(an/θn). An analogous calculation shows
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that the surface energy of the branched region of m∞ is bounded above by
Ca1/2β1/2ε1/2. Thus, for given a the total energy E(a) of the structure just
constructed is at most

Ca1/2β1/2ε1/2 +
4ε(L− h)

a
≤ C

(
a1/2β1/2ε1/2 +

εL

a

)
,(3.3)

where h = h(a) denotes the width of the branched region, i.e.,

h(a) =
∞∑
n=1

hn ≤ C
a3/2β1/2

ε1/2 .

Optimizing the right-hand side of (3.3) with respect to a, we obtain

a = c2
ε1/3L2/3

β1/3 and E ≤ Cβ1/3ε2/3L1/3

for some constant c2.
Finally, just as in the Privorotskiı̆ construction of Section 2.1, we should

adjust the choices of c1 and c2 to assure that θn < 1, a < 1, and h < L/2.
An argument analogous to that given in Section 2.1 applies for the case when
a1/2β1/2ε−1/2 < 1. We have shown the following:

PROPOSITION 3.1 Let E0 denote the minimum energy of (P3). Then there is
a constant C0 such that

E0 ≤ C0β
1/3ε2/3L1/3

whenever L > ε/β and ε1/3L2/3β−1/3 < 1.

3.2 A Lower Bound

We shall prove a lower bound with the same scaling law. The regime where
our bound applies is more restrictive than that of the construction, because we
assume L > 1 rather than L > ε/β. The situation is in many ways parallel to
that of Section 2. A major difference is that the energy in Section 2 was local,
while the one in this section is nonlocal.

The admissible magnetizations m are no longer divergence free; rather they
have the form (m1(x, y), 0) with m1 = ±1 almost everywhere in Ω. So we
cannot express m as a curl, as we did in Section 2. But m still determines
a sort of stream function via its Helmholtz decomposition. Indeed, with our
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usual convention that∇u is the projection of m onto the the space of gradients,
we can define φ (up to an additive constant) by

(m1, 0)− (ux, uy) = (φy,−φx) .(3.4)

Clearly (φy,−φx) is the L2 projection of m onto the space of divergence-free
vector fields. Notice that the norm of ∇u is controlled by the field energy, and
if ∇u is small, then m ≈ (φy,−φx).

The maps m → ∇u and m → (φy,−φx) are classical singular integral
operators, which map Lp(R2) → Lp(R2) for 1 < p < ∞. Remembering that
m = 0 outside Ω, we see that ∇u and ∇φ are in Lp for every p. Taking p > 2
it follows that u and φ are continuous.

THEOREM 3.2 There exist constants c0 and C0 independent of ε, L, and β
such that if

ε1/3L2/3

β1/3 <
c0

4
(3.5)

and L > 1, then the minimum energy of (P3) satisfies

c0ε
2/3β1/3L1/3 ≤ E0 ≤ C0ε

2/3β1/3L1/3 .

PROOF: Our proof has the same overall structure as that of Theorem 2.2.
The upper bound is supplied by Proposition 3.1, so we need only address the
lower bound. Let m = (m1, 0) be a minimizer of (P3), and note that m ∈ BV.
It clearly suffices to give a lower bound for ε

∫
Ω |m1y|dx dy+β

∫
R2 |∇u|2 dx dy

since |m1y| ≤ |∇m|. We shall argue by contradiction, starting from the
hypothesis that

E0 ≤ c0ε
2/3β1/3L1/3(3.6)

for some c0 > 0. Assuming (3.5) with the same value of c0, we shall prove
that c0 cannot be too small. It follows that when c0 is smaller, (3.6) must fail,
and this is the desired lower bound.

Step 1. By (3.6) and Tonelli’s theorem (see, e.g., theorem 5.3.5 of [18]),
we can find x0 ∈ (−L,L) such that

ε

∫ 1

0
|m1y|(x0, y)dy + β

∫ 1

0
u2
x(x0, y)dy ≤ c0

2
ε2/3β1/3

L2/3 .(3.7)
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Step 2. In Section 2 we had φ = 0 at ∂Ω. Here we have no boundary
condition for φ; this step provides a substitute. We may assume without loss
of generality that x0 ≥ 0. Using both (3.6) and (3.4), we have

β

∫ 1

0

∫ 2L

L
φ2
y(x, y)dx dy ≤ c0ε

2/3β1/3L1/3,

and hence there exists x1 ∈ (L, 2L) such that∫ 1

0
φ2
y(x1, y)dy ≤ c0

ε2/3

β2/3L2/3 .

Adding a constant to φ if necessary, we may assume that
∫ 1

0 φ(x1, y)dy = 0.
It follows that ∫ 1

0
φ2(x1, y)dy ≤ c0

π2
ε2/3

β2/3L2/3 ,(3.8)

since the first nonzero Neumann eigenvalue of −φ′′ = λφ on (0, 1) is π2.

Step 3. In proving Theorem 2.2, we gave a lower bound for
∫ 1

0 φ
2 +

1
4(1−s) φ

2
x dy at x = x0. This step provides a substitute for that estimate.

