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a b s t r a c t 

We present a detailed comparison of multiple statistical grain metrics for previously reported experimental thin 

film samples of aluminum with 2D simulations obtained from the Phase-Field-Crystal (PFC) model and a Mullins 

grain boundary motion model. For all these results, “universality ” is observed with respect to the dynamics and 

initial conditions. This comparison reveals that PFC reproduces geometric metrics such as area and perimeter, 

but does not capture grain shape and topology as accurately. Similarly, the Mullins model captures the number of 

sides distribution quite well but not other metrics. Our collective comparison of such measurements underscores 

the critical importance of the use of multiple metrics for comparison of experiments with all present and future 

models of grain growth in polycrystalline materials. 
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. Introduction 

Grain boundaries in polycrystalline materials are of paramount im-

ortance to various fields of science and engineering. As surrogates for

ifficult experimental investigations, several models have been devel-

ped to simulate grain growth and the evolution of the grain bound-

ry network. These models include the mesoscale continuum model

f grain growth stemming from Mullins’ work [1] and the atomic to

esoscale Phase-Field-Crystal (PFC) models [2,3] . A natural question is

o what extent are such models capable of reproducing the morphology

nd dynamics of grain growth and the associated microstructural met-

ics such as the grain size distribution of real materials. Fig. 1 contrasts

epresentative configurations of the grain boundary networks from ex-

eriments first presented in [4] with PFC and Mullins-like simulations

1] . Although the grains produced by Mullins-like models appear visu-

lly more similar to experiments than the output of the PFC model, a

efinitive statement cannot be made in the absence of a quantitative

omparison. 

One key to answering this question is to exploit the universality of

ertain geometric statistics that are experimentally observed in poly-

rystalline materials, both in thin film and bulk form: as the average

rain size increases, steady state distributions for many geometrical and

opological properties are experimentally observed during grain evolu-

ion [4–7] . These universal distributions give a precise measure of how
o assess mathematical models via the extraction of the relevant metrics 
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rom simulations. In this vein, it was shown in [8] that the PFC model

rovides a surprisingly accurate description of the grain size distribu-

ion, where the measure of “grain size ” used was the reduced equiva-

ent diameter. Previous work has also been done in computing certain

tatistical distributions for various Mullins-like models, see for example

9,10] . 

In this article, we consider a wide range of statistics, and present a

etailed comparison of previously reported experimental results of thin

lm samples of aluminum [4] with 2D simulations obtained from a basic

FC model and a well-known curvature driven grain boundary motion

odel [11] , here called the Mullins model. In all three cases, univer-

al metric distributions are observed with respect to the dynamics and

nitial conditions. We demonstrate that for many though not all grain

tatistics, late time PFC gives better agreement with experiments than

he Mullins model. However, the PFC model produces grain boundaries

hat meander far more than what is seen in experiments; its predictions

elated to grain shapes and topology therefore have lower accuracy. We

resent such a characterization of grain shape through a metric that

e call the convex hull ratio. We remark that extracting data on grain

tructures from PFC runs is difficult because of the atomic nature of the

odel. This work benefits from the atom-based grain extraction pro-

edure developed in [12] , which forms a self-contained method whose

ccuracy has been tested against manual grain segmentations and the

ariational approach in [13] . The current study underscores the critical

mportance of the use of multiple metrics for comparison of experiments

nd models for grain growth in polycrystalline materials, including
onière). 
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Fig. 1. Comparison between (a) experimental 

grains with (b) the general boundary struc- 

tures of PFC and (c) Mullins. Note how PFC 

grains have meandering boundaries compared 

to the experimental ones, which have non- 

meandering boundaries that are straight in 

some cases and curved in others. 
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mplitude equations based models [14] , more complicated PFC mod-

ls, and the Potts’ model [15] . 

. Experiments and simulations 

We first describe the origin of the three sources of data and the mea-

urement of statistical grain measures or metrics. In all cases, the grains

re represented on a finite domain so those lying on the boundary may

e cut off. Such grains have been excluded from the analysis. 

