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Abstract

This article addresses how diverse collective behaviors
arise from simple and realistic decisions made entirely at
the level of each agent’s personal space in the sense of
the Voronoi diagram. We present a discrete time model
in 2D in which individual agents are aware of their lo-
cal Voronoi environment and may seek static target lo-
cations. In particular, agents only communicate directly
with their Voronoi neighbors and make decisions based
on the geometry of their own Voronoi cells. With two
effective control parameters, it is shown numerically to
capture a wide range of collective behaviors in different
scenarios. Further, we show that the Voronoi topology
facilitates the computation of several novel observables
for quantifying discrete collective behaviors. These ob-
servables are applicable to all agent-based models and to
empirical data.

1 Introduction

The connection between individual and collective behav-
ior in biological systems has fascinated researchers for
decades. A well-studied paradigm entails the tendency
of groups of individual agents to form flocks, swarms,
herds, schools, etc. As we discuss further in Section
1.1, many mathematical models from discrete to con-
tinuum have been presented and studied to capture the
emergence of collective behaviors from postulated local
laws. These models comprise components—for example,
averaging orientation directions with Euclidean distance
weights to capture alignment, or phenomenological in-
teraction potentials (kernels) for repulsion/attraction—
which in addition to facilitating numerical computations,
lend themselves well to formal, rigorous, or multiscale
mathematical analysis.

Here we take a different approach, divorced from any
underlying goal/bias for the potential mathematical anal-
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ysis of the model. We directly address what we believe to
be an important and useful question in the modeling of
collective behavior: how do collective behaviors emerge
from simple and realistic decisions made entirely at the
level of the individual’s personal space? We argue that
the Voronoi diagram provides that personal space. Hence
our underlying assumption is that agents base their de-
cisions on their Voronoi cell and the behaviors of their
immediate Voronoi neighboring agents. Such neighbor-
ing agents are simply those whose personal space is adja-
cent to that of the given individual. A example Voronoi
diagram is shown in Figure 0 along with its dual graph.

Figure 0: A Voronoi diagram and dual graph. The
Voronoi diagram generated by a set of points, consisting
of the solid bordered regions, and its dual graph (dotted
red) offer a natural communication topology for agent-
based models and also give rise to many broadly applica-
ble observables. The Voronoi (dual) topology differs from
other communication networks—in particular k-nearest
neighbor—in several respects. E.g., focusing on the encir-
cled site, its second-nearest site is not among its Voronoi
neighbors at all. Moreover, different sites generally have
different numbers of Voronoi neighbors.

Based solely on the topology this neighboring connec-
tivity induces, we present a movement scheme (a veloc-
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ity) via a synthesis (i.e., a weighting) of three competing
tendencies: repulsion from the closest neighbor, homing
towards a target (or targets), and alignment with the di-
rections of neighboring agents. This movement scheme
is the basis for our model which we call Voronoi Topo-
logical Perception (VTP). While other models are also
based upon similar three tendencies, and several have
components using the Voronoi topology, ours is distinct in
that it is entirely based upon the geometry of an agents
(Voronoi) personal space. To discuss further the scope
and novelty of VTP, we briefly review some of the main
modeling paradigms for collective behaviors, and the re-
sulting large body of literature.

1.1 Overview of Current Models

We first present three influential models achieving coher-
ent behavior solely through symmetric alignment interac-
tions. Vicsek et. al. introduced in [54] a simple kinematic
model where, amid random noise, a transition to ordered
behavior is obtained by averaging over the velocities of
neighbors that fall within a metrically finite region, see
[29] for analysis. Later Cucker and Smale introduced in
[13] a flocking model (C-S) that, in contrast with Vic-
sek’s, considers a global interaction where each agent is
influenced by every other individual. Consequently, C-
S presents conservation laws that, on one hand, fix the
regimes through the initial conditions as for some phys-
ical system (e.g. thermodynamical) but, on the other,
seem unreasonable for systems of active, decision-making
individuals. Another issue, pointed out by Motsch and
Tadmor in [43], is that C-S invalidates the dynamics of
small sub-flocks at long range; this problem is addressed
in their model (M-T). Precisely, M-T introduces the no-
tions of active sets to quantize neighbor’s influence as well
as the notion of relative distances. The latter being sup-
ported by the experiments on bird flocks due to Ballerini
et. al. [4] demonstrating many flocking behaviors to be
density invariant; i.e., where the behavior is essentially
unchanged as a given configuration of interacting agents
scales in (spatial) size. As we will see, a (distinct) notion
of relative distance is a direct consequence of our topolog-
ical perception framework. Note these three approaches
do not, in general, produce regimes other than veloc-
ity coherence. In this regard, much adapting has been
done to produce aggregation and other biologically accu-
rate behaviors by means of long range attraction, short
range repulsion as well as hierarchy and leadership effects,
see [21, 23, 14, 48, 9, 50, 1]. Other interesting variants
include incorporating: (i) limited peripheral view [43],
(ii) time delays accounting for limited processing apti-
tudes [18, 37], and (iii) active and passive distinction of
agents [22, 8, 28, 33, 42]. Other important kinematic
approaches which produce rolling and milling behaviors
similar to ours are models of d’Orsogna et al. [15] and
Bernoff-Topaz [52, 6] which consider attraction and repul-
sion through a potential as well as exogenous forces. The

reader is also referred to seminal work done by Mogilner
and Edelstein-Keshet et al. in the matter of modeling in-
teractions through the potential formulation [40, 41, 17].

Particularly relevant to our approach is a family
of models known as zone-based which generalize Vic-
sek’s. Precisely, endogenous interactions act over non-
overlapping concentric regions. Among this vast family
one finds the popular boids model introduced by Reynolds
in 1987 [49], the Huth and Wissel model of homoge-
neous fish schools [27], a recent approach by Bernardi and
Scianna (B-S) in [5] as well as the seminal Couzin model
[12] with hierarchies between the different interactions;
the Couzin model was later used in the context of effec-
tive leadership and propagation of directional awareness
in [11].

Importantly, the zone-based framework has been shown
to agree with real-life data, for example, in [39], Luke-
man et. al. discuss how the dynamics of surf scoters (M.
perspicillata) can be accurately described by different
models in this family after an optimal fit of their param-
eters. We point out that, many zone based interactions
are often realized as gradients of artificial potentials (al-
though qualitative features often do not depend on the
precise form of such potentials, e.g. [35]) and this ap-
proach is seen in biological models as well as implemented
in multi-agent control systems as in [34]. Furthermore,
these approaches often involve steering towards the cen-
ter of mass of a possibly large number agents, which is
appropriate for automated multi-agent control but not
so realistic for biological species with limited processing
capabilities.

Olfati-Saber and others have worked to present very
broadly applicable theoretical frameworks for flocking in
multi-agents systems in [47, 45, 46], especially for the case
of linear dynamics (in both continuous and discrete time).

