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1 The definition of the VTP model

1.1 Scope on the alignment term

To gain some insight on our definition of the alignment
component (see §2.1.2), we perform a linearization of the
term ai by: i) using the simplified transition function
g(s) = 1− s/π for s ∈ [0, π] and, ii) by making the first
order approximation θij = arccos(ûi ·ûj) ≈

π

2
(1−ûi ·ûj).

For ease of notation let us denote the number of Voronoi
neighbors of agent i by ni and recall that φi is a rescaling;
it follows that

ai
φi
≈ 1

ni

∑
j∼i

[
1− 1

π

π

2
(1− ûi · ûj)

]
ûj

=
1

ni

∑
j∼i

1

2

[
ûi + ûj + sin(θij) (ûj)

⊥
]

=
1

2
ûi︸︷︷︸

inertial term

+
1

2ni

∑
j∼i

ûj︸ ︷︷ ︸
traditional alignment

+
1

2ni

∑
j∼i

sin(θij) (ûj)
⊥

︸ ︷︷ ︸
curling term

where we have used the identity (A ·C)B = (A×B)×C +
(B ·C)A and written (ûi × ûj) × ûj = sin(θij) (ûj)

⊥ with
(ûj)

⊥ a unit vector orthogonal to ûj determined by the right-
hand rule. We thus see that our alignment component can be
interpreted as the sum of three terms, the first one retaining
the agent’s orientation, the second one being a simple aver-
age of the neighbor’s headings and the last term inducing a
nonlinear behavior.

1.2 Scope on the director vectors {di}
We show below that, on average, the magnitudes {‖di‖}i∈Λ

are bounded above by 1 + 1
1+ν

and thus, the director vectors
{di}i∈Λ defined in (2) give a sensible collection of directions
of motion to our model. We first recall an important Lemma
about Voronoi tessellations

Lemma 1. Let ni be the number of neighbors of agent i;
then the average number of neighbors per Voronoi cell in the
Voronoi tessellation of the either the entire plane R2 or of a
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compact set Ω ⊂ R2 is at most 6, i.e.

1

n

∑
i∈Λ

ni < 6

Proof. i) for the plane R2: let v and n be the total number
of vertices and cells respectively in the Voronoi tessellation
VT(X). Consider the planar graph G obtained from VT(X)
by truncating the unbounded edges outside some sufficiently
large disc, and joining their new ends (without crossings) at
some new sufficiently distant vertex. (Assuming n ≥ 2) G has
exactly as many edges and cells as VT(X) (but only a single
noncompact cell) and exactly one additional vertex. Let e
be the number of edges. Since every edge in G has exactly
two vertices and at least three edges meet at every vertex we
have 2e ≥ 3v. Next, from Euler characteristic on the plane
we have (v + 1) − e + n = 2. Combining these we have that
n − 1 = e − v ≥ e/3. By noticing that the average number
of neighbors per cell is 2e/n where we double count e as each
edge is shared by two cells, we obtain

2e

n
≤ 6(n− 1)

n
< 6.

which translates to the alternate expression in the proposition
as two neighbors in the tessellation can only share one edge
in .
ii) for a compact convex set Ω ⊂ R2 with boundary: let e be
the number of edges shared by two Voronoi regions and eb be
boundary edges that live on ∂Ω. Let v be the total number
of Voronoi vertices. That is, vertices of the R2 diagram on
the interior of Ω as well all points where the R2 diagram
edges meet the ∂Ω. No other points of ∂Ω (e.g. corners) are
taken as vertices of this graph. Since every edge has exactly
two vertices and at least three edges meet at every vertex
we have 2 (e+ eb) ≥ 3v. Next, from Euler characteristic on
the plane we have v − (e+ eb) + n = 2. Combining these we
have that e + eb ≤ 3 (n− 2). Finally, the average number of
neighbors per cell is 2e/n where we double count e as each
edge is shared by two cells, we obtain

2e

n
≤ 2 (e+ eb)

n
≤ 6 (n− 2)

n
< 6.

Note that one may replace the convexity assumption by the
much weaker assumption that ∂Ω is the union of disjoint sim-
ple curves and Ω is connected with nonempty interior using
essentially the same argument except that the average num-
ber of neighbors per cell as at most 2e/n since the number
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of neighbors for a given cell is at most the number of its non
boundary edges. Similar results are obtained for the 2-torus
and the 2-sphere.