.1. Experimental data 

Experimental grain distributions have been obtained from imaging

ata in [4] . Experimental details may be found there, but in short, alu-

inum thin films were prepared by sputter deposition then annealed at

00 ∘C for a broad range of times (seconds to hours). The samples were

hen imaged via transmission electron microscopy using different view-

ng angles to characterize grain boundaries. These were traced manu-

lly, because with the exception of one sample [4,16] , automated grain

dentification had proven to be unsuccessful on account of the complex

ontrast of transmission electron micrographs. From these tracings, sev-

ral geometric measures of the grain structure were obtained and pre-

ented in [4] . 

To extend the analysis of [4] to some new grain metrics, all avail-

ble original scanned hand tracings of the boundaries have been an-

lyzed again. The scanned images were processed by identifying the

rains as regions separated by boundaries a few pixels wide. The vari-

us metrics were then measured using simple image analysis routines.

he analyzed subset consists of 86 images totaling roughly 3700 grains

ncluding as-deposited and annealed aluminum samples. The original set

f more than 35,000 original grains was reported in [4] and included

luminum and copper thin films, but the manual hand tracings of the

opper samples were not available for re-analysis and therefore could

ot be included in the current work. 

We also note that the experimental grain size data of the more than

5,000 grains included data from samples that had been annealed at a

ingle time at a given temperature, as well as data from samples that

ad been examined as a function of time and showed that the structures

ere stagnant and did not evolve with time. Nevertheless, the grain size

istributions of the partial and full datasets are similar, allowing the

onclusion of a universal experimental grain size distribution in [4] . 

.2. PFC data 

The basic PFC model [2] can be written as the partial differential

quation 

 𝑡 = ∇ 

2 ((∇ 

2 + 1) 2 𝑢 + 𝑢 3 − 𝛽𝑢 
)

or a phase-field u and a parameter 𝛽 that can be thought of as an inverse

emperature. This is similar to the Swift-Hohenberg model [17] but the

xtra Laplacian on the right-hand side ensures that the average ⟨𝑢 ⟩ = 𝑚

emains fixed in time. In 2D, the phase diagram in the parameters ( m,

) can be divided into three regions: one where the constant state 𝑢 = 𝑚
s stable, one where one-dimensional sinusoids are stable and finally a

egion where the hexagonal lattice is stable. In this regime, the model

imulates the evolution of “atoms ” represented by bumps in the phase

eld u . These bumps then arrange into a patchwork of hexagonal lattices

ith different orientations. 

The PFC evolution was simulated with the scheme of [18] using pe-

iodic boundary conditions on a square shaped computational domain.

arge-scale long-time grain statistics were extracted using the approach

ormulated in [12] . As shown there and in [13] , the procedure is reliable

nd agrees with manual grain segmentations and subsequent measure-

ents. Since the timescale of PFC may be scaled by any arbitrary factor,

he number of grains is a better indicator of progression than time. We

xtracted data when the domain of size ≈7429 2 contained roughly 2200

nd 135 grains, which we will label the Early and Late PFC distributions.

s presented in [12] , the PFC dynamics slows down significantly so Late

FC represents the “universal ” distribution. We also note that to bypass

ny ambiguity concerning the grain perimeter, it is approximated by

easuring the area of the disorded region between two grains and di-

iding by its thickness. More numerical details, including evidence of

he robustness of PFC with respect to changing simulation parameters,

ay be found in the appendix. 

In addition to grain area, perimeter, isoperimetric ratio (circularity)

nd the number of sides described in [12] , we utilize an additional met-

ic that we call the convex hull ratio: 

𝐻 − 𝐴 

𝐴 

here A and H are respectively the area of the grain and of its convex

ull, the smallest convex shape that fully encloses the grain. A value

lose to 0 means the grain is almost convex while values far from 0 in-

icate that the grain is concave and “meandering ”. This metric is similar

o the isoperimetric ratio in that it captures how far from a regular con-

ex shape a grain is, but differs from it since it ignores grain elongation

r equiaxedness. The convex hull ratio is straightforward to measure

hen grains are represented as regions. In the case of PFC images, the

onvex hull of a grain was computed by adding the area of the convex

ull of its atoms, a computation similar to those described in [12] . This

greed with projecting the grain onto a grid and using image analysis

echniques. 