The “social force” pedestrian model (H-M) from Hel-
bing and Molnár [26] (see also the seminal work [24])
strives for a realistic human pedestrian flow without us-
ing a density-invariant communication notion; i.e., be-
haviors are considerably altered as a given configuration
of interacting agents gets clustered or spread out. For a
comprehensive summary of progress made in the realm of
pedestrian dynamics from both macroscopic and micro-
scopic scales, the reader is referred to [10]. We remark
that, depending on the context, it’s a model’s preroga-
tive to be described in terms of accelerations or veloc-
ities: authors can choose to encode (or not) the fact
that cars or heavy multi-agent systems closely follow
an inertial Newton-type behavior while pedestrians and
other biological species can accelerate and brake almost
instantaneously—thus, dot not generally think in terms
of accelerations at the tactical level. While this “conven-
tion” is natural, many successful models do not adept to
it; e.g. (H-M) is a pedestrian model based on accelera-
tion. H-M and other knowledge-based human pedestrian
models stand in contrast with comparitively recent deep
learning approaches. This dichotomy is explored in detail
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in the review article [32]. The follow-up [31] gives a broad
overview of continuous time pedestrian models including
various appraoches and ranging in their mathematical so-
phistication.

Finally, we emphasize that others have previously used
Voronoi diagrams in multi-agent models and control sys-
tems and they feature prominently in the literature on
epithelial and biological tissues [2, 7]. In [19], inspired by
[4], Ginelli and Chaté show that adapting Vicsek’s model
to use a Voronoi communication topology produces qual-
itatively novel behaviors—here and throughout, a “com-
munication topology” is simply the graph that determines
who influences whom at a given moment of the dynamics.
In [21], Grégoire and Chaté describe a minimal extension
of [19] which achieves selected coherent behaviors despite
“unfavorable conditions”. Following the study of Ballerini
et. al. [4] on comparing the communication topologies in-
duced by metric distance versus k-nearest neighbors, the
Couzin model has also been adapted by Kolpas et. al. in
[30] to use the Voronoi diagram (and its dual graph) as
a proxy to the k-nearest neighbor topology. We remark
that the k-nearest and the Voronoi topology are gener-
ally different graphs since the kth closest neighbor does
not need to be a Voronoi neighbor (for k ≥ 2) and, con-
versely, an agent may have more than k Voronoi neighbors
(see Figure 2).

Where the above models use the Voronoi topology,
the multi-vehicle control system developed by Lindhe
et. al. in [36] considers a limited range neighbors, as Vic-
sek, but from these, constructs a Voronoi region whose
geometry influences the control. We remark that in
[51], Strandburg-Peshkin et. al. show that Voronoi based
models empirically outperform metrical and k-nearest-
neighbor based models in the sense of information prop-
agation through the network, at least in regimes which
admit fair comparison by their methods.

1.2 Purpose and Scope of our Work

First off, we do not claim that VTP is an improvement
over any previous model. We are providing a new model
from the microscopic perspective (as opposed to ther-
modynamical/macro perspective), described in terms of
velocities (as opposed to acceleration and other inertial
terms), and within the “school” of Voronoi topology-
induced regions of influence (as opposed to metric regions
or k-nearest influence).

The model adhering to these three categories that
would be closest to ours [30] presents key differences: i) its
repulsion component is an average whilst ours is simpler
and swift, ii) its repulsion and alignment are hierarchi-
cal whilst ours can take effect simultaneously, and more
importantly, iii) our method not only uses the Voronoi
topology but also gauges the geometry and “size” of the
personal space to adjust the speed rather than assigning
a constant value. Moreover, to keep listing fundamen-
tal properties, our framework limits some of the assump-

tions made on the population when compared to other
models from §1.1: (iv) agents are not required to steer
towards centers of mass nor perform complex averaging
of non-unitary vectors (more in §2.1.2). (v) We do not as-
sume long-range attraction or re-orientation where agents
need to be aware of all other agents at all times; instead,
agents are aware of only a small number of neighbors and,
through the nonlocality of the Voronoi diagram, informa-
tion from far away does require several time steps to reach
an agent. This reduced number of neighbors in the com-
munication topology leads VTP to benefit from a notion
of relative distance analogous to [43] (see §2.1.2).

We view our model—that is our scheme for synthesiz-
ing repulsion, homing and attraction—as on one hand,
rather simple and easy to implement with only two effec-
tive parameters and on the other hand, complex enough
to exhibit a spectrum of behaviors in different scenarios.
Note that the literature has innumerably many models
that target very specific scenarios (milling, jamitons, bi-
directional flows and other pedestrian dynamics, etc.) but
very few can model the macroscopic regimes of these var-
ious distinct scenarios; compare, for example, Figure 7
with [26, Fig. 2] and with [55, Fig. 8], or Figure 3 with
[15, Fig. 3].

On the other hand, we do acknowledge a drawback for
working entirely in this discrete Voronoi topology. The
rigid nonlocal framework of the Voronoi diagram (with
topological changes at each time step) results in a model
which is extremely difficult to analyze (even formally)
in any precise mathematical framework. Indeed, the in-
teresting collective behaviors are not in asymptotic pa-
rameter regimes and mean field (continuum) limits are
intractable. While we certainly acknowledge this as a
weakness from a modeling point of view, we nevertheless
feel the merits of our motivation, its simple determinis-
tic structure, its computational efficiency, and its numer-
ical predictions warrant the presentation here. Hence-
forth our analysis of the VTP method is purely numer-
ical; however we stress that an additional advantage of
the Voronoi setting is that it facilitates the computation
of several observables to quantify certain generic collec-
tive behaviors. As we describe in Sections 3.1 and 4,
these include Voronoi-based notions of clustering, pres-
sure, percolation, and queuing. To our knowledge, these
observables are new in the large collective behavior lit-
erature, and can be applied not just to our VTP model,
but to any discrete time agent-based model since these are
independent of the dynamics and can thus be computed
on simulated or real-life data provided position and ori-
entation information is available for every agent.

Our goal here is not to exhaust the possibilities of VTP
nor tailor it to a specific biological or engineering system
(see Section 5 for more on this). Rather we focus on two
canonical scenarios: a point target and a narrow hallway.
For the former, we work on the infinite plane and demon-
strate interesting behaviors, including a novel breathing
regime. For the later, we consider a bi-directional flow in
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a hallway that exhibits lane formations and other inter-
esting pedestrian dynamics.

In order to appreciate the VTP model, we supple-
ment the article with a Github site1. Here one finds dy-
namic simulations for the runs discussed in this paper
and many more. Specifically, the site presents a mixture
of real time simulations with adjustable parameters and
recorded ones: many scenarios are explored in different
spatial domains. One can download the code for further
experimentation with VTP.

With two controlling parameters and the inclusion of a
target, it is difficult to fully exhaust the possible behav-
iors of our model. Thus in the Appendix, we present a
complete numerical analysis for the simplest case: untar-
geted motions on two canonical compact manifolds with-
out boundary, the flat torus and the 2-sphere. Here we
decompose the relevant phase diagram into five regimes;
the reader is encouraged to consider the extreme re-
gions of this diagram as “test” cases to gain intuition
on the dynamics obtained when repulsion dominates over
alignment or vice-versa (as the average density of agents
varies). We also present in the Appendix simulations with
point targets on both the flat torus and the 2-sphere.

2 The VTP Model

The mathematics needed to present the VTP model are
minimal: basically the notion of the Voronoi diagram as-
sociated with a configuration of agents. While this does,
however, introduce some notation, readers may simply
focus on the following intuitive definitions. For complete-
ness (and for those who wish to modify the GitHub code),
we present the precise definitions.

Given a connected manifold Ω (prototypically a sub-
space of the Euclidean plane) with metric d, and distinct
points x1, . . . ,xn in Ω, the Voronoi diagram generated by
x1, . . . ,xn is the partition of Ω into the regions V1, . . . , Vn
where Vi consists of all the points nearest xi, precisely,

Vi = {x ∈ Ω : d(x,xi) ≤ d(x,xj) for all 1 ≤ j ≤ n}.

