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We extend, reformulate and analyse a phenomenological model for bone remodelling. The original macrobiomechanical
model (MBM), proposed by Hazelwood et al. [J Biomech 2001; 34:299–308], couples a population equation for the cellular
activities of the basic multicellular units (BMUs) in the bone and a rate equation to account for microdamage and repair. We
propose to account for bone failure under severe overstressing by incorporating a Paris-like power-law damage
accumulation term. The extended model agrees with the Hazelwood et al. predictions when the bone is under-stressed, and
allows for suitably loaded bones to fail, in agreement with other MBM and experimental data regarding damage by fatigue.
We numerically solve the extended model using a convergent algorithm and show that for unchanging loads, the stationary
solution captures fully the model behaviour. We compute and analyse the stationary solutions. Our analysis helps guide
additional extensions to this and other BMU activity based models.

Keywords: bone; remodelling; damage accumulation; BMU; biomechanics; numerical

1. Introduction

Bone is a dynamic tissue that adapts its internal

microstructure to its physiological and mechanical environ-

ment through a process known as bone remodelling. Live

bone is continuously renewed and microdamage, accumu-

lated by fatigue or creep, is continuously repaired. It is

commonly accepted that bone remodelling is carried out

by basic multicellular units (BMUs) consisting of bone

resorbing osteoclasts and bone forming osteoblasts working

in concert.

When the BMUs are activated, there is an initial period

of time, called the resorption period, where osteoclasts

break down bone through resorption of bone tissue. This is

followed, after a brief period of inactivity, by the reversal

period where new bone tissue is formed. Until recently,

most bone remodelling models were based on phenom-

enological descriptions of these activities as measured by

the average change of bone porosity or density through the

coordinated activities of osteoclasts and osteoblasts.

Recent advanced biologically based bone remodelling

models (Hernandez et al. 2000, 2001; Hazelwood et al.

2001; Doblaré et al. 2004; Garcı́a-Aznar et al. 2005)

couple these BMU bone cell activities with the mechanical

damage fatigue dynamics related to the accumulation and

removal of bone tissue. These coupled models, which we

will refer to as macrobiomechanical models (MBM), have

yielded new insights by relating the cell activities during

bone remodelling to the mechanical stimulus of the bone.

The MBM proposed by Hazelwood, Martin, Rashid and

Rodrigo (2001) (referred to as HMRR) was the first model

coupling the BMU dynamics and microdamage. It has

been used to study the long-term effects of biphosphonate

on the development of trabecular bone (Nyman et al.

2004a), and been used in combination with a finite element

code to assess different types of knee replacement

strategies (Nyman et al. 2004b).

In Section 2, we start by reformulating the HMRR to

clarify the simple and robust structure of the population

model for the BMUs and the rate equation to account for

microdamage. The reformulated model simplifies the

analysis, allowing us to mathematically characterise the

behaviour of the model (Section 3). The reformulation also

balances the space and time scales, which can greatly

reduce the numerical errors when simulating the equations.

We obtain explicit solutions for the asymptotic (long-time)

solutions of the model. These steady states provide a global

perspective of the model outcomes and constrain the

equilibrium values of bone porosity p and microdamage D.

The original HMRR model uses a constant rate of

accumulation of damage, which results in an upper bound

for bone damage. Experimental data (Caler and Carter

1989; Pattin et al. 1996; Cotton et al. 2003), show that

repeated large loading continually weakens bone, and if

the load is large enough the bone will eventually fail, i.e.

damage becomes catastrophic.

The reformulated HMRR model sheds light on how to

extend the model and account for bone failure under

severe over-stress. Equally important, it suggests a damage

repair mechanism that depends on BMU activity. We

modify the model by replacing the damage accumulation
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term by a Paris-like law for fracture mechanics (cf. Suresh

1991). In Section 4, we verify that the modified model

solutions agree with the original HMRR model when the

bone is under-stressed, and show how it accounts for

failure when the bone is over-stressed and the damage

repair cannot counteract the growth term. Thus, the new

model extends the range of validity for the HMRR model

to wider range of mechanical dynamics.

The reformulated model has other desirable qualities, not

the least of which is that it is now amenable to mathematical

and numerical analysis. The extreme disparity in size of

variables and parameters in the model can easily lead to

numerical loss-of-precision errors, and the solutions for

larger errors can qualitatively differ from the converged

solution. The well-balanced formulation of the extreme range

of parameters and spatio-temporal scales reduces the impact

of computer round-off errors when numerically solving the

equations. We solved the integro-differential equations using

a convergent variable order stiff solver of type ‘backward

difference formula’ (see Iserles 1996) inside an adaptive

trapezoidal quadrature for the integrals. We confirmed the

numerical solution had a second order convergence rate as

the time step,Dt, was decreased. This is in agreement with the

theoretical convergence estimate of the method.

These numerical experiments verify the need to be

especially careful when formulating and solving models

with a vast range of space and time scales. The

mathematical analysis is shown to be instrumental in

providing a guide to the accurate numerical solution of the

equations. It is also instrumental in permitting us to show

how close the HMRR model is to other MBM models.

Section 6 summarises our results and the ways in

which the model can be simplified, without sacrificing

accuracy, and concludes the paper by suggesting paths for

improvement of this and other MBM models.

