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Data-Driven Priors in the Maximum Entropy on the Mean Method for Linear Inverse
Problems.

Matthew King-Roskamp, Rustum Choksi, and Tim Hoheisel

Abstract. We establish the theoretical framework for implementing the maximum entropy on the mean (MEM)
method for linear inverse problems in the setting of approximate (data-driven) priors. We prove a.s.
convergence for empirical means and further develop general estimates for the difference between the
MEM solutions with different priors p and v based upon the epigraphical distance between their respective
log-moment generating functions. These estimates allow us to establish a rate of convergence in expectation
for empirical means. We illustrate our results with denoising on MNIST and Fashion-MNIST data sets.

1. Introduction. Linear inverse problems are pervasive in data science. A canonical example
(and our motivation here) is denoising and deblurring in image processing. Machine learning
algorithms, particularly neural networks trained on large data sets, have proven to be a game
changer in solving these problems. However, most machine learning algorithms suffer from the lack
of a foundational framework upon which to rigorously assess their performance. Thus, there is
a need for mathematical models which are on one end, data driven, and on the other end, open
to rigorous evaluation. In this article, we devise and analyze one such model based upon what is
known as Mazimum Entropy on the Mean (MEM) (described in some detail in subsection 1.2).

1.1. History and state of the art of the MEM method. Emerging from ideas of E.T. Jaynes
in 1957 [23, 24], various forms and interpretations of MEM (see [7, 20, 30, 13, 29]) have appeared in
the literature. Applications have occurred in different disciplines such as earth sciences [17, 33, 43],
crystallography [31, 32], and medical imaging [1, 10, 11, 21, 22]. Recently, the MEM method has
been shown to be a powerful tool for blind deblurring of images that possess some form of symbology
(for example, UPC and QR barcodes) [35, 34]. However, MEM methods are not widely used and
have yet to become a modern tool for solving contemporary data-driven inverse problems in image
processing and machine learning.

MEM methods require problem-specific knowledge in the form of a statistical prior. For a prior
based upon a known distribution, the theory is well understood, with dedicated algorithms for its
implementation [44]. This work is the first to incorporate data in a systematic way into the MEM
framework for linear inverse problems. While the incorporation is natural, we provide theoretical
guarantees of convergence and upper bounds on rates of convergence without requiring model
assumptions. In addition to providing the theoretical framework, we present several numerical
examples for denoising images from MNIST [15] and Fashion-MNIST [47] data sets; showcasing that
our work results in a data-driven model with numerical implementation via standard optimization
routines.

1.2. Brief overview of the MEM method. Let us now provide some details, summarizing the
MEM method for linear inverse problems. Full details will be provided in the next section. Our
canonical inverse problem takes the following form

(1.1) b=CT+.

The unknown solution Z is a vector in R?%: the observed data is b € R™; C' € R™*?, and n~Zis

an random noise vector in R™ drawn from noise distribution Z. In the setting of image processing,
T denotes the ground truth image with d pixels, C' is a blurring matrix with typically d = m, and
the observed noisy (and blurred image) is b. For known C, we seek to recover the ground truth =
from b. In certain classes of images, the case where C' is also unknown (blind deblurring) can also
be solved with the MEM framework (cf. [35, 34]) but we will not focus on this here. In fact, our
numerical experiments will later focus purely on denoising, i.e., C = I. The power of MEM is to
exploit the fact that there exists a prior distribution p for the space of admissible ground truths.
1
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The basis of the method is the MEM function k,, : R — RU{+00} defined as

() = inf {KL(Q|lp) : Q € P(X),Eq = a},

where KL(Q||x+) denotes the Kullback-Leibler (KL) divergence between the probability distributions
w1 and @Q (see Subsection 2.2 for the definition). With &, in hand, our proposed solution to (1.1) is

(1.2) Z,, = argmin {agy(Cx) + ku(x)},
z€R?

where g is any (closed, proper) convex function that measures fidelity of Cz to b. The function
gp depends on b and can in principle be adapted to the noise distribution Z. For example, as was
highlighted in [44], one can take the MEM estimator (an alternative to the well-known mazimum
likelihood estimator) based upon a family of distributions (for instance, if the noise is Gaussian,
then the MEM estimator is the familiar g,(-) = 3|(-) — b||3). Finally a > 0 is a fidelity parameter.

The variational problem (1.2) is solved via its Fenchel dual. As we explain in Subsection 2.2,
we exploit the well-known connection in the large deviations literature that, under appropriate
assumptions, the MEM function s, is simply the Cramér rate function defined as the Fenchel
conjugate of the log-moment generating function (LMGF)

Lu(y) = log/Xexp<y, ) dp.
Under certain assumptions on g, (cf. Subsection 2.2) we obtain strong duality

(1.3) min agy(Cz) + k,(r) = — min ag*(—z/a) + L,(C2),
zeR? 2€R™

and, more importantly, a primal-dual recovery is readily available: If Z,, is a solution to the dual
problem (the argmin of the right-hand-side of (1.3)) then

T, = VL, (CT%)

is the unique solution of the primal problem. This is the MEM method in a nutshell.

1.3. Contributions and outline of the article. In this article, we address the following ques-
tions: Suppose we do not have full access to the underlying prior distribution u; rather we have
access to an approximation sequence u, which in a suitable sense (e.g. weak convergence of mea-
sures) converges to p. Does the approximate MEM solution 7, converge to the solution Z,,, and
if so, at which rate? A key feature of the MEM approach is that one does not need to quantify
the convergence of u, to u, but rather only approximate the LMGF L, from data. Hence our
analysis is based on the closeness of L,, to L,. This results in the closeness of the dual solutions
Zp and in turn the primal solutions z,,,,. Here, we leverage the fundamental work of Wets et al. on
epigraphical distances, epigraphical convergence, and epi-consistency ([37],[40],[26]).

Our results are presented in four sections. In Section 3, we work with a general g, satisfying
standard assumptions. We consider the simplest way of approximating p via empirical means of n
ii.d. samples from p. In Theorem 3.9, we prove that the associated MEM solutions 7, converge
almost surely to the solution 7, with full prior. In fact, we prove a slightly stronger result pertaining
to ep-solutions as &, N\, 0. This result opens the door to two natural questions: (i) At which rate
do the solutions converge? (ii) Empirical means is perhaps the simplest way of approximating pu
and what is the corresponding rate? Given that the MEM method rests entirely on the LMGF of
the prior, it is natural to ask how the rate depends on an approximation to the LMGF. So, if we
used a different way of approximating p, what would the rate look like? We address these questions
for the case g, = 4[|(-) — b||3. In Section 4 we provide insight into the second question first via
a deterministic estimate which controls the difference in the respective solutions associated with
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two priors v and u based upon the epigraphical distance between their respective LMGFs. We
again prove a general result for e-solutions associated with prior p (cf. Theorem 4.7). In Section 5,
we apply this bound to the particular case of the empirical means approximation, proving a n11/ vl
convergence rate (cf. Theorem 5.5) in expectation.

Finally, in Section 6, we present several numerical experiments for denoising based upon a finite
MNIST data set. These serve not to compete with any of the state-of-the-art machine learning-
based denoising algorithm, but rather to highlight the effectiveness of our data-driven mathematical
model which is fully supported by theory.

Remark 1.1 (Working at the higher level of the probability distribution of the solution). As in
[35, 34], an equivalent formulation of the MEM problem is to work not at the level of the z, but
rather at the level of the probability distribution of the ground truth, i.e., we seek to solve

Q = argmingep(y) {ag(CEQ) + KL(Q|n)},

where one can recover the previous image-level solution as T, = Eg. As shown in [34], under
appropriate assumptions this reformulated problem has exactly the same dual formulation as in
the right-hand-side of (1.3). Because of this one has full access to the entire probability distribution
of the solution, not just its expectation. This proves useful in our MNIST experiments where the
optimal v is simply a weighted sum of images uniformly sampled from the MNIST set. For example,
one can do thresholding (or masking) at the level of the optimal v (cf. the examples in Section 6).

Notation: R := RU{£oc} is the extended real line. The standard inner product on R" is (-,-)
and || - || is the Euclidean norm. For C' € R™*? ||C|| = \/Amax(CTC) is its spectral norm, and
analogously omin(C') = v/ Amin(CTC) is the smallest singular value of C. The trace of C' is denoted
Tr(C). For smooth f : R? — R, we denote its gradient and Hessian by Vf and V2, respectively.