The regions Vi are called Voronoi cells and are always
convex polygons in the sequel.

The Voronoi diagram’s geometric dual provides a nat-
ural structure to guide the inter-agent communication
topology in our model.2 We will write i ∼ j to mean
that xi and xj are adjacent in this dual, or equivalently,
that their Voronoi cells Vi and Vj share an edge. For
each i, we denote by ni the number of Voronoi neighbors,
ni := #{j : j ∼ i}.

2.1 Governing equations

While the model was designed with numerous generaliza-
tions in mind, we present it here in its simplest form with
two interpretations for the magnitude of personal space
(Models I and II). Our model includes (i) the domain Ω,
(ii) a set Λ of agent indices (which may change over time,
as in Section §4), (iii) distinct positions xi = xi(t) ∈ Ω
for each i ∈ Λ, and (iv) closed (possibly empty) target
regions Ti ⊂ Ω for each i ∈ Λ. Note that time here is
arbitrary, and hence the discrete time step is set to unity.
Our model views the Voronoi diagram associated with
the agent positions as fundamental to their perception
(see Figures 1 and 2).

At each time step t, we associate to the i-th agent its
displacement vector ui(t) := xi(t)− xi(t− 1). We de-
note by ûi(t) the unit vector in the direction ui(t) and
refer to it as the i-th agent’s orientation vector at time
t. Since the time step is set to unity, we associate the
magnitude of ui(t) with the i-th agent’s speed at time t.
From given initial positions and orientations, the trajec-
tory is prescribed by a rule relating ui(t + 1) to the po-
sition and orientations vector of the Voronoi-neighboring
agents at the previous time step t. Namely, the system
evolves according to an equation of the form

xi(t+ 1) = xi(t) + fi(X(t), U(t)) for all i ∈ Λ (1)

for functions fi : Ωn × (R2)n → R2 where X and U are
shorthand for X(t) = (xi(t) : i ∈ Λ) and U(t) = (ui(t) :
i ∈ Λ) and n = #Λ.

So, the behavior of our model is then determined by the
precise nature of fi. Because we assume each agent has
only local information, fi will only depend on a narrow
subset of agents—the Voronoi neighbors—at each instant
but their identities will change over time in general. The
functions fi are given by

fi(X,U) = ρidi, di =
σir̂i + νai + (1− σi)ĥi

1 + ν
. (2)

Here, di is a weighted combination of three components
r̂i, ai, ĥi, repulsion, alignment, and homing, respectively,
with nonnegative coefficients σi, ν, and 1 − σi. Defini-
tions of r̂i, ai, and ĥi are given in Equations (3,4,5) and
the weight σi in (6). The coefficient ν is dimensionless
and determines the strength of alignment compared to
the combined homing-repulsion effect; ν is the first effec-
tive parameter of our model. We then scale by ρi which
depends on i’s personal space and is defined later in (7I)
and (7II). We emphasize that the components of di can
be simply explained via the schematics in Figure 1 which
illustrates the heart and simplicity of the VTP model.
The exact definitions of all these terms and the weight σi
are necessary for the specifics of the model but we hope

1https://jacktisdell.github.io/

Voronoi-Topological-Perception
2In the Euclidean metric, this dual graph is known as the De-

launay triangulation, see [44, 3].
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ĥi

Ti

xi

(a) Homing. Unit homing vector ĥi

points toward target Ti, if it is nonempty
and does not contain xi. (Here the tar-
get is shown as a dot but may be any
region, in general.)

δi

r̂i

xi

(b) Repulsion. Repulsion vector r̂i al-
ways points away from nearest neighbor
or domain boundary. The distance δi to
this nearest neighbor determines the rel-
ative weight of r̂i and ĥi.

ûi

ai
xi

(c) Alignment. Alignment ai is given
by a weighted average of the orientations
of Voronoi neighbors. The circularly-
wrapped weighting functions are indi-
cated by the blue curves where the rela-
tive angle θij (the angle between ûi and
ûj) marked with light blue sectors is the
argument.

Figure 1: Schematic of the influences on a generic agent at time t. Here we show one agent i at position xi
as well as its Voronoi cell and Voronoi neighbors whose positions are marked with black dots. We illustrate the
three components which influence i’s motion in the triptych above. Repulsion r̂i and homing ĥi are weighted with
coefficients σi = σ(δi/L) and convex complement 1 − σi = 1 − σ(δi/L), respectively, where δi is the distance to i’s
nearest neighbor, as shown in (b) above. The relative weight of alignment ai is given by the parameter ν.

the additional mathematical notation involved does not
obscure the core ideas.

Before presenting these details, we remark that (2) does
not present a magnitude/direction decomposition as di is
not in general a unit vector. In a sense, di encapsulates
the external influences on i while ρi gives the speed scale
i would like to achieve if allowed by di. Because of this,
fi can be small for two very different reasons: ρi will be
small when i has very little room to move and di will be
small if repulsion, alignment, and homing nearly cancel
each other. However, ‖di‖ is on average bounded above
by 1 + 1

1+ν (c.f. Appendix), thus making di a physically
sensible direction of motion.

2.1.1 Repulsion vector r̂i

The repulsion term r̂i (Figure 1b), is the straightforward
collision-avoidance mechanism of moving away from clos-
est neighbor ; its use here is inspired by the work [20]
in Voronoi energy minimization where experiments show
that it facilitates the formation of homogeneous arrange-
ments of agents.

Specifically, the repulsion vectors r̂i are given by

r̂i(X) =
xi − yi
‖xi − yi‖

(3)

where yi is the position of the “obstacle” nearest xi.
Here the word obstacles refers to the other agents and
the domain boundary, if it exists. Precisely, yi minimizes
d(xi,y) among y in {xj : j 6= i}∪∂Ω. In the typical case,
this is uniquely determined and we account for the edge
cases by averaging.

We also define δi := ‖xi−yi‖ to be the unique distance
from xi to its nearest obstacle, as indicated in Figure 1b.
The value δi will be used in the weighting coefficients
(see §2.1.4) wherein its size is assessed via our second
parameter L, the length scale within repulsion is active.

For many parameter ranges there is a short time os-
cillatory structure to r̂i resulting from Voronoi-neighbor
connectivity changes (see [20] for more details). In these
cases, the late-time animations show a “jittering” in the
individual agents direction. We do not see this as weak-
ness in our model as agents on a small time scale may
very well have a frenetic nature which averages out over
large temporal and spatial scales.

2.1.2 Alignment vector ai

Alignment is illustrated schematically in Figure 1c. We
define the alignment vector ãi by the rescaled weighted
average

ai = ai(X,U) = φi ·
1

ni

∑
j∼i

g(θij)ûj (4)

where, recall, ni is the number of Voronoi neighbors of
xi and ûj = uj/‖uj‖ is the orientation vector of agent
j. Here, θij = arccos(ûi · ûj) is the angle between ûi and
ûj . And g : [0, π] → [0, 1] is a continuous non-increasing
function with g(0) = 1 and g(π) = 0. Thus, agent i con-
siders the orientation of each of its neighbors and averages
these, favoring those whose direction is consistent with its
own (θij near 0) and virtually ignoring those whose direc-
tion is opposed (θij close to π). The role of the weighting
g (more specifically its behavior near 0 and π) is crucial
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because it may tolerate more or less sheer in the flow de-
pending on the modeled species. Put another way, the
fact that agents can move in opposition to one another
without much affecting this term manifests in interesting
ways dynamically. E.g., two opposing streams, if suffi-
ciently sparse that repulsion is small, can pass through
each other relatively easily with agents in each stream ig-
noring those in the other stream while reinforcing others
in their own stream. However, an agent approaching a
transversely moving group of others will be significantly
deflected by it. We will see later what we call anti-cog
collective behavior which exhibits very high sheer in the
flow and does not occur without the falloff of g at π. We
will also see two-way flow wherein non-jamming behaviors
are much more accessible due to the weighting g.