2. The MBM of Hazelwood et al.

MBM models couple the basic biological and mechanical

processes for bone remodelling in order to simulate the

macromechanical behaviour of bone with simple

equations. Their simplicity makes them ideal to test our

understanding of macroscopic process. There are a variety

of these models and one of our aims is to show that the

HMRR model is similar in structure to other MBM’s. This

unifying exercise is for further developments in the

modelling process. We start by recasting the HMRR model

so it is more amenable to analysis and less prone to round-

off errors in numerical simulations.

2.1 The coupled delay equations

The external mechanical load on a representative

volume containing BMUs affects the remodelling

activities of the BMUs. This leads to changes in bone

porosity, which in turn changes the mechanical response

of the bone. The porosity of the bone is a fraction or

percentage of the pores within the bone; p ¼ 0 corresponds

to dense bone, and p ¼ 1 corresponds to bone of zero

density. The damage is defined as the total crack length per

section of area of the bone. Two variables contribute to

changes in p and D: a mechanical stimulus F, and the

BMU activation frequency f aðp;D; tÞ.
The equations for the porosity p and the damage D are

dpðtÞ

dt
¼ A NRðp;D; tÞ2 NFðp;D; tÞ

� �
; ð1Þ

dDðtÞ

dt
¼ KDF2 Fs ADf aðp;DÞ; ð2Þ

where t $ t0 is time, measured in units of days; both �NR

and �NF depend indirectly on the mechanical stimulus.

Here KD is a constant of proportionality (to be discussed

further in Section 3), and Fs ¼ 5 mm22 is an empirical

factor associated with microcrack surface area (see the

HMRR paper for details). The initial conditions are given

at time t0 and there are three time intervals associated with

the BMU activity, the resorption period TR, the inactive

period TI and the refilling period TF. If the modified area A

was strictly constant it could easily be scaled out of the

equations by redefining time t, say such that

d=dt ¼ Ad=dt. However,

A ¼
A0 if F $ F0;

ð1=2ÞA0ð1 þF=F0Þ otherwise;

(

where A0 and F0 are constants, the former is associated

with the typical area measure, the latter with a threshold on

the mechanical stimulus. Equation (1) incorporates the

temporal periods for both resorption and refilling via the

averages NR :¼ NRðtÞ=TR, and NF :¼ NF=TF.

The associated population resorption and refilling

densities NR and NF at time t are given by

NRðtÞ ¼

ðt
t2TR

f aðpðsÞ;DðsÞÞds

NFðtÞ ¼

ðt2ðTRþT IÞ

t2ðTRþT IþTFÞ

f aðpðsÞ;DðsÞÞds:

ð3Þ

These integrals must be defined for small times when their

lower limits are negative. (Without loss of generality,

we take the initial time t0 ¼ 0 in everything that follows).

A simple way to remove any ambiguity from the initial

data is to define the prehistory data as an equilibrium

solution, but otherwise, initialising the model can be

subtle if nothing is known about its behaviour. We will

show that the time-dependent behaviour of the model

is parametric in the time dependence (if any) of the

load: steady state solutions to the full model for steady
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loads can be computed for the full range of p and D.

To fully define the system of delay equations, for the first

full cycle of the BMU unit, i.e. for t [ ½0; TR þ T I þ TF�,

one must either prescribe initial data for p(t) and D(t);

define NR ¼ NR=TR and NF ¼ NF=TF; or define the

historical values of the damage component fa(s) for

s [ ½2ðTR þ T I þ TFÞ; 0�. For t # TR þ T I þ TF the bone

model exhibits transient behaviour and, unless the historical

data are known, these initial values must be given to fully

define the system.

To simplify the notation in Equation (3), define the

average population reabsorption density as

Iða; bÞ ;
ðb
a

f aðpðsÞ;DðsÞÞds:

We define the initial conditions for NR as:

NRðp;D; tÞ ¼
I½0; t�; if t , TR;

I½t2 TR; t�; otherwise;

(
ð4Þ

and set NFðp;D; tÞ ¼ 0, for t # TR þ T I þ TF. The initial

time averages are defined as

NRðp;D; tÞ ¼
I½0; t�=t; if t , TR;

I½t2 TR; t�=TR; otherwise;

(
ð5Þ

and

NFðp;D; tÞ ¼

0 if t, TR þT I þTF;

I½t2 ðTR þT I þTFÞ;
t2 ðTR þT IÞ�=TF otherwise:

8><
>:

ð6Þ

2.2 The physical variables

Given a strain, 1 ¼ L=E, the time to fracture is given by

the relation tf / 12q, where q . 0 is an empirically

adjusted exponent (Caler and Carter 1989; Cotton et al.

2003), E is the elastic modulus of the bone and 1 is the

strain. The mechanical stimulus is defined as

F :¼
1

tf
¼ RL1

q; ð7Þ

where the constant RL is the loading rate (Martin 1992).

The elastic modulus e of the bone was fit to data in

terms of p (see Martin et al. 1998 for details on the fit).

HMRR used the following polynomial fit to experimental

data,

eðpÞ ¼ 105 8:83p6 2 29:9p5 þ 39:9p4 2 26:4p3
�

þ 9:08p2 2 1:68pþ 0:237
�
:

ð8Þ

The reader should note that the more conventional material

quantities associated with classical mechanics, such as the

Poisson ratio, are already subsumed into the empirical fit.