2. Tools from convex analysis and the MEM method for solving the problem (1.1) .

2.1. Convex analysis. We present here the tools from convex analysis essential to our study.
We refer the reader to the standard texts by Bauschke and Combettes [5] or Chapters 2 and 11 of
Rockafellar and Wets [37] for further details. Let f : R? — R. The domain of f is dom(f) := {z €
R? | f(z) < 400}. We call f proper if dom(f) is nonempty and f(z) > —oo for all z. We say that
f is lower semicontinuous (Isc) if f~1([—o0,a]) is closed (possibly empty) for all a € R. We define
the (Fenchel) conjugate f* : R? — R of f as f*(z*) := sup, cga{(z,z*) — f(x)}. A proper f is said
to be convex, if f(Ax + (1 —AN)y) < Af(z) + (1 — X)f(y) for every x,y € dom(f) and all A € (0, 1).
If the former inequality is strict for all z # y, then f is said to be strictly convex. Finally, if f is
proper and there is a ¢ > 0 such that f — || - |2 is convex we say f is c-strongly convex. In the
case where f is (continuously) differentiable on R?, then f is c-strongly convex if and only if

(2.1) f4) = @) = Vi@ (y =)+ Sy —al} Vo e R

The subdifferential of a convex function f : R? — R at T € dom(f) is f(Z) = {z* € R? |(z—7, 2*) <
f(z)— f(T), Vo € R?}. A function f : R? — R is said to be level-bounded if for every a € R, the set
f1([~o0, a]) is bounded (possibly empty). A function f is (level) coercive if it is bounded below
on bounded sets and satisfies

lim inf /(@)

lz—+oo ||

> 0.

In the case f is proper, lsc, and convex, level-boundedness is equivalent to level-coerciveness [37,
Corollary 3.27]. A function f is said to be supercoercive if lim inf|j; 1o % = +00.
A point 7 is said to be an e-minimizer of a proper function f if f(7) < inf _pa f(z) + € for some
e > 0. We denote the set of all such points as S:(f). Correspondingly, the solution set of proper
function f is denoted as argmin(f) = So(f) =: S(f).

3
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The epigraph of a function f : ]R‘:—> R is the set epi(f) := {(z,a) € RI¥xR |a > f(z)}.
A sequence of functions f, : R — R epigraphically converges (epi-converges)! to f, written
fn % f, if and only if

n—-+0o

(1) Vz,Vzp, — 2z : liminf f,(z,) > f(2), (i) Vz 3z, — z : limsup f,,(2,) < f(2).

2.2. Maximum Entropy on the Mean Problem. For basic concepts of measure and probability,
we follow most closely the standard text of Billingsley [6, Chapter 2]. Globally in this work, p will
be a Borel probability measure defined on compact X C R Precisely, we work on the probability
space (X, By, ), where X ¢ R? is compact and By = {BNX : B € By} where By is the o-
algebra induced by the open sets in R%. 2 We will denote the set of all probability measures on the
measurable space (X, By) as P(X), and refer to elements of P(X) as probability measures on X,
with the implicit understanding that these are always Borel measures. For @, u € P(X), we say Q
is absolutely continuous with respect to p (and write @ < p) if for all A € By with u(A) = 0, then
Q(A) =0. [6, p. 422]. For @ < p, the Radon-Nikodym derivative of @ with respect to u is defined
as the (a.e.) unique function % with the property Q(A) = [, %d,u, for A € By [6, Theorem 32.3].

The Kullback-Leibler (KL) divergence [28] of Q € P(X) with respect to p € P(X) is defined as

d
Jylog(2)dp, Q < p,
400, otherwise.

(2.2) KL(Ql) == {

For jn € P(X), the expected value E,, € R? and moment generating function M I R? — R function
of p are defined as [6, Ch.21]

Buim [ adu@). Muw)= [ esply.a)dno)

respectively. The log-moment generating function of u is defined as

L(y) = log M, (y) = log /X exp(y, z)du(x).

As X is bounded, M, is finite-valued everywhere. By standard properties of moment generating
functions (see e.g. [41, Theorem 4.8]) it is then analytic everywhere, and in turn so is L.
Given p € P(X), the Maximum Entropy on the Mean (MEM) function [44] r,, : RY — R is

ru(y) == nf{KL(@Q [ p) : Eq = y,Q € P(X)}.

The functions x, and L, are paired in duality in a way that is fundamental to this work. We
will flesh out this connection, as well as give additional properties of «,, for our setting; a Borel
probability measure p on compact X. A detailed discussion of this connection under more general
assumptions is the subject of [44].

For any p € P(X) we have a vacuous tail-decay condition of the following form: for any o > 0,

/ eIl du(z) < max ||z)|e Il < +00.
X zeX

Consequently, by [16, Theorem 5.2 (iv)]® we have that

) = sup, | {y,2) —1og | Oau(e)| (= (o),

yERY

!This is one of many equivalent conditions that characterize epi-convergence, see e.g. [37, Proposition 7.2].
2Equivalently, we could work with a Borel measure p on R? with support contained in X.
3 Applied to u considered as a measure over R with support in X.

4
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Note that the conjugate L), is known in the large deviations literature as the (Cramér) rate
function. For a more full development and alternative derivations of this conjugacy we refer to
[29, 31].

Returning to the setting of interest with our standing assumption that X is compact, r, = Lj,.
This directly implies the following properties of x,: (i) As L, is proper, Isc, and convex, so is its
conjugate Ly, = k. (ii) Reiterating that L, is proper, lsc, convex, we may assert (L))" = L, via
Fenchel-Moreau ([40, Theorem 5.23]), and hence rj, = L,,. (iii) As dom(L,) = R? we have that
is supercoercive [37, Theorem 11.8 (d)]. (iv) Recalling that L, is everywhere differentiable, «, is
strictly convex on every convex subset of dom(dk,), which is also referred to as essentially strictly
convex [36, p. 253].

With these preliminary notions, we can (re-)state the problem of interest in full detail. We
work with images represented as vectors in R?, where d is the number of pixels. Given observed
image b € R™ which may be blurred and noisy, and known matrix C' € R™*?, we wish to recover
the ground truth # from the linear inverse problem b = Cz + 7, where 1 ~ Z is an unknown noise
vector in R drawn from noise distribution Z. We remark that, in practice, it is usually the case
that m = d and C is invertible, but this is not necessary from a theoretical perspective. We assume
the ground truth Z is the expectation of an underlying image distribution - a Borel probability
measure - y on compact set X C R%. Our best guess of & is then obtained by solving
(P) Z,, = argmin ag(Cx) + K, (z).

zeR?
where g = g is a proper, Isc, convex function which may depend on b and serves as a fidelity term,
and o > 0 a parameter. For example, if g = 3||b — (-)||3 one recovers the so-called reformulated
MEM problem, first seen in [29].

Lemma 2.1. For any lsc, proper, convex g, the primal problem (P) always has a solution.

Proof. By the global assumption of compactness of X', we have s, is proper, Isc, convex and
supercoercive, following the discussion above. As g o C and &, are convex, so is ag o C + K,
for o > 0. Further as both ag o C' and k, are proper and lsc, and s, is supercoercive, the
summation ago C + K, is supercoercive, [37, Exercise 3.29, Lemma 3.27]. A supercoercive function
is, in particular, level-bounded, so by [37, Theorem 1.9] the solution set argmin(ag o C + k) is
nonempty. |

We make one restriction on the choice of g, which will hold globally in this work:
Assumption 2.2. 0 € int(dom(g) — C'dom(ky)).

We remark that this property holds vacuously whenever g is finite-valued, e.g., g = %Hb — ()3
Instead of solving (P) directly, we use a dual approach. As x}, = L, (by compactness of X'),
the primal problem (P) has Fenchel dual (e.g., [5, Definition 15.19]) given by

(D) (arg)mé&n ag*(—z/a) + L,(CT2).

z€R™
We will hereafter denote the dual objective associated with pu € P(X) as
(2.3) bu(2) == ag*(—z/a) + L,(CT2).

We remark that our sign convention and use of minimization in the dual agrees with [5], but the
dual problem appears elsewhere in the literature as max —¢,(2), see e.g. [48, Corollary 2.8.5]. We
record the following result which highlights the significance of Assumption 2.2 to our study.

Theorem 2.3. The following are equivalent:
(1) Assumption 2.2 holds; (i) argmin ¢,, is nonempty and compact; (i) ¢, is level-coercive.
In particular, under Assumption 2.2, the primal problem (P) has a unique solution given by

(2.4) T, = VL, (CT%),

where Z € argmin ¢,, is any solution of the dual problem (D).
5
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Proof. As ¢, is proper, convex and lsc, the equivalence of (i)-(iii) is exactly [4, Proposition
3.1.3 (a),(c),(d)] as int(dom(¢%)) = int(C dom(k,) — dom(g)). Furthermore [4, Theorem 5.2.1]*,
yields the primal-dual recovery formula (2.4) using the differentiability of L,,. |

2.3. Approximate and Empirical Priors, Random Functions, and Epi-consistency. If one has
access to the true underlying image distribution y, then the solution recipe is complete: solve (D)
and use the primal-dual recovery formula (2.4) to find a solution to (P). But in practical situations,
such as the imaging problems of interest here, it is unreasonable to assume full knowledge of p and
instead one models p from domain specific knowledge or data set e.g. the discussions of [14, 42].
That is, one specifies a prior v € P(X) with v ~ pu, and solves the approximate dual problem

(2.5) min ¢, (2).

zER™

Given ¢ > 0 and any e-solution to (2.5), i.e. given any z,. € S:(v), we define
(2.6) Tye 1= VL,,(CTz,,75),

with the hope, inspired by the recovery formula (2.4), that with a “reasonable” choice of v ~ pu,
and small ¢, then also 7, . ~ 7,. The remainder of this work is dedicated to formalizing how well
T, approximates ¥, under various assumptions on g and v.