Rather than focus on φ(x0, y), it is convenient to work with the primitive
of m1, i.e., the function F : [0, 1] → R defined by F ′(y) = m1(x0, y) and∫ 1
0 F (y)dy =

∫ 1
0 φ(x0, y)dy. Clearly F ′ = ±1 almost everywhere on [0, 1].

Moreover, the number of times F ′ = m1 changes sign is controlled by the
energy. Indeed, denoting this number by N(x0), we see from (3.7) that

N(x0) ≤ c0

4
β1/3

ε1/3L2/3 .(3.9)

Applying Lemma 2.7 of [11], we obtain∫ 1

0
F 2(y)dy ≥ 1

12(N(x0) + 1)2 .

Combining this with (3.9) and (3.5) gives∫ 1

0
F 2(y)dy ≥ 4

12
ε2/3L4/3

c2
0β

2/3 .(3.10)

Step 4. We just obtained a lower bound on
∫
F 2 dy. Now we shall give

an upper bound. Taken together, these estimates supply the desired inequality
for c0.
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By the triangle inequality

|F (y)|L2 ≤ |F (y)− φ(x0, y)|L2 + |φ(x0, y)− φ(x1, y)|L2

+ |φ(x1, y)|L2 .
(3.11)

To estimate the first term on the right, we observe that F − φ has mean value
0, and (F − φ)y = m1 − φy = ux by (3.4). It follows using (3.7) that∫ 1

0
(F (y)− φ(x0, y))2dy ≤ 1

π2

∫ 1

0
(m1(x0, y)− φy(x0, y))2 dy

≤ c0

2π2
ε2/3

β2/3L2/3 .

To estimate the second term, we observe from (3.4) that φx = uy. Thus∫ 1

0
(φ(x0, y)− φ(x1, y))2dy ≤ 2L

∫ 1

0

∫ 2L

0
φ2
x dx dy

≤ 2L
∫ 1

0

∫ 2L

0
u2
y dx dy

≤ 2Lc0
ε2/3L1/3

β2/3

using Hölder’s inequality and (3.6). The third term on the right-hand side of
(3.11) is estimated by (3.8). And the left-hand side of (3.11) is estimated by
(3.10). Assembling these results, (3.11) implies

1√
3
≤ c3/2

0

(√
2 +

1
πL

(
1√
2

+ 1
))

.

Remembering our hypothesis L > 1, we conclude that

1√
3
≤ c3/2

0

(√
2 +

1
π

(
1√
2

+ 1
))

(this is the only place in the proof where we use the assumption L > 1). The
theorem holds for any c0 small enough to violate this inequality, i.e., for c0
less than about 0.44.

REMARK 3.3 In [11], Kohn and Müller briefly considered a “soft boundary
condition” variational problem of the form∫

Ω
aφ2

x + ε|φyy|dx dy + b‖φ(L, ·)‖2H1/2(3.12)
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subject to φy = ±1. The discussion here is closely related to this problem
with a = b = β. Indeed, if m is admissible for (P3) and φ is determined from
m by (3.4), then φx = uy so

β

∫
Ω
φ2
x dx dy = β

∫
Ω
u2
y dx dy ≤ β

∫
R2
|∇u|2 dx dy .

Also, (φy,−φx) = (−ux,−uy) for x > L, so

β‖φ(L, ·)‖2H1/2 ≤ β
∫ 1

0

∫ ∞
L
|∇φ|2 dx dy ≤ β

∫
R2
|∇u|2 dx dy .

Thus the first and third terms of (3.12) are controlled by the energy (P3).
The surface energy is a little different, since φyy = m1y − uxy 6= m1y. The
constraint is also a little different, since φy = ±1−ux 6= ±1. These differences
are minor, however. The argument given above can also be used to prove a
lower bound for (3.12), supplementing the results in [11].

4 Finite Anisotropy and the Full Problem

The preceding sections addressed constrained versions of (P1), representing the
limits of small and large anisotropy. We turn now to the full, unconstrained
problem:

min
m∈A

α

∫
Ω
m2

2 dx dy + ε

∫
Ω
|∇m|dx dy + β

∫
R2
|∇u|2 dx dy

in which 4u = div m and Ω = (−L,L)×(0, 1). Let E0 denote the minimum
energy.

THEOREM 4.1 There are constants c0 and C0 independent of ε, L, α, and β
such that if

ε1/3L2/3

(min{α, β})1/3 ≤
c0

4
(4.1)

and L > 1, then

c0 (min{α, β})1/3 ε2/3L1/3 ≤ E0 ≤ C0 (min{α, β})1/3 ε2/3L1/3 .