(In Hernandez et al. 2000 and 2001, an alternative empirical

fit to the Young’s modulus is suggested in which the Poisson

ratio appears as a defined constant, and hence the same

thing could be done here with the empirical prescription of

HMRR). The function e(p), shown in Figure 1(a) as a solid

line, agrees with the experimental data for low porosity

but differs greatly from the data at high porosity values

(Martin et al. 1998); of note is that it is non-zero at p ¼ 1.

We regularised this formula for p . 0.4 to obtain

EðpÞ ¼
eðpÞ 0 # p # 0:4

eð0:4Þð1 2 pÞ=0:6 0:4 , p # 1:

(
ð9Þ

Figure 1. (a) The solid line is the elastic modulus eðpÞ as defined in HMRR; the dashed line is the regularised version where Eð1Þ ¼ 0
defined in Equation (9). (b) The normalised specific surface area SðpÞ, as given by the empirical fit Equation (10).
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A superposition of these alternative definitions of the

elastic modulus is plotted in Figure 1(a). We discuss

further the difference between these two alternatives in

Section 5.

The specific surface area, S, is fitted to data, as in

Hazelwood et al. (2001) and normalised to the range [0, 1],

as

SðpÞ ¼
28:8p5 2 101:0p4 þ 134:0p3 2 93:9p2 þ 32:2p
� �

SN
:

ð10Þ

Here SN is defined to normalise the maximum of the

specific surface area to 1. Figure 1(b) shows the

normalised specific surface area.

The BMUs are activated by disuse and microdamages.

The BMU activation frequency f aðD; pÞ is defined as

f aðp;DÞ ¼ SðpÞðf aðdisuseÞðpÞ þ f aðdamageÞðDÞÞ: ð11Þ

The activity due to disuse is defined as

f aðdisuseÞðpÞ ¼
f aðmaxÞ= 1 þ c1ec2FðpÞ

� �
if F , F0;

0 otherwise;

(

ð12Þ

where c1 and c2 are constants, F0 is an empirically derived

threshold mechanical stimulus estimated from cyclic strain

levels needed to maintain cortical bone mass at

equilibrium.

The porosity of Haversian canals is less than 10% for

average people below 50 years of age, and at worst around

30% for females over 80 years old (Wang and Ni 2003).

The parameters (F0 and fa0) in HMRR were derived for

Haversian canals or cortical bones for the limited range of

porosity (e.g. p , 0.3) where their model is valid.

The damage component of the activation frequency is

defined by

f aðdamageÞðDÞ ¼
f aðmaxÞ

1 þ c3ec4D
;

where c3 and c4 are constants (c4 , 0), the values of which

may be inferred from Table 1.

Since the modification to elastic modulus used in

HMRR by our regularised version is only significantly

different for p . 0.4, the function fa(disuse) does not change

and thus the activation frequency remains the same.

Therefore, the p evolution equation does not change either.

The main effect of this regularisation is in the first term,

KDF, in the damage equation (2) wherein the mechanical

stimulus becomes catastrophic as p approaches 1, i.e. the

regularised E( p) will go to zero. This catastrophic effect of

damage accumulation as p approaches 1 is a reasonable

improvement over the original inception in HMRR, which

remains bounded as p approaches 1. In Section 3, we will

prove this fact. However, we argue that a catastrophic

damage accumulation term, meaning that the damage will

become irreparable and grow toward D ¼ 1, is phenom-

enologically associated with fatigue rather than the value

of the porosity. This motivates our looking in Section 4 at

an alternative damage accumulation model.

The mechanical stimulus is very sensitive to changes

in E( p) and S( p) via p in the following sense: the relative

sensitivity jð›F=›EÞ=Fj for the range of values of E given

in Figure 1(a) is small (less than 1023, in fact). On the

other hand the relative sensitivity of F to p, when E and S

are fitted with high order polynomials, is large. Using a

significantly lower order fit for E and S will reduce the

sensitivity of the mechanical stimulus to changes in p to

reasonable levels. The empirical functions E( p) and S( p)

in Figure 1(a),(b) are not very intricate, suggesting that a

lower order polynomial fit would be suitable. We fit the

data with second degree polynomial expressions for both

Equations (9) and (10), and found that the results changed

very minimally compared to using the higher degree

polynomial counterparts, especially with regard to final

steady states. Piece-wise cubic splines do an even

better job at following the higher order polynomial fit for

S( p) and E( p) for the full range of p with a marginal

increase in numerical sensitivity. We conclude that a

spline, quadratic or cubic polynomial interpolant would be

a simpler, and possibly more accurate, approach to

interpolate the data.

Table 1. Model constants and other parameters defined, given
or derived.

Symbol Value Units Definition

c1 – 1 e2kbkc

c2 – days21 kb

c3 – 1
f a ðmaxÞ2f a 0

f a 0
e2kr f a ðmaxÞ

c4 – mm kr
D0
f a ðmaxÞ

c5 – mm/mm2

cp 1.90 See Equation (18)
KD 5.57 £ 104 mm/mm2

A0 2.84 £ 1022 mm2 –
fa (max) 0.5 mm22/days –
m – 1 See Equation (18)
TR 24 days –
TI 8 days –
TF 64 days –
RL 3000 days21 –
kb 6.5 £ 1010 days21 –
kc 9.4 £ 10211 days –
kr 21.6 mm2 days –
p0 – 1 See Equation (13)
D0 0.0366 mm/mm2 –
F0 1.875 £ 10210 days21 –
fa0 0.0067 # BMU’s/mm2/day –
Fs 5 mm22 See Equation (14)
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2.3 Model parameters

In our analysis, we use the HMRR parameter values shown

in Table 1. The table indicates if the parameters are

derived, given (e.g. experimental/observational in origin),

or defined based on constraints. Note the large variation in

the size of the parameters in the table. This variation

requires that special attention be given to the numerical

implementation of the model to prevent serious loss-of-

precision errors, even on double precision machines, and

further, that we are careful to take into account the origin of

the parameters, so as to avoid inconsistent model results.