A natural first approach is to construct v from sample data. Let (2, F,P) be a probability
space. We model image samples as i.i.d. X-valued random variables {X7,..., X}, ...} with shared
law p =P X;'. That is, each X; : Q — X is an (Q, F) — (X, Bx) measurable function with the
property that u(B) = P(w € Q : Xj(w) € B), for any B € By. In particular, the law p is by
construction a Borel probability measure on X'. Intuitively, a random sample of n images is a given
sequence of realizations {X;(w),..., Xp(w),...}, from which we take only the first n vectors. In
practice, such a sequence could arise from sampling a fixed dataset uniformly at random, in which
case n is dictated by the amount of data that is available and is feasible to compute with. We then
approximate u via the empirical measure

w 1 .
pl) = - Z(SXi(w)'
=1

With this choice of v = ,u,(f), we have the approximate dual problem

i ] [ 1 - z,X; (w
(27) min QZSMSA;)(Z) with (ﬁ'uslw)(z) =ag ( ) 4 log E Z€<CT , X ( ))

z
zeR™ a i=1
And exactly analogous to (2.6), given an e-solution Z, . (w) of (2.7), we define

Z?:l CXZ (w)e(CTEn,e(w),Xi (w))
- S elCTZne(w), Xi(w))

(2.8) Tne(w) == VLMW (CTETL,E (w))

Clearly, while the measure m(f) is well-defined and Borel for any given w, the convergence

properties of Z, .(w) and T, (w) should be studied in a stochastic sense over 2. To this end, we
leverage a probabilistic version of epi-convergence for random functions known as epi-consistency
[26].

Let (T,.A) be a measurable space. A function f : R™ xT — R is called a random” lsc function
(with respect to (7,.4)) [40, Definition 8.50] if the (set-valued) map Sy : T = R™, S;(t) =
epi f(+,t) is closed-valued and measurable in the sense S;I(O) ={teT : Se(x)N0O #0} € A

“Note that there is a sign error in equation (5.3) in the reference.

5The inclusion of the word ‘random’ in this definition need not imply a priori any relation to a random process;
we simply require measurability properties of f. Random lIsc functions are also known as normal integrands in the
literature, see [37, Chapter 14].
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Our study is fundamentally interested in random lsc functions on (2, F), in service of proving
convergence results for 7, (w). But we emphasize that random lsc functions with respect to
(Q, F) are tightly linked with random lsc functions on (X, By). Specifically, if X : @ — X is a
random variable and f : R™ xX — R is a random lIsc function with respect to (X, Bx), then the
composition f(-, X(:)) : R™ xQ — R is a random Isc function with respect to the measurable space
(Q,F), see e.g. [37, Proposition 14.45 (c)] or the discussion of [39, Section 5]. This link will prove
computationally convenient in the next section.

While the definition of a random lsc function is unwieldy to work with directly, it is implied by
a host of easy to verify conditions [40, Example 8.51]. We will foremost use the following one: Let
(T, A) be a measurable space. If a function f : R™ xT — R is finite valued, with f(-,¢) continuous
for all ¢, and f(z,-) measurable for all z, we say f is a Carathéodory function. Any function which
is Carathéodory is random lsc [38, Example 14.26].

Immediately, we can assert ¢ (, is a random lsc function from R? xQ — R, as it is Carathéodory.

In particular, by [37, Theorem 1471.37] or [39, Section 5], the e-solution mappings

w {Z : ¢“(w)(z) < info @ + 6}
are measurable (in the set valued sense defined above), and for all ¢ > 0 there always exists a
P-measurable selection z, . (w) € Ss(uq(zw)) [37, Theorem 14.37, Theorem 14.33].
We conclude with the definition of epi-consistency as seen in [26, p. 86]; a sequence of random
Isc functions h, : R™ x€ — R is said to be epi-consistent with limit function A : R™ — R if

(2.9) P <{w € Q| hn(,w) .—“m}> =1

n—-+o00

3. Epigraphical convergence and convergence of minimizers. The goal of this section is to
prove convergence of minimizers in the empirical case, i.e., that Z,, . (w) as defined in (2.8) converges
to T,, the solution of (P), for P-almost every w € Q as ¢ N\, 0. To do so, we prove empirical
approximations of the moment generating function are epi-consistent with M, and leverage this to
prove epi-consistency of qﬁﬂw) with limit ¢,. Via classic convex analysis techniques, this guarantees
the desired convergence of minimizers with probability one.

3.1. Epi-consistency of the empirical moment generating functions. Given {X1,..., X,,...}

iid. with shared law p = P X 1 € P(X), we denote the moment generating function of ,u%u) as
M, (y,w) == L3 eWXilw)) Define f: R™ xR? = R as f(z,x) = e{0"2)  Then

T n

M) = |

6<CTZ">du=/ £z, )dp,
X X

n

Z€<CTZ’Xi(W)> _ %Zf(z,Xi(a))).
i=1 =1

This explicit decomposition is useful to apply a specialized version of the main theorem of King
and Wets [26, Theorem 2], which we restate without proof.

M, (CTz w) =

SRS

Proposition 3.1. Let f : R™ xX — R be a random Isc function such that f(-,z) is convex and
differentiable for all x. Let X1, ..., X, be i.i.d. X-valued random variables on (0, F,P) with shared
law p € P(X). If there exists Z € R™ such that

/ f(Z,)du < +o0, and / IV.f(Z,)|ldp < +o0,
X X

then the sequence of (random lsc) functions S, : R™ x Q — R given by

So(z,w) = %Zf(Z,Xi(w))
=1

7
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is epi-consistent with limit S,, : z — fX f(z,-)du, which is proper, convezx, and Isc.
Via a direct application of the above we have the following.

Corollary 3.2. The sequence M, (CT(-),") is epi-consistent with limit M, o CT.

Proof. Define f(z,z) = ¢/C"#2) For any z, (CT(-),z) is a linear function, and e®) is convex -
giving that the composition f(-,z) is convex. As f is differentiable (hence continuous) in z for fixed
x and vice-versa, it is Carathéodory and thus a random lIsc function (with respect to (X, Bx)).

Next we claim z = 0 satisfies the conditions of the proposition. First, by direct computation

[ Odnta) = [ duta) =1 < 400
X X

as p is a probability measure on X. As f(-,z) is differentiable, we can compute V,f(zZ,z) =
CzelC702) = Cx. Hence

/ IV £z o)l du(x) = / |Calldu(z) < ||C]| max [lz]] < +oo,
X X xeX

where we have used the boundedness of X', and once again that p is a probability measure. Thus
we satisfy the assumptions of Proposition 3.1, and can conclude that the sequence of random
Isc functions S, given by S,(z,w) = 3" | f(z, X;(w)) are epi-consistent with limit S, : z —
S f(z, )dps. But,

1 & T T

Sn(z,w) = — Ze<c X)) = M, (CT 2, w) and Su(z) = / el B dy = M, (CT2),
n “ X
=1

and so we have shown the sequence M, (CT(-),-) is epi-consistent with limit M, o CT. [ |

Corollary 3.3. The sequence L#(w o CT is epi-consistent with limit L,o CcT.

Proof. Let

which has P(Q.) = 1 by Corollary 3.2, and let w € Q.. Both M, and M, are finite valued and
strictly positive, and furthermore the function log : R4+ — R is continuous and increasing. Hence,
by a simple extension of [36, Exercise 7.8(c)], it follows, for all w € €, that

T _ T e T _ T
LM%W)OC = log M,,(C (),w)mlogMuoC =L,0C". -

3.2. Epi-consistency of the dual objective functions. We now use the previous lemma to
obtain an epi-consistency result for the entire empirical dual objective function. This is not an
immediately clear, as epi-convergence is not generally preserved by even simple operations such as
addition, see, e.g., the discussion in [37, p. 276] and the note [8] that eludes to subtle difficulties
when dealing with extended real-valued arithmetic in this context.

We recall the following pointwise convergence result for compact X', which is classical in the
statistics literature.

Lemma 3.4. If u € P(X), for almost every w € Q, and all z € R™
M, (CT2,w) — M, 0 CT(2),

namely pointwise convergence in z.