Proposition 2. For all positions X ∈ Ωn and velocities U ∈
(R2)n, the average of all displacement vectors {di}i∈Λ with
#Λ = n satisfies

1

n

∑
i∈Λ

‖di(X,U)‖ ≤ 1 +
1

1 + ν

Proof. Let us start with the definitions (3, 4, 5) from which
we clearly have that ‖ĥi‖, ‖r̂i‖ and ‖ai‖/φi are all at most
1 for each i ∈ Λ. Moreover, for generality of the scenario, let
us distinguish between agents having an active target Ti and
those who do not have one (target Ti = ∅ is empty), i.e. let
us write Λ = ΛT ∪ Λ∅ where ΛT ∩ Λ∅ = ∅. For conciseness
let σi := 1 − σi and, as before, let ni denote the number of
Voronoi neighbors of agent i. It ensues that, by using the
binary “switch”

bi :=

{
1 if i ∈ ΛT

0 if i ∈ Λ∅

the definition of di (e.q. (2)) generalizes to obtain

1

n

∑
i∈Λ

‖di‖ =
1

n

∑
i∈Λ

∥∥∥∥∥σir̂i + ν ai + bi(1− σi)ĥi
σi + ν + bi(1− σi)

∥∥∥∥∥
≤ 1

N

∑
i∈Λ

σi + biσi
σi + ν + biσi

+
1

n

∑
i∈Λ

ν φi
σi + ν + biσi

≤ 1

n

∑
i∈Λ

σi + biσi
σi + ν + biσi

+
1

n

∑
i∈Λ

φi

=
1

n

∑
i∈Λ

σi + biσi
σi + ν + biσi

+
1

6n

∑
i∈Λ

ni

≤ 1

n

∑
i∈Λ

σi + biσi
σi + ν + biσi

+ 1

= 1 +
1

n

∑
i∈ΛT

+
∑
i∈Λ∅

 σi + biσi
σi + ν + biσi

Where we have used the definition of the scaling φi := ni
6

and Lemma 1. Let us now examine the remaining sum by
considering separately i ∈ ΛT and i ∈ Λ∅. Starting with
the targeted agents for which bi = 1∀i ∈ ΛT and recalling
σi := 1− σi,

1

n

∑
i∈ΛT

σi + σi
σi + ν + σi

=
1

n

∑
i∈ΛT

1

1 + ν
=

#ΛT
n

1

1 + ν
.

On the other hand, for the non targeted agents we have bi = 0
for every i ∈ Λ∅ and

biσi + σi + ν

biσi + σi
=
σi + ν

σi
= 1 +

ν

σi
≥ 1 + ν

so σi
σi+ν

≤ 1
1+ν

from which we recover

1

n

∑
i∈Λ∅

σi + biσi
σi + ν + biσi

=
1

n

∑
i∈Λ∅

σi
σi + ν

≤ #Λ∅
n

1

1 + ν
.

Combining these results and using #ΛT + #Λ∅ = #Λ = n
we obtain the desired result

1

n

∑
i∈Λ

‖di‖ ≤ 1 +
#ΛT
n

1

1 + ν
+

#Λ∅
n

1

1 + ν
= 1 +

1

1 + ν

1.3 Continuity of the planar Voronoi
pressure

Lemma 3. Given distinct points x1, . . . ,xn in R2 with cor-
responding Voronoi cells V1, . . . , Vn, the Voronoi pressure de-
fined by P =

∑
i

1
|Vi|

is continuous with respect to pertur-
bations of the generators which preserve the identities (i.e.,
indices) of those on the convex hull.

Proof. Fix ε > 0. Let x′1, . . . ,x
′
n be the perturbed sites and

V ′1 , . . . , V
′
n their Voronoi cells. Let P and P ′ be the respective

pressures. Assume ‖xi − x′i‖ ≤ δ for some positive δ to be
determined for all i and that, as in the lemma statement, xi
is in the convex hull of {x1, . . . ,xn} if and only if x′i is in the
convex hull of {x′1, . . . ,x′n} (or equivalently, Vi is bounded if
and only if V ′i is). Let 0 ≤ b < n be the number of bounded
cells in either diagram. Without loss of generality, assume
Vi is bounded just in case i ≤ b. If b = 0, the result is
trivial as P = 0 = P ′. So assume b ≥ 1. Let K ⊂ R2