The mechanical stimulus F0 is a given parameter. Its

value is what is required to maintain cortical bone mass in

equilibrium and corresponds to an average person who

experiences about RL ¼ 3000 cpd of lower extremity

loading. The cyclic strain is taken as 500 m1 (equivalent to

a compressive force of 891.6 N). The initial damage

Dðt ¼ 0Þ ¼ D0 ¼ 0:0366 mm/mm2 is the average crack

density for a 40-year-old man. In HMRR, this value was

obtained from measurements. The parameter f a0 ¼ 0:0067

# BMU’s/mm2/day is given. The initial porosity,

pðt ¼ 0Þ ¼ p0, is a derived parameter, dependent on q,

and is defined by solving for the root p0 of the equation:

Fðp0Þ ¼ F0 ¼ 3000
891:6

100Eðp0Þ

� �q

: ð13Þ

(Note, that the calculations in the HMRR paper used the

same p0 for all values of q, see Figure 7 of Hazelwood et al.

2001.)

The given value of the mechanical stimulus F0 ¼

1:875 £ 10210 days21 maintains a cortical bone mass in

equilibrium, and is consistent with a value of 891.6 N for

the load, and q ¼ 4, p ¼ p0 in Equation (13). Thus at

equilibrium _D ¼ 0 in Equation (2) and we define the

damage rate coefficient KD as

KD ¼
FsD0Sðp0Þf a0A

F0

< 5:57 £ 104 mm=mm2: ð14Þ

The factor S( p0) is needed to normalise the damage rate

coefficient appropriately at t ¼ 0 in Equation (2). In the

HMRR calculations in Hazelwood et al. (2001), the

authors did not include the factor S( p0) and its damage rate

coefficient is KD=Sðp0Þ < 1:85 £ 105 mm=mm2. We use

KD unless otherwise noted. The initial bone activation

frequency fa0 was taken to be 0.00670 exactly, we do so

here as well. However, when calculating fa they also take

into account the greater potential for remodelling offered

by large surface areas, i.e. S( p), but neglect to include this

in the calculation of KD (see Equation (9) of Hazelwood

et al. 2001). The constant q ¼ 4 is chosen to maintain

balance between bone formation and removal (cf. Martin,

1995; Martin et al. 1998).

3. Analysis of the MBM

The steady states of the model are found by setting the

time derivatives of p and D to zero in the evolution

equations (1) and (2). In what follows we analyse the

model as originally conceived by the authors of HMRR.

However, we used the corrected value of KD. We define the

asymptotic steady state solutions by pðtÞ! p̂ and DðtÞ!

D̂ as t!1. The physically relevant steady state solutions

satisfy D̂ $ 0 and 0 # p̂ # 1, are stable, and describe the

asymptotic behaviour of the model. At steady state, the

Equations (1) and (2) reduce to:

QRNRðp̂; D̂; tÞ ¼ QFNFðp̂; D̂; tÞ; ð15Þ

KDFðp̂; D̂Þ2 FsAD̂f aðp̂; D̂Þ ¼ 0; ð16Þ

where Fðp̂; D̂; tÞ ¼ F̂, Aðp̂Þ ¼ Â, EðpÞ ¼ Ê are all

constant.

Figure 2 plots the steady solution with a load

L ¼ 891.6 N. The figure compares the outcomes of using

the corrected damage rate coefficient KD with the solutions

derived with KD=Sðp0Þ, the value used throughout by the

authors of HMRR. The differences in the damage are

significant over the entire range of porosity. Figure 3

shows the steady-state solution curves in an under-stressed

(L ¼ 255) and an over-stressed (L ¼ 1665) situation. In the

under-stressed case, there is very little damage when the

porosity is small. Then, as p ! 1 the damage in the steady

state solution increases rapidly until about p ¼ 0.95 when

it quickly drops. The sudden drop in the damage, for large

p, is caused by the downstream effects of F, which in turn

is being affected by the increasing value of E. (In this

instance we are using the original expression of E( p) as in

Equation (8).) More specifically the damage repair term is

capable of arresting the damage because while p is large

it does not necessarily lead to a large damage

Figure 2. The damage in the steady state solution is plotted in
the ðp;DÞ plane for the load L ¼ 891:6 N for both the correct
damage rate coefficient f and for KD=Sðp0Þ. The model predicts
vastly different damage to the steady state solution for the two
cases.
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accumulation term since E( p) is finite and non-monotonic

for large p.

In other words, the behaviour of the model is suspect

for large p and mild loads. In the over-stressed case, there

is a sensible and dynamic interplay between porosity and

damage for small p. The damage in the steady state

solution continues to increase as p gets larger until D

reaches very large but finite values at large p. For p . 0 we

have f aðD; pÞ . 0, since S( p) and F( p) are bounded and

positive and E( p) . 0.