The coefficient φi is simply φi(X) = ni/6. To motivate
this definition, we note that in any Voronoi diagram (in
the torus, sphere, plane, or planar region), a typical cell
has at most six neighboring cells (c.f. Appendix). So φi
captures how “surrounded” xi is in the Voronoi topology.
The effect of scaling the weighted average by φi is that
agents with relatively few neighbors will be less strongly
affected by this alignment interaction. Conversely, with-
out φi, the alignment component of i would be crippled
whenever i has many neighbors moving in the opposite
direction. Overall, introducing φi mimics in outcome the
improvement of relative distance brought by [43] over [13].

Noticing that alignment at time t depends on the neigh-
bors at time t − 1, one may point out that since the
previous time step t − 1, the neighbors j ∼ i may have
changed. In particular, the neighbors of xi(t) may in-
clude an agent j who did not neighbor agent i at t − 1
(and was therefore invisible to them at the time); yet,
according to (4), agent i is expected to have orientation
information about that agent. We argue however that un-
der reasonable assumptions, this does not in fact require
agents to have any memory at all; the only assumption
made is that every agent is able to infer the orientation
of their neighbors from their current body geometry in
an insignificant amount of time, e.g. by looking at their
noses, tails, etc. Concretely, at time t, agent xi(t) looks at
all neighbors j ∼ i and gauges their orientations ûj based
on body geometry alone but does not need to infer any
speed information ‖uj‖. Should the latter be the case,
then agents would indeed need memory of their neigh-
bors’ positions xj(t − 1) at an earlier time. Thus, under
our simple assumption on body geometry assessment, us-
ing unit length orientations as opposed to displacement
vectors in (4) indeed makes our model “speed memory-
less”, depending only on orientation features.

At last, we refer the reader to the Appendix where a
simple linearization of (4) before rescaling by φi shows
that our alignment component incorporates three main
terms: an inertial term aiming to preserve the heading
of each agent i, a “traditional” unweighted average of the
neighbors’ orientation and a third “curling” term contain-
ing the nonlinear influence of the neighbors j ∼ i onto i.

2.1.3 Homing vector ĥi

The homing term is shown for a simple point-target in
Figure 1a. This term simply points from xi toward the
target region Ti. We define the target point x∗i ∈ Ti
by ‖x∗i − xi‖ = dist(xi, Ti). There is in general an issue
of uniqueness here but in practice, this ambiguity is in-
consequential because the set on which this definition is
ambiguous has measure zero in Ω. The homing vector ĥi
is given by

ĥi(X) =
x∗i − xi
‖x∗i − xi‖

for xi 6∈ Ti (5)

To account for the possibilities that xi ∈ Ti or Ti = ∅, we
define ĥi to be 0 if xi ∈ Ti or Ti = ∅. Thus, ĥi is a unit
vector or else the zero vector.

2.1.4 Weighting coefficients σi

The repulsion r̂i and homing ĥi appear in (2) with weights
σi and 1−σi; these are defined by introducing the length
scale L and a repulsion cut off function σ(·). We refer to
L > 0 as the repulsive falloff distance that indicates the
maximal distance over which a repulsive action is trig-
gered, it can also be used to capture the size of the agents.
Precisely, after recalling that δi is the distance from xi to
its nearest neighbor or boundary (Fig. 1b), we define

σi = σ(δi/L) (6)

where the function3 σ : [0,∞) → [0, 1] is continuous at
0, non-increasing, and satisfies σ(0) = 1 and σ(1) = 0.
In this way, L is one of the two effective parameters of
our model and captures the preferred radius of empty
personal space of agents. Thus, we see that the convex
combination σir̂i + (1−σi)ĥi facilitates the following be-
havior: if xi is at least a distance L from all obstacles,
then full priority is given to target-seeking via ĥi. On
the other hand, as obstacles encroach on xi at distances
less than L, collision avoidance via r̂i progressively takes
priority over target seeking.

2.1.5 Personal-space speed

So far, we have constructed a direction vector di for the
direction of movement at the t-th time step. We must
now scale its magnitude with scalar ρi in (2) based upon:
a speed limit (here taken to be unity); and the agents’
frontal personal space (based upon direction di). Here
we present two models with two possible interpretations
of the “magnitude” of the personal space, both illus-
trated in Figure 2. Model I is based on the area of the
frontal personal-space. Precisely, for xi,di ∈ R2, define
H(xi,di) = {xi + w ∈ R2 : di · w ≥ 0} to be the half

3We take σ(s) =
z(1−s)

z(s)+z(1−s)
where z(s) = exp(−1/x) and

g(s) = σ(s/π).
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diFi
`i

xj

xi

Figure 2: At each time step, the personal space of the i-
th agent located at xi and its Voronoi-neighboring agents
(the position of a generic neighbor is labeled as xj). The
desired direction vector di associated with the i-th agent
determines the frontal area Fi and frontal distance `i used
to evaluate the personal-space speed ρ in (7I) and (7II)
for Models I and II respectively.

plane with inward normal parallel to di whose boundary
contains xi. Then define4

Fi = Fi(X,U) =

{
area(Vi ∩H(xi,di)) if di 6= 0,

1
2 area(Vi) if di = 0,

where, as always, Vi is the Voronoi cell containing xi, see
Figure 2 for a depiction of Fi. To nondimensionalize Fi,
we use the length scale L we have already introduced, the
repulsive falloff distance, and consider the quantity Fi

πL2/2 ,

rescaling Fi by the area of the semicircle of radius L.
Finally, to obtain a step size from this quantity which is
physically reasonable, we must enclose it in an increasing
function that behaves like the identity near zero and goes
to unity asymptotically so that agents attain maximum
speed of 1 when there is nothing in their way. For this
we take the hyperbolic tangent. Thus for Model I, the
coefficient ρi is given by

ρi = ρi(X,U) = tanh

(
Fi

πL2/2

)
. (7I)

Model II follows the same reasoning but is based upon
`i, the length of the segment starting at the position xi
in the direction di to the boundary of the Voronoi cell Vi
containing xi, see Figure 2. For Model II the coefficient
ρi is given by

ρi = ρi(X,U) = tanh

(
`i
L

)
. (7II)

As an important point of clarification, the quantities Fi
and `i along with their visual representation (Figure 2) do
not aim to model a limited field of vision for the popula-
tion. On the contrary, the VTP framework assumes that

4To motivate the di = 0 case, we employ a probabilistic argu-
ment. The expected value of V ∩ H(xi,di) for arbitrary xi and
measurable set V over di from a radially symmetric distribution is
half the measure of V . The proof is given in the appendix.

agents have a full 360◦ awareness, Fi and `i are just two
different ways to gauge the size of one’s personal space
once a direction di has been established. To conclude on
the definition of the VTP model, we remark that Equa-
tions (1)-(7II) only effectively depend on the orientations
{ûi(t)} but not on the speeds {||ui(t)||}; i.e., agents are
“speed memoryless” as they determine their speed at t+1
solely by gauging the geometry of their personal Voronoi
space and by combining unitary directions.