PROOF: The constructions of Sections 2 and 3 are both admissible, so
the upper bound is an immediate consequence of Propositions 2.1 and 3.1. To
prove the lower bound, we shall combine the arguments used for Theorems
2.2 and 3.2.
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Our argument actually gives a lower bound for

η

∫
Ω
m2

2 dx dy + ε

∫
Ω
|m1y|dx dy + η

∫
R2
|∇u|2 dx dy

with η = min{α, β}. Suppose

E0 ≤ c0ε
2/3η1/3L1/3 .(4.2)

Let m = (m1,m2) be the magnetization achieving energy E0, and consider
its Helmholtz decomposition

(φy,−φx) = (m1,m2)− (ux, uy) .(4.3)

Step 1. By assumption (4.2) and Tonelli’s theorem, there exists x0 ∈
(−L,L) such that

c0

2
ε2/3η1/3

L2/3 ≥
∫ 1

0
ηm2

2(x0, y) + ε|m1y|(x0)dy

+ η

∫ 1

0
u2
x(x0, y) + u2

y(x0, y)dy ,
(4.4)

where |m1y|(x0) denotes the total variation measure (with respect to y) at fixed
x = x0. We may assume x0 ≥ 0 without loss of generality.

Step 2. Using the same argument as in Step 2 of Theorem 3.2, we see
that for some x1 ∈ (L, 2L),∫ 1

0
φ2(x1, y)dy ≤ c0

π2
ε2/3

η2/3L2/3 .(4.5)

Step 3. As in step 3 of Theorem 3.2, consider the continuous function
F : [0, 1]→ R satisfying F ′(y) = m1(x0, y) and

∫ 1
0 F (y)dy =

∫ 1
0 φ(x0, y)dy.

We use the arguments of step 2 of Theorem 2.2 with F (y) replacing φ(x0, y)
and m2 replacing φx to see that for s ∈ (1

2 , 1),

∫ 1

0
F 2(y) +

1
4(1− s)m

2
2(x0, y)dy ≥ 4s2

27c2
0

ε2/3L4/3

η2/3 .(4.6)

Step 4. CASE 1. Suppose∫ 1

0

1
4(1− s)m

2
2(x0, y)dy ≥ 2s2

27c2
0

ε2/3L4/3

η2/3 .
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From (4.4) we have ∫ 1

0
m2

2(x0, y)dy ≤ c0

2
ε2/3

L2/3η2/3 .

Therefore

c3
0 ≥

16s2(1− s)L2

27
.

Choosing s such that 1−s = 1/8L2 and remembering that L > 1, we conclude
that

c3
0 ≥

2
27

(
7
8

)2
.(4.7)

Step 4. CASE 2. Suppose∫ 1

0
F 2(y)dy ≥ 2s2

27c2
0

ε2/3L4/3

η2/3 .

The triangle inequality implies that

|F (y)|L2 ≤ |F (y)− φ(x0, y)|L2 + |φ(x0, y)− φ(x1, y)|L2

+ |φ(x1, y)|L2 .
(4.8)

Since (F − φ)y = ux and F − φ has mean value 0, (4.4) implies that

|F (y)− φ(x0, y)|L2 ≤
√
c0√
2π

ε1/3

η1/3L1/3 .

Since φx = uy −m2, we may argue as for Theorem 3.2 to get

|φ(x0, y)− φ(x1, y)|L2 ≤
√

2c0
ε1/3L2/3

η1/3 .

Combining these estimates with (4.5) and (4.8) and using the hypothesis L ≥ 1,
we get (

1
π

(
1√
2

+ 1
)

+
√

2
)
c

3/2
0 ≥ s

√
2
27
.

We must keep the choice 1− s = 1/8L2 for consistency, so our conclusion in
this case is (

1
π

(
1√
2

+ 1
)

+
√

2
)
c

3/2
0 ≥ 7

8

√
2
27
.(4.9)
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Thus the theorem holds whenever c0 is small enough to violate both (4.7)
and (4.9), i.e., when c0 is less than about 0.24.

In summary, our variational problem (P1) has two distinct regimes, corre-
sponding to α� β and α� β, with crossover where α ∼ β. These regimes
correspond to small and large anisotropy, respectively, since α = κ|M|2 and
β = |M|2 where κ is the anisotropy. The branched structure of Section 2 is
preferred when α � β and that of Section 3 when α � β; the two are com-
parable when α ∼ β. In each case the better of two constructions achieves the
optimal energy up to a constant factor (independent of α, β, ε, and L). These
assertions apply, however, only if the surface tension is sufficiently small rela-
tive to the other parameters, i.e., if (4.1) holds, and we have proved the lower
bounds only when L > 1.

We close by checking that our results are physically meaningful, in the
sense that the smallest length scale of the construction is large compared to
the width ε/α of a Bloch wall. If α ≤ β (equivalent to κ ≤ 1), then we are
assuming

ε1/3L2/3

α1/3 ≤ C ,(4.10)

and the construction is that of Section 2. Its smallest length scale is of order
ε2/3L1/3α−2/3. This is larger than ε/α if ε/α < L. But (4.10) gives ε/α <
C3L−2. So our result is meaningful if L is large enough. If α ≥ β (equivalent
to κ ≥ 1), then we are assuming

ε1/3L2/3

β1/3 ≤ C ,(4.11)

and the construction is that of Section 3. Its smallest length scale is of order
ε2/3L1/3β−2/3. This is larger than ε/α if ε/β < Lκ3. But (4.11) gives
ε/β < C3L−2. So our result is meaningful if Lκ is large enough (and in
particular if L is large enough, since κ > 1).
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