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Abstract. We establish the theoretical framework for implementing the maximum entropy on the mean (MEM)5
method for linear inverse problems in the setting of approximate (data-driven) priors. We prove a.s.6
convergence for empirical means and further develop general estimates for the difference between the7
MEM solutions with different priors µ and ν based upon the epigraphical distance between their respective8
log-moment generating functions. These estimates allow us to establish a rate of convergence in expectation9
for empirical means. We illustrate our results with denoising on MNIST and Fashion-MNIST data sets.10

1. Introduction. Linear inverse problems are pervasive in data science. A canonical example11

(and our motivation here) is denoising and deblurring in image processing. Machine learning12

algorithms, particularly neural networks trained on large data sets, have proven to be a game13

changer in solving these problems. However, most machine learning algorithms suffer from the lack14

of a foundational framework upon which to rigorously assess their performance. Thus, there is15

a need for mathematical models which are on one end, data driven, and on the other end, open16

to rigorous evaluation. In this article, we devise and analyze one such model based upon what is17

known as Maximum Entropy on the Mean (MEM) (described in some detail in subsection 1.2).18

1.1. History and state of the art of the MEM method. Emerging from ideas of E.T. Jaynes19

in 1957 [23, 24], various forms and interpretations of MEM (see [7, 20, 30, 13, 29]) have appeared in20

the literature. Applications have occurred in different disciplines such as earth sciences [17, 33, 43],21

crystallography [31, 32], and medical imaging [1, 10, 11, 21, 22]. Recently, the MEM method has22

been shown to be a powerful tool for blind deblurring of images that possess some form of symbology23

(for example, UPC and QR barcodes) [35, 34]. However, MEM methods are not widely used and24

have yet to become a modern tool for solving contemporary data-driven inverse problems in image25

processing and machine learning.26

MEM methods require problem-specific knowledge in the form of a statistical prior. For a prior27

based upon a known distribution, the theory is well understood, with dedicated algorithms for its28

implementation [44]. This work is the first to incorporate data in a systematic way into the MEM29

framework for linear inverse problems. While the incorporation is natural, we provide theoretical30

guarantees of convergence and upper bounds on rates of convergence without requiring model31

assumptions. In addition to providing the theoretical framework, we present several numerical32

examples for denoising images fromMNIST [15] and Fashion-MNIST [47] data sets; showcasing that33

our work results in a data-driven model with numerical implementation via standard optimization34

routines.35

1.2. Brief overview of the MEM method. Let us now provide some details, summarizing the36

MEM method for linear inverse problems. Full details will be provided in the next section. Our37

canonical inverse problem takes the following form38

(1.1) b = Cx+ η.39

The unknown solution x is a vector in Rd; the observed data is b ∈ Rm; C ∈ Rm×d, and η ∼ Z is40

an random noise vector in Rm drawn from noise distribution Z. In the setting of image processing,41

x denotes the ground truth image with d pixels, C is a blurring matrix with typically d = m, and42

the observed noisy (and blurred image) is b. For known C, we seek to recover the ground truth x43

from b. In certain classes of images, the case where C is also unknown (blind deblurring) can also44

be solved with the MEM framework (cf. [35, 34]) but we will not focus on this here. In fact, our45

numerical experiments will later focus purely on denoising, i.e., C = I. The power of MEM is to46

exploit the fact that there exists a prior distribution µ for the space of admissible ground truths.47
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The basis of the method is the MEM function κµ : Rd → R∪{+∞} defined as48

κµ(x) := inf {KL(Q∥µ) : Q ∈ P(X ),EQ = x} ,49

where KL(Q∥µ) denotes the Kullback-Leibler (KL) divergence between the probability distributions50

µ and Q (see Subsection 2.2 for the definition). With κµ in hand, our proposed solution to (1.1) is51

(1.2) xµ = argmin
x∈Rd

{αgb(Cx) + κµ(x)} ,52

where gb is any (closed, proper) convex function that measures fidelity of Cx to b. The function53

gb depends on b and can in principle be adapted to the noise distribution Z. For example, as was54

highlighted in [44], one can take the MEM estimator (an alternative to the well-known maximum55

likelihood estimator) based upon a family of distributions (for instance, if the noise is Gaussian,56

then the MEM estimator is the familiar gb(·) = 1
2∥(·)− b∥22). Finally α > 0 is a fidelity parameter.57

The variational problem (1.2) is solved via its Fenchel dual. As we explain in Subsection 2.2,58

we exploit the well-known connection in the large deviations literature that, under appropriate59

assumptions, the MEM function κµ is simply the Cramér rate function defined as the Fenchel60

conjugate of the log-moment generating function (LMGF)61

Lµ(y) := log

∫
X
exp⟨y, ·⟩dµ.62

Under certain assumptions on gb (cf. Subsection 2.2) we obtain strong duality63

(1.3) min
x∈Rd

αgb(Cx) + κµ(x) = − min
z∈Rm

αg∗(−z/α) + Lµ(C
T z),64

and, more importantly, a primal-dual recovery is readily available: If zµ is a solution to the dual65

problem (the argmin of the right-hand-side of (1.3)) then66

xµ := ∇Lµ(C
T z)67

is the unique solution of the primal problem. This is the MEM method in a nutshell.68

1.3. Contributions and outline of the article. In this article, we address the following ques-69

tions: Suppose we do not have full access to the underlying prior distribution µ; rather we have70

access to an approximation sequence µn which in a suitable sense (e.g. weak convergence of mea-71

sures) converges to µ. Does the approximate MEM solution xµn converge to the solution xµ, and72

if so, at which rate? A key feature of the MEM approach is that one does not need to quantify73

the convergence of µn to µ, but rather only approximate the LMGF Lµ from data. Hence our74

analysis is based on the closeness of Lµn to Lµ. This results in the closeness of the dual solutions75

zn and in turn the primal solutions xµn . Here, we leverage the fundamental work of Wets et al. on76

epigraphical distances, epigraphical convergence, and epi-consistency ([37],[40],[26]).77

Our results are presented in four sections. In Section 3, we work with a general gb satisfying78

standard assumptions. We consider the simplest way of approximating µ via empirical means of n79

i.i.d. samples from µ. In Theorem 3.9, we prove that the associated MEM solutions xµn converge80

almost surely to the solution xµ with full prior. In fact, we prove a slightly stronger result pertaining81

to εn-solutions as εn ↘ 0. This result opens the door to two natural questions: (i) At which rate82

do the solutions converge? (ii) Empirical means is perhaps the simplest way of approximating µ83

and what is the corresponding rate? Given that the MEM method rests entirely on the LMGF of84

the prior, it is natural to ask how the rate depends on an approximation to the LMGF. So, if we85

used a different way of approximating µ, what would the rate look like? We address these questions86

for the case gb = 1
2∥(·) − b∥22. In Section 4 we provide insight into the second question first via87

a deterministic estimate which controls the difference in the respective solutions associated with88
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two priors ν and µ based upon the epigraphical distance between their respective LMGFs. We89

again prove a general result for ε-solutions associated with prior µ (cf. Theorem 4.7). In Section 5,90

we apply this bound to the particular case of the empirical means approximation, proving a 1
n1/491

convergence rate (cf. Theorem 5.5) in expectation.92

Finally, in Section 6, we present several numerical experiments for denoising based upon a finite93

MNIST data set. These serve not to compete with any of the state-of-the-art machine learning-94

based denoising algorithm, but rather to highlight the effectiveness of our data-driven mathematical95

model which is fully supported by theory.96

Remark 1.1 (Working at the higher level of the probability distribution of the solution). As in97

[35, 34], an equivalent formulation of the MEM problem is to work not at the level of the x, but98

rather at the level of the probability distribution of the ground truth, i.e., we seek to solve99

Q = argminQ∈P(X ) {αgb(CEQ) + KL(Q∥µ)} ,100

where one can recover the previous image-level solution as xµ = EQ. As shown in [34], under101

appropriate assumptions this reformulated problem has exactly the same dual formulation as in102

the right-hand-side of (1.3). Because of this one has full access to the entire probability distribution103

of the solution, not just its expectation. This proves useful in our MNIST experiments where the104

optimal ν is simply a weighted sum of images uniformly sampled from the MNIST set. For example,105

one can do thresholding (or masking) at the level of the optimal ν (cf. the examples in Section 6).106

Notation: R := R∪{±∞} is the extended real line. The standard inner product on Rn is ⟨·, ·⟩107

and ∥ · ∥ is the Euclidean norm. For C ∈ Rm×d, ∥C∥ =
√

λmax(CTC) is its spectral norm, and108

analogously σmin(C) =
√
λmin(CTC) is the smallest singular value of C. The trace of C is denoted109

Tr(C). For smooth f : Rd → R, we denote its gradient and Hessian by ∇f and ∇2f , respectively.110

2. Tools from convex analysis and the MEM method for solving the problem (1.1) .111

2.1. Convex analysis. We present here the tools from convex analysis essential to our study.112

We refer the reader to the standard texts by Bauschke and Combettes [5] or Chapters 2 and 11 of113

Rockafellar and Wets [37] for further details. Let f : Rd → R. The domain of f is dom(f) := {x ∈114

Rd | f(x) < +∞}. We call f proper if dom(f) is nonempty and f(x) > −∞ for all x. We say that115

f is lower semicontinuous (lsc) if f−1([−∞, a]) is closed (possibly empty) for all a ∈ R. We define116

the (Fenchel) conjugate f∗ : Rd → R of f as f∗(x∗) := supx∈Rd{⟨x, x∗⟩ − f(x)}. A proper f is said117

to be convex, if f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for every x, y ∈ dom(f) and all λ ∈ (0, 1).118

If the former inequality is strict for all x ̸= y, then f is said to be strictly convex. Finally, if f is119

proper and there is a c > 0 such that f − c
2∥ · ∥

2 is convex we say f is c-strongly convex. In the120

case where f is (continuously) differentiable on Rd, then f is c-strongly convex if and only if121

(2.1) f(y)− f(x) ≥ ∇f(x)T (y − x) +
c

2
∥y − x∥22 ∀x, y ∈ Rd .122

The subdifferential of a convex function f : Rd → R at x ∈ dom(f) is ∂f(x) = {x∗ ∈ Rd |⟨x−x, x∗⟩ ≤123

f(x)−f(x), ∀x ∈ Rd}. A function f : Rd → R is said to be level-bounded if for every α ∈ R, the set124

f−1([−∞, α]) is bounded (possibly empty). A function f is (level) coercive if it is bounded below125

on bounded sets and satisfies126

lim inf
∥x∥→+∞

f(x)

∥x∥
> 0.127

In the case f is proper, lsc, and convex, level-boundedness is equivalent to level-coerciveness [37,128