335
336
337
338
339
340
341

We remark that the literature contains stronger uniform convergence results, observed first
in Csorgd [?] without proof, and later proven in [18] and [12, Proposition 1]. Noting that both
My (z,w), M,(z) > 0 are strictly positive for all z € R™, and that the logarithm is continuous on
the strictly positive real line, we have an immediate corollary:

Corollary 3.5. For almost every w € ), for all z € R™
L (CT2) = log M,,(CT z,w) — log M,,(CT2) = L,(C" ).

Using this we prove the first main result:

Theorem 3.6. For any lsc, proper, convex function g, the empirical dual objective function qﬁﬂ(w)
is epi-consistent with limit ¢,

Proof. Define
_ Ty e T/
Q. = {WGQ‘LM#)OC ()mLMOC ()}
By Corollary 3.3, P(Q.) = 1. Similarly denote
0, = {w €Q|L e oCT() > L0 CT() pointwise} .

By Corollary 3.5, we also have P(€2,) = 1. In particular we observe that P(2. N Q) = 1.
On the other hand we have vacuously that the constant sequence of convex, proper, lsc func-
tions ag* o (—Id/a) converges to ag* o (—Id/«) both epigraphically and pointwise.

Thus for any fixed w € €, N2 we have constructed two sequences, namely g, = ag* o (—1d/a)
and L, = Lu(w) o CT, which both converge epigraphically and pointwise for all w € €, N Qp.

n

Therefore, by [37, Theorem 7.46(a)], for all w € Q. N,

ag” o (~1d/a) + L « o T —* —ag*o(-1d/a)+ L, o CT.

n—-+o00

As P(Q2. N §2,) = 1, this proves the result. [ |

3.3. Convergence of minimizers. We now use epi-consistency to prove convergence of minimiz-
ers. At the dual level this can be summarized in the following lemma, essentially [26, Proposition
2.2]; which was stated therein without proof.®

Lemma 3.7. There exists a subset = C ) of measure one, such that for any w € = we have: Let
{en} \( 0 and z,(w) such that

8,0 (2n()) < f § 0 (2) + 0.

Let {zp, (w)} be any convergent subsequence of {zn(w)}. Then limy_, o0 2n, (W) is a minimizer of
¢u. If ¢ admits a unique minimizer z,, then z, — z,.

Proof. Denote

—_ e
E=<we w) ———> .
{ € | ¢,U‘£L ) n—-+oo ¢,u}

By Theorem 3.6, P(Z) = 1. Fix any w € E.

5We remark that (as observed in [26]) epigraphical convergence of a (multi-)function depending on a parameter
(such as w) guarantees convergence of minimizers in much broader contexts, see e.g. [3, Theorem 1.10] or [38, Theorem
3.22]. Here we include a first principles proof.

9
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As we have fixed w € =, we have that the sequence (]5“@) %Hj)u epi-converges. Also, by
n n—-+0o0

Theorem 2.3, our global Assumption 2.2 holds if and only if ¢,, is level-bounded. These two observa-
tions together imply by [37, Theorem 7.32 (c)] that the sequence <Z>ff;) is eventually level-bounded.”
Altogether, this means the sequence of lsc, proper, eventually level-bounded functions d)u(w) epi-
converge to ¢, - which is also lsc and proper. This set of properties is precisely the negessary
assumptions of [37, Theorem 7.33], which then asserts any sequence of approximate minimizers
{zn(w)} is bounded with all cluster points belonging to argmin ¢,. Namely, any convergent subse-
quence {zy, (w)} has the property that its limit limj_, ~ 2, € argmin¢,. Lastly, if we also have
argmin ¢, = {Z,}, then from the same result [37, Theorem 7.33], then necessarily z,(w) = Zz,. W

We now push this convergence to the primal level by using, in essence, Attouch’s Theorem [2], [3,
Theorem 3.66], in the form of a corollary of Rockafellar and Wets [37, Theorem 12.40].

Lemma 3.8. Let 2 € R™, and let z, — 2 be any sequence converging to 2. Then for almost
every w,

. T . T ~
ngl—&r-loo VLM(IW)(C zp) = VL,(C* 2).

Proof. We first observe that dom(L, o CT) = R™ so that 2 € int(dom(L, o CT)). Also as M,
is everywhere finite-valued, L, (CT2) = log M,,(CT%) < +o0. Furthermore for all n, the function
L“(w) o CT is proper, convex, and differentiable. Finally, we have shown in Corollary 3.3, that for

almost every w € 2, we have L (., o CT %L# oCT,
Hn n—-4-00

These conditions together are the necessary assumptions of [37, Theorem 12.40 (b)]. Hence we have
convergence lim,_, 4 VLu(w> (CT2,) = VL,(CT2) for almost every w € Q. [ ]

We now prove the main result.

Theorem 3.9. There exists a set = C ) of probability one such that for each w € = the following
holds: Given e, \, 0, and z,(w) such that (bu(w) (zn(w)) < inf, ¢u(“) (2) + en, define

Tp(w) == VLLL;W) (CT2,).

If 2, (w) is any convergent subsequence of zn(w) then limy_, 4o Tp, (W) = Ty, where T, is the unique
solution of (P). If (2.7) admits a unique solution Z,, then in fact x,(w) — Tp.

Proof. Let

- _ €
== e Q0,0 50 dub

recalling that by Proposition 3.1, P(Z) = 1. Fix w € EZ. By Lemma 3.7, for any convergent
subsequence 2y, (w) with limit Z(w), we have that Z(w) € argmin ¢,,. Furthermore, by Lemma 3.8

lim z,,(w)= lim VL

k—+4o00 k—+4o00 M;u;)

(CTn,) = VL (CTZ(w))

Using the primal-dual optimality conditions (2.4) we have that VL,(CTZ(w)) solves the primal
problem (P). As (P) admits a unique solution Z,,, necessarily limy_, o Zp, (w) = . If additionally
argmin ¢, = {Z,}, then necessarily z, — Z, via Lemma 3.7, and the result follows from an identical
application of Lemma 3.8 and (2.4). [ |

The key novelty of this result is the almost sure convergence of minimizers, particularity as € \,
0. The compact support of the measure p is key for this result. In particular, this is stronger than
the convergence in probability guaranteed by common statistical techniques such as m-estimation
[46, Section 3.2].

" A sequence of functions f,, : RY — R is eventually level-bounded if for each o, the sequence of sets { f,, * ([—oc, o)}
is eventually bounded, see [37, p. 266].

10
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4. Convergence rates for quadratic fidelity. When proving rates of convergence, we restrict
ourselves to the case where g = 1[|b — (-)||3. Thus, the dual objective function reads

(4.1) Bu(2) = 512l = (b,2) + Lu(CT2).

Clearly, ¢, is finite valued and (1/a-)strongly convex, hence admits a unique minimizer Z,. Re-
calling what was laid out in Subsection 2.2, as global Assumption 2.2 holds vacuously with g =
311b = (-)||?, the unique solution to the MEM primal problem (P) is given by Z, = VL,(C7z,).
Further by our global compactness assumption on X, ¢, is (infinitely many times) differentiable.

4.1. Epigraphical distances. Our main tool to prove convergence rates are epigraphical dis-
tances. We mainly follow the presentation in Royset and Wets [40, Chapter 6.J], but one may find
similar treatment in Rockafellar and Wets [37, Chapter 7]. For any norm || - ||, on R%, the distance
(in said norm) between a point ¢ and a set D is defined as dp(c) = inf4ep ||c — d||«. For C,D
subsets of R? we define the excess of C' over D [40, p. 399] as

sup.cc dp(c) if C, D # 0,
exc(C, D) := { +oo if C#0,D=0,

0 otherwise.

We note that this excess explicitly depends on the choice of norm used to define dp. For the specific
case of the 2-norm, we denote the projection of a point a € R? onto a closed, convex set B  R?
as the unique point projz(a) € B which achieves the minimum ||projg(a) — a|| = mingep ||b — af|.
The truncated p-Hausdorff distance [40, p. 399] between two sets C, D C R? is defined as

~

d,(C, D) := max {exc(C' N By, D),exc(DN B,,C)},

where B, = {x € R? : ||z||. < p} is the closed ball of radius p in R%. When discussing distances
on R?, we will consistently make the choice of || - ||, = || - || the 2-norm. We note we can recover the
usual Pompeiu-Hausdorff distance by taking p — +o0.

However, to extend the truncated p-distance to epigraphs of functions - which here are subsets
of R - we equip R with a very particular norm. For any z € R write 2z = (x,a) for
z € RY a € R. Then for any z1, 22 € R¥! we define the norm

121 — 22llx,a11 = [(z1,a1) — (%2, a2)||x,a11 = max{||z1 — z2[2, |a1 — azl}.

With this norm, we can define an epi-distance as in [40, Equation 6.36]: for f,h : R? — R not
identically 400, and p > 0 we define

(42) Czp(f7 h) = dp(epl f7 epl h)a

where R¥! has been equipped with the norm || - ||x,a+1. This epi-distance quantifies epigraphical
convergence in the following sense: [37, Theorem 7.58]% if f is a proper function and f,, a sequence
of proper functions, then for any constant py > 0:

fn —>He+oo £ if and only if d,(fn, f) — 0 for all p > po.