2.1.6 Summary of the parameters

To summarize, VTP involves two fundamental control
parameters: the alignment coefficient ν and the repul-
sive falloff distance L. The former is dimensionless and
determines the relative strength of alignment ai with re-
spect to the repulsion-homing pair, while the latter is
a length scale that specifies the preferred radius of an
agent’s empty personal space. The number of agents n
may be tuned but we confine our study to n between
500 and 1000. All the other “weights” are directly deter-
mined by the local Voronoi geometry, modulo transitions
functions σ (for the weighting of repulsion with homing),
g (for weighting neighboring agent alignment), and tanh
(for speed adjustment in ρi); for the former two we made
canonical choices (see footnote in §2.1.4). We note, how-
ever, that these transition functions can be modified to
encode constraints proper to specific populations; e.g., the
canonical choice we made for g allows for (although does
not enforce) an undisturbed percolation of agents as re-
sults show in §4.2, but a species that is highly sensitive to
conterflow can be modeled using g(π) ' 1. We note that
there are two additional parameters which have been set
to unity by rescaling: the time step and a characteristic
speed intrinsic in our definitions of σ and ρi.

3 Single-point Target in the Plane

3.1 Observables

To quantify our simulations in the various regimes, we
consider comparable observables in addition to the an-
gular momentum. Namely, the median (relative) radius
given by

rmed = rmed(X) = median
1≤i≤n

‖xi − x̄‖

where x̄ is the center of mass of the xi and n = #X.
This gives a measure of the size of the swarm which is
insensitive to outliers. We introduce a global pressure
defined in terms of the Voronoi diagram. Namely,

P (X) =
1

n

∑
i

1

|Vi|
,

where n = #X and |Vi| is the area of the Voronoi cell
containing xi ∈ X in the diagram generated by X. In
the case that |Vi| = ∞, it is understood that 1/|Vi| = 0.
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This mean reciprocal area is analogous to pressure in
the following way. A back-of-the-envelop calculation (see
below) suggests that, under certain regularity assump-
tions, if the bounded parts of two Voronoi diagrams fill
the same volume, then the denser configuration, i.e., the
one with more generators, has the larger mean reciprocal
area and this relationship is sublinear, being closest to lin-
ear when there are many more bounded than unbounded
cells. Moreover, we have the following scaling relation-
ship P (rX) = 1

|r|dP (X) in Rd. So we have an analogue

of the familiar proportionality P ∝ n/V between pres-
sure, number, and total volume (even though we are in
an unbounded domain).

The “back-of-the-envelop” calculation suggested above
is as follows. Let {Vi}1≤i≤n be a Voronoi diagram in Rd
whose bounded part has total volume V . Without loss
of generality, say {Vi}i≤n0

are all and only the bounded
cells for some n0 < n. Suppose that the bounded cells are
equi-distributed in the sense that |Vi| = V/n0 for each 1 ≤
i ≤ n0. Of course, this assumption is almost impossibly
restrictive but one can argue that the pressure is stable
under small perturbations5. The pressure is given by

P =
1

n

∑
i

1

|Vi|
=

1

n

∑
i≤n0

1

|Vi|
=

1

n

∑
i≤n0

n0

V
=
n0

n

n0

V
.

If n0 ∼ n− Cn1/d, as is typical. Then fixing V , we have

PV ∼ (n− Cn1/d)2

n
= n−O(n1/d)

where the error term O(n1/d) is positive.

3.2 Results

Since the domain R2 with a single point-target is invari-
ant under scaling, one might be tempted to conclude our
choice of the repulsive falloff distance L is inconsequen-
tial6. While this is not exactly the case, we set L = 1
for our analysis of the single point target and refer to
the appendix for further explanation/justification. With
L = 1 fixed, we study empirically the long-term evolu-
tion of the system for different numbers of agents n and
values of the alignment strength ν. We take as the initial
state uniformly random positions within a square of area
n/2 centered about the target point and unit velocities
with uniformly random directions (the initial speed has
no effect on the dynamics since the previous speed is for-
gotten at each step, c.f. §2.1.5). The long term dynamics

5Specifically, by first restricting to a sufficiently large closed ball
including the bounded part of the Voronoi diagram and change,
one can argue that for any ε small enough, there exists δ > 0 such
that if ‖xi − x′i‖ < δ for each i and x′i is in the convex hull of the
perturbed points if and only if xi belongs to the convex hull of the
original points, then (1 + ε)−1P ≤ P ′ ≤ (1 − ε)−1P . The details
are provided in the Appendix

6Simulations on the VTP site for point targets on compact man-
ifolds without boundary do vary L.

are robust to the initial conditions; we chose a square sim-
ply because (pseudo)random points in a square are easily
generated. The area of n/2 is comparable to the even-
tual size of the swarm (for a wide range of values of ν)
and so this choice shortens the transient. The choice here
which most significantly affects the dynamics is having
the initial configuration centered on the target. Even if
this is not so, we have found the long term behavior to
be robust but having the target point outside the initial
swarm often results in transient regimes lasting hundreds
or thousands of iterations. For both Models I and II, for
small ν, the homing effect drives the swarm into a disc
centered on the target and the velocities are uncorrelated.
The equilibrium density of this disc is about where hom-
ing and repulsion are balanced and this depends on the
shape of the falloff function for repulsion. As exempli-
fied in Figure 3(c), for very large ν, the swarm forms a
rolling cluster which itself orbits the target point while
individuals make periodic near passes to the target point
(“near” relative to the rest of the swarm). Due to the
strong alignment, agents are very nearly aligned at each
fixed time.

The intermediate values of ν observe more interesting
dynamics. First let us address Model II in which speed
updates depend on the length `i, recall Equation (7II).
Increasing ν from the lower extreme, one sees an increase
in the angular momentum (with respect to the center of
mass and to the target) achieved by the swarm (after
an initial transient) as the velocities become more corre-
lated. Enter the pinwheel regime shown in Figure 3(a).
The agents occupy a disc whose center averages near the
target with roughly uniform density and rotate in the
same direction about the target. Agents on the outer
edge of the swarm tend to move faster than others, having
relatively long distances `i ahead. Further increasing ν,
the center of the pinwheel becomes unstable and a cavity
opens up, entering the ring regime shown in Figure 3(b).
The rings form robustly after a typical transient of a few
hundred iterations for sufficiently small ν, with the ring
diameter increasing with ν for each fixed n. As previously
mentioned, the ring regime gives way to the orbiting clus-
ter regime, Figure 3(c) for large ν fixed, however, one can
coax the swarm into still larger rings at greater values of
ν by first lowering and then gradually increasing ν during
the simulation. The stability of these large coerced rings
is unclear.