From Equation (2), we know

dD

dt
# g1 2 g2D;

where g1, g2 are positive and do not depend on D. This

implies DðtÞ # C1ðg1; g2Þ, where C1 is a positive constant

that depends on the parameters in g1, g2. Hence, the model

does not produce solutions with super linear growth, as

those observed numerically in Hazelwood et al. (2001) for

the HMRR model.

Since the model produces steady bounded solutions,

one might wonder if it is capable of producing non-steady

state asymptotic solutions, e.g. oscillations. Decaying

oscillations in the porosity and activation frequency were

observed for the first few hundred days in Figures 5 and 8

of Hazelwood et al. (2001). To investigate the possibility

of asymptotic oscillating solutions, we perturb the HMRR

steady solutions ðpðtÞ;DðtÞÞ ¼ ðp̂; D̂Þ þ ðdp; dDÞ and sub-

stitute them into Equations (1) and (2). We obtain

ddp=dt ¼ 0 and the damage equation leads to

ddD

dt
¼ 2k1dp2 k2dD;

where the real part of ki $ 0, i ¼ 1; 2, and are never

strictly imaginary. Therefore, if oscillations appear, they

decay exponentially; sustained oscillations are not

possible. The analysis does not support the resurgence of

high frequency oscillations that spontaneously appear after

about 400 days (as in Figure 4 of Hazelwood et al. 2001).

We are unable to reproduce this effect in our stabilised

model and speculate that these higher frequency

oscillations be numerically induced. (See Section 5 for

further details on this issue).

4. Improving the damage rate model

Experiments, e.g. those reported by Caler and Carter

(1989), Pattin et al. (1996) and Cotton et al. (2003), have

Figure 3. The fixed point curves for KD under-stressed: (a) L ¼ 255, and over-stressed: (b) L ¼ 1665. The plot in the ðp;DÞ plane shows
that in the under-stressed low porosity case, the damage is insensitive to the porosity when p , 0:5.

Figure 4. Porosity and damage steady state curves, using (18)
with m ¼ 1 for the damage equation. The value of cm was tuned
for the under-stressed L ¼ 891:6 N load where steady solutions
exist for p . p0 ¼ 0:0442, even though the damage is
catastrophic for p , p0. Steady solutions exist for loads higher
than L ¼ 891:6 N for all values of p and D. Notice the reduced
damage for high porosity in the over-stressed case, L ¼ 1665 N.
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amply demonstrated that under over-stressed conditions,

the damages would accumulate and eventually the bone

would fail. The damage in the HMRR, as we demonstrated

in the previous section, is bounded for all loads. To improve

the model at high stress levels, we replace the damage

growth term with a physically based Paris-like fatigue

model, as used in similar fatigue damage models (Taylor and

Prendergast 1997).

Pattin et al. (1996) (also Caler and Carter 1989)

perform an empirical fit of the creep strain of cortical bone

subjected to strains. The bone specimens come from

cadavers and are thus not subject to damage repair.

The data show that when the cyclic strain in the bone

exceeds some threshold then there is progressive damage

to the bone. This damage can eventually grow to

catastrophic levels, provided the load is sufficiently high

and/or the sample is subjected to stresses for long enough

periods of time. Furthermore, the data show that the

history of bone degradation depends on whether the

stresses are compressive or tensile.

To extend the model for catastrophic damage, we use a

Paris-like damage law of fracture mechanics for the

permanent strain (Suresh 1991), that relates the crack

growth rate under a fatigue stress regime to the stress

intensity factor as a power law. Hence, for D . Dth,

threshold damage is

D ¼
1

F½ðtf 2 tÞa�
; ð17Þ

in terms of some function F to be determined. Below that

threshold D ¼ Dth, D is constant. For the sake of

discussion, this form ignores damage repair. We adopt

the damage repair term of the original HMRR in the

improved damage rate equation. Here, tf depends on L and

E, as suggested by (7). We will show that Equation (17)

would be qualitatively similar to the data presented in

Cotton et al. (2003) in their Figure 3, i.e. a period of

accumulating damage followed by catastrophic failure,

given repeated loading above some threshold, and can be

made to fit the data studied by Pattin et al. (1996). We thus

offer an alternative and perhaps simpler description of the

damage accumulation term.

To better account for bone failure, we investigated

replacing the logarithmic fit suggested in Pattin et al.

(1996) with a power-law dependence for the relative

damage �D ; D=Dth:

d �D

dt
¼ cm

L

EðpÞ

� �q

�Dm �D2 FsA �Df aðp; �DÞ; ð18Þ

for D $ Dth, where cm $ 0, and m $ 1. If D , Dth, then D

is constant. In the under-stressed case, replacing the

logarithmic damage growth term in Equation (2) with the

power-law model makes almost no difference. However,

when the bone is severely over-stressed, then the power-

law model significantly increases the bone damage.

We follow the HMRR approach in defining an

equilibrium damage state where cm is tuned to obtain

d �D=dt ¼ 0 for a specific load, e.g. L ¼ 891.6 N, E( p0), fa0

and D ¼ D0. The exponent m is a new parameter, whose

numerical value in the example calculations will be taken

to be 1; the reason for this choice of m will become

apparent in what follows.