4.2. Convergence Rates. We begin with a technical lemma which will prove expedient for
future results.

8We remark that while at first glance the definition of epi-distance seen in [37, Theorem 7.58] differs from ours
(which agrees with [40]), it is equivalent up to multiplication by a constant and rescaling in p. See [40, Proposition
6.58] and [37, Proposition 7.61] - the Kenmochi conditions - for details.

11



428 Lemma 4.1. Let p > 0 and v € P(X). Then, for all z € B, we have

429 M, (C"2) = /X el =) dy € [exp (—p|| C[l|X]) , exp (p]|C| X))
430 Proof. For all z € X, z € B,, we have, via Cauchy-Schwarz, that
431 oxp (—p||C||X]) < exp (= |z[||Cz) < exp(CTz, ).

432 In particular, exp (—p||C|||X]) < mingex exp(CT 2, z). On the other hand, we find that
433 exp(Chz, @) < exp (||| C]]) < exp (pl|C||X1).

434 Thus, max,ex exp(CT 2, z) < exp (p||C|||X]) . Hence for any v € P(X) we find

1-exp (—p|C|X]) < v(X) mi)r“/lewTZ’x> < / e v(X) m%(e<CTZ’I> <1-exp(p|C]|X]).
e X xre

435 |

436 We now prove rates of convergence for arbitrary prior v, and later specialize to the empirical case.
137 To this end, we construct a key global constant py induced by C,b,« in (4.1): We define
o

2
T lella+ ﬁHCH\XI} ,

438 (4.3) po := max {ﬁ, %

439 where p = 2a/(||b]| + ||C|||X|) and |X| := max,cx ||x]]. We emphasize that our running compactness
140 assumption on X is essential for finiteness of pg. The main feature of this constant is the following.

141 Lemma 4.2. For any v € P(X), let ¢, be the corresponding dual objective function as defined
442 in (4.1), which has a unique minimizer z,. Then py has the following two properties:

143 @ @) elpopl B I <o
444 Proof. We first claim that ||Z,| < p. Let z € R? be such that ||z|| > p. Then,

5 (4.4 . L i— 1 —|lc - LI TR
s (44)  dulz) 2 5 - = Ml +log exp (= [Cllllzllll=l) = ll=] { 5 = llol = IClllx] ) -

146 Where in the first inequality we have used Cauchy-Schwarz on (b, z), and Lemma 4.1 with p = ||z||
447 to bound M,(CT2) > exp (—||C||||z]|||z]|). From (4.4) it is clear that ||z|| > p implies ¢, (z) > 0.
148 But observing that ¢, (0) = 0, such z cannot be a minimizer. Hence necessarily ||Z,| < p < po.
449 Once more, via Cauchy-Schwarz and Lemma 4.1 we compute

_ zl* N ;
150 oz = B2 1 10z < 24 ol + logexaIC1417)
o 2a
pAZ
15 =—4p|b o||C'||| X |
i1 5, +AIbl -+ Al
452 Lemma 4.3. Let po be given by (4.3). Then for all p > po and all p,v € P(X), we have
453 dp(bu, ¢) < max |L,(CTz) — L, (CT2)).
z€B,
154 Proof. Lemma 4.2 guarantees that for both measures p, v € P(X'), we have
155 (4.5) Pv(Zv); Gu(zu) € [=po.po]  and  Z]] [[Zull < po-

12
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These conditions imply, for any p > po, that the set C, := ({2 : ¢u(2) < ptU{z: ¢,(2) < p})N B,
is nonempty. This follows from (4.5) as for any p > po the nonempty set {Z,,%,} N B, is contained
in Cp, C Cp. As C, is nonempty we may apply [40, Theorem 6.59] with f = ¢, and g = ¢, to
obtain d,(¢,, ¢) < Sup.cc, |61 (2) — du(2)|. Then from the definition of ¢, and ¢,, we have

sup [y (2) — du(2)| = sup |L,(CT2) = L,(CT2)]

zeC, zeC,
< sup ]L,,(C’Tz) — LM(CTZ”
2€B,
= L,(CT2 cT
max |L, (C72) = Lu(C72)],

where in the penultimate line uses that C, C B, and the final equality follows as the continuous
function L, o CT — L, o CT achieves a maximum over the compact set B,. |

For notational convenience, we will hereafter denote

D,(v,pn) == max |L,(CT2) — L,(CT2)|.

We also recall from Subsection 2.1 that S.(v) denotes the set of e-minimizers of ¢,.

Lemma 4.4. Let pg be given by (4.3). Then, for all p,v € P(X), all p > po, and alle € [0, p—po],
the following holds: If

d>e+2D,(v,p),

then

|pu(Z0) — ¢M(Eu)| < Dp(’/a 1) and exc(Se(v) N By, Ss(p)) < Dp(Va 1)

Proof. Let p > po and € € [0,p — po]. By choice, we have £ < 2p. By Lemma 4.2(a) we have
&u(Zv), du(Zu) € [=po, pol, and in turn by the choice of p, e we have [—po, po] C [—p, po] € [—p, p—¢l.
Also, as p > pg, by Lemma 4.2(b) we have {z,} = argmin¢, N B, and {z,} = argmin¢, N B,.
These properties of p,e are exactly the assumptions of [40, Theorem 6.56] for f = ¢, and g =
¢y. This result yields that, if 6 > ¢ + 2d,(du, b), then |6,(Z,) — du(Z4)| < dp(dy, dy) and
exc(Se(v) N By, S5(p)) < dp(du, dp)- .

However as p > po, we may apply Lemma 4.3 to assert d,(¢u,¢,) < D,(v,un). Hence, for any
§ > e+ 2D,(v, 1) > € + 2d,(¢,, ¢) we obtain

|00(Z0) — ¢u(Zy)

| < Dp(v, ),
exc(S:(v) N B, Ss(1))

p(Vs 1) m

<D
<D

For the main results, Theorem 4.7 and Theorem 5.5, we require additional auxiliary results.
With some additional computation, we can infer the following Lipschitz bound on VL,.

Corollary 4.5. Let p > 0 and v € P(X). Then for all x,y € B; C RY, we have that
(4.6) IVLy(z) = VL, (y)|| < K|z -yl

for an explicit constant K > 0 which depends on p,d,|X|, but not on v.

Proof. As discussed in Subsection 2.2, L, is twice contlnuously differentiable. Hence, using the
fundamental theorem of calculus, we have VL, (z) — VL,( fo V2L, (x +tly — ) - (y — x)dt.
13
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Thus, as « +t(y — ) € B, for all t € [0,1], we have
1
IVL,(2) = VL, (y)|| < /0 IV2Lyu(z +t(y — o))y — |t

1
< / max || V2L, (2)|||ly — x| dt
0 ZEBﬁ

2
= L — .
max IVZLy(2)[[lly — =|

By convexity of L,, we observe that V2L,(z) is (symmetric) positive semidefinite (for any z).
Hence, max.cp, V2L, (2)| < max:ep, Tr(V2L,(z)). Now, observe that

aiiLy(z) :Mj(z) [ /X xmxp(z,x}du(:c)} - e <z17$> e [ /X xiexp<z,x>du(a:)],

where the interchange of the derivative and integral is permitted by the Leibniz rule for finite
measures, see e.g. [19, Theorem 2.27] or [27, Theorem 6.28]. Hence,

0?2 -1

52549 = G [ /X :L‘iexp(z,az>dl/(:v)r+ M:(Z) [ /X . exp(z,x>d1/(w)].

Taking the absolute value in the last identity, we may bound |z;| < ||z|| < |X|, ||z]| < p, and apply
Lemma 4.1 to bound M, (z). This eventually yields

0 ‘ X
5lv(2)| S —— s
52279 < Gl

s

M ep(plX]) = K,
oxp(— ) “PPID

exp(p|X|)* +

with & > 0 which depends on j and |X|. As this uniformly bounds every term in the trace,
K :=d- K is the desired constant. |

The key feature of the constant K is that it does not depend on the choice of measure v. Hence
we can uniformly apply this bound over a family of measures, the most pertinent example being
MS") . We remark that our upper bound on K is a vast overestimate for practical examples,
which can be observed numerically. Finally we state a useful property of the excess.
Lemma 4.6. Let A, B C R% be nonempty and let B be closed and convex. Then for @ € A and
b = projg(a) we have

@ — b|| < exc(A; B).

We now have developed all the necessary tools to state and prove the main result for the case
of g = 3[(-) = bll.
Theorem 4.7. Let py be given by (4.3), and suppose rank(C) = d. Then for all u,v € P(X), all

p > po and all € € [0, p — po], we have the following: If Z, . is an e-minimizer of ¢, as defined in
(4.1), then

Tye = VL,(CTZ,.)