Corollary 3.27]. A function f is said to be supercoercive if lim inf∥x∥→+∞
f(x)
∥x∥ = +∞.129

A point x is said to be an ε-minimizer of a proper function f if f(x) ≤ infx∈Rd f(x) + ε for some130

ε > 0. We denote the set of all such points as Sε(f). Correspondingly, the solution set of proper131

function f is denoted as argmin(f) = S0(f) =: S(f).132
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The epigraph of a function f : Rd → R is the set epi(f) := {(x, α) ∈ Rd×R | α ≥ f(x)}.133

A sequence of functions fn : Rd → R epigraphically converges (epi-converges)1 to f , written134

fn
e−−−−−→

n→+∞
f , if and only if135

(i) ∀z, ∀zn → z : lim inf fn(zn) ≥ f(z), (ii) ∀z ∃zn → z : lim sup fn(zn) ≤ f(z).136

2.2. Maximum Entropy on the Mean Problem. For basic concepts of measure and probability,137

we follow most closely the standard text of Billingsley [6, Chapter 2]. Globally in this work, µ will138

be a Borel probability measure defined on compact X ⊂ Rd. Precisely, we work on the probability139

space (X ,BX , µ), where X ⊂ Rd is compact and BX = {B ∩ X : B ∈ Bd} where Bd is the σ-140

algebra induced by the open sets in Rd. 2 We will denote the set of all probability measures on the141

measurable space (X ,BX ) as P(X ), and refer to elements of P(X ) as probability measures on X ,142

with the implicit understanding that these are always Borel measures. For Q,µ ∈ P(X ), we say Q143

is absolutely continuous with respect to µ (and write Q ≪ µ) if for all A ∈ BX with µ(A) = 0, then144

Q(A) = 0. [6, p. 422]. For Q ≪ µ, the Radon-Nikodym derivative of Q with respect to µ is defined145

as the (a.e.) unique function dQ
dµ with the property Q(A) =

∫
A

dQ
dµ dµ for A ∈ BX [6, Theorem 32.3].146

The Kullback-Leibler (KL) divergence [28] of Q ∈ P(X ) with respect to µ ∈ P(X ) is defined as147

148

(2.2) KL(Q∥µ) :=

{∫
X log(dQdµ )dµ, Q ≪ µ,

+∞, otherwise.
149

For µ ∈ P(X ), the expected value Eµ ∈ Rd and moment generating function Mµ : Rd → R function150

of µ are defined as [6, Ch.21]151

Eµ :=

∫
X
xdµ(x), Mµ(y) :=

∫
X
exp⟨y, x⟩dµ(x),152

respectively. The log-moment generating function of µ is defined as153

Lµ(y) := logMµ(y) = log

∫
X
exp⟨y, x⟩dµ(x).154

As X is bounded, Mµ is finite-valued everywhere. By standard properties of moment generating155

functions (see e.g. [41, Theorem 4.8]) it is then analytic everywhere, and in turn so is Lµ.156

Given µ ∈ P(X ), the Maximum Entropy on the Mean (MEM) function [44] κµ : Rd → R is157

κµ(y) := inf{KL(Q ∥ µ) : EQ = y,Q ∈ P(X )}.158

The functions κµ and Lµ are paired in duality in a way that is fundamental to this work. We159

will flesh out this connection, as well as give additional properties of κµ for our setting; a Borel160

probability measure µ on compact X . A detailed discussion of this connection under more general161

assumptions is the subject of [44].162

For any µ ∈ P(X ) we have a vacuous tail-decay condition of the following form: for any σ > 0,163 ∫
X
eσ∥x∥dµ(x) ≤ max

x∈X
∥x∥eσ∥x∥ < +∞.164

Consequently, by [16, Theorem 5.2 (iv)]3 we have that165

κµ(x) = sup
y∈Rd

[
⟨y, x⟩ − log

∫
X
e⟨y,x⟩dµ(x)

]
(= L∗

µ(x)).166

1This is one of many equivalent conditions that characterize epi-convergence, see e.g. [37, Proposition 7.2].
2Equivalently, we could work with a Borel measure µ on Rd with support contained in X .
3Applied to µ considered as a measure over Rd with support in X .
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Note that the conjugate L∗
µ is known in the large deviations literature as the (Cramér) rate167

function. For a more full development and alternative derivations of this conjugacy we refer to168

[29, 31].169

Returning to the setting of interest with our standing assumption that X is compact, κµ = L∗
µ.170

This directly implies the following properties of κµ: (i) As Lµ is proper, lsc, and convex, so is its171

conjugate L∗
µ = κµ. (ii) Reiterating that Lµ is proper, lsc, convex, we may assert (L∗

µ)
∗ = Lµ via172

Fenchel-Moreau ([40, Theorem 5.23]), and hence κ∗µ = Lµ. (iii) As dom(Lµ) = Rd we have that κµ173

is supercoercive [37, Theorem 11.8 (d)]. (iv) Recalling that Lµ is everywhere differentiable, κµ is174

strictly convex on every convex subset of dom(∂κµ), which is also referred to as essentially strictly175

convex [36, p. 253].176

With these preliminary notions, we can (re-)state the problem of interest in full detail. We177

work with images represented as vectors in Rd, where d is the number of pixels. Given observed178

image b ∈ Rm which may be blurred and noisy, and known matrix C ∈ Rm×d, we wish to recover179

the ground truth x̂ from the linear inverse problem b = Cx̂+ η, where η ∼ Z is an unknown noise180

vector in Rm drawn from noise distribution Z. We remark that, in practice, it is usually the case181

that m = d and C is invertible, but this is not necessary from a theoretical perspective. We assume182

the ground truth x̂ is the expectation of an underlying image distribution - a Borel probability183

measure - µ on compact set X ⊂ Rd. Our best guess of x̂ is then obtained by solving184

(P) xµ = argmin
x∈Rd

αg(Cx) + κµ(x).185

where g = gb is a proper, lsc, convex function which may depend on b and serves as a fidelity term,186

and α > 0 a parameter. For example, if g = 1
2∥b − (·)∥22 one recovers the so-called reformulated187

MEM problem, first seen in [29].188

Lemma 2.1. For any lsc, proper, convex g, the primal problem (P) always has a solution.189

Proof. By the global assumption of compactness of X , we have κµ is proper, lsc, convex and190

supercoercive, following the discussion above. As g ◦ C and κµ are convex, so is αg ◦ C + κµ191

for α > 0. Further as both αg ◦ C and κµ are proper and lsc, and κµ is supercoercive, the192

summation αg ◦C+κµ is supercoercive, [37, Exercise 3.29, Lemma 3.27]. A supercoercive function193

is, in particular, level-bounded, so by [37, Theorem 1.9] the solution set argmin(αg ◦ C + κµ) is194

nonempty.195

We make one restriction on the choice of g, which will hold globally in this work:196

Assumption 2.2. 0 ∈ int(dom(g)− C dom(κµ)).197

We remark that this property holds vacuously whenever g is finite-valued, e.g., g = 1
2∥b− (·)∥22.198

Instead of solving (P) directly, we use a dual approach. As κ∗µ = Lµ (by compactness of X ),199

the primal problem (P) has Fenchel dual (e.g., [5, Definition 15.19]) given by200

(D) (arg)min
z∈Rm

αg∗(−z/α) + Lµ(C
T z).201

We will hereafter denote the dual objective associated with µ ∈ P(X ) as202

(2.3) ϕµ(z) := αg∗(−z/α) + Lµ(C
T z).203

We remark that our sign convention and use of minimization in the dual agrees with [5], but the204

dual problem appears elsewhere in the literature as max−ϕµ(z), see e.g. [48, Corollary 2.8.5]. We205

record the following result which highlights the significance of Assumption 2.2 to our study.206

Theorem 2.3. The following are equivalent:207

(i) Assumption 2.2 holds; (ii) argminϕµ is nonempty and compact; (iii) ϕµ is level-coercive.208

In particular, under Assumption 2.2, the primal problem (P) has a unique solution given by209

(2.4) xµ = ∇Lµ(C
T z),210

where z ∈ argminϕµ is any solution of the dual problem (D).211
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Proof. As ϕµ is proper, convex and lsc, the equivalence of (i)-(iii) is exactly [4, Proposition212

3.1.3 (a),(c),(d)] as int(dom(ϕ∗
µ)) = int(C dom(κµ) − dom(g)). Furthermore [4, Theorem 5.2.1]4,213

yields the primal-dual recovery formula (2.4) using the differentiability of Lµ.214

2.3. Approximate and Empirical Priors, Random Functions, and Epi-consistency. If one has215

access to the true underlying image distribution µ, then the solution recipe is complete: solve (D)216

and use the primal-dual recovery formula (2.4) to find a solution to (P). But in practical situations,217

such as the imaging problems of interest here, it is unreasonable to assume full knowledge of µ and218

instead one models µ from domain specific knowledge or data set e.g. the discussions of [14, 42].219

That is, one specifies a prior ν ∈ P(X ) with ν ≈ µ, and solves the approximate dual problem220

(2.5) min
z∈Rm

ϕν(z).221

Given ε > 0 and any ε-solution to (2.5), i.e. given any zν,ε ∈ Sε(ν), we define222

(2.6) xν,ε := ∇Lν(C
T zν,ε),223

with the hope, inspired by the recovery formula (2.4), that with a “reasonable” choice of ν ≈ µ,224

and small ε, then also xν,ε ≈ xµ. The remainder of this work is dedicated to formalizing how well225

xν,ε approximates xµ under various assumptions on g and ν.226

A natural first approach is to construct ν from sample data. Let (Ω,F ,P) be a probability227

space. We model image samples as i.i.d. X -valued random variables {X1, . . . , Xn, . . .} with shared228

law µ := PX−1
1 . That is, each Xi : Ω → X is an (Ω,F) → (X ,BX ) measurable function with the229

property that µ(B) = P(ω ∈ Ω : X1(ω) ∈ B), for any B ∈ BX . In particular, the law µ is by230

construction a Borel probability measure on X . Intuitively, a random sample of n images is a given231

sequence of realizations {X1(ω), . . . , Xn(ω), . . .}, from which we take only the first n vectors. In232

practice, such a sequence could arise from sampling a fixed dataset uniformly at random, in which233

case n is dictated by the amount of data that is available and is feasible to compute with. We then234

approximate µ via the empirical measure235

µ(ω)
n :=

1

n

n∑
i=1

δXi(ω).236

With this choice of ν = µ
(ω)
n , we have the approximate dual problem237

(2.7) min
z∈Rm

ϕ
µ
(ω)
n

(z) with ϕ
µ
(ω)
n

(z) = αg∗
(
−z

α

)
+ log

1

n

n∑
i=1

e⟨C
T z,Xi(ω)⟩.238

And exactly analogous to (2.6), given an ε-solution zn,ε(ω) of (2.7), we define239