be a closed convex set (say, a ball) which contains the 2ε-
fattening of {x1, . . . ,xn}∪V1∪· · ·∪Vb. By Reem’s geometric
stability result, for any ε1 > 0, there is 0 < δ1 < ε such that if
‖xi−x′i‖ < δ1, then h(Vi∩K,V ′i ∩K) < ε1 for each 1 ≤ i ≤ n
where h is the Hausdorff distance. (The condition that δ1 < ε
ensures that x′i ∈ K.) If Vi is bounded, then by definition of
K, we know its closed ε-fattening Vi +Bε lies in the interior
of K where Bε is the closed ball of radius ε. Taking ε1 ≤ ε,
we find V ′i ∩ K ⊆ (Vi ∩ K) + Bε1 ⊆ Vi + Bε1 so V ′i ∩ K is
in the interior of K, hence V ′i itself is by convexity of V ′i . So
in fact, h(Vi, V

′
i ) = h(Vi ∩ K,V ′i ∩ K) < ε1 whenever Vi is

bounded.
Then by the Steiner formula for convex sets, there is a

constant C > 0 depending only on K such that |V ′i | ≤ |Vi +
Bε1 | ≤ |Vi|+ Cε1. So if ε1 ≤ ε|Vi|/C, then

P ′ =
∑
i≤b

1

|V ′i |
≥
∑
i≤b

1

(1 + ε)|Vi|
=

1

1 + ε
P.

Symmetrically, |Vi| ≤ |V ′i + Bε1 | ≤ |V ′i | + Cε1 so |V ′i | ≥
|Vi| − Cε1 ≥ (1− ε)|Vi| and P ′ ≤ 1

1−εP .

2 The plane

2.1 Comment on choice of L = 1

Since the agents’ step size is roughly constant (in a statistical
sense) and independent of L, changing L effectively changes
the time step. Recall that L essentially controls the mini-
mum stable swarm density so if L is much less than 1, then
the average step size is much larger than the average dis-
tance between agents, that is, agents tend to step over each
other. We regard this situation as nonphysical, or at least
contrary to the nature of the Voronoi model, as Voronoi cells
will generally fail to maintain even their approximate shape
over consecutive time steps. In other words, it is simply inco-
herent to adopt the VTP approach to modeling a swarm while
working in space/time units that result in small L. On the
other hand, if L is much larger than 1, then the average step
size is tiny compared to the average distance between agents
and so, macroscopically, the system evolves slowly in terms of
number of iterations. We do not discount this regime outright
as we did the small L case but we do not study it here for the
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simple reason that such small change per iteration prohibits
computational exploration of long term behavior. It simply
takes too long to simulate on a home computer to investigate
in the way we intend. Thus we consider only L = 1 in the
rest of this section as this value balances nicely the overall
evolution speed of the system with the severity of geometric
changes in the Voronoi diagram. (This is in sharp contrast
to the next section, wherein we consider a bounded domain
and different values of L, appropriately non-dimensionalized,
play a central role.)

We remark that L is not the full story, but one piece of
data about the full repulsive falloff function. Given a repul-
sive falloff function supported on [0, L], one could imagine a
different function which decays from 1 to some 0 < ε � 1
over [0, L] but which has a long (or even infinite) tail. Such
a modification has minimal effect on the dynamics predicted
by the model, and so the length of the support fails to cap-
ture the relevant information about the two falloff functions.
Nonetheless, for a fixed functional shape with compact sup-
port on [0,∞), the length of the support L is a convenient
parameter.

3 The bidirectional hallway
We present below the details originally omitted in the pre-
sentation of §4.

3.1 The entry process of agents at the
sources

Having fixed the source length scale Ls, we describe below
the stochastic process modeling the agents’ entrance into the
hallway Ω; for simplicity we focus on the source Sr ⊂ ∂Ω
which is the left-end of the corridor used by agents i ∈ Λr
that are moving to the right. The process is similar for the
right-end source Sl.
At any fixed time t, given X(t), we insert new agents itera-
tively before computing the next state X(t+ 1) according to
our governing equations (2). This iterative process (which we
index by k in this discussion) occurs between each timestep
and is not to be confused with time evolution (indexed by t).
We follow these guidelines:

i) a single agent is inserted on Sr at each iteration k.

ii) the position on Sr of the kth new agent (placed during
the kth iteration) depends on the overall position state
X(t) of all agents currently in the hallway at time t and
also on the position of the agents 1, 2, ..., k−1 previously
placed in the earlier iterations.R

iii) the iterative placement is terminated whenever the pre-
ferred personal distance Ls can no longer be guaranteed
on Sr for the agent k + 1.

iv) all new agents are given a random unitary orientation
{ûi} whose angle with the horizontal is independently
sampled from (−π

2
, π

2
).