A threshold for the relative damage to grow

exponentially and irretrievably is given by

�D .
FsAf aE

q

cmLq

� �1=m

;

when the damage accumulation is more prominent than the

damage repair term. Note that increasing the load L lowers

the threshold and that the larger the load, or the exponent

m, the sooner the instability occurs. Blowup leads to full

decoupling of the activation frequency on the damage, i.e.

f aðdamageÞ ¼ f aðmaxÞ, and no feedback is possible in the

porosity, other than a readjustment in the porosity. Thus,

the coupled model exhibits continuous growth in the

damage with no change on the porosity, beyond an

adjustment in its value shortly after the blowup. Whether

this is the correct behaviour of under-stressed bone is

beyond the scope of this work. Figure 4 shows the

critical points in the ( p, D) plane for m ¼ 1. The case

corresponding to L ¼ 891.6 N is a tuned threshold for the

model (the cm is set with this load). Interestingly, steady

solutions exist for porosities higher than about 0.0442,

which is the value of p0. For loads higher than L ¼ 891:6,

steady solutions are defined for all values of p and D.

These higher load cases generate curves that would be

located below the L ¼ 891:6 curve. The quick decrease in

the damage for high porosity in the over-stressed case

(where we take L ¼ 1665), is related to the anomalous

increase in E for high values of p (see Figure 1(a)).

The evolution of the porosity, damage and activation

frequency for the new model are shown Figure 5(a) for the

over-stressed case. As expected in over-stressed con-

ditions, provided enough time passes, the damage can grow

exceedingly large, leading to bone failure. The model can

also have catastrophic damage in the middle to high range

of 0:3 , p , 0:8 if the bone is stressed repeatedly. This

can also happen if the material is very sensitive to damage

because its Young’s modulus is low. The most salient

feature of the solution is the exponential growth. In the

under-stressed case, we get solutions that are qualitatively

and quantitatively similar to those obtained by HMRR:

compare Figure 5(b) and (c). In the under-stressed cases,

the damage repair term dominates in the new model, this is

not the case for the original HMRR model solution.
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5. Comparison with other models

Garcı́a-Aznar et al. (2005) defined the damage as

D :¼ 1 2 E=E0, where E0 corresponds to a reference

value of the elastic modulus of the undamaged bone. They

adopted a form for the damage accumulation term,

consistent with the logarithmic fit suggested in Pattin et al.

(1996),

D/ b1 2 b2½lnðb3 2 cgt=tf Þ�
n; ð19Þ

where b1, b2 and cf are constants tuned to agree with results

in Pattin et al. (1996). Moreover, they defined two different

damage formation modes, one for tension and one for

compression. The rate in both cases is essentially

exponential in the damage itself. Under tensile stress,

they used n ¼ 1/2, b1 ¼ 1, b2 . 0, 0 , b3 , 1; under

compression, they used n ¼ 1, b1 ¼ 0, b2 . 0, b3 ¼ 1.

We use the same definition of the damage, but define

the damage equation by the power law: for �D, ignoring

damage repair, and with D ¼ �D2D0, is of the form

D/
b4

ð1 2 cf t=tf Þ1=m
2D0; ð20Þ

where b4 can be written in terms of m, tf and cf .

Both forms can be made to pass through D ¼ 0 at t ¼ 0

with proper tuning of the parameters. Both exhibit

divergent behaviour, at tf b3=cg and tf =cf , respectively.

The values of the parameters in the exponential damage

accumulation term appear in Garcı́a-Aznar et al. (2005),

in both the compressive and the tensile cases. They are

Figure 5. Porosity, damage and activation frequency as a function of time, using (18) with m ¼ 1. (a) Over-stressed for the loads
L ¼ 891.6, 1400, 1655 and 2000 N. Notice how in the over-stressed case the damage continues to grow exponentially, which will
eventually lead to bone failure. The HMRR, over-stressed case will have growth, but it will be linear in time. (b) Under-stressed for the
loads L ¼ 10, 222.9, 445.8 and 891.6 N. (c) The solutions for under-stressed case are plotted for the loads L ¼ 10, 222.9, 445.8 and
891.6 N, and corresponding to solutions in Figure 4 of HMRR. The oscillations are less pronounced than the HMRR solutions. We did not
observe the bursting behaviour of the HMRR solutions, and speculate that they are numerical artefacts.
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chosen to match the fit suggested by Pattin et al. (1996).

Assuming that Equation (19) is exact in its representation

of the damage accumulation due to stresses one can write a

series about t ¼ 0 of Equations (19) and (20). Term by

term comparison shows that for both tensile and

compressive forces m ¼ 1, and that D0 ¼ b4 is the

compressive case and D0 – b4 for the tensile case. Both of

these parameters can be fixed uniquely for a reasonable fit.

This implies that both the exponential and the power law

fits are equally capable of fitting the experimental data, i.e.

they are both qualitatively similar and since the

logarithmic fit is benchmarked against data, the power-

law formulation can be made to fit the data as well. (Of

some mathematical interest, writing a series expansion

near the singular point, a Laurent expansion for the

powers of the logarithm function shows that the

leading order behaviour requires a complex representation.

This is obviously not the case for the power law

representation.)

We now turn to considering how the above model

would relate to a non-biologically-based bone remodelling

model that takes into account micro and macrocracks. The

model advocated by Taylor and Prendergast (1997),

paraphrased is

d �D

dt
¼

L

EðpÞ

� �q

cMð �D2 �DthÞ
mð �D2 �DthÞHð �D2 �DthÞ

�
þcm �D

m �Dð1 2 �DÞm
0 Hð �DÞ2Hð1 2 �DÞ
� �i

:

ð21Þ

Here Hð·Þ is the Heaviside function. We define Dtr ¼ D0,

where D0 is the microstructural barrier (typically in the

order of 100mm) and �D ¼ D=Dtr ¼ D=D0. In Taylor and

Prendergast (1997), m ¼ 1:75 and m 0 ¼ 5. The constants

cM and cm and q are experimentally derived fitting constants.