(2.8) xn,ε(ω) := ∇L
µ
(ω)
n

(CT zn,ε(ω)) =

∑n
i=1CXi(ω)e

⟨CT zn,ϵ(ω),Xi(ω)⟩∑n
i=1 e

⟨CT zn,ϵ(ω),Xi(ω)⟩
.240

Clearly, while the measure µ
(ω)
n is well-defined and Borel for any given ω, the convergence241

properties of zn,ε(ω) and xn,ϵ(ω) should be studied in a stochastic sense over Ω. To this end, we242

leverage a probabilistic version of epi-convergence for random functions known as epi-consistency243

[26].244

Let (T,A) be a measurable space. A function f : Rm×T → R is called a random5 lsc function245

(with respect to (T,A)) [40, Definition 8.50] if the (set-valued) map Sf : T ⇒ Rm+1, Sf (t) =246

epi f(·, t) is closed-valued and measurable in the sense S−1
f (O) = {t ∈ T : Sf (x) ∩O ̸= ∅} ∈ A.247

4Note that there is a sign error in equation (5.3) in the reference.
5The inclusion of the word ‘random’ in this definition need not imply a priori any relation to a random process;

we simply require measurability properties of f . Random lsc functions are also known as normal integrands in the
literature, see [37, Chapter 14].
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Our study is fundamentally interested in random lsc functions on (Ω,F), in service of proving248

convergence results for xn,ϵ(ω). But we emphasize that random lsc functions with respect to249

(Ω,F) are tightly linked with random lsc functions on (X,BX ). Specifically, if X : Ω → X is a250

random variable and f : Rm×X → R is a random lsc function with respect to (X ,BX ), then the251

composition f(·, X(·)) : Rm×Ω → R is a random lsc function with respect to the measurable space252

(Ω,F), see e.g. [37, Proposition 14.45 (c)] or the discussion of [39, Section 5]. This link will prove253

computationally convenient in the next section.254

While the definition of a random lsc function is unwieldy to work with directly, it is implied by255

a host of easy to verify conditions [40, Example 8.51]. We will foremost use the following one: Let256

(T,A) be a measurable space. If a function f : Rm×T → R is finite valued, with f(·, t) continuous257

for all t, and f(z, ·) measurable for all z, we say f is a Carathéodory function. Any function which258

is Carathéodory is random lsc [38, Example 14.26].259

Immediately, we can assert ϕ
µ
(·)
n

is a random lsc function from Rd×Ω → R, as it is Carathéodory.260

In particular, by [37, Theorem 14.37] or [39, Section 5], the ε-solution mappings261

ω 7→
{
z : ϕ

µ
(ω)
n

(z) ≤ inf ϕ
µ
(ω)
n

+ ε
}

262

are measurable (in the set valued sense defined above), and for all ε ≥ 0 there always exists a263

P-measurable selection zn,ε(ω) ∈ Sε(µ
(ω)
n ) [37, Theorem 14.37, Theorem 14.33].264

We conclude with the definition of epi-consistency as seen in [26, p. 86]; a sequence of random265

lsc functions hn : Rm×Ω → R is said to be epi-consistent with limit function h : Rm → R if266

(2.9) P
({

ω ∈ Ω | hn(·, ω)
e−−−−−→

n→+∞
h

})
= 1.267

3. Epigraphical convergence and convergence of minimizers. The goal of this section is to268

prove convergence of minimizers in the empirical case, i.e., that xn,ε(ω) as defined in (2.8) converges269

to xµ, the solution of (P), for P-almost every ω ∈ Ω as ε ↘ 0. To do so, we prove empirical270

approximations of the moment generating function are epi-consistent with Mµ, and leverage this to271

prove epi-consistency of ϕ
µ
(ω)
n

with limit ϕµ. Via classic convex analysis techniques, this guarantees272

the desired convergence of minimizers with probability one.273

3.1. Epi-consistency of the empirical moment generating functions. Given {X1, . . . , Xn, . . .}274

i.i.d. with shared law µ = PX−1
1 ∈ P(X ), we denote the moment generating function of µ

(ω)
n as275

Mn(y, ω) :=
1
n

∑n
i=1 e

⟨y,Xi(ω)⟩. Define f : Rm×Rd → R as f(z, x) = e⟨C
T z,x⟩. Then276

Mµ(C
T z) =

∫
X
e⟨C

T z,·⟩dµ =

∫
X
f(z, ·)dµ,277

Mn(C
T z, ω) =

1

n

n∑
i=1

e⟨C
T z,Xi(ω)⟩ =

1

n

n∑
i=1

f(z,Xi(ω)).278

This explicit decomposition is useful to apply a specialized version of the main theorem of King279

and Wets [26, Theorem 2], which we restate without proof.280

Proposition 3.1. Let f : Rm×X → R be a random lsc function such that f(·, x) is convex and281

differentiable for all x. Let X1, . . . , Xn be i.i.d. X -valued random variables on (Ω,F ,P) with shared282

law µ ∈ P(X ). If there exists z ∈ Rm such that283 ∫
X
f(z, ·)dµ < +∞, and

∫
X
∥∇zf(z, ·)∥dµ < +∞,284

then the sequence of (random lsc) functions Sn : Rm × Ω → R given by285

Sn(z, ω) :=
1

n

n∑
i=1

f(z,Xi(ω))286
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is epi-consistent with limit Sµ : z 7→
∫
X f(z, ·)dµ, which is proper, convex, and lsc.287

Via a direct application of the above we have the following.288

Corollary 3.2. The sequence Mn(C
T (·), ·) is epi-consistent with limit Mµ ◦ CT .289

Proof. Define f(z, x) = e⟨C
T z,x⟩. For any x, ⟨CT (·), x⟩ is a linear function, and e(·) is convex -290

giving that the composition f(·, x) is convex. As f is differentiable (hence continuous) in z for fixed291

x and vice-versa, it is Carathéodory and thus a random lsc function (with respect to (X ,BX )).292

Next we claim z = 0 satisfies the conditions of the proposition. First, by direct computation293 ∫
X
e⟨0,x⟩dµ(x) =

∫
X
dµ(x) = 1 < +∞294

as µ is a probability measure on X . As f(·, x) is differentiable, we can compute ∇zf(z, x) =295

Cxe⟨C
T 0,x⟩ = Cx. Hence296 ∫

X
∥∇zf(z, x)∥dµ(x) =

∫
X
∥Cx∥dµ(x) ≤ ∥C∥max

x∈X
∥x∥ < +∞,297

where we have used the boundedness of X , and once again that µ is a probability measure. Thus298

we satisfy the assumptions of Proposition 3.1, and can conclude that the sequence of random299

lsc functions Sn given by Sn(z, ω) = 1
n

∑n
i=1 f(z,Xi(ω)) are epi-consistent with limit Sµ : z 7→300 ∫

X f(z, ·)dµ. But,301

Sn(z, ω) =
1

n

n∑
i=1

e⟨C
T z,Xi(ω)⟩ = Mn(C

T z, ω) and Sµ(z) =

∫
X
e⟨C

T z,·⟩dµ = Mµ(C
T z),302

and so we have shown the sequence Mn(C
T (·), ·) is epi-consistent with limit Mµ ◦ CT .303

Corollary 3.3. The sequence L
µ
(ω)
n

◦ CT is epi-consistent with limit Lµ ◦ CT .304

Proof. Let305

Ωe =

{
ω ∈ Ω |Mn(C

T (·), ω) e−−−−−→
n→+∞

Mµ ◦ CT (·)
}
,306

which has P(Ωe) = 1 by Corollary 3.2, and let ω ∈ Ωe. Both Mn and Mµ are finite valued and307

strictly positive, and furthermore the function log : R++ → R is continuous and increasing. Hence,308

by a simple extension of [36, Exercise 7.8(c)], it follows, for all ω ∈ Ωe, that309

L
µ
(ω)
n

◦ CT = logMn(C
T (·), ω) e−−−−−→

n→+∞
logMµ ◦ CT = Lµ ◦ CT .

310

3.2. Epi-consistency of the dual objective functions. We now use the previous lemma to311

obtain an epi-consistency result for the entire empirical dual objective function. This is not an312

immediately clear, as epi-convergence is not generally preserved by even simple operations such as313

addition, see, e.g., the discussion in [37, p. 276] and the note [8] that eludes to subtle difficulties314

when dealing with extended real-valued arithmetic in this context.315

316

We recall the following pointwise convergence result for compact X , which is classical in the317

statistics literature.318

Lemma 3.4. If µ ∈ P(X ), for almost every ω ∈ Ω, and all z ∈ Rm319

Mn(C
T z, ω) → Mµ ◦ CT (z),320

namely pointwise convergence in z.321
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We remark that the literature contains stronger uniform convergence results, observed first322

in Csörgö [?] without proof, and later proven in [18] and [12, Proposition 1]. Noting that both323

Mn(z, ω),Mµ(z) > 0 are strictly positive for all z ∈ Rm, and that the logarithm is continuous on324

the strictly positive real line, we have an immediate corollary:325

Corollary 3.5. For almost every ω ∈ Ω, for all z ∈ Rm326

L
µ
(ω)
n

(CT z) = logMn(C
T z, ω) → logMµ(C

T z) = Lµ(C
T z).327

Using this we prove the first main result:328

Theorem 3.6. For any lsc, proper, convex function g, the empirical dual objective function ϕ
µ
(ω)
n

329

is epi-consistent with limit ϕµ330

Proof. Define331

Ωe =

{
ω ∈ Ω | L

µ
(ω)
n

◦ CT (·) e−−−−−→
n→+∞

Lµ ◦ CT (·)
}
.332

By Corollary 3.3, P(Ωe) = 1. Similarly denote333

Ωp =
{
ω ∈ Ω | L

µ
(ω)
n

◦ CT (·) → Lµ ◦ CT (·) pointwise
}
.334

By Corollary 3.5, we also have P(Ωp) = 1. In particular we observe that P(Ωe ∩ Ωp) = 1.335

On the other hand we have vacuously that the constant sequence of convex, proper, lsc func-336

tions αg∗ ◦ (−Id/α) converges to αg∗ ◦ (−Id/α) both epigraphically and pointwise.337