More specifically, let some y ∈ Sr be the center of a disk of
radius R that does not contain any agent i ∈ Λ(t) currently
in the hallway nor any of the k − 1 agents recently intro-
duced on Sr. If R < Ls then Sr is too crowded near y and
there is a zero probability that the kth agent enters through

that location. On the other hand, if R ≥ Ls then there is a
nonzero probability that the kth new agent enters the hallway
through y and this probability increases with R. Finally, as
the number of newly placed agents increases, the source Sr
will be saturated when no new agent can enter while having
an empty radius R ≥ Ls around it. The pseudo-code from
Algorithm 1 provides the specifics.

Algorithm 1 Stochastic entrance of agents on Sr
Input: 1) fixed Ls; 2) current positions X(t) of agents
at time t; 3) a nondecreasing transition function ξ :
R+ → [0, 1] (e.g. ξ(s) := 1− σ(s), see §2.1.4)

set k = 0
set Y = ∅
while true do

for all y ∈ Sr letRy := dist(y;X∪Y ) and construct

fk(y) :=

{
ξ (Ry/Ls − 1) if Ry ≥ Ls

0 if Ry < Ls

if fk(y) ≡ 0 then
break (meaning Sr is saturated)

end if
(a) normalize fk(y) so that

∫
Sr
fk(y)dy = 1

(b) generate the position yk of the kth new agent
on Sr by a random sampling using the PDF fk(y)

(c) updates: Y ← Y ∪ {yk} and k ← k + 1
end while
Output: Y are the collected positions on Sr of the k
newly inserted agents to be added to X(t).

NOTE: it is possible that k = 0 and Y = ∅, indicating
that no new agent will enter at time t due to Sr being
overcrowded from the beginning.

Note that this construction can trivially use two distinct
values of Ls to each of Λr and Λl in order to have different
inflows for each subgroup of agents; in our work however, we
consider that the entering conditions and Ls are the same
for both populations. At last, we point out for completeness,
that slight variants of this entry process were tested but did
not produce noticeable differences in the obtained regimes.
Specifically, we tested variants of the PDF definition for fk(y)
where a dependency in the orientation of agents near y ∈ S
was added (on top of the dependency in position of nearby
agents). Forcing the orientations {ûi} of entering agents to
be orthogonal to the sources S was also tested.

3.2 Queuing
We describe here our ad hoc construction of the queuing
structures Ξr,l(t) over which the queuing observable Q(t) :=
1
2

(Qr(t) +Ql(t)) was calculated in this work. Once more, let
us focus on the agents i ∈ Λr(t) crossing the hallway from
left to right; the graph Ξl for the subpopulation Λl(t) is con-
structed analogously. We denote by DT(X) the Delaunay
triangulation (Voronoi dual) generated by X.
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To systematically satisfy the four queuing postulates from
§4.1 at any given time t we follow these steps:

1. Let Dr := DT(X)|Λr be the restriction of DT(X) to
the agents Xr, i.e. we remove from DT(X) all vertices
from Λl and any Delaunay edges having an endpoint in
Xl. Note that, while Dr is an undirected graph, it is in
general highly disconnected.

2. Let us momentarily construct
−→
D r, a directed version

of Dr, where every edge −→e k =
−−−−−−→
(xik ,xjk ) ∈ edge(

−→
D r)

points “along” the homing ĥ = (1, 0)>common to all
agents in Λr; i.e. we orient the edges such that −→e k · ĥ ≥
0 ∀ k. Let {êk} denote the unitary vectors associated.