Model I, in which speed depends on the area of the for-
ward area Fi, exhibits qualitatively different dynamics in
the intermediate ν regime which we refer as a breathing
regime. Here, like Model II, the swarm forms a vortex
about the target (after a short transient) and this vortex
is filled for small ν and cavitated for larger ν. Unlike
Model I, the size of the vortex is not constant in time.
Rather, the cavity slowly grows over time between inter-
mittent “inspiral collapses”, Figure 4 shows these periodic
collapses under the observables of median radius rmed and
pressure P . The slow growth of the ring seems in part
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Figure 3: Pinwheel (a), ring (b), and aligned orbiting cluster (c) for n = 700 agents under Model II. The red crosshair
indicates the target point in each figure. Click the plots to run corresponding simulations.
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Figure 4: Example of the breathing regime observed under Model I. Here there are n = 700 agents and the alignment
strength is ν = 8. The curve (black) is the median radius of all agents (against time), i.e., the median distance to
the center of mass of the swarm. The secondary curve (green) is the Voronoi pressure. Each is nondimensionalized
with a suitable power of L (although here L = 1). The initial spike in pressure is clipped for space but the maximum
is approximately 60. Click the plot to run a corresponding simulation.

due to the fact that agents on the outer edge tend to have
extremely large (or infinitely large) forward areas Fi (see
Figure 1), and so move at nearly top speed, much faster
than their inner neighbors. This speed difference causes
the outermost agents to spiral further outward which in
turn enlarges the Voronoi cells and the areas Fi of their
inner neighbors, propagating the speed increase inward.
But as the central cavity grows, so do the Voronoi cells of
the innermost agents. The collapses occur when an agent
on the inner edge of the ring deviates toward the center
(e.g., due to repulsion from an outer neighbor) and, hav-
ing large area Fi ahead, deviates significantly. This effect
propagates backward through alignment and the resulting
enlargement in the Voronoi cells of trailing neighbors.

4 The Bidirectional Hallway

To showcase how our VTP framework naturally adapts to
sources and sinks, we address its predictions in a narrow
corridor Ω with two subpopulations looking to enter by
each end and exit through the opposite one while inter-
fering with each other throughout their crossing. Specifi-

cally; Ω is represented by a rectangle of width 1 and large
enough length, the number of agents n = n(t) = #Λ(t)
varies since the index set Λ(t) := Λr(t)∪Λl(t) of all agents
inside the hallway is no longer constant in time and con-
sists of agents Xr := {xi(t)}i∈Λr(t) entering by its left
edge and targeting its right edge, i.e., the entire right side
represents the target Ti for i ∈ Λr. The subpopulation
Xl := {xi(t)}i∈Λl(t) moving from right to left is defined
analogously. Note that once an agent enters it can only
exit through its corresponding target as all three other
walls repel it. Details of the (stochastic) process govern-
ing the sources is discussed in the Appendix.

4.1 Observables

To quantify the distinct behaviors exhibited by this bidi-
rectional flow, we employ the following observables:

First the polarization proper to each subpopulation

Sr,l(U) :=
1

#Λr,l

∥∥∥∥ ∑
i∈Λr,l

ûi

∥∥∥∥
This is a simple yet efficient order parameter widely used
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in the literature to measure heading consensus. Note that
0 ≤ Sr, l ≤ 1 and that we measure it for each subpopula-
tion individually since the global polarization taken over
i ∈ Λ is expected to be systematically small due to the
symmetry of the scenario. We then measure overall po-
larization with S := 1

2 (Sr + Sl).
Better suited to a bounded domain than the pressure

P , we use the clustering energy

E(X) :=
n · 18

√
3

5|Ω|2
∑
i∈Λ

∫
Vi

‖x− xi‖2dx

to infer on the overall spatial distribution of agents. As
opposed to the Voronoi pressure from §3.1, this function
measures the variances of {Vi}i∈Λ with respect to {xi}i∈Λ

and thus, as agents are “better centered” within their own
Voronoi regions, the value of E decreases. Although this
quantity arises frequently apropos of centroidal Voronoi
tessellations (see [16]); to our knowledge, it has so far
been absent in the vast literature of collective behavior.
Here, the constant 5|Ω|2

n·18
√

3
represents the total variance

of n regular hexagons tiling the domain Ω and is just a
scaling allowing to compare values of E as n(t) changes.
Moreover, E(X) ≥ 1 for any spatial configuration X. The
reader is referred to [20] for more detail and properties of
E.

To quantify percolation, i.e. the extent to which agents
of a subpopulation entwine and venture into the other
subpopulation, we define the Voronoi interface length

I(X) :=
∑

i∈Λr; j∈Λl

|∂Vi ∩ ∂Vj |

which is simply the total Euclidean length of the Voronoi
boundaries separating the subpopulations.

Finally, a key structural behavior that we wish to shed
light on is queuing. Namely, we wish to quantify a very
specific type of ordered behavior among agents of the
same subpopulation who not only exhibit orientation
consensus and certain spatial cohesion but also “align be-
hind each other” to form lanes oriented along the path
towards their common target; this behavior is anticipated
in confined pedestrian scenarios (see [26], [55]) but has
also been observed for species in the wild (for example, in
[38]). To this end, we define queuing structures Ξr and Ξl,
weighted graphs which inherit part of the topology from
the dual of the Voronoi diagram and also incorporate ge-
ometrical features about the current state (xi,ui)i∈Λr,l

;
subsequently, an observable Q(Ξr, l) that measures their
“queuing quality” is defined.

For the purposes of the this discussion, let DT(X) de-
note the graph dual to the Voronoi diagram generated by
X and let Dr,l its restrictions to the r, l subpopulations.
Note that in general, Dr 6= DT(Xr).

Although any definition making up a reasonable queu-
ing structure is highly subjective and open to debate, we
postulate that the weighted graph Ξr (and its analogous
Ξl) needs to verify at least these four properties to intu-
itively showcase lane formations:

i) Ξr is a subgraph of Dr.

ii) each vertex of Ξr has degree 1 or 2.

iii) Ξr is a forest, i.e. a (possibly disconnected) acyclic
graph.

iv) if an edge eij of Ξr joins xi and xj , then its weight
should be smallest in case the orientations ûi, ûj and

homing vectors ĥi, ĥj all coincide.

The intuition behind these requirements is that, after
identifying each connected component of Ξr, l with a dis-
tinct lane:

i) two agents are contiguous in a lane only if they are
from the same subpopulation and are Voronoi neigh-
bors (and thus may interact via repulsion and align-
ment).

ii) a lane has no singleton vertices and is not ramified.

iii) a lane does not close on itself.

iv) we can locally quantify lane edges based on three sim-
ple geometrical elements; the orientation of the end-
point agents, their relative position and their hom-
ing. The smaller the weight, the more in sync the
pair of agents is towards their common target region.

We refer to the appendix for details on the ad hoc con-
struction of Ξr, l we used in our work below and stress
that there are, in general, many different graphs satisfy-
ing these postulates at any given time t. Results can thus
fluctuate as variations of this construction are explored.

At last, let {Lm}Mm=1 represent the collection of M
lanes composing Ξr (i.e. its connected components), then
we define the queuing quality observable Qr = Q(Ξr) by

Qr :=
n

#vert(Ξr)

1

M

M∑
m=1

weight(Lm)

[#edge(Lm)]
2

where #vert(Ξr) is the number of vertices of the whole
queuing structure Ξr; #edge(Lm) is the number of edges
of the lane Lm; and weight(Lm) is the total weight of (the
edges of) the lane Lm. Indeed, this quantifies queuing
according to four criteria: number of lanes M , overall
number of edges of each lane (i.e. topological length of
lanes), overall weight of each lane and number of agents
belonging to Ξr. As each one of these individual criteria
improves while keeping the other three fixed, the value
of Qr decreases. Thus it is sensible to associate “good”
queuing with ever lower values of Qr. We define Ξl
and Ql = Q(Ξl) analogously; the overall queuing quality
in the hallway at any given time is is then captured using
Q := 1

2 (Qr +Ql).
In conclusion, besides the classical polarization, we have

introduced observables to measure clustering, percolation
and queuing that take advantage and very naturally com-
bine the (dual) Voronoi topology intrinsic to our model
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with elementary geometric features (position, angles, and
distances). We stress that these observables are parame-
terless and can be computed on any simulated or recorded
data since they are independent of the model’s dynamics.
This means that they can be used as “metrics” to quan-
tify differences between qualitative regimes and thus, can
be used in optimizing a model’s parameter values to best
fit observed data.