338

Thus for any fixed ω ∈ Ωp ∩Ωe we have constructed two sequences, namely gn ≡ αg∗ ◦ (−Id/α)339

and Ln = L
µ
(ω)
n

◦ CT , which both converge epigraphically and pointwise for all ω ∈ Ωe ∩ Ωp.340

Therefore, by [37, Theorem 7.46(a)], for all ω ∈ Ωe ∩ Ωp341

αg∗ ◦ (−Id/α) + L
µ
(ω)
n

◦ CT e−−−−−→
n→+∞

αg∗ ◦ (−Id/α) + Lµ ◦ CT .342

As P(Ωe ∩ Ωp) = 1, this proves the result.343

3.3. Convergence of minimizers. We now use epi-consistency to prove convergence of minimiz-344

ers. At the dual level this can be summarized in the following lemma, essentially [26, Proposition345

2.2]; which was stated therein without proof.6346

Lemma 3.7. There exists a subset Ξ ⊂ Ω of measure one, such that for any ω ∈ Ξ we have: Let347

{εn} ↘ 0 and zn(ω) such that348

ϕ
µ
(ω)
n

(zn(ω)) ≤ inf
z
ϕ
µ
(ω)
n

(z) + εn.349

Let {znk
(ω)} be any convergent subsequence of {zn(ω)}. Then limk→+∞ znk

(ω) is a minimizer of350

ϕµ. If ϕµ admits a unique minimizer zµ, then zn → zµ.351

Proof. Denote352

Ξ =

{
ω ∈ Ω | ϕ

µ
(ω)
n

e−−−−−→
n→+∞

ϕµ

}
.353

By Theorem 3.6, P(Ξ) = 1. Fix any ω ∈ Ξ.354

6We remark that (as observed in [26]) epigraphical convergence of a (multi-)function depending on a parameter
(such as ω) guarantees convergence of minimizers in much broader contexts, see e.g. [3, Theorem 1.10] or [38, Theorem
3.22]. Here we include a first principles proof.
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As we have fixed ω ∈ Ξ, we have that the sequence ϕ
µ
(ω)
n

e−−−−−→
n→+∞

ϕµ epi-converges. Also, by355

Theorem 2.3, our global Assumption 2.2 holds if and only if ϕµ is level-bounded. These two observa-356

tions together imply by [37, Theorem 7.32 (c)] that the sequence ϕ
(ω)
µn is eventually level-bounded.7357

Altogether, this means the sequence of lsc, proper, eventually level-bounded functions ϕ
µ
(ω)
n

epi-358

converge to ϕµ - which is also lsc and proper. This set of properties is precisely the necessary359

assumptions of [37, Theorem 7.33], which then asserts any sequence of approximate minimizers360

{zn(ω)} is bounded with all cluster points belonging to argminϕµ. Namely, any convergent subse-361

quence {znk
(ω)} has the property that its limit limk→+∞ znk

∈ argminϕµ. Lastly, if we also have362

argminϕµ = {zµ}, then from the same result [37, Theorem 7.33], then necessarily zn(ω) → zµ.363

We now push this convergence to the primal level by using, in essence, Attouch’s Theorem [2], [3,364

Theorem 3.66], in the form of a corollary of Rockafellar and Wets [37, Theorem 12.40].365

Lemma 3.8. Let ẑ ∈ Rm, and let zn → ẑ be any sequence converging to ẑ. Then for almost366

every ω,367

lim
n→+∞

∇L
µ
(ω)
n

(CT zn) = ∇Lµ(C
T ẑ).368

Proof. We first observe that dom(Lµ ◦ CT ) = Rm so that ẑ ∈ int(dom(Lµ ◦ CT )). Also as Mµ369

is everywhere finite-valued, Lµ(C
T ẑ) = logMµ(C

T ẑ) < +∞. Furthermore for all n, the function370

L
µ
(ω)
n

◦ CT is proper, convex, and differentiable. Finally, we have shown in Corollary 3.3, that for371

almost every ω ∈ Ω, we have L
µ
(ω)
n

◦ CT e−−−−−→
n→+∞

Lµ ◦ CT .372

These conditions together are the necessary assumptions of [37, Theorem 12.40 (b)]. Hence we have373

convergence limn→+∞∇L
µ
(ω)
n

(CT zn) = ∇Lµ(C
T ẑ) for almost every ω ∈ Ω.374

We now prove the main result.375

Theorem 3.9. There exists a set Ξ ⊆ Ω of probability one such that for each ω ∈ Ξ the following376

holds: Given εn ↘ 0, and zn(ω) such that ϕ
µ
(ω)
n

(zn(ω)) ≤ infz ϕµ
(ω)
n

(z) + εn, define377

xn(ω) := ∇L
µ
(ω)
n

(CT zn).378

If znk
(ω) is any convergent subsequence of zn(ω) then limk→+∞ xnk

(ω) = xµ, where xµ is the unique379

solution of (P ). If (2.7) admits a unique solution zµ, then in fact xn(ω) → xµ.380

Proof. Let381

Ξ = {ω ∈ Ω | ϕ
µ
(ω)
n

e−−−−−→
n→+∞

ϕµ},382

recalling that by Proposition 3.1, P(Ξ) = 1. Fix ω ∈ Ξ. By Lemma 3.7, for any convergent383

subsequence znk
(ω) with limit z(ω), we have that z(ω) ∈ argminϕµ. Furthermore, by Lemma 3.8384

lim
k→+∞

xnk
(ω) = lim

k→+∞
∇L

µ
(ω)
nk

(CT znk
) = ∇Lµ(C

T z(ω))385

Using the primal-dual optimality conditions (2.4) we have that ∇Lµ(C
T z(ω)) solves the primal386

problem (P). As (P) admits a unique solution xµ, necessarily limk→+∞ xnk
(ω) = xµ. If additionally387

argminϕµ = {zµ}, then necessarily zn → zµ via Lemma 3.7, and the result follows from an identical388

application of Lemma 3.8 and (2.4).389

The key novelty of this result is the almost sure convergence of minimizers, particularity as ε ↘390

0. The compact support of the measure µ is key for this result. In particular, this is stronger than391

the convergence in probability guaranteed by common statistical techniques such as m-estimation392

[46, Section 3.2].393

7A sequence of functions fn : Rd → R is eventually level-bounded if for each α, the sequence of sets {f−1
n ([−∞, α])}

is eventually bounded, see [37, p. 266].
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4. Convergence rates for quadratic fidelity. When proving rates of convergence, we restrict394

ourselves to the case where g = 1
2∥b− (·)∥22. Thus, the dual objective function reads395

(4.1) ϕµ(z) =
1

2α
∥z∥2 − ⟨b, z⟩+ Lµ(C

T z).396

Clearly, ϕµ is finite valued and (1/α-)strongly convex, hence admits a unique minimizer zµ. Re-397

calling what was laid out in Subsection 2.2, as global Assumption 2.2 holds vacuously with g =398
1
2∥b − (·)∥2, the unique solution to the MEM primal problem (P) is given by xµ = ∇Lµ(C

T zµ).399

Further by our global compactness assumption on X , ϕµ is (infinitely many times) differentiable.400

4.1. Epigraphical distances. Our main tool to prove convergence rates are epigraphical dis-401

tances. We mainly follow the presentation in Royset and Wets [40, Chapter 6.J], but one may find402

similar treatment in Rockafellar and Wets [37, Chapter 7]. For any norm ∥ · ∥∗ on Rd, the distance403

(in said norm) between a point c and a set D is defined as dD(c) = infd∈D ∥c − d∥∗. For C,D404

subsets of Rd we define the excess of C over D [40, p. 399] as405

exc(C,D) :=


supc∈C dD(c) if C,D ̸= ∅,
+∞ if C ̸= ∅, D = ∅,
0 otherwise.

406

We note that this excess explicitly depends on the choice of norm used to define dD. For the specific407

case of the 2-norm, we denote the projection of a point a ∈ Rd onto a closed, convex set B ⊂ Rd408

as the unique point projB(a) ∈ B which achieves the minimum ∥projB(a)− a∥ = minb∈B ∥b− a∥.409

The truncated ρ-Hausdorff distance [40, p. 399] between two sets C,D ⊂ Rd is defined as410

d̂ρ(C,D) := max {exc(C ∩Bρ, D), exc(D ∩Bρ, C)} ,411

where Bρ = {x ∈ Rd : ∥x∥∗ ≤ ρ} is the closed ball of radius ρ in Rd. When discussing distances412

on Rd, we will consistently make the choice of ∥ · ∥∗ = ∥ · ∥ the 2-norm. We note we can recover the413

usual Pompeiu-Hausdorff distance by taking ρ → +∞.414

However, to extend the truncated ρ-distance to epigraphs of functions - which here are subsets415

of Rd+1 - we equip Rd+1 with a very particular norm. For any z ∈ Rd+1, write z = (x, a) for416

x ∈ Rd, a ∈ R. Then for any z1, z2 ∈ Rd+1 we define the norm417

∥z1 − z2∥∗,d+1 = ∥(x1, a1)− (x2, a2)∥∗,d+1 := max{∥x1 − x2∥2, |a1 − a2|}.418

With this norm, we can define an epi-distance as in [40, Equation 6.36]: for f, h : Rd → R not419

identically +∞, and ρ > 0 we define420

(4.2) d̂ρ(f, h) := d̂ρ(epi f, epih),421

where Rd+1 has been equipped with the norm ∥ · ∥∗,d+1. This epi-distance quantifies epigraphical422

convergence in the following sense: [37, Theorem 7.58]8 if f is a proper function and fn a sequence423

of proper functions, then for any constant ρ0 > 0:424

fn
e−−−−−→

n→+∞
f if and only if d̂ρ(fn, f) → 0 for all ρ > ρ0.425

4.2. Convergence Rates. We begin with a technical lemma which will prove expedient for426

future results.427

8We remark that while at first glance the definition of epi-distance seen in [37, Theorem 7.58] differs from ours
(which agrees with [40]), it is equivalent up to multiplication by a constant and rescaling in ρ. See [40, Proposition
6.58] and [37, Proposition 7.61] - the Kenmochi conditions - for details.
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Lemma 4.1. Let ρ > 0 and ν ∈ P(X ). Then, for all z ∈ Bρ we have428

Mν(C
T z) =

∫
X
e⟨C

T z,·⟩dν ∈ [exp (−ρ∥C∥|X |) , exp (ρ∥C∥|X |)] .429

Proof. For all x ∈ X , z ∈ Bρ, we have, via Cauchy-Schwarz, that430

exp (−ρ∥C∥|X |) ≤ exp (−∥z∥∥Cx∥) ≤ exp⟨CT z, x⟩.431

In particular, exp (−ρ∥C∥|X |) ≤ minx∈X exp⟨CT z, x⟩. On the other hand, we find that432

exp⟨CT z, x⟩ ≤ exp (∥z∥∥Cx∥) ≤ exp (ρ∥C∥|X |) .433

Thus, maxx∈X exp⟨CT z, x⟩ ≤ exp (ρ∥C∥|X |) . Hence for any ν ∈ P(X ) we find434

1 · exp (−ρ∥C∥|X |) ≤ ν(X )min
x∈X

e⟨C
T z,x⟩ ≤

∫
X
e⟨C

T z,·⟩dν ≤ ν(X )max
x∈X

e⟨C
T z,x⟩ ≤ 1 · exp (ρ∥C∥|X |) .