3. We now compute nonnegative edge weights {wk} over
−→
D r via the formula

wk :=
1

2
(θk,ik + θk,jk )

=
1

2
(arccos (êk · ûik ) + arccos (êk · ûjk ))

Under this definition, {wk} considers both relative po-
sition of the endpoint agents xik , xjk as well as their
relative orientations ûik , ûjk . Specifically, 0 ≤ wk ≤
π is minimal whenever the positions of both agents “align
towards” their common target and their respective ori-
entations coincide with the homing ĥ. Conversely, wk is
maximal when agents “align away” from their target, i.e.
whenever their position is aligned towards the target but
their orientation is pointing in the opposite direction.
In other words, {wk} uses basic geometrical features of
Xr and Ûr to locally quantify alignment quality over
every neighboring pair of agents in Λr.

4. Now that all the pertinent local geometry has been en-
coded into {wk}, we consider again the undirected Dr
now endowed with these weights. We obtain Ξr by run-
ning a minimum spanning forest algorithm on Dr (e.g.
Dijkstra’s algorithm on every connected component of
Dr) so that the recovered Ξr is an acyclic graph. The
intuition behind this is to span all agents in Λr while
removing all edge-loops in Dr and retaining “horizon-
tal” edges with “better oriented” endpoint agents in the
process.

5. At this stage, one could subjectively argue that each con-
nected component of Ξr can be interpreted as a graph
capturing a certain amount of oriented consensus and
spatial cohesion. However, to us, the potentially large
degree of vertices of Ξr (ramifications) do not constitute
what can intuitively be called lanes. Thus, to show-
case agents “lining up” behind one another, we refine
Ξr by iteratively cutting (removing) edges of this for-
est in decreasing order of their associated weights; the
removal process stops once degΞr

(xi) ≤ 2 for every
i ∈ Λr. In other words, this refinement creates more
non-ramified connected components to the detriment of
breaking longer ramified chains; all while retaining edges
with the smallest possible weights.

6. As an added property, we remove from Ξr any connected
component having a single edge (two agents). This is
because we consider that a lane needs to consist of at
least three agents.

In summary, steps 1)-5) above guarantee that the four
queuing postulates i)-iv) are met by our queuing structure
Ξr and thus make it sensible to compute the queuing
observable Qr on it (see §4.1). For thoroughness, these steps
are synthesized in Algorithm 2.

Finally, we remark that, should the reader’s own inter-
pretation of queuing allows for ramified queuing structures
(i.e. postulate ii) needs not hold); one can introduce a toler-
ance value wtol such that edge ek is removed in step 5) above
only if wk > wtol. Thus obtaining a graph Ξr(Xr, Ûr;wtol)
parametrized by the user-defined value wtol. Another alter-
native is to solve the discrete optimization problem

arg min
wtol

Qr(Ξr(Xr, Ûr;wtol))

Which will generally yield a non-trivial graph since the ob-
jective function is not monotonically decreasing in wtol. Such
alternatives are not explored in this article so as to avoid in-
troducing a supplementary degree of freedom and maintain
simplicity; their use and more in-depth analysis is left for
future work.

Algorithm 2 Our construction of the queuing structure
Ξr

Input: 1) index set of agents Λr; 2) positions Xr :=
{xi}∈Λr ; 3) unitary orientations Ûr := {ûi}∈Λr ; 4)
Delaunay triangulation DT(X).

(1) restrict DT(X) to Xr to create Dr

(2) create oriented version
−→
D r such that −→e k · ĥ ≥ 0

for all −→e k ∈ edge(
−→
D r)

(3) compute weights {wk} associated to {−→e k}

wk :=
1

2
(arccos (êk · ûik) + arccos (êk · ûjk))

(4) endow the undirected graph Dr with {wk} and
obtain a minimum spanning forest Ξr, i.e. every con-
nected component of Ξr is a minimum spanning tree.
(5) cut edges ek ∈ edge(Ξr) in descending order of
their weights wk until degΞr

(xi) ≤ 2 for all i ∈ Λr.
(6) optional : cut all single-edge connected components

Output: an undirected weighted forest Ξr satisfying
all four queuing postulates and whose connected com-
ponents we identify as lanes formed by the subpopu-
lation Λr.