.3. Mullins data 

We use a well-known, mesoscale, continuum model of curvature

riven grain boundary motion that was developed by Mullins and others

1,19,20] ; see [21] for further references. In this context, grain bound-

ries are described as curves or surfaces undergoing geometric motion.

here have been many algorithms proposed for the simulation of this

nd related models, including [22] for some of the earlier approaches.

e used threshold dynamics [23] , a recent, level set type algorithm

hat is particularly efficient due to its unconditional stability, allowing

imulations of up to hundreds of thousands of grains in both two and

hree dimensions [11,24] . Versions of this algorithm exist for very gen-

ral (including normal dependent) surface tensions and mobilities. For

he simulations reported in this paper, referred to as the Mullins model,
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Fig. 2. (a) Grain area distribution, normalized with respect to the average. (b) Equivalent diameter distribution, normalized with respect to the average. The smooth 

curves correspond to the fits in Table 1 . The Early PFC distribution has been omitted for clarity while the full experimental distribution has been included for 

comparison. 
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Table 1 

Fit parameters for the different datasets. Experiments and PFC fits are 

lognormal so ( 𝜇, 𝜎) refer to the average and standard deviation of the log- 

arithm. The Mullins fit is normal so the parameters are the usual average 

and standard deviation and should not be compared with the lognormal 

parameters. The fit reduced average is computed from the fit parameters 

and can be compared to the data reduced average of 1. 

𝜇 𝜎 Fit reduced average 

Experimental (3700 grains subset) –0.15 0.57 1.012 

Experimental (35,000 grains set) –0.12 0.49 1.001 

Early PFC –0.07 0.38 0.998 

Late PFC –0.16 0.61 1.022 

Mullins (normal fit) 1.00 0.38 1.000 
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e took all surface tensions and mobilities to be isotropic and equal,

esulting in symmetric dihedral angles of 120 ∘ at triple junctions, and

arried out the simulations in 2D in order to compare with PFC and

he thin film experiments. Periodic boundary conditions were used on a

quare shaped computational domain. The random Voronoi initial con-

ition contained in excess of 100,000 grains, which were then allowed

o coarsen down to 11,910 final grains. The final grain structure was

nalyzed using image analysis techniques. We note that the extracted

etrics are stable after an initial transient. 

. Comparison 

We now compare the statistical grain metrics. The grain distributions

ontained 3678, 81,343, 4937, and 11,910 data points for the experi-

ental, Early PFC, Late PFC and Mullins distributions respectively. The

istograms below are constructed by choosing the bin count with the

reedman-Diaconis rule [25] and error bars represent standard errors.

or histograms, this error is approximately 
√
𝑛 𝑖 where n i is the count of

ach bin, assuming that datapoints are chosen randomly from their un-

erlying distribution. This is an approximation as grains are necessarily

orrelated, but this effect is small if the domain is larger than the scale

f such correlations, which should be on the order of a few grain widths.

Experimental errors are much more difficult to assess precisely. For

xample, in all three cases, there is an error associated to measuring

rain metrics once the boundaries have been identified, but it is small

ince the domain’s discretization is small compared to the size of grains.

n experimental images (see [16] for a discussion) and PFC, there is

n additional error in properly characterizing these boundaries, mean-

ng that some grains may not be properly identified. Such errors are

uite small since ambiguities are present near boundaries which make

p a relatively small fraction of the domains. Finally, recognizing PFC

oundaries is complicated by their atomic nature, but it was evaluated in

12] that discrepancies in measurements between numerical and man-

al segmentations amount to a few percent. Overall, the relatively small

umber of datapoints mean that the statistical errors overshadow exper-

mental errors, so the error bars presented below can help guide the eye

s to the closeness of the compared data. 

.1. Reduced area and reduced equivalent circle diameter 

Given an area A for a grain, the reduced area distribution is given by

he set A / ⟨A ⟩ where ⟨A ⟩ denotes the average area. A derived metric, the
quivalent circle diameter D , corresponds to the diameter of the circle

ith area A . In Fig. 2 (a) and (b), we see that both the area and the di-

meter distributions clearly show that the Mullins model behaves quite

ifferently from experimental grains and PFC. The main feature com-

ared to random tesselations, as noted in [4,8] , is the presence of a pop-

lation of small grains (the region in the distribution termed “ear ”) and

 population of very large grains (the region termed the “tail ”). The ex-

erimental distributions lies close to the Late PFC distributions. Another

oint is that the reduced equivalent diameter distributions are lognor-

al in the PFC and experimental cases, but almost normal for Mullins,

ighlighting a drastically different behavior. The reduced equivalent di-

meter distributions were fit to the appropriate distributions and the fit

arameters are reproduced in Table 1 . The conclusion here is similar:

FC moves towards the experimental data. We emphasize that PFC has

oved slightly past the full experimental dataset. 