)

satisfies the error bound

2v/2 2
D —— /D K 2 _
i)+ = Dy + (KICIWVE+ o2
where T,, is the unique solution to the MEM primal problem (P) for p and K > 0 is a constant
which does not depend on p,v.

[ve = Tull <

wC ) e

14
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Proof. Let p > po, v, € P(X) and € € [0, p — po]. Let Z, . be a e-minimizer of ¢,, and denote
the unique minimizers of ¢, and ¢, as Z,, and %, respectively. Then

1%, — fu” = HVLV(CTzu,E) - VLM(CTEM)H
= |VL,(C" %) = VL,(C"Z,) + VL, (C"Z,) — VL.(C"Z,)| .

and so
(4.7) |1Zve — Tull < |[|[VL(CTZ,) — VL (CT2)|| + [|[VL(CTZ,) — VLL(CTZ,) |-

To estimate the first term on the right hand side of (4.7), we require an auxiliary bound. Observe
that, as ¢, is strongly 1/a-convex with V¢, (z,) = 0, we have

(4.8) 120 — Zvell < V20 (Z)) — 60 (Z0.0)|Y? < V2ae.

Here the first inequality uses (2.1), while the second follows from the definition of Z, and %z, ., as

|60(20) = du(20e)| = dulzne) — du(z) < e

From Lemma 4.2(b), we find that ||Z,| < po. Thus, (4.8) yields ||Z,¢|| < po + V2ae. This
implies ||CTZ, |, |CTZ,|| < |C|l(po + V2ae). Hence, Corollary 4.5 with p = ||C||(po + v20a¢)
yields

VL, (CTZ,.) — VL, (C"2)|| < K||C"Z, — CT7,¢|,

where K depends on p, |X|,d and therefore on |X|, ||C||,b, e, a,d. The right-hand side in the last
inequality can be further estimated with (4.8) to find

(4.9) 1672, = CT 2 ell < ICNIZw = Zuell < [IC]V20e.

We now turn to the second term on the right-hand side of (4.7). First order optimality condi-
tions give

0=—2 b+ C0VL(CTZ),  0=—4+b+CVL(CT7,),

and therefore HC’(VL,,(CTZ,,) - VLM(CTZM))H = 1|z, — z,||. Furthermore, as rank(C) = d we
have opin(C) > 0. We also have for, any = € R?, that ||Cz| > owmin(C)||z|, and hence
1

|C(VL,(CTZ,) = VL.(C"Z))|| = ———= 117 — Zul.-

- = 1
IVLL(CTZ) = VLL(CTZ)]| < — a0y (C)

min (C)
In order to bound ||z, — Z,|| from above, we define § := 2(e + 2D, (v, ). Denoting as usual Ss(1)
as the set of d-minimizers of ¢,, which is a closed, convex set by the continuity and convexity of
¢y, respectively, define y = projg,(,y(2»). The triangle inequality gives

(4.10) 120 = Zull <1120 =yl + [ly = Z,ll-

By the choice of p > pg, we have by Lemma 4.2(b) that z, € S.(v) N B,. Therefore applying
Lemma 4.6 with A = S.(v) N B,, B = Ss(i) we can bound the first term on the right hand side of
(4.10) as

(4.11) 12, — yll < exc(S-(v) N By Si())-

For the remaining term of the right hand side of (4.10), we use the characterization (2.1) of the

é—strong convexity in the differentiable case for ¢,, noting V¢,(z,) = 0. Hence

(4.12) ly = Zull < V2ald, () — 6u(Z)[V2 < V205,

15
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where y € Ss(u) for the second inequality. Combining (4.9)-(4.12) with (4.7), we find that

1
mm(C) ————~exc(S:(v) N By; S5(1)) + ool 2a6.

By the choice of § = 2(e + 2D,(v, 1)), Lemma 4.4 asserts exc(Se(v) N By; Ss(r)) < Dy(v, ).
Therefore

. <¥exc<s<>m3p,sa< )+ — V3as + K||C||v2ae

o) mm< )

1 |de 8D, (v, 1)
—FD K V2
aamln(c) (V Iu Umln Umln + HCH

= D+ D) + <K||0||F+ﬂjm(c)

[Ty = Tull < K|[CllV2ae +

| /\

Ve
aamin(c) famln( ) )
where in the second line we have used the definition of § and the concavity of /z +y < o+ /7y M

Note that we may set ¢ = 0 for a corollary on exact minimizers. However, the error bound still
has the same scaling in terms of D, (v, u). This theorem is the first of its type to link MEM solu-
tions with epigraphical distances. This result has the benefit applying uniformly in the choice 7,
so this theorem can be applied for any choice of  which provides a bound on Dp(u,n) - and we
demonstrate the particular case of v = ,ung) in the next section. While this result has the stringent
assumption that rank(C) = d, we emphasize that this does not appear in the qualitative Theo-
rem 3.9 which guarantees the almost sure convergence of solutions. We conjecture that weakening
this assumption may be possible, but will require alternative techniques. Finally we remark that
the scaling /D,(u,7) arises as a direct consequence of the smoothness and strong convexity of
g = 3]b— ()|, see e.g. [40, Theorem 4.2] and the following discussion - and hence it may be
feasible to prove improved rates for other specialized choices of g.

5. A statistical dependence on n. This section is devoted to making the dependence on n
explicit in Theorem 4.7 for the special case v = uﬁf’). We briefly recall the empirical setting
developed in Subsection 2.3. Given i.i.d. random vectors {Xi, Xo,..., X,,...} on (Q, F,P) with

shared law p =P X 1 we define u%w) =30 X;(w)- For this measure, the dual objective reads

_ L LS (072X
6,0 (2) = o |l2l” = (b, 2) +log — > e :

=1

Given Zp ¢ (w), an e-minimizer of ¢u(w) (z), define
n

Z?Zl CXl (w)e(CTEn,e(OJ),Xi (w))
Z’n <CTEn,€(UJ)7XZ(w)>

i=1¢

Tne(W) = VL ) (CTZne(w)) =

We begin with a simplifying lemma, recalling the notation developed in Section 4 of the moment

generating function M, of ;1 and empirical moment generating function M, (-, w) of u,({”).
Lemma 5.1. Let p> 0, n €N and w € Q and set K := exp (p||C|||X]). Then

D, p)) < Kirelan | M, ( (CT2) — Mn(CTz,w)‘.

Proof. Applying Lemma 4.1 to the particular probability measures p and ,u,({”) gives

(5.1) M,(CT2), Mo (C7 2,0) € [exp (—pl|C[|X]) , exp (p[|C|l|X])] = [¢,d]
where 0 < ¢ < d. Furthermore, for any s,t € [c, d] we have |log(s) — log(t)| < 1|s — ¢|, and hence

Dy (1, 1) = max L oy (CT2) — L(CT2)] < exp (o ClI|X]) max [M(CT2) — My (CT2,0)]
z€B, Hn z€B, |
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Lemma 5.2. Let py be as defined in (4.3) and suppose rank(C') = d. Then, for all p > pg, all
e € [0,p— pol, and for all n € N we have: if Z,, (w) € Sg(,u%w)), then Tp . (w) = VLM@J)(CTE,L’E)
satisfies

K
aamin<c)

22K, - 2
v _ Mn T K 2 -
+ 2P a0, (CT) ~ M (C z,w>|+( CIVE + =2

where K1 is a constant which depends on p,|X|,||C||, and Ko on |X|,||C||,b,¢,d, c.
Proof. As /,ng) € P(X), Theorem 4.7 yields for all n, for py as defined in (4.3), for all p > po,
and all € € [0, p — pol, if Z, (w) € Ss(uﬁf")), then T, . (w) = VL, (CT 2, ) satisfies

24/2
(w) D (w)
)DP(/L’ )un ) + \/ao_min(c) p(ﬂ» :un )

OéO'min(C
+ (l(2H(7HN/26¥‘¥ \/Odfjin((7)> Ve

where we stress that the constant Ky depends on |X|, ||C]], b, €, a, d, but does not depend on n. Ap-
plying Lemma 5.1 to bound D, (u, ugf)) < Kisup,ep, ’MM(CTZ) — M, (CTz, w)‘ gives the result.ll

|ZTne(w) — Tyl < max ‘Mu(CTz) — Mn(CTz,w)‘
z€B,

) v

[Zne(w) — Tpull <

In order to construct a final bound which depends explicitly on n it remains to estimate the term
max.ep, ’MM(CTZ) — Mn(C’Tz,w)‘. This fits into the language of empirical process theory where
this type of convergence is well studied. The main reference of interest here is van der Vaart [45].