3.3 Phase diagrams for Model II on the
bidirectional hallway

Figures 3.1 & 3.2 depict the (L;Ls) phase portraits using
Model II for ν = 1 and ν = 2 respectively; these are to be
compared with Figures 5 and 6. For the weak alignment case,
i.e. ν = 1, we observe an uncanny resemblance between Mod-
els I and II; this includes the presence of a clear sharp bifur-
cation line separating the two extreme cases of full occlusion
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Figure 3.1: Phase diagram (L,Ls) for Model II on the bidirectional hallway under weak alignment ν = 1 (with
resolution of 65 × 65 points). Much alike Figure 5 obtained for Model I, a bifurcation line shows a clear phase
transition between the two extreme cases of full occlusion and sustained percolation. We remark that, as opposed
to using the forward Voronoi area (i.e. Model I), using the forward available length Model II allows for slightly
better percolation I near the bifurcation.

and sustained migration. For the case ν = 2, the diagram of
Model II is similar to the one of Model I up to a shift and
scaling; qualitatively, all the exhibited behaviors remain very
similar. In conclusion, when Ω is a bounded domain, there
is no significant difference between agents using the forward
area of their personal space (Model I) versus them using their
personal forward length (Model II).

4 Compact Domains without
Boundary

We have adapted VTP (Model I) to two compact domains
Ω without boundary, the square torus R2/lZ2 of primary do-
main [0, l)2 and the 2-dimensional sphere. Here it is natural
to define a dimensionless parameter µ > 0 capturing the rela-
tive length scales based upon n, L, and |Ω|. Roughly speaking
µ should represents the ratio of the repulsive length scale to
the average inter-agent distance. We take

µ :=
L

(|Ω|/n)1/2
.

Thus, on the torus R2/lZ2 of primary domain [0, l)2, we have
µ = L

√
n/l2 =

√
nL/l and on the sphere of radius R, we

have µ = L
√
n/(4πR2) =

√
n
π
L
2R

.

4.1 Phase diagram for homing-free sys-
tems

The µ-ν phase diagram for the scenario devoid of targets (un-
targeted case) is sketched in Figure 4.1 In the supplementary
material we include simulations for these regimes as well as
a brief description of their labels. We include as well simula-

tions of all these regimes for the untargeted sphere (wherein
a similar phase diagram is observed).

As in the case of the infinite plane (§3), the dynamics are
simplified for lack of boundary interactions. We remark that
in the absence of unbounded Voronoi cells, the dynamics of
models I and II are not qualitatively different on compact
domains and a lot of structure is preserved from one to the
other. The governing equations are further simplified in case
that no targets are assigned, we call such systems homing-free.
Roughly speaking, the (µ, ν) phase space for homing-free sys-
tems on the torus and sphere are quite similar. Changes in
µ and ν correlate tightly with changes in clustering energy
and polarization respectively. Here clustering energy is as de-
scribed in the previous section. On the torus, polarization
is as defined in the previous section with respect to the (ar-
bitrary) coordinates inherited from [0, l)2. For the sphere,
by “polarization” we mean the angular momentum of the en-
semble with respect to the (unit) sphere’s center viewing the
position an orientation vectors as vectors in R3 in the natural
way. In this section, we shall use the term “polarization” to
talk about the sphere and torus at once. We find the following
clearly distinct extremes.

Gaseous. (Small µ, small ν) When ν is small, orientations
are spatiotemporally uncorrelated achieving polarization
near zero. With small µ, agents only interact repulsively
at distances small compared to the domain scale and so
positions as well are essentially random and modest clus-
tering energy persists (although no consistent clusters
propagate noticeably through the agent medium).

Solid. (Large µ, small ν) As above, since ν is small, orien-
tations remain uncorrelated and polarization near zero.
But with large µ, mutual repulsion at lengths compa-
rable to the domain scale force the system toward a
uniformly spaced hexagonal crystalline structure (nec-
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Figure 3.2: Phase diagram (L,Ls) for Model II on the bidirectional hallway under strong alignment ν = 2 (with
resolution of 65× 65 points).
Similar to Figure 6 obtained for Model I, the transition between the two extreme regions of full occlusion and
sustained percolation is significantly blurry. This lack of sharp transition is again attributed to the sheer effects
and ensuing nonlinearities produced by larger ν.
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Figure 4.1: Phase diagram sketch with Model I for the
torus with no targets. The dimensionless parameter µ is
given by µ = L(n/|Ω|)1/2 =

√
nL/l. The dashed lines

are merely conceptual delineations, not sharp bifurca-
tion loci. Their rough shape is based on coarse probing
of phase space with simulations. While the precise fea-
tures of the phase diagram of course also depend on the
particular choices of transition functions σ and g, the
qualitative structure remains unchanged. In the digital
version of this document, click the labels in the diagram
to view corresponding simulations for n = 300. (For
more, explore the site.)

essarily with defects due to the topological constraints)
and extremely low clustering energy (near 1) is main-
tained. Furthermore, since the individual orientations
are essentially random, the overall drift heading is near
zero.