435

We now prove rates of convergence for arbitrary prior ν, and later specialize to the empirical case.436

To this end, we construct a key global constant ρ0 induced by C, b, α in (4.1): We define437

(4.3) ρ0 := max

{
ρ̂,

ρ̂2

2α
+ ∥b∥ρ̂+ ρ̂∥C∥|X |

}
,438

where ρ̂ = 2α(∥b∥+ ∥C∥|X |) and |X | := maxx∈X ∥x∥. We emphasize that our running compactness439

assumption on X is essential for finiteness of ρ0. The main feature of this constant is the following.440

Lemma 4.2. For any ν ∈ P(X ), let ϕν be the corresponding dual objective function as defined441

in (4.1), which has a unique minimizer zν . Then ρ0 has the following two properties:442

(a) ϕν(zν) ∈ [−ρ0, ρ0], (b) ∥zν∥ ≤ ρ0.443

Proof. We first claim that ∥zν∥ ≤ ρ̂. Let z ∈ Rd be such that ∥z∥ > ρ̂. Then,444

ϕν(z) ≥
∥z∥2

2α
− ∥b∥∥z∥+ log exp (−∥C∥∥x∥∥z∥) = ∥z∥

(
∥z∥
2α

− ∥b∥ − ∥C∥|X |
)
.(4.4)445

Where in the first inequality we have used Cauchy-Schwarz on ⟨b, z⟩, and Lemma 4.1 with ρ = ∥z∥446

to bound Mµ(C
T z) ≥ exp (−∥C∥∥x∥∥z∥). From (4.4) it is clear that ∥z∥ > ρ̂ implies ϕν(z) > 0.447

But observing that ϕν(0) = 0, such z cannot be a minimizer. Hence necessarily ∥zν∥ ≤ ρ̂ ≤ ρ0.448

Once more, via Cauchy-Schwarz and Lemma 4.1 we compute449

|ϕν(zν)| =
∣∣∣∣∥zν∥22α

− ⟨b, zν⟩+ Lν(zν)

∣∣∣∣ ≤ ρ̂2

2α
+ ρ̂∥b∥+ log exp(∥C∥|X |ρ̂)450

=
ρ̂2

2α
+ ρ̂∥b∥+ ρ̂∥C∥|X |.451

Lemma 4.3. Let ρ0 be given by (4.3). Then for all ρ > ρ0 and all µ, ν ∈ P(X ), we have452

d̂ρ(ϕµ, ϕν) ≤ max
z∈Bρ

|Lν(C
T z)− Lµ(C

T z)|.453

Proof. Lemma 4.2 guarantees that for both measures µ, ν ∈ P(X ), we have454

(4.5) ϕν(zν), ϕµ(zµ) ∈ [−ρ0, ρ0] and ∥zν∥, ∥zµ∥ ≤ ρ0.455
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These conditions imply, for any ρ > ρ0, that the set Cρ := ({z : ϕµ(z) ≤ ρ} ∪ {z : ϕν(z) ≤ ρ}) ∩Bρ456

is nonempty. This follows from (4.5) as for any ρ > ρ0 the nonempty set {zµ, zν}∩Bρ0 is contained457

in Cρ0 ⊂ Cρ. As Cρ is nonempty we may apply [40, Theorem 6.59] with f = ϕµ and g = ϕν to458

obtain d̂ρ(ϕµ, ϕν) ≤ supz∈Cρ
|ϕν(z)− ϕµ(z)|. Then from the definition of ϕµ and ϕν , we have459

sup
z∈Cρ

|ϕν(z)− ϕµ(z)| = sup
z∈Cρ

|Lν(C
T z)− Lµ(C

T z)|460

≤ sup
z∈Bρ

|Lν(C
T z)− Lµ(C

T z)|461

= max
z∈Bρ

|Lν(C
T z)− Lµ(C

T z)|,462

where in the penultimate line uses that Cρ ⊆ Bρ, and the final equality follows as the continuous463

function Lµ ◦ CT − Lν ◦ CT achieves a maximum over the compact set Bρ.464

For notational convenience, we will hereafter denote465

Dρ(ν, µ) := max
z∈Bρ

|Lµ(C
T z)− Lν(C

T z)|.466

We also recall from Subsection 2.1 that Sε(ν) denotes the set of ε-minimizers of ϕν .467

Lemma 4.4. Let ρ0 be given by (4.3). Then, for all µ, ν ∈ P(X ), all ρ > ρ0, and all ε ∈ [0, ρ−ρ0],468

the following holds: If469

δ > ε+ 2Dρ(ν, µ),470

then471

|ϕν(zν)− ϕµ(zµ)| ≤ Dρ(ν, µ) and exc(Sε(ν) ∩Bρ, Sδ(µ)) ≤ Dρ(ν, µ).472

Proof. Let ρ > ρ0 and ε ∈ [0, ρ − ρ0]. By choice, we have ε < 2ρ. By Lemma 4.2(a) we have473

ϕν(zν), ϕµ(zµ) ∈ [−ρ0, ρ0], and in turn by the choice of ρ, ε we have [−ρ0, ρ0] ⊆ [−ρ, ρ0] ⊆ [−ρ, ρ−ε].474

Also, as ρ > ρ0, by Lemma 4.2(b) we have {zν} = argminϕν ∩ Bρ and {zµ} = argminϕµ ∩ Bρ.475

These properties of ρ, ε are exactly the assumptions of [40, Theorem 6.56] for f = ϕµ and g =476

ϕν . This result yields that, if δ > ε + 2d̂ρ(ϕµ, ϕν), then |ϕν(zν) − ϕµ(zµ)| ≤ d̂ρ(ϕν , ϕµ) and477

exc(Sε(ν) ∩Bρ, Sδ(µ)) ≤ d̂ρ(ϕν , ϕµ).478

However as ρ > ρ0, we may apply Lemma 4.3 to assert d̂ρ(ϕµ, ϕν) ≤ Dρ(ν, µ). Hence, for any479

δ > ε+ 2Dρ(ν, µ) ≥ ε+ 2d̂ρ(ϕµ, ϕν) we obtain480

|ϕν(zν)− ϕµ(zµ)| ≤ Dρ(ν, µ),481

exc(Sε(ν) ∩Bρ, Sδ(µ)) ≤ Dρ(ν, µ).482

For the main results, Theorem 4.7 and Theorem 5.5, we require additional auxiliary results.483

With some additional computation, we can infer the following Lipschitz bound on ∇Lν .484

Corollary 4.5. Let ρ̂ > 0 and ν ∈ P(X ). Then for all x, y ∈ Bρ̂ ⊂ Rd, we have that485

(4.6) ∥∇Lν(x)−∇Lν(y)∥ ≤ K∥x− y∥486

for an explicit constant K > 0 which depends on ρ̂, d, |X |, but not on ν.487

Proof. As discussed in Subsection 2.2, Lν is twice continuously differentiable. Hence, using the488

fundamental theorem of calculus, we have ∇Lν(x) −∇Lν(y) =
∫ 1
0 ∇2Lµ(x + t(y − x)) · (y − x)dt.489
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Thus, as x+ t(y − x) ∈ Bρ̂ for all t ∈ [0, 1], we have490

∥∇Lν(z)−∇Lν(y)∥ ≤
∫ 1

0
∥∇2Lµ(x+ t(y − x))∥∥y − x∥dt491

≤
∫ 1

0
max
z∈Bρ̂

∥∇2Lν(z)∥∥y − x∥dt492

= max
z∈Bρ̂

∥∇2Lν(z)∥∥y − x∥.493

By convexity of Lν , we observe that ∇2Lν(z) is (symmetric) positive semidefinite (for any z).494

Hence, maxz∈Bρ̂
∥∇2Lν(z)∥ ≤ maxz∈Bρ̂

Tr(∇2Lν(z)). Now, observe that495

∂

∂zi
Lν(z) =

1

Mν(z)

[∫
X
xi exp⟨z, x⟩dν(x)

]
=

1∫
X exp⟨z, x⟩dν(x)

[∫
X
xi exp⟨z, x⟩dν(x)

]
,496

where the interchange of the derivative and integral is permitted by the Leibniz rule for finite497

measures, see e.g. [19, Theorem 2.27] or [27, Theorem 6.28]. Hence,498

∂2

∂z2i
Lν(z) =

−1

(Mν(z))2

[∫
X
xi exp⟨z, x⟩dν(x)

]2
+

1

Mν(z)

[∫
X
x2i exp⟨z, x⟩dν(x)

]
.499

Taking the absolute value in the last identity, we may bound |xi| ≤ ∥x∥ ≤ |X |, ∥z∥ ≤ ρ̂, and apply500

Lemma 4.1 to bound Mν(z). This eventually yields501 ∣∣∣∣ ∂2

∂z2i
Lν(z)

∣∣∣∣ ≤ |X |
exp(−ρ̂|X |)2

exp(ρ̂|X |)2 + |X |2

exp(−ρ̂|X |)
exp(ρ̂|X |) =: K̂,502

with K̂ > 0 which depends on ρ̂ and |X |. As this uniformly bounds every term in the trace,503

K := d · K̂ is the desired constant.504

The key feature of the constant K is that it does not depend on the choice of measure ν. Hence505

we can uniformly apply this bound over a family of measures, the most pertinent example being506 {
µ
(ω)
n

}
. We remark that our upper bound on K is a vast overestimate for practical examples,507

which can be observed numerically. Finally we state a useful property of the excess.508

Lemma 4.6. Let A,B ⊂ Rd be nonempty and let B be closed and convex. Then for a ∈ A and509

b = projB(a) we have510

∥a− b∥ ≤ exc(A;B).511

We now have developed all the necessary tools to state and prove the main result for the case512

of g = 1
2∥(·)− b∥.513

Theorem 4.7. Let ρ0 be given by (4.3), and suppose rank(C) = d. Then for all µ, ν ∈ P(X ), all514

ρ > ρ0 and all ε ∈ [0, ρ − ρ0], we have the following: If zν,ε is an ε-minimizer of ϕν as defined in515

(4.1), then516

xν,ε := ∇Lν(C
T zν,ε)517

satisfies the error bound518

∥xν,ε − xµ∥ ≤ 1

ασmin(C)
Dρ(ν, µ) +

2
√
2√

ασmin(C)

√
Dρ(ν, µ) +

(
K∥C∥

√
2α+

2√
ασmin(C)