For compact X C R%, let f: X — R be a function and 8 = (B1,.-.,B4) be a multi-index, i.e.

a vector of d nonnegative integers. We call |3| = ), f; the order of 3, and define the differential
oo 9P
oxt oahd

operator DP = . For integer k, we denote by C*(X) as the space of k-smooth (also

known as k-Hélder continuous) functions on X, namely, those f which satisfy [45, p. 2131]

DPf(z) — D" f(y)

|| fllck(a) := max sup HDBf(a:)H + max sup < +00.
(%) IBI<k geint(X) IB1=F 2 yeint(X) ||$ - y”
7Y

Moreover, let Ck(X') denote the ball of radius R in C*(X). With this notation developed we can state
the classical results of van der Vaart [45]. In the notation therein, we apply the machinery of Sections
1 and 2 to the measure space (X7,.4;1) = (X, Bx), equipped with probability measure p. Taking

Gn = V(') —p) and Fy = F = CF(X), this induces the norm |G, || = SqueC}’g(X){UX fdG,l},
and hence the results of [45, p. 2131] give

Theorem 5.3. Let p € P(X). If k > d/2, then for any R > 0,

/deufg)/xfduu <D

where D is a constant depending (polynomially) on k,d,|X|, R, and Ep is the outer expectation to
avoid concerns of measurablity (see e.g. [406, Section 1.2]).

Ep| sup n

feck(x)

Here, the outer expectation is defined for f: Q — R as

Ez = inf Ep(h
P(f) h> f pointwise P( )
h measurable
which coincides with the usual expectation for measurable functions. We remark that outer expec-
tation is also known as the outer integral [37, Chapter 14.F]. A self-contained proof of Theorem 5.3
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is non-trivial, requiring the development of entropy and bracketing numbers of function spaces
which is beyond the scope of this article.” We simply take this result as given. However, we show
the following corollary.

Corollary 5.4. For all n € N, we have
Ep |max ’M (CT2) — M, (CT2 )’ < D
z€B, " ’ B \/ﬁ’

where D is a constant depending on d, |X|, ||C||, p.

Proof. Observe that for each z, the function f,(z) = exp(CTz,-) is an infinitely differentiable
function on the compact set X', and thus has bounded derivatives of all orders, in particular, of
order k =d > d/2. Hence, for p > 0, the set of functions f, parameterized by z € B, satisfies

{fz(ac) =exp(Cz,2): 2z € Bp} - C%d(X),

where Ry is a constant which depends on d, p, ||C||, and |X|. Furthermore, as Q™ N B, C B, is a
countable dense subset, max.cp, ’MM(CTZ) — M, (CTz, )’ = SUp,cqQmnB, }MM(CTZ) — M, (CTz, )}
is a supremem of countably many P-measurable functions and is hence P-measurable. In particular
the usual expectation agrees with the outer expectation. Hence applying Theorem 5.3 we may

assert
Ep |max ‘Mu(CTz) — M, (CT2, )@ = Ep | sup / fodul) —/ fzuu
2€B, |2€B, | JX X
<ip | sw | [ g [ fu'
fecg ()1 /X &

< D

— \/ﬁ?
for a constant D which depends on d, |X| and R4. We remark that the choice of k = d in the above
was aesthetic, to remove the dependence of D on k. |

The final result now follows as a simple consequence of Corollary 5.4 and Lemma 5.2:

Theorem 5.5. Suppose rank(C) = d. For alln € N, and all Z,, -(w) € Sg(u%"))) the associated
Tpe(w) = VL#@)(CTEH,E(QJ)) satisfies

e () DK, 1  2DV2K; |1 — 2
B () Tl € o v ot (RallCIVER+ 2 ) v
1

where the leading constants Ky, Ko, D depend on |X|,||C|,b,e,a,d. In particular, for the case
e = 0, the unique minimizer Tp(w) is always measurable and hence the outer expectation is the
usual expectation.

9Bounds of this “Donsker” type have previously been applied to empirical approximations of stochastic opti-
mization problems, to derive large deviation-style results for specific problems, see [39, Section 5.5] for a detailed
exposition and discussion, in particular [39, Theorem 5.2]. In principle this machinery could be used here to derive
similar large deviation results.
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Proof. Take p =2pg in Lemma 5.2. Then for any n, if Z,, . (w) € Sg(;z%w)), we have for all w

—— _sup |M,(CT2) = M,,(CT 2, w
Ola'min(c) zeé)p‘ H( ) ( )|

2v2VK; \/

an,e(w) - fu” <

2

sup [M,(C72) ~ Mn(CTz) + (Kl ClVEa + 2

z€B,

* Vaomn(C) )V

holds with constants K7, Ko that depend only on |X|, ||C||,b,e,«,d. Taking the outer expectation
on both sides, and applying Corollary 5.4 to the measurable right hand side gives the result.

For the latter assertion, by [37, Theorem 14.37] there always exists a measurable selection w —
argmin qﬁ#;“) = {Zn(w)}. In particular, Z, (w) is unique by the i—strong convexity of qjuﬁf)’ and thus
there is only one possible selection which is immediately measurable. Hence the function w — @, (w)

is the composition of the continuous function VL#M and the measurable function C7'Z, (w) - and is

hence measurable. Remarking also that Z,(w) is unique, the left hand side is always P-measurable
and the outer expectation agrees with the usual expectation. |

More generally we note that for all ¢ > 0, there always exists a measurable selection z,.(w) €

Sa(ugf)) via [37, Theorem 14.6, Proposition 14.33]. Furthermore any algorithm A which performs
a composition of operations which preserve Borel measurability - such summations, products, differ-
entiations, and evaluations of measurable functions (see e.g. [19, Section 2.1]) - defines a selection
w — A(qb#(w)) = Zn,e(w) which is a composition of Borel-measurable functions and hence mea-
surable. With this in mind, issues of measurability are a technical note rather than of practical
concern.

Finally, we remark that this result is the first to give a parametric rate for convergence of
approximate minimizers of the empirical MEM problem. We conjecture however that this result
is not sharp, and that a sharper convergence rate of n'/2 may be proven using different analytical
techniques. This conjecture will be examined numerically in the next section.

6. Numerical experiments. We now shift to a numerical examination of the convergence z,, . —

T,. We focus entirely on the most recent setting of Section 5, the MEM problem with an empirical

prior u,(f) and the fidelity term g = 3[|b — (-)|?>. As discussed throughout, the empirical dual

objective function (bffjl) is smooth and strongly convex, with easily computable derivatives:'’

V() = sy T CX) TN
" 2 ZTL: e(CTz,X;(w))

Hence we may solve this problem with any standard optimization package, and here we choose
to use limited memory BFGS [9]. As a companion to this paper, we include a jupyter notebook,
https://github.com/mattkingros/MEM-Denoising-and-Deblurring.git, which can be used to repro-
duce and extend all computations performed hereafter. We emphasize that, as this work is the first
to propose using empirical data in the MEM framework, there are many numerical considerations
that we will not address. More sophisticated and higher order optimization routines would natu-
rally be of interest for moderate n, as are questions of how to efficiently solve this problem when n
grows prohibitively large or when C' is exceedingly close to singular.

For our numerical experiments we will focus purely on denoising, namely the case C' = 1.
We will use two datasets and two distributions of noise as proof of concept. For noise, we use
additive Gaussian noise and “salt-and-pepper” corruption noise where each pixel has an independent
probability of being set to purely black or white. For datasets, the first is the MNIST digits dataset
[15] which contains 60000 28x28 grayscale pixel images of hand-drawn digits 0-9, and the second is

10The derivatives are easily available analytically, but a naive implementation may run into stability issues stem-
ming from overflow when computing large sums of exponential terms. This can be easily addressed, see e.g. [25].
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the more expressive dataset of Fashion-MNIST [47], which is once again 60000 28x28 grayscale pixel
images but of various garments such as shoes, sneakers, bags, pants, and so on. We remark these
choices of noise, dataset, and matrix are far from real world problems, and serve as a lightweight
implementation of data into the MEM framework.

In all experiments we always include enough noise so that the nearest neighbour to b in the
dataset belongs to a different class than the ground truth, ensuring that recovery is non-trivial.
We include this in all figures, captioned “closest point”. Furthermore, we take the ground truth
to be a new data-point hand drawn by the authors; in particular, it is not present in either of the
original MNIST or MNIST fashion datasets.

We begin with a baseline examination of the error in n for the MNIST digit dataset, for various
choices of b. To generate u%w) practically, we sample n datapoints uniformly at random without
replacement. As a remark on this methodology, the target best possible approximation is the one
which uses all possible data, i.e., up = ué‘é?ooo. Hence, for error plots we compare to z,,, as we
do not have access to the full image distribution to construct .