Flow. (Small µ, large ν) With large ν, the system quickly
attains high polarization with near consensus in orienta-
tion. Again, for small µ, only modest clustering energy
persists with no clear structure in the agents’ positions.

Drift. (Large µ, large ν) Like the solid regime, large µ
quickly drives the system to a near crystal structure but
now also, neighbors tend to align their orientations and
overall orientation consensus is attained (albeit slightly
noisier than the flow regime due to significant nearest-
neighbor interactions), thus achieving high polarization
and an overall drift (with much less individual variation
than the flow regime.

The transitional regimes are harder to characterize. For all
values of µ, increasing through intermediate ν causes a grad-
ual increase in polarization with no apparent bifurcations.
Fixing ν and increasing through intermediate µ also does
not show sharp bifurcations but at intermediate values of µ
and moderate or large ν, one observes one or several (de-
pending on the number of agents) persistent clusters which
propagate backward (against the drift heading) through the
agent medium, akin to what has been observes in traffic flow.
Indeed, for sufficiently few agents (a few hundred), at in-
termediate µ and ν, one finds a single large patch of more
densely packed agents with less correlated orientation propa-
gating backward against a comparably large patch of sparser
(hence faster) agents with near consensus in orientation.
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4.2 Point targets
We further include simulations on the torus and the sphere
for one, two and three point targets (wherein all agents al-
ways seek their nearest target point). The emergent dynamics
are complicated, even for such simple target configurations.
Nonetheless, we remark qualitatively.

In all cases, the behavior for very strong alignment is essen-
tially similar to the homing free case (Section §4.1), achieving
near orientation consensus with only slight deviation close to
the target points. Compare this with the single-point tar-
get behavior in the (non-compact) planar case of Section §3,
where the target has manifest influence for extremely strong
alignment. This can be understood as a size effect of the
compact domains. Whereas, in the strong alignment single-
point target planar case, ensembles of agents may adopt wide
orbits about the target point because (i) agents may always
in principle spread out enough that homing dominates the
homing-repulsion effect, giving each agent’s steps a radial
component with respect to the target and (ii) there exist
wide enough orbits in the plane that this radial component—
feeble against the magnitude ≈ ν alignment component—is
sufficient. Clearly these on not both possible on compact
domains, any minimum average distance between agents im-
poses a minimum path length for a size n ensemble, and suf-
ficiently long paths in compact domains will interfere with
themselves (to within the ensemble density).

For sufficiently weak alignment with a single point target,
the behavior is much like in the planar case. Although this
is what one would expect, it is not entirely trivial. Namely,
alignment, as we have formulated it, exerts direct influence
on neighboring agents and on these domains, a pinwheel or
ring system has a rather different Delaunay topology than the
analogous planar systems, with agents near opposite edges of
the ensemble will neighbor each other.

For two and three point targets, we encourage readers to
explore the simulations and we comment only on the following
curiosity. In the torus, we (mostly arbitrarily) considered two
target points placed bisecting a minimal (closed) geodesic. In
most of the parameter space (again for sufficiently weak align-
ment), the system robustly organizes into a “cog” behavior,
with counter-rotating ensembles surrounding the two target
points. The analogous setup in the plane yields like behav-
ior for appropriate parameter values. However, in a certain
parameter range, the torus exhibited a behavior, which we
call the “anti-cog”, whereby the system would settle into two
co-rotating ensembles about the target points, with some con-
tinual agent exchange between them. This anti-cog behavior
could not be reliably reproduced on the plane. On compact
domains, emergence of the anti-cog behavior was sensitive to
initial conditions in the sense that, in this parameter range,
for uniformly sampled position/orientation initial conditions,
the system would either settle into the cog or anti-cog be-
havior. More specifically, we found two sub regimes in the
(µ, ν) phase plane, one in which the cog behavior was by far
dominant amongst random initializations and one in which
the anti-cog emerged for a substantial fraction of initializa-
tions. Whether the emergence of the anti-cog behavior is a
size effect or a topological one or both is unclear.
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