)√
ε,519

where xµ is the unique solution to the MEM primal problem (P ) for µ and K > 0 is a constant520

which does not depend on µ, ν.521
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Proof. Let ρ > ρ0, ν, µ ∈ P(X ) and ε ∈ [0, ρ− ρ0]. Let zν,ε be a ε-minimizer of ϕν , and denote522

the unique minimizers of ϕµ and ϕµ as zν and zµ, respectively. Then523

∥xν,ε − xµ∥ =
∥∥∇Lν(C

T zν,ε)−∇Lµ(C
T zµ)

∥∥524

=
∥∥∇Lν(C

T zν,ε)−∇Lν(C
T zν) +∇Lν(C

T zν)−∇Lµ(C
T zµ)

∥∥ ,525

and so526

∥xν,ε − xµ∥ ≤
∥∥∇Lν(C

T zν,ε)−∇Lν(C
T zν)

∥∥+
∥∥∇Lν(C

T zν)−∇Lµ(C
T zµ)

∥∥ .(4.7)527

To estimate the first term on the right hand side of (4.7), we require an auxiliary bound. Observe528

that, as ϕν is strongly 1/α-convex with ∇ϕν(zν) = 0, we have529

∥zν − zν,ε∥ ≤
√
2α|ϕν(zν)− ϕν(zν,ε)|1/2 ≤

√
2αε.(4.8)530

Here the first inequality uses (2.1), while the second follows from the definition of zν and zν,ε, as531

|ϕν(zν)− ϕν(zν,ε)| = ϕν(zν,ε)− ϕν(zν) ≤ ε.532

From Lemma 4.2(b), we find that ∥zν∥ ≤ ρ0. Thus, (4.8) yields ∥zν,ε∥ ≤ ρ0 +
√
2αε. This533

implies ∥CT zν∥, ∥CT zν,ε∥ ≤ ∥C∥(ρ0 +
√
2αε). Hence, Corollary 4.5 with ρ̂ = ∥C∥(ρ0 +

√
2αε)534

yields535 ∥∥∇Lν(C
T zν,ε)−∇Lν(C

T zν)
∥∥ ≤ K∥CT zν − CT zν,ε∥,536

where K depends on ρ̂, |X |, d and therefore on |X |, ∥C∥, b, ε, α, d. The right-hand side in the last537

inequality can be further estimated with (4.8) to find538

(4.9) ∥CT zν − CT zν,ε∥ ≤ ∥C∥∥zν − zν,ε∥ ≤ ∥C∥
√
2αε.539

We now turn to the second term on the right-hand side of (4.7). First order optimality condi-540

tions give541

0 = −zν
α

+ b+ C∇Lν(C
T zν), 0 = −zµ

α
+ b+ C∇Lµ(C

T zµ),542

and therefore
∥∥C(∇Lν(C

T zν)−∇Lµ(C
T zµ))

∥∥ = 1
α∥zν − zµ∥. Furthermore, as rank(C) = d we543

have σmin(C) > 0. We also have for, any x ∈ Rd, that ∥Cx∥ ≥ σmin(C)∥x∥, and hence544 ∥∥∇Lν(C
T zν)−∇Lµ(C

T zµ)
∥∥ ≤ 1

σmin(C)

∥∥C(∇Lν(C
T zν)−∇Lµ(C

T zµ))
∥∥ =

1

ασmin(C)
∥zν − zµ∥.545

In order to bound ∥zν − zµ∥ from above, we define δ := 2(ε+ 2Dρ(ν, µ)). Denoting as usual Sδ(µ)546

as the set of δ-minimizers of ϕµ, which is a closed, convex set by the continuity and convexity of547

ϕµ respectively, define y = projSδ(µ)
(zν). The triangle inequality gives548

(4.10) ∥zν − zµ∥ ≤ ∥zν − y∥+ ∥y − zµ∥.549

By the choice of ρ > ρ0, we have by Lemma 4.2(b) that zν ∈ Sε(ν) ∩ Bρ. Therefore applying550

Lemma 4.6 with A = Sε(ν) ∩Bρ, B = Sδ(µ) we can bound the first term on the right hand side of551

(4.10) as552

(4.11) ∥zν − y∥ ≤ exc(Sε(ν) ∩Bρ;Sδ(µ)).553

For the remaining term of the right hand side of (4.10), we use the characterization (2.1) of the554
1
α -strong convexity in the differentiable case for ϕµ, noting ∇ϕµ(zµ) = 0. Hence555

(4.12) ∥y − zµ∥ ≤
√
2α|ϕµ(y)− ϕµ(zµ)|1/2 ≤

√
2αδ,556
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where y ∈ Sδ(µ) for the second inequality. Combining (4.9)–(4.12) with (4.7), we find that557

∥xν,ε − xµ∥ ≤ K∥C∥
√
2αε+

1

ασmin(C)
exc(Sε(ν) ∩Bρ;Sδ(µ)) +

1

ασmin(C)

√
2αδ.558

By the choice of δ = 2(ε + 2Dρ(ν, µ)), Lemma 4.4 asserts exc(Sε(ν) ∩ Bρ;Sδ(µ)) ≤ Dρ(ν, µ).559

Therefore560

∥xν,ε − xµ∥ ≤ 1

ασmin(C)
exc(Sε(ν) ∩Bρ;Sδ(µ)) +

1

ασmin(C)

√
2αδ +K∥C∥

√
2αε561

≤ 1

ασmin(C)
Dρ(ν, µ) +

1

σmin(C)

√
4ε

α
+

1

σmin(C)

√
8Dρ(ν, µ)

α
+K∥C∥

√
2αε562

=
1

ασmin(C)
Dρ(ν, µ) +

2
√
2√

ασmin(C)

√
Dρ(ν, µ) +

(
K∥C∥

√
2α+

2√
ασmin(C)

)√
ε563

where in the second line we have used the definition of δ and the concavity of
√
x+ y ≤

√
x+

√
y.564

Note that we may set ε = 0 for a corollary on exact minimizers. However, the error bound still565

has the same scaling in terms of Dρ(ν, µ). This theorem is the first of its type to link MEM solu-566

tions with epigraphical distances. This result has the benefit applying uniformly in the choice η,567

so this theorem can be applied for any choice of η which provides a bound on Dρ(µ, η) - and we568

demonstrate the particular case of ν = µ
(ω)
n in the next section. While this result has the stringent569

assumption that rank(C) = d, we emphasize that this does not appear in the qualitative Theo-570

rem 3.9 which guarantees the almost sure convergence of solutions. We conjecture that weakening571

this assumption may be possible, but will require alternative techniques. Finally we remark that572

the scaling
√
Dρ(µ, η) arises as a direct consequence of the smoothness and strong convexity of573

g = 1
2∥b − (·)∥2, see e.g. [40, Theorem 4.2] and the following discussion - and hence it may be574

feasible to prove improved rates for other specialized choices of g.575

5. A statistical dependence on n. This section is devoted to making the dependence on n576

explicit in Theorem 4.7 for the special case ν = µ
(ω)
n . We briefly recall the empirical setting577

developed in Subsection 2.3. Given i.i.d. random vectors {X1, X2, . . . , Xn, . . .} on (Ω,F ,P) with578

shared law µ = PX−1
1 , we define µ

(ω)
n =

∑n
i=1 δXi(ω). For this measure, the dual objective reads579

ϕ
µ
(ω)
n

(z) =
1

2α
∥z∥2 − ⟨b, z⟩+ log

1

n

n∑
i=1

e⟨C
T z,Xi(ω)⟩.580

Given zn,ε(ω), an ε-minimizer of ϕ
µ
(ω)
n

(z), define581

xn,ε(ω) := ∇L
µ
(ω)
n

(CT zn,ϵ(ω)) =

∑n
i=1CXi(ω)e

⟨CT zn,ϵ(ω),Xi(ω)⟩∑n
i=1 e

⟨CT zn,ϵ(ω),Xi(ω)⟩
.582

We begin with a simplifying lemma, recalling the notation developed in Section 4 of the moment583

generating function Mµ of µ and empirical moment generating function Mn(·, ω) of µ(ω)
n .584

Lemma 5.1. Let ρ > 0, n ∈ N and ω ∈ Ω and set K := exp (ρ∥C∥|X |). Then585

Dρ(µ, µ
(ω)
n ) ≤ K max

z∈Bρ

∣∣Mµ(C
T z)−Mn(C

T z, ω)
∣∣ .586

Proof. Applying Lemma 4.1 to the particular probability measures µ and µ
(ω)
n gives587

(5.1) Mµ(C
T z),Mn(C

T z, ω) ∈ [exp (−ρ∥C∥|X |) , exp (ρ∥C∥|X |)] =: [c, d]588

where 0 < c < d. Furthermore, for any s, t ∈ [c, d] we have | log(s)− log(t)| ≤ 1
c |s− t|, and hence589

Dρ(µ, µ
(ω)
n ) = max

z∈Bρ

|L
µ
(ω)
n

(CT z)− Lµ(C
T z)| ≤ exp (ρ∥C∥|X |)max

z∈Bρ

∣∣Mµ(C
T z)−Mn(C

T z, ω)
∣∣ .