.2. Reduced perimeter and isoperimetric ratio 

As with area, Fig. 3 (a) shows excellent agreement between the ex-

erimental and PFC results for the reduced perimeter distribution. A

uantity derived from area and perimeter is the isoperimetric ratio, also

alled the circularity. This quantity measures how close a grain is to

 circle and thus how round or compact it is. This is similar to other

quiaxial metrics such as the aspect ratio. Fig. 3 (b) shows that both

xperimental distributions and PFC are broad while Mullins presents a

harply peaked distribution. 
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Fig. 3. (a) Grain perimeter distribution, normalized with respect to the average. (b) Grain isoperimetric ratio. The isoperimetric ratio is defined as 4 𝜋A / P 2 where 

A, P are the area and perimeter of a grain. 

3

 

p  

s  

M  

v  

c  

w  

p  

H  

t  

s  

a  

r

3

 

n  

t  

c  

v  

p

 

p  

b  

n  

a  

w  

w

 

W  

[  

t  

l  

h  

o  

e  

t  

n  

Fig. 4. Grain convex hull ratio, defined as ( 𝐻 − 𝐴 )∕ 𝐴 where A and H are the 

area of the grain and of its convex hull, respectively. 
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.3. Convex hull ratio 

Fig. 4 shows the convex hull ratio, equal to 0 for convex grains and

ositive for concave and meandering grain boundaries. The comparison

hows that the experimental distribution is quite far from both PFC and

ullins yet shares a similar shape to PFC. Mullins on the other hand is

ery sharply peaked and away from 0, so most of its grains have slightly

urved boundaries. The main difference here is that PFC produces grains

ith meandering boundaries while experimental and Mullins grains

resents roughly polygonal grains but with slightly curved boundaries.

owever, the distribution of curvatures is much broader in experiments

han in the Mullins model. For PFC, this metric has not stabilized to the

ame extent as the others, however, its evolution also slows down in

 similar manner so that it is highly unlikely that it would eventually

each to the experimental distribution. 

.4. Metrics based on the number of sides distribution 

The number of sides of a grain, called its side class, is defined as its

umber of neighbors. In contrast to the other results, Fig. 5 (a) shows

hat the number of sides distribution of the experimental distribution is

loser to Mullins than to PFC, which exhibits a number of grains with

ery few or many neighbors. Nevertheless, it appears that both the ex-

erimental distributions and PFC peak at 5 neighbors rather than 6. 

Several other metrics combining geometry and topology can be com-

uted. Fig. 5 (b) shows the average number of sides of the nearest neigh-

ors for a given side class, which shows that grains with few sides have

eighbors with many neighbors and vice-versa. The average reduced

rea for a given side class is presented in Fig. 5 (c), showing that grains

ith many neighbors occupy a larger fraction of the domain than those

ith few neighbors. In other words, large grains have many neighbors. 

These two metrics have been compared respectively to the Aboav-

eaire and Lewis laws in detail in [4] and the reader is directed to

26] for physical details. In short, the Aboav-Weaire law predicts that

he curves in (b) would follow 5 + 8∕ 𝑁 where N is the side class. This

aw, observed across a variety of tesselated systems, can be shown to

old rigorously if the grains correspond to a random convex tesselation

f the domain. The Mullins model matches this law quite well while

xperiments and PFC match the law with different constants but keep

he same trend. This makes it clear that PFC grains have on average more

eighbors than would be expected from random tesselations, most likely
ue to the non-convexity of PFC grains. On the other hand, the Lewis

aw predicts a linear relationship in (c) which does not appear to be

ollowed by any of the comparison models. 

Lastly, the area fraction of grains with a given side class is shown

n Fig. 5 (d). This metric is quite similar to the number of sides distribu-

ion and shows more clearly than (a) that experimental data is closer to

ullins while PFC is stationary away from the other two. Overall, these

hree different metrics of grain structure show that there are important

iscrepancies in comparing PFC to experimental data from a topological

oint of view. 