4.2 Results

Because n(t) varies, its underlying degree of freedom is
best represented by a constant quantity Ls called the
source length scale that accounts for the preferred inter-
personal distance of agents entering the hallway. Specif-
ically, if there is a half disk of radius Ls centered some-
where on the entrance that is devoid of any agents, there
is a large probability that a new agent will enter through
that gap. Thus, the smaller Ls is, the larger the influx.
Full detail on this stochastic entry process is presented in
the Appendix but we remark that: i) the inflow rate (in
agents per time unit) is not constant and will diminish as
the hallway becomes obstructed near the sources, ii) using
Ls to quantify inflow allows for a convenient comparison
with the intrinsic repulsion length scale L.

Consequently, on top of our model’s parameters ν and
L, the exogenous quantity Ls also plays a crucial role in
the dynamics. However, we claim that to qualitatively
survey the emergent behaviors, one can categorize ν as
either “weak” or “strong” and focus on the pair (L,Ls)
to draw a phase diagram since:

• weak alignment dynamics (0 < ν ≤ 1) are domi-
nated by repulsion and homing, thus L and Ls take
precedence over ν.

• strong alignment (ν ≥ 2) renders the influences of L
and Ls harder to predict. As will be presented below;
larger ν values are characterized by the presence of
vorticity due to non-negligible counterflow sheer.

We emphasize that, as opposed to the case Ω = R2 from
§3, the now present size and boundary effects make little
to no qualitative difference between using Model I and
Model II. In other words, as part of our observations, we
encountered that having a non-negligible agent density on
a restricted space produces very similar outcomes when
agents base their speed upon personal forward area Fi or
on personal distance ahead `i, i.e., using (7II) versus (7I).
For thoroughness we included the results obtained with
Model II in the Appendix but the remainder of §4 will
focus on Model I.

4.2.1 Weak alignment

Figure 5 presents the phase diagram (L,Ls) for ν = 1
under several quantities. The maximal number of agents
allowed to enter Ω was set to 1000 at each source and
the dynamics evolved over t = 1, . . . , 1500 iterations.

The four observables shown are averaged over the tail
t ∈ [500, 1500] to avoid any transient.

When looking at the number of agents that entered and
exited by the time tmax = 1500, a clear bifurcation line
γ1500 emerges where, on one side the inflow is large enough
(Ls small enough) to produce a complete occlusion of the
hallway and, on the other side we see a full crossing of Ω
since (almost) all agents having entered manage to exit
through their respective target. The bifurcation line was
numerically found to be

γ1500 : Ls = 1.93L+ 1.7 · 10−3

Remarkably, γ1500 also signals a sharp transition under
each of the four observables we defined in §4.1; clearly the
nontrivial dynamics are found over Ls ≥ γ1500 where large
polarization S and low clustering E indicate long lasting
and orderly migration uniformly distributed in space.

Furthermore, over the same region, percolation I de-
creases with Ls while the overall queuing Q is optimal
when closest to γ1500 and increases again as we stray away
from the bifurcation. The latter increase in Q is to be
expected since our alignment components {ai} (e.q. 4)
only consider orientation and not position; thus accord-
ing to this modeling choice, as the density in the hallway
decreases (increase in Ls), agents are no longer prompt
to press together and organize in lanes. Conversely, the
smooth gradient of Q we observe above γ1500 in Figure 5
comes to validate our definitions for Ξ and Q as being sen-
sible constructions of what can intuitively be considered
queuing.

Note that the measurements made for weak alignment
are robust under change of the random generator of the
entry process.

At last, since our simulations are carried out in finite
time and with finite maximal number of agents entering
Ω, the bifurcation we measured may very well change with
either quantity. Specifically, while the transition curve
from complete occlusion to full migration can only move
upwards in the phase diagram as we increase the time evo-
lution of the dynamics; we conjecture that, as tmax →∞
and with an infinite number agents at disposal, there ex-
ists a limiting curve γ∞ representing the “true” critical
bifurcation between eventual occlusion and sustained mi-
gration.

We conclude on weak alignment with four specific
regimes (I)–(IV) produced with L = 0.0833 (smallest L
value shown in Figs. 5 and 6); their main characteristics
are listed below and the animations of their time evolution
are found in the Github site (click on the list numerals
below for the corresponding simulation):

(I) here Ls = 0.1875 is above the theoretical γ∞ and
shows a large sustained percolation from the begin-
ning, we’re in the optimal queuing region (lowest Q
values).
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Figure 5: The (L,Ls) phase diagram for Model I in the bi-directional corridor with weak alignment ν = 1: the length
scale L for repulsion and the preferred empty length scale at the sources Ls are at play (resolution of 65×65 points).
(left) the number of agents having entered and those having completed their crossing by the time tmax = 1500, a sharp
bifurcation between full occlusion and sustained migration is marked by the line γ1500 : Ls = 1.93L+1.7·10−3. (center
and right) the observables I,Q,E and S (percolation, overall queuing quality, clustering and overall polarization)
from §4.1 are averaged over the time tail t ∈ [500, 1500]. Remarkably, the same line γ1500 shows a clear phase
transition under each of our four observables. The region Ls ≥ γ1500 is characterized by the same number of entering
and exiting agents as well as small E and large I; this translates to long-lasting sustained migrations with agents
uniformly distributed. Moreover, the smooth increase of Q away from γ1500 comes to further validate our postulates
for the weighted graphs Ξr,l as producing a sensible notion for queuing.

(II) is very similar to (I) in the long term with the differ-
ence that Ls = 0.1750 being slightly smaller (larger
influx) forces a turbulent transient before a long last-
ing equilibrium with great queuing is established.

(III) here Ls = 0.1687 is found between γ1500 and γ∞,
meaning that a full occlusion eventually settles some-
time after tmax = 1500. Nonetheless, for t ≤ tmax
we see an interesting mixture of percolation, queuing
and turbulence.

(IV) Ls � γ1500 produces a trivial regime where full oc-
clusion settles in very fast and no interesting forma-
tions emerge.

Note that, by changing L we obtain similar qualitative
behaviors as above provided Ls is found in the corre-
sponding regions, i.e. the behaviors remain comparable
but with a more or less densely populated corridor.

4.2.2 Strong alignment

Compared to week alignment, the case ν ≥ 2 exhibits
dynamics that are not as predictable. While the two
extreme cases, i.e. Ls sufficiently large and sufficiently
small, still produce steady unobstructed migrations and
full obstructions respectively; the transition from one to

the other is quite blurry and significantly richer in dynam-
ics thanks to the sheering effects capable of producing a
large amounts of vorticity.