590
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Lemma 5.2. Let ρ0 be as defined in (4.3) and suppose rank(C) = d. Then, for all ρ > ρ0, all591

ε ∈ [0, ρ − ρ0], and for all n ∈ N we have: if zn,ε(ω) ∈ Sε(µ
(ω)
n ), then xn,ε(ω) = ∇L

µ
(ω)
n

(CT zn,ε)592

satisfies593

∥xn,ε(ω)− xµ∥ ≤ K1

ασmin(C)
max
z∈Bρ

∣∣Mµ(C
T z)−Mn(C

T z, ω)
∣∣594

+
2
√
2K1√

ασmin(C)

√
max
z∈Bρ

|Mµ(CT z)−Mn(CT z, ω)|+
(
K2∥C∥

√
2α+

2√
ασmin(C)

)√
ε595

where K1 is a constant which depends on ρ, |X |, ∥C∥, and K2 on |X |, ∥C∥, b, ε, d, α.596

Proof. As µ
(ω)
n ∈ P(X ), Theorem 4.7 yields for all n, for ρ0 as defined in (4.3), for all ρ > ρ0,597

and all ε ∈ [0, ρ− ρ0], if zn,ε(ω) ∈ Sε(µ
(ω)
n ), then xn,ε(ω) = ∇Lν(C

T zn,ε) satisfies598

∥xn,ε(ω)− xµ∥ ≤ 1

ασmin(C)
Dρ(µ, µ

(ω)
n ) +

2
√
2√

ασmin(C)

√
Dρ(µ, µ

(ω)
n )599

+

(
K2∥C∥

√
2α+

2√
ασmin(C)

)√
ε,600

where we stress that the constant K2 depends on |X |, ∥C∥, b, ε, α, d, but does not depend on n. Ap-601

plying Lemma 5.1 to bound Dρ(µ, µ
(ω)
n ) ≤ K1 supz∈Bρ

∣∣Mµ(C
T z)−Mn(C

T z, ω)
∣∣ gives the result.602

In order to construct a final bound which depends explicitly on n it remains to estimate the term603

maxz∈Bρ

∣∣Mµ(C
T z)−Mn(C

T z, ω)
∣∣. This fits into the language of empirical process theory where604

this type of convergence is well studied. The main reference of interest here is van der Vaart [45].605

For compact X ⊂ Rd, let f : X → R be a function and β = (β1, . . . , βd) be a multi-index, i.e.606

a vector of d nonnegative integers. We call |β| =
∑

i βi the order of β, and define the differential607

operator Dβ = ∂β1

∂x
β1
1

· · · ∂βd

∂x
βd
d

. For integer k, we denote by Ck(X ) as the space of k-smooth (also608

known as k-Hölder continuous) functions on X , namely, those f which satisfy [45, p. 2131]609

∥f∥Ck(X ) := max
|β|≤k

sup
x∈int(X )

∥Dβf(x)∥+ max
|β|=k

sup
x,y∈int(X )

x ̸=y

∣∣∣∣Dβf(x)−Dβf(y)

∥x− y∥

∣∣∣∣ < +∞.610

Moreover, let Ck
R(X ) denote the ball of radius R in Ck(X ). With this notation developed we can state611

the classical results of van der Vaart [45]. In the notation therein, we apply the machinery of Sections612

1 and 2 to the measure space (X1,A1) = (X ,BX ), equipped with probability measure µ. Taking613

Gn =
√
n(µ

(ω)
n −µ) and F1 = F = Ck

R(X ), this induces the norm ∥Gn∥F = supf∈Ck
R(X ){

∣∣∫
X fdGn

∣∣},614

and hence the results of [45, p. 2131] give615

Theorem 5.3. Let µ ∈ P(X ). If k > d/2, then for any R > 0,616

E∗
P

[
sup

f∈Ck
R(X )

√
n

∣∣∣∣ ∫
X
fdµ(·)

n −
∫
X
fdµ

∣∣∣∣
]
≤ D617

where D is a constant depending (polynomially) on k, d, |X |, R, and E∗
P is the outer expectation to618

avoid concerns of measurablity (see e.g. [46, Section 1.2]).619

Here, the outer expectation is defined for f : Ω → R as620

E∗
P(f) := inf

h≥f pointwise
hmeasurable

EP(h)621

which coincides with the usual expectation for measurable functions. We remark that outer expec-622

tation is also known as the outer integral [37, Chapter 14.F]. A self-contained proof of Theorem 5.3623
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is non-trivial, requiring the development of entropy and bracketing numbers of function spaces624

which is beyond the scope of this article.9 We simply take this result as given. However, we show625

the following corollary.626

Corollary 5.4. For all n ∈ N, we have627

EP

[
max
z∈Bρ

∣∣Mµ(C
T z)−Mn(C

T z, ·)
∣∣] ≤ D√

n
,628

where D is a constant depending on d, |X |, ∥C∥, ρ.629

Proof. Observe that for each z, the function fz(x) = exp⟨CT z, ·⟩ is an infinitely differentiable630

function on the compact set X , and thus has bounded derivatives of all orders, in particular, of631

order k = d > d/2. Hence, for ρ > 0, the set of functions fz parameterized by z ∈ Bρ satisfies632 {
fz(x) = exp⟨C⊤z, x⟩ : z ∈ Bρ

}
⊂ Cd

Rd
(X ),633

where Rd is a constant which depends on d, ρ, ∥C∥, and |X |. Furthermore, as Qm ∩ Bρ ⊂ Bρ is a634

countable dense subset, maxz∈Bρ

∣∣Mµ(C
T z)−Mn(C

T z, ·)
∣∣ = supz∈Qm∩Bρ

∣∣Mµ(C
T z)−Mn(C

T z, ·)
∣∣635

is a supremem of countably many P-measurable functions and is hence P-measurable. In particular636

the usual expectation agrees with the outer expectation. Hence applying Theorem 5.3 we may637

assert638

EP

[
max
z∈Bρ

∣∣Mµ(C
T z)−Mn(C

T z, ·)
∣∣] = E∗

P

[
sup
z∈Bρ

∣∣∣∣ ∫
X
fzdµ

(·)
n −

∫
X
fzµ

∣∣∣∣
]

639

≤ E∗
P

 sup
f∈Cd

Rd
(X )

∣∣∣∣ ∫
X
fdµ(·)

n −
∫
X
fµ

∣∣∣∣
640

≤ D√
n
,641

for a constant D which depends on d, |X | and Rd. We remark that the choice of k = d in the above642

was aesthetic, to remove the dependence of D on k.643

The final result now follows as a simple consequence of Corollary 5.4 and Lemma 5.2:644

Theorem 5.5. Suppose rank(C) = d. For all n ∈ N, and all zn,ε(ω) ∈ Sε(µ
(ω)
n ), the associated645

xn,ε(ω) = ∇L
µ
(ω)
n

(CT zn,ε(ω)) satisfies646

E∗
P ∥xn,ε(·)− xµ∥ ≤ DK1

ασmin(C)

1√
n
+

2D
√
2K1√

ασmin(C)

√
1√
n
+

(
K2∥C∥

√
2α+

2√
ασmin(C)

)√
ε647

= O

(
1

n1/4
+
√
ε

)
,648

where the leading constants K1,K2, D depend on |X |, ∥C∥, b, ε, α, d. In particular, for the case649

ε = 0, the unique minimizer xn(ω) is always measurable and hence the outer expectation is the650

usual expectation.651

9Bounds of this “Donsker” type have previously been applied to empirical approximations of stochastic opti-
mization problems, to derive large deviation-style results for specific problems, see [39, Section 5.5] for a detailed
exposition and discussion, in particular [39, Theorem 5.2]. In principle this machinery could be used here to derive
similar large deviation results.
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Proof. Take ρ = 2ρ0 in Lemma 5.2. Then for any n, if zn,ε(ω) ∈ Sε(µ
(ω)
n ), we have for all ω652

∥xn,ε(ω)− xµ∥ ≤ K1

ασmin(C)
sup
z∈Bρ

∣∣Mµ(C
T z)−Mn(C

T z, ω)
∣∣653

+
2
√
2
√
K1√

ασmin(C)

√
sup
z∈Bρ

|Mµ(CT z)−Mn(CT z, ω)|+
(
K2∥C∥

√
2α+

2√
ασmin(C)

)√
ε,654

holds with constants K1,K2 that depend only on |X |, ∥C∥, b, ε, α, d. Taking the outer expectation655

on both sides, and applying Corollary 5.4 to the measurable right hand side gives the result.656

For the latter assertion, by [37, Theorem 14.37] there always exists a measurable selection ω →657

argminϕ
µ
(ω)
n

= {zn(ω)}. In particular, zn(ω) is unique by the 1
α -strong convexity of ϕ

µ
(ω)
n

, and thus658

there is only one possible selection which is immediately measurable. Hence the function ω → xn(ω)659

is the composition of the continuous function ∇L
µ
(ω)
n

and the measurable function CT zn(ω) - and is660

hence measurable. Remarking also that xn(ω) is unique, the left hand side is always P-measurable661

and the outer expectation agrees with the usual expectation.662

More generally we note that for all ε > 0, there always exists a measurable selection zn,ε(ω) ∈663

Sε(µ
(ω)
n ) via [37, Theorem 14.6, Proposition 14.33]. Furthermore any algorithm A which performs664

a composition of operations which preserve Borel measurability - such summations, products, differ-665

entiations, and evaluations of measurable functions (see e.g. [19, Section 2.1]) - defines a selection666

ω → A(ϕ
µ
(ω)
n

) = zn,ε(ω) which is a composition of Borel-measurable functions and hence mea-667

surable. With this in mind, issues of measurability are a technical note rather than of practical668

concern.669

Finally, we remark that this result is the first to give a parametric rate for convergence of670

approximate minimizers of the empirical MEM problem. We conjecture however that this result671

is not sharp, and that a sharper convergence rate of n1/2 may be proven using different analytical672

techniques. This conjecture will be examined numerically in the next section.673

6. Numerical experiments. We now shift to a numerical examination of the convergence xn,ε →674

xµ. We focus entirely on the most recent setting of Section 5, the MEM problem with an empirical675

prior µ
(ω)
n and the fidelity term g = 1

2∥b − (·)∥2. As discussed throughout, the empirical dual676

objective function ϕ
(ω)
µn is smooth and strongly convex, with easily computable derivatives:10677

∇ϕ(ω)
µn

(z) =
1

2α
z − b+

∑n
i=1CXi(ω)e

⟨CT z,Xi(ω)⟩∑n
i=1 e

⟨CT z,Xi(ω)⟩
.678

Hence we may solve this problem with any standard optimization package, and here we choose679

to use limited memory BFGS [9]. As a companion to this paper, we include a jupyter notebook,680

https://github.com/mattkingros/MEM-Denoising-and-Deblurring.git, which can be used to repro-681

duce and extend all computations performed hereafter. We emphasize that, as this work is the first682

to propose using empirical data in the MEM framework, there are many numerical considerations683

that we will not address. More sophisticated and higher order optimization routines would natu-684

rally be of interest for moderate n, as are questions of how to efficiently solve this problem when n685

grows prohibitively large or when C is exceedingly close to singular.686

For our numerical experiments we will focus purely on denoising, namely the case C = I.687

We will use two datasets and two distributions of noise as proof of concept. For noise, we use688

additive Gaussian noise and “salt-and-pepper” corruption noise where each pixel has an independent689

probability of being set to purely black or white. For datasets, the first is the MNIST digits dataset690

[15] which contains 60000 28x28 grayscale pixel images of hand-drawn digits 0-9, and the second is691

10The derivatives are easily available analytically, but a näıve implementation may run into stability issues stem-
ming from overflow when computing large sums of exponential terms. This can be easily addressed, see e.g. [25].
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the more expressive dataset of Fashion-MNIST [47], which is once again 60000 28x28 grayscale pixel692

images but of various garments such as shoes, sneakers, bags, pants, and so on. We remark these693

choices of noise, dataset, and matrix are far from real world problems, and serve as a lightweight694

implementation of data into the MEM framework.695

In all experiments we always include enough noise so that the nearest neighbour to b in the696

dataset belongs to a different class than the ground truth, ensuring that recovery is non-trivial.697