. Discussion and conclusion 

The comparisons above show that the PFC model is more successful

han Mullins simulations at predicting the purely geometric metrics of

rain. In particular, the grain size distribution of late time PFC agrees

ell with that obtained from experimental data of aluminum films, as

ighlighted in [8] . However, as suggested by visual comparisons (see
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Fig. 5. (a) Number of sides distribution computed by counting the number of neighbors of a grain. (b) Average number of sides of nearest neighbors binned by the 

number of sides. This quantity is computed per grain by taking its neighbors and averaging their own number of sides. (c) Reduced average area corresponding to 

each side class. Fix a side class and compute the average reduced area of grains in this side class. (d) Area fraction of grains in a given side class. This quantity is 

computed by multiplying the number of sides distribution with the previous reduced average area. Connecting lines are drawn to guide the eye and standard errors 

were computed and are plotted in (b), (c), (d). 
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ig. 1 ), those metrics related to grain shape and topology are much

ess accurately captured by PFC. Indeed, our comparison via the con-

ex hull ratio suggests that a significant deficiency of the PFC model

s its propensity to form meandering grain boundaries, which does not

ppear to resolve in time. On the other hand, while the Mullins model

ccurately resolves the number of sides distribution, it fails to capture

ost other measures. 

These findings reiterate many important questions as to universality

nd its inherent presence in the models. First off, is this universality pre-

erved across all polycrystalline materials with respect to dimensionality

r lattice structure (FCC, BCC, Cubic, etc)? Secondly, how is PFC able

o predict the distributions for area and perimeter so accurately? This

uestion is difficult to fully answer, but perhaps a naive explanation is

s follows. 

PFC is the simplest conservative PDE that may give rise to poly-

rystalline patterns formed by individual atoms as it encodes only

he core of a two-body correlation function: neighboring atoms try-

ng to be a given fixed distance from each other [3] . In fact, this sug-

ests that the main character of the basic PFC model is close packing,
roducing hexagonal lattices in 2D. As such, the mechanism of grain

volution must rely mostly on neighbor to neighbor interactions. Per-

aps the apparent agreement of PFC with experiments indicates that the

eciding mechanism for grain size in real materials is simply close pack-

ng. This naive interpretation may help explain why our 2D Hexagonal

FC results match the 3D FCC aluminum measurements of thin-films.

n the other hand, the main limitation of PFC is that it forms meander-

ng boundaries with highly concave grains, meaning that PFC lacks a

riving force to promote the grain convexity that is clearly observed in

xperimental grains. In contrast, the Mullins model is driven by mini-

ization of the curvature of grain boundaries, so it is not surprising that

t is more successful to characterize grain shape. Conversely, it fails to

ecover the underlying atomic nature of grains since it cannot represent

eneral defects. 

It would be interesting to see if the naive intuition that character-

zes PFC as close packing could be extended to other models capable of

imulating different lattice types. Would introducing corrections such

s orientation dependent surface tensions in the basic Mullins model

llow it to better reproduce experimental data? Lastly, an important
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Fig. 6. Comparison between different PFC input parameters, varying the PFC parameters (a), the domain size (b) and the grid resolution (c). Variability can be 

gauged by the spread in the histograms; the PFC evolution then gives rise to robust statistics that are not very sensitive to simulation details. 
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athematical question is to what extend one can analytically capture

uch universal behavior directly from the models? 

To conclude, we have compared important geometric metrics of the

rain distributions of experimental structures with the PFC and Mullins

odels and found that they better capture geometric and shape metrics,

espectively. 
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ppendix: Details on PFC simulations and statistics 

The PFC results were obtained by simulating the PFC evolution with

he scheme of [18] using the same parameters ( 𝑚, 𝛽) = (0 . 07 , 0 . 025) , 𝐶 =
 𝛽 = 0 . 05 and 𝜏 = 1000 for a domain of size L ≈7429 with 8192 grid

oints. Since the interatomic distance between two atoms equals 4 𝜋∕ 
√
3 ,

his domain size supports roughly 1024 atoms, each resolved by about

 grid points (8 pixels per atom), in each direction. The evolution was

un for 40,000 time steps starting with 36