Figure 6 shows the (L,Ls) phase diagram for ν = 2
where the maximal number of agents allowed to enter Ω
was set to 1500 at each source and the dynamics evolved
again over t = 1, . . . , 1500. There a dashed gray line in-
dicates where the blurry transition away from the steady
migration region begins. We remark for the sake of thor-
oughness that the data was found to be robust under the
random entry generator of agents for the region above the
gray line but not below it.

Although lacking a well established and robust region
in the phase diagram, we have identified one persistent
emergent behavior famously known in the literature (see,
for example, [57]) where

(V) each subgroup flows on respective sides of the corri-
dor creating almost no percolation and an interface
between them along the length of the hallway.

This regime is shown in Figure 7 (bottom), it reminds of
a separated two-phase fluid flow along a pipe.

To show the reader other observed behaviors, the
Github site also contains these regimes:

(VI) with ν = 2 where one subgroup overcomes and man-
ages to split the flow of the other in two; thus creating
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Figure 6: The (L,Ls) phase diagram for Model I on the bidirectional hallway under strong alignment ν = 2:
repulsive length scale L vs. the preferred empty length scale at the sources Ls (resolution of 65 × 65 points). (left)
the number of agents having entered and those having completed their crossing by the time tmax = 1500. (center
and right) the percolation, queuing, clustering and polarization observables (I,Q,E and S) averaged over the time
period t ∈ [500, 1500]. The transition between steady unobstructed migrations and full obstruction of the hallway
is quite blurry as opposed to its sharp counterpart for the case ν = 1 shown in Figure 5. The region of steady
unobstructed migration (i.e. small L and large Ls) that is qualitatively similar to its counterpart for ν = 1 is found
above the dashed gray line Ls = 2.58L− 3.7× 10−2; there the data is robust under change in the random generator
of the agent’s entry. On the other hand, below the gray line the dynamics are rather unpredictable and showcase
important vorticity.

two interfaces along the length of the corridor. Here
the (L,Ls) values are in the blurry transition region
showcased in Figure 6.

(VII) with ν = 5 where vorticity completely dominates.
Visually, this more resembles the growing and col-
lapsing of mills in §3 than an ordered flow.

To conclude with the bidirectional corridor we remark
that, although the orientation of agents can be rather
noisy when clustered together due to the nature of the
repulsion components r̂i, the dynamics do average out
over medium time scales and avoid the “freezing by heat-
ing” effect known to disrupt all lane formation when noise
is too great, see [25].

5 Concluding Remarks and Fu-
ture Directions.

We summarize our two main contributions:

• We present a model for collective behavior of agents
based entirely on exploiting the local Voronoi topol-
ogy (a natural notion of personal space) and geome-
try to synthesize three component – repulsion, hom-
ing, and alignment. We show how this simple model
can, with at most two controlling parameters, exhibit

a variety of collective behaviors in different scenar-
ios that can be visually explored in the Github site7:
rotating pinwheels, steady and breathing rings, differ-
ent types of steady and “chaotic” migrations across
a hallway (in particular, formation of queues), highly
polarized regimes with general velocity consensus,
jamitons (i.e. stop-and-go waves) and full crystalliza-
tion.

• We introduce and present several novel observables
based entirely on the Voronoi diagram to quantify
certain generic collective behaviors. These observ-
ables, decoupled from the dynamics, can be applied
to any discrete agent-based model or to empirical
data.

The numerical implementation of the VTP model is
particularly simple in 2D. Indeed, simulations can be run
and viewed in real time. The model and observables can
easily be implemented in 3D as all the components have
natural generalizations in 3D; the only caveat is that the
Voronoi connectivity (Delaunay graph) is computation-
ally expensive. Nevertheless, software is available.

While this is beyond the scope of the present work, a
natural question to address is the extent one can use VTP

7https://jacktisdell.github.io/

Voronoi-Topological-Perception
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Figure 7: Emerging behaviors in the bidirectional corridor, agents Xr moving to the right are shown in orange and
Xl moving to the left in green: (top) regime (I) shows significant amounts of queuing. The queuing structure (graph)
Ξr is displayed in orange and Ξl in green. (bottom) regime (V) shows the two subpopulations separated by a long
interface and “sliding” along each other. Click the images to view corresponding simulations.

to study the collective behavior of a particular biological
system. Moreover, it would be instructive to present a
comparison of VTP with other models and a comparison
with empirical data.8

Here, we remark that in addition to the controlling pa-
rameters ν and L, there are two unexplored degrees of
freedom: (i) the structure of the function σ for repulsion
weighting and (ii) the function g for weighting neighbor-
ing agent alignment. In both cases, we made canonical
choices and verified the numerical stability with respect
to these choices. However, one could tailor these, perhaps
with data, to particular systems. For example, one could
allow σ to eventually become negative capturing attrac-
tion/aggregation at larger length scales. One could also
explore the effects of the function ρ for speed adjustment.

We further emphasize that with minimal modifications
the model can be applied to an extremely broad class of
situations. With no modification whatsoever, the model
as presented here allows for (i) any convex domain with
or without boundary and (ii) arbitrarily many distinct
classes of agents seeking distinct targets (each of which
can be any subset of the domain). With minimal modi-
fication, our model can be made to (iii) include sources
and sinks of agents (as in Section 4.2) and (iv) support
non-convex domains so as to include obstacles (interior
walls, pillars,. . . ) in the environment. Such obstacles can

8E.g., comparison of VTP against other agent-based models in
the manner of [53] and quantitatively against empirical data as in
[56] would clarify which settings VTP and our methods are most
applicable.

be viewed as “holes” or “inlets” in the domain. The nec-
essary modification to the model for such domains has
to do with the Euclidean distance. A metric can be de-
fined which is consistent with our assumptions for agents’
perception, and whose Voronoi diagram remains the nat-
ural fundamental structure upon which to construct VTP.
While the modification is simple and natural, it does
present certain computational difficulties in running sim-
ulations and this is the subject of current work. This
raises the broader issue of constructing different metrics
with which to build the Voronoi diagram. Voronoi dia-
grams in arbitrary metrics are much less well understood
and computational methods involving them are lacking.
Nonetheless, the question of determining the “right” met-
ric for a given setup under VTP is intriguing.

Three other possible generalizations are as follows: (i)
the alignment ai of a population with higher situational
awareness can be computed within a greater Voronoi ra-
dius, i.e. neighbors of neighbors, neighbors of neighbors of
neighbors, and so on. This can be implemented without
significant increase in computational complexity as one
needs only compute powers of the already obtained ad-
jacency matrix. Moreover, this property need not be the
same among all agents. Indeed one might introduce vari-
ety among the agents both with respect to alignment and
repulsion. (ii) Limited vision of the targets regions can
be modeled within the topological framework by allowing
nonzero homing only when the target region is with some
fixed number of Voronoi cells. We remark that the notion
of topological radii naturally allows integration of a com-
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ponent of attraction for aggregation in a more classical
zone-based context. Specifically, alignment and attrac-
tion can act over concentric “layers” having increasing
Voronoi radii. (iii) The original VTP model as well as
its possible extensions can be brought to heterogeneous
crowds where agents act and respond differently to stim-
uli. An important example is when only a fraction of
“active” agents are mindful of their targets; very much
like the effective leadership analysis performed in [11],
the amount of target-knowledge transferred to “passive”
agents can be studied to test the relevance of the VTP
framework in the context of panic crowd dynamics.

Acknowledgement. We would like to thank the
anonymous referees whose thorough commentary greatly
improved the structure of the present paper and clarity
of its presentation.
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