We include this in all figures, captioned “closest point”. Furthermore, we take the ground truth698

to be a new data-point hand drawn by the authors; in particular, it is not present in either of the699

original MNIST or MNIST fashion datasets.700

We begin with a baseline examination of the error in n for the MNIST digit dataset, for various701

choices of b. To generate µ
(ω)
n practically, we sample n datapoints uniformly at random without702

replacement. As a remark on this methodology, the target best possible approximation is the one703

which uses all possible data, i.e., µD := µ
(ω)
60,000. Hence, for error plots we compare to xµD , as we704

do not have access to the full image distribution to construct xµ.705

Given a noisy image b, the experimental setup is as follows: for 20 values of n, spaced linearly706

between 10000 and 60000, we perform 15 random samples of size n. For each random sample,707

we compute an approximation xn,ϵ and the relative approximation error
∥xn,ϵ−xµD

∥
∥xµD

∥ , which is then708

averaged over the trials. Superimposed is the upper bound K1n
1/4 convergence rate, as well as709

the conjectured K2n
1/2 rate, for moderate constants K1,K2 which changes between figures. We710

also visually exhibit several reconstructions, the nearest neighbour, and postprocessed images for711

comparison. This methodology is used to create figures Figures 1, 3, 6, 8, 10 and 12712

A remark on postprocessing: As alluded to in the introduction (see Remark 1.1), an advantage713

of the dual approach is the ability to reconstruct the optimal measure Qn which solves the measure-714

valued primal problem as seen in [34]. In particular as Qn ≪ µ
(ω)
n , we have xn = EQn is a particular715

weighted linear combination of the input data. This allows for two types of natural postprocessing:716

at the level of the linear combination, i.e., setting all weights below some given threshold to zero,717

or at the level of the pixels: i.e. setting all pixels above 1-γ to 1 and below γ to 0. These718

postprocessing steps are motivated by the observation that solutions are compressible both in the719

linear combination and the pixel-intensity level. Hence our figures also include the final measure720

Qn with all entries below 0.01 set to zero, the corresponding linear combination of the remaining721

datapoints (bottom right image), and a further masking at the pixel level (top right image).722

With this methodology developed, we present the results. For the first figures, the ground truth723

is a hand-drawn 8, which is approximated by sampling the MNIST digit dataset. For Figure 1 we use724

additive Gaussian noise of variance σ = 0.10∥x∥. For Figure 3 we use salt-and-pepper corruptions725

with an equal probability of 0.2 of any given pixel being set to 1 or 0.726
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Figure 1: Recovery of an 8 with additive Gaussian noise

Figure 2: Rates and thresholding of optimal measure Qn, for Figure 1

Figure 3: Recovery of an 8 with salt-and-pepper corruption noise
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Figure 4: Rates and thresholding of optimal measure Qn, for Figure 3

Examining Figures 1 and 3, we can make several observations which will persist globally in all727

numerics. As seen in Figures 2 and 4, the theoretical rate n1/4 agrees with practical results, and728

appears to be tight for moderate n on the order of n < 30000. While the leading constants given by729

theory are quite large, growing polynomially with d, ρ e.g., in practice these are much more moderate730

- here O(1). We also note the linear combination forming the final solution is quite compressible,731

here having only 157 datapoints having dual measure above 0.01, and after thresholding being732

visually indistinguishable from the full solution. Furthermore the visual convergence is fast, in the733

sense that there is not an appreciable visual difference between the solution given 20,000 and 60,000734

datapoints. As they are formed as linear combinations of observed data, all solutions suffer from735

artefacting in the form of blurred edges, which can be solved by a final mask at the pixel level.736

Before shifting away from the MNIST dataset, we also include a cautionary experiment where,737

for small random samples, the method is visually “confidently incorrect”, which can be seen in738

Figure 5. In the previous examples Figures 1 and 3 for small n we simply have blurry images.739

This type of failure is generally representative of how the method performs when n is too small.740

However there is another failure case which distinctly highlights the risk of taking n too small,741

which can lead to a biased sample which does not well approximate µ - leading to correspondingly742

biased solutions. In Figure 5 we see the recovered image after masking is clearly a 3 for one random743

samples of size n = 1000, but a 5 for other random samples of size n = 800, 2000.744

Figure 5: A specific type of failure case for small n.

We now move to the more expressive MNIST fashion dataset. We once again use a hand745

drawn target, which is not originally found in the dataset. To emphasize differences compared to746

handwritten digits, the fashion dataset is immediately more challenging, especially in regards to747
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fine details. To illustrate, there are few examples of garments with spots, stripes, or other detailed748

patterns - and as such are much more difficult to learn from uniform random samples. Similarly,749

if the target ground truth image contains details or patterns which are not present in the fashion750

dataset, there is little hope of constructing a reasonable linear combination to approximate the751

ground truth. On the other hand, some classes - such as heels or sandals - are extremely easy to752

learn, as there are many near-identical examples in the dataset, and are visually quite distinct from753

many other classes. Disregarding the change in dataset, our methodology for remains the same as754

Figure 1.755

Figure 6: Recovery of a hand drawn shirt with additive Gaussian noise

Figure 7: Rates and thresholding of optimal measure Qn, for Figure 6

For the experiment with salt-and-pepper noise Figure 8, while MEM denoising clearly recovers756

a shirt, many of the finer details are lost or washed out. In contrast, with Gaussian noise Figure 6,757

there is some remnant of the shirts’ pattern visible in the final reconstruction. In both cases the758

nearest neighbor is a bag or purse, and not visually close to the ground truth. While the constant759

leading constant is larger, once again we are firmly below the theoretically expected convergence760

rate of n1/4, and solutions are compressible with respect to the optimal measure Qn.761

Finally, we conclude with an experiment on MNIST fashion with a hand drawn target of a762

heel, where we observe once again recovery well within the expected convergence rate, and visually763

recovers (after postprocessing) a reasonable approximation to the ground truth.764

23

This manuscript is for review purposes only.



Figure 8: Recovery of a hand drawn shirt with salt and pepper corruption noise.

Figure 9: Rates and thresholding of optimal measure Qn, for Figure 8

Figure 12: Recovery of hand drawn heel with Salt and Pepper corruption.
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Figure 10: Recovery hand drawn heel with additive Gaussian noise.

Figure 11: Rates and thresholding of optimal measure Qn, for Figure 10

Figure 13: Rates and thresholding of optimal measure Qn, for Figure 12

7. Conclusion and Future Work. Using the MEM framework, we have proposed using empiri-765

cal priors µ
(ω)
n derived from data to approximate the unknown solution xµ. We have shown that this766

method has desirable theoretical properties, with Theorem 3.9 proving an almost sure convergence767

of xn,ε → xµ, while Theorem 4.7 and Theorem 5.5 give upper bounds on the error ∥xν,ε−xµ∥ for an768
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arbitrary prior ν in terms of epigraphical distances and a parametric rate ∥xn,ε − xµ∥ = O
(

1
n1/4

)
.769

One advantage of our approach here is that most of our results are valid not only for minimizers770

but also for ϵ-minimizers. We conjecture, however, that at least for exact minizers (ϵ = 0) the rate771

result is not sharp and can be improved to O( 1√
n
) - as one might suspect from a function-valued772

central limit theorem.773

As proof of concept, we numerically demonstrated the success of our method for denoising774

(C = I) based upon certain standard test data sets. These experiments were performed with775

modest computing resources and off-the-shelf optimization routines. In future work, our aim is to776

design specialized optimization routines that would give us access to moderate and large regimes in777

n and hence open the door to larger data sets. To this end, it would also be useful to reformulate778

our dual problem so that one can take advantage of stochastic gradient descent. In addition to779

denoising, it would be natural to present experiments for tasks such as deconvolution and inpainting.780

Although we focused on the empirical approximation µ
(ω)
n , it would be natural to investigate781

more sophisticated approximations of µ. This is particularly true given that the approach taken782

here has been via epigraphical distances between the respective LMGFs.783

Finally, in a certain sense this paper aims to learn a regularizer based upon a data set. It would784

also be interesting to approach the fidelity term, which can be understood as the MEM estimator785

based on a noise distribution (see [44]), in a similar vein. That is, can one learn the fidelity norm786

based upon samples of noise?787
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Sud, 1989.827
[21] C. Grova, J. Daunizeau, J.-M. Lina, C. G. Bénar, H. Benali, and J. Gotman, Evaluation of EEG828

localization methods using realistic simulations of interictal spikes, Neuroimage, 29 (2006), pp. 734–753.829
[22] M. Heers, R. A. Chowdhury, T. Hedrich, F. Dubeau, J. A. Hall, J.-M. Lina, C. Grova, and830

E. Kobayashi, Localization accuracy of distributed inverse solutions for electric and magnetic source imag-831
ing of interictal epileptic discharges in patients with focal epilepsy, Brain Topography, 29 (2016), pp. 162–181.832

[23] E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev., 106 (1957), pp. 620–630.833
[24] E. T. Jaynes, Information theory and statistical mechanics. II, Phys. Rev., 108 (1957), pp. 171–190.834
[25] N. Kantas et al., On Particle Methods for Parameter Estimation in State-Space Models, Statist. Sci., 30835

(2015), pp. 328 – 351.836
[26] A. J. King and R. Wets, Epi-consistency of convex stochastic programs, Stoch. and Stoch. Rep., 34 (1991),837

pp. 83–92.838
[27] A. Klenke, Probability Theory: a Comprehensive Course, Springer, Cham, Switzerland, 2013.839
[28] S. Kullback and R. Leibler, On information and sufficiency, Ann. Math. Stat., 22 (1951), pp. 79–86.840
[29] G. Le Besnerais, J.-F. Bercher, and G. Demoment, A new look at entropy for solving linear inverse841

problems, IEEE Trans. Inform. Theory, 45 (1999), pp. 1565–1578.842
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[48] C. Zǎlinescu, Convex Analysis in General Vector Spaces, World Scientific, Singapore, 2002.875

28

This manuscript is for review purposes only.

https://arxiv.org/abs/cs.LG/1708.07747

	Introduction
	History and state of the art of the MEM method
	Brief overview of the MEM method
	Contributions and outline of the article

	Tools from convex analysis and the MEM method for solving the problem lin-inverse-p 
	Convex analysis
	Maximum Entropy on the Mean Problem
	Approximate and Empirical Priors, Random Functions, and Epi-consistency

	Epigraphical convergence and convergence of minimizers
	Epi-consistency of the empirical moment generating functions
	Epi-consistency of the dual objective functions
	Convergence of minimizers

	Convergence rates for quadratic fidelity
	Epigraphical distances
	Convergence Rates

	A statistical dependence on n
	Numerical experiments
	Conclusion and Future Work