The first term on the right hand side accounts for the damage

accumulation term in Equation (18). The second term is a

damage accumulation term that is associated with

microcracks. Figure 6 illustrates the typical behaviour of

d �D=dt for small (dashed line) and large (solid line) loads.

Note that for a specific load and below, there is a range

in �D over which d �D=dt < 0 when all the other parameters

are fixed. We call this the no-growth gap. Below this gap

there is microcrack damage; above this gap there is

macrocrack damage, because outside of this gap

d �D=dt . 0. The implication is that if �Dðt ¼ 0Þ is in the

microcrack range, it will grow to some size and then stop,

if the gap is of bigger than or equal to 1 value of �D.

However, if �Dðt ¼ 0Þ is above the gap values (or there is

no gap), there will be catastrophic damage to the bone.

The Taylor and Prendergast model equation (21)

requires �Dth be a load-dependent parameter and explicitly

models the microcracks. On the other had, in the HMRR
�Dth is interpreted as the threshold between microcrack and

macrocrack damage. Taylor and Prendergast’s model does

not have a biologically based repair term, hence

macrocracks will never disappear, but increase irretrie-

vably under persistent cyclic load. The HMRR model

allows for the possibility that biologically based repair

occur. Although the Taylor and Prendergast’s model can

replace the damage accumulation term in HMRR, it does

not have a biologically based repair term. The importance

of this term for modelling live bone still needs

experimental verification.

Our model is a recasting and extension of the MBM

first proposed by HMRR (Hazelwood et al. 2001). In our

reformulated model, we used the value of the proportion-

ality constant in Equation (2), which includes the factor of

Sðp0Þ, i.e. KD. Figure 5(b),(c) shows qualitative agreement

of our model with the original HMRR for under-stressed

cases. Our solutions do not exhibit any of the spurious

numerical artefacts in the original HMRR such as the

oscillations observed in Hazelwood et al. (2001). Also, in

contrary to the HMRR model, the converged solutions

remain bounded in the over-stressed cases. However, this

restriction is removed in the alternative model proposed

here. See damage plot in Figure 5(a).

Of special consideration is the activation frequency in

Figure 5(c) for the case of L ¼ 445:8 N, which contrasts

with HMRR in Figure 4, where the latter appears to oscillate

significantly. As we mentioned in the Section 3, it is not

possible to obtain sustained oscillations in the dynamic

variables p and D. Oscillations, however, are not ruled out,

and in fact often occur in delay equations. The oscillations

that appeared in the HMRR result for dynamic variables

Figure 6. Damage rate, for stresses for small 20 MPa (dashed)
and large 40 MPa (solid line) loads, as proposed by Taylor and
Prendergast (See Figure 3 in Taylor and Prendergast 1997.) The
derivative d �D=dt < 0 N ear �D ¼ 1023 creates a no-growth gap in
the damage. Below this gap there is microcrack damage; above
this gap there is macrocrack damage.
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in the transient period, however, are mostly a numerical

artefact. Longer-period oscillations in the HMRR results

related with the dynamic variables, not associated with

changing the parameters T I, TR and TF, were most likely

induced by allowing p and D to go out of range (inducing

complex eigenvalues in the linearised equation).

The oscillations in the activation frequency observed in

the original HMRR results were ascribed to changes in

f aðmaxÞ. These oscillations, shown in Figure 5(c) for

L ¼ 222:9 N, are more pronounced in the original HMRR

than in our regularised model. We found as the load

increases from 240 to 400 N the decaying oscillations in f a
increase. These oscillations disappear well outside of this

load range. Although the parameters TR, T I and TF are set

by nature, changes in these parameters can also create

decaying oscillations. The frequency and decay of the

oscillations can be determined by analysing the spectrum of

the linear operator associated with the delay equations and

have been verified in numerical simulations.

Overloading, as shown in Figure 6 of HMRR for

L ¼ 1655 N, leads to exponentially growing porosity and

activation frequency. Figure 7 of HMRR shows that q ¼ 8

leads to similar exponential growth in porosity and damage.

These simulations are in agreement with our boundedness

estimates for small porosities when the damage is bounded.

When p approaches 1, then the simulations using the original

HMRR polynomial approximation of the Young’s modulus

still do not predict bone failure when the model is over-

stressed, and the solution does not exhibit super-linear

growth, in agreement with our estimates in Section 3.

We observed that increasing f aðmaxÞ decreases the damage

and has less effect for smaller p andD. Varying f aðmaxÞ moves

the steady-state solutions of the solution as shown in Figure 7.

6. Discussion

Bone remodelling is a complex process involving

dynamics of multiple scales from signalling to cell

activities and organ level mechanics. The model proposed

by Hazelwood et al. (2001) started an important

advancement in modelling of bone remodelling, byinte-

grating the cellular activities of BMUs with the

macroscopic stress strain mechanics of the bone.