Given a noisy image b, the experimental setup is as follows: for 20 values of n, spaced linearly
between 10000 and 60000, we perform 15 random samples of size n. For each random sample,

T : o Tn,e—T A
we compute an approximation Z, . and the relative approximation error W, which is then
#D

averaged over the trials. Superimposed is the upper bound Kinl'/4 convergence rate, as well as
the conjectured Kon'/? rate, for moderate constants K, Ky which changes between figures. We
also visually exhibit several reconstructions, the nearest neighbour, and postprocessed images for
comparison. This methodology is used to create figures Figures 1, 3, 6, 8, 10 and 12

A remark on postprocessing: As alluded to in the introduction (see Remark 1.1), an advantage
of the dual approach is the ability to reconstruct the optimal measure (),, which solves the measure-
valued primal problem as seen in [34]. In particular as @, < uﬁf’), we have T,, = Eg,, is a particular
weighted linear combination of the input data. This allows for two types of natural postprocessing:
at the level of the linear combination, i.e., setting all weights below some given threshold to zero,
or at the level of the pixels: i.e. setting all pixels above 1-y to 1 and below + to 0. These
postprocessing steps are motivated by the observation that solutions are compressible both in the
linear combination and the pixel-intensity level. Hence our figures also include the final measure
Q,, with all entries below 0.01 set to zero, the corresponding linear combination of the remaining
datapoints (bottom right image), and a further masking at the pixel level (top right image).

With this methodology developed, we present the results. For the first figures, the ground truth
is a hand-drawn 8, which is approximated by sampling the MNIST digit dataset. For Figure 1 we use
additive Gaussian noise of variance o = 0.10||z||. For Figure 3 we use salt-and-pepper corruptions
with an equal probability of 0.2 of any given pixel being set to 1 or 0.
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Example solution from N=500 datapoints, alpha = 2

Relative error (full reconstruction)

0.20

0.15

0.05 1

Observed b, Gaus. noise

Ground truth / target image

Example solution from N=20000 datapoints, alpha = 2

Example solution from N=60000 datapoints, alpha = 2

Closest point, Gauss. Postprocessed Solution

Reconstruction from 34 datapoints

Figure 1: Recovery of an 8 with additive Gaussian noise

Primal solution error

\ —%- a=2
A
\ —— 2p1E
-=- 22n712
o0 % N TTmeeal
&
\
\
\
'\
&
N
0.004 >
10000 20000 30000 40000 50000 60000

Number of datapoints

Coefficients of points with relative weight >0.01

0.6 4

0.5 4

0.4 4

0.3+

0.2

0.14

0.0 1

T.JOTT ITTTTI

T T T T T T
10000 20000 30000 40000 50000 60000

Figure 2: Rates and thresholding of optimal measure @, for Figure 1
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Example solution from N=20000 datapoints, alpha = 2

Example solution from N=60000 datapoints, alpha = 2

Closest point, SP Postprocessed Solution

Reconstruction from 176 datapoints

Figure 3: Recovery of an 8 with salt-and-pepper corruption noise
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Figure 4: Rates and thresholding of optimal measure @, for Figure 3

Examining Figures 1 and 3, we can make several observations which will persist globally in all
numerics. As seen in Figures 2 and 4, the theoretical rate n'/4 agrees with practical results, and
appears to be tight for moderate n on the order of n < 30000. While the leading constants given by
theory are quite large, growing polynomially with d, p e.g., in practice these are much more moderate
- here O(1). We also note the linear combination forming the final solution is quite compressible,
here having only 157 datapoints having dual measure above 0.01, and after thresholding being
visually indistinguishable from the full solution. Furthermore the visual convergence is fast, in the
sense that there is not an appreciable visual difference between the solution given 20,000 and 60,000
datapoints. As they are formed as linear combinations of observed data, all solutions suffer from
artefacting in the form of blurred edges, which can be solved by a final mask at the pixel level.

Before shifting away from the MNIST dataset, we also include a cautionary experiment where,
for small random samples, the method is visually “confidently incorrect”, which can be seen in
Figure 5. In the previous examples Figures 1 and 3 for small n we simply have blurry images.
This type of failure is generally representative of how the method performs when n is too small.
However there is another failure case which distinctly highlights the risk of taking n too small,
which can lead to a biased sample which does not well approximate y - leading to correspondingly
biased solutions. In Figure 5 we see the recovered image after masking is clearly a 3 for one random
samples of size n = 1000, but a 5 for other random samples of size n = 800, 2000.

Ground truth / target image Closest point, SP Solution for =800 Solution for n=1000 Solution for n=2000

E
‘

|

:

Pixel-Wise Mask, n=1000

Figure 5: A specific type of failure case for small n.

Pixel-wise mask, n=2000

We now move to the more expressive MNIST fashion dataset. We once again use a hand
drawn target, which is not originally found in the dataset. To emphasize differences compared to
handwritten digits, the fashion dataset is immediately more challenging, especially in regards to
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fine details. To illustrate, there are few examples of garments with spots, stripes, or other detailed
patterns - and as such are much more difficult to learn from uniform random samples. Similarly,
if the target ground truth image contains details or patterns which are not present in the fashion
dataset, there is little hope of constructing a reasonable linear combination to approximate the
ground truth. On the other hand, some classes - such as heels or sandals - are extremely easy to
learn, as there are many near-identical examples in the dataset, and are visually quite distinct from
many other classes. Disregarding the change in dataset, our methodology for remains the same as
Figure 1.

Observed b, Gaus. noise Closest point, Gauss. Postprocessed Solution

Reconstruction from 24 datapoints

Figure 6: Recovery of a hand drawn shirt with additive Gaussian noise

Ground truth / target image

Example solution from N=500 datapoints, alpha = 2
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Figure 7: Rates and thresholding of optimal measure @,,, for Figure 6

For the experiment with salt-and-pepper noise Figure 8, while MEM denoising clearly recovers
a shirt, many of the finer details are lost or washed out. In contrast, with Gaussian noise Figure 6,
there is some remnant of the shirts’ pattern visible in the final reconstruction. In both cases the
nearest neighbor is a bag or purse, and not visually close to the ground truth. While the constant
leading constant is larger, once again we are firmly below the theoretically expected convergence
rate of n'/4, and solutions are compressible with respect to the optimal measure Q,,.

Finally, we conclude with an experiment on MNIST fashion with a hand drawn target of a
heel, where we observe once again recovery well within the expected convergence rate, and visually
recovers (after postprocessing) a reasonable approximation to the ground truth.
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Ground truth / target image Observed b, sp noise Closest point, SP Postprocessed Solution
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Example solution from N=20000 datapoints, alpha = 2 Example solution from N=60000 datapoints, alpha = 2 Reconstruction from 74 datapoints

]

Figure 8: Recovery of a hand drawn shirt with salt and pepper corruption noise.
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Figure 9: Rates and thresholding of optimal measure @), for Figure 8

Ground truth / target image Closest point, SP Postprocessed Solution

Example solution from n=500 datapoints, alpha = 3

m Example solution from n=20000 datapoints, alpha = 3 Example solution from n=60000 datapoints, alpha = 3

Figure 12: Recovery of hand drawn heel with Salt and Pepper corruption.

Reconstruction from 77 datapoints
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Ground truth / target image Observed b, Gaus. noise Closest point, Gauss. Postprocessed Solution

Example solution from n=500 datapoints, alpha = 2
Example solution from n=20000 datapoints, alpha = 2 Example solution from n=60000 datapoints, alpha = 2 Reconstruction from 24 datapoints

Figure 10: Recovery hand drawn heel with additive Gaussian noise.
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Figure 11: Rates and thresholding of optimal measure @Q,,, for Figure 10
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Figure 13: Rates and thresholding of optimal measure @, for Figure 12

765 7. Conclusion and Future Work. Using the MEM framework, we have proposed using empiri-
766 cal priors ,u,({“) derived from data to approximate the unknown solution 7,. We have shown that this
767 method has desirable theoretical properties, with Theorem 3.9 proving an almost sure convergence
768 of T, . — Ty, while Theorem 4.7 and Theorem 5.5 give upper bounds on the error ||z, . — x| for an
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arbitrary prior v in terms of epigraphical distances and a parametric rate ||z, — z,|| = O (#)

One advantage of our approach here is that most of our results are valid not only for minimizers
but also for e-minimizers. We conjecture, however, that at least for exact minizers (e = 0) the rate
result is not sharp and can be improved to O(%) - as one might suspect from a function-valued
central limit theorem.

As proof of concept, we numerically demonstrated the success of our method for denoising
(C = I) based upon certain standard test data sets. These experiments were performed with
modest computing resources and off-the-shelf optimization routines. In future work, our aim is to
design specialized optimization routines that would give us access to moderate and large regimes in
n and hence open the door to larger data sets. To this end, it would also be useful to reformulate
our dual problem so that one can take advantage of stochastic gradient descent. In addition to
denoising, it would be natural to present experiments for tasks such as deconvolution and inpainting.

Although we focused on the empirical approximation u&“), it would be natural to investigate
more sophisticated approximations of p. This is particularly true given that the approach taken
here has been via epigraphical distances between the respective LMGF's.

Finally, in a certain sense this paper aims to learn a regularizer based upon a data set. It would
also be interesting to approach the fidelity term, which can be understood as the MEM estimator
based on a noise distribution (see [44]), in a similar vein. That is, can one learn the fidelity norm
based upon samples of noise?
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