We recast and analysed an extended MBM of HMRR

(Hazelwood et al. 2001). The recast model simplified the

structure and made the equations more amenable to

mathematical analysis. The modified model is well

balanced and more numerically stable, even with the

extreme spatio-temporal parameter scales. This eliminated

some serious numerical loss-of-precision errors that could

dominate the behaviour of the original model. The analysis

of the steady states of the model was used to unravel the

global behaviour of the solutions for a fixed load L. For a

fixed set of bone parameters, dynamic behaviour can be

fully characterised by the load. Furthermore, knowing the

global solutions it was also possible to suggest

phenomenological simplifications of the model that lead

to the same qualitative behaviour.

Even with the regularised formulation for the Young’s

modulus, we found that the dynamics of the ‘mechanical

stimulus’ F limited, and this leads to problems in the

HMRR damage equation. Furthermore, all solutions of the

equation with the HMRR formulation for the damage

equation are bounded, regardless of the level of the

stress on the bone. We formulated a revised power-law

damage-causing term that does not depend on the

mechanical stimulus motivated by the bone data analysed

in Cotton et al. (2003) that show creep strain behaviour

Figure 7. The effect of increasing f a ðmaxÞ from 0.5, 1.0, 1.5, to 2.0 on the steady-state solutions for the damage as a function of porosity.
(a) L ¼ 445 N, (b) L ¼ 891.6 N. Note how the damage is significantly reduced as f a ðmaxÞ increases, except in a small region of the
L ¼ 445 N case. We observed that increasing f a ðmaxÞ has less effect when p and D are small.
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and possible failure under loading. The power-law damage

equation was able to capture a wider range of dynamical

behaviour.

The new damage rate equation has a Paris-like damage

accumulation term and a BMU activity-dependent repair

term when the damage is above a threshold value Dth.

The damage is constant if it is below some threshold value.

The purely mechanical remodelling damage equation of

Taylor and Prendergast (1997) provides a mechanistic and

load dependent for the threshold Dth over which

d �D=dt . 0, interpreting Dth in (18) as the load-dependent

threshold between microcracks that are responsible for a

screening effect in the stresses, and macrocracks that are

capable of weakening the bone. While we find that their

complex modelling description of the screening is

potentially relevant to bone tissue dynamics, the model

does not take into account any biological repair

mechanisms, such as the damage repair term suggested

in HMRR. The importance of this term in bone

remodelling still needs to be accessed experimentally by

comparing fatigue damage of live and dead bones under a

variety of loading conditions. If the BMU activity-based

repair term is important then it should be possible to

measure that d �D=dt can actually decrease, in the

macrocrack range, in the live bone. With our new damage

rate equation, we showed that the resulting model agrees

qualitatively with the original HMRR model in the under-

stressed case, and for the over-stressed case, is capable of

catastrophic damage if the constant load is large enough.

We have suggested how the stress screening and the

damage repair can coexist.

Our calculations of the original HMRR model

indicated that the dependence of the porosity on the

damage might be too weak, particularly in the over-

stressed case, where it is possible to get unrealistic values

in the damage with little change in the porosity. Because

the coupling between porosity and damage is weak, the

stability of the system is controlled by the damage

equation and is almost independent of the porosity, and

the critical point for the solution is unstable. We found

that making the damage rate relative to the damage

itself leads to significant improvements for the over-

stressed case.

Our analysis of the dynamical behaviour of the

solutions demonstrated that the material properties and

parts of the activation frequency function could be

approximated by a simpler constitutive equation, without

loss of quantitative and qualitative fidelity. The fact that

this can be done points to the possible room for model

improvement. The HMRR MBM model specifies the

material properties of the bone, i.e. the effective surface

area and the Young’s modulus, are entirely fitted to data in

terms of porosity. This leads to weak coupling in the

steady solutions of the porosity and the damage under

fixed loads. In contrast, the material properties are in terms

of both the porosity and the damage in the Garcı́a-Aznar

et al. MBM model. In Garcı́a-Aznar et al. (2005), the

authors opted for a different model for the Young’s

modulus by taking into account the loss of stiffness due to

damage and with this change they obtained a richer

phenomenology. It strongly suggests that the improve-

ments in the HMRR formulation of the MBM model could

be obtained by focusing on more realistic models for the

material properties of the bone.

The recent phenomenological model of Garcı́a-Aznar

et al. (2005) is capable of modelling stress fractures and

has been shown to have significant predictive potential.

Beneath the phenomenological complexities, this model

shares many characteristics with the MBM. They both use

a population dynamics equation for the BMU’s and an

equation for the damage rate that involves a formation

and a repair term. Our Paris-like damage production law

is very close to the Garcı́a-Aznar et al exponential

damage production term. We have shown that our

modification of the HMRR model makes it qualitatively

consistent with experiments and also similar to other

MBM models. Both of these damage accumulation terms

give qualitatively similar fits of the damage data from

experiments.

In summary, for the highly non-linear equations for

bone remodelling models, the computed solutions are

sensitive to numerical errors, which can introduce artefacts

into the simulations. We reformulated the model to

minimise these errors and demonstrated that the numerical

solution was better conditioned and consistent with the

theoretical estimates on steady solutions. We derived and

analysed the stationary solutions of the model, for all

values of damage and porosity. These stationary solutions

capture the asymptotic behaviour of the model and can

help guide extending the model to better account for

the biologically based features in bone remodelling.

The extended model retains qualitative consistency with

the HMRR model in the under-stressed case, but allows for

the possibility of irreparable failure under the right loading

and when the damage repair term is unable to arrest the

damage accumulation. We showed that the extended

model is similar with regard to damage accumulation

and BMU activity to an MBM model by Garcı́a-Aznar

et al. (2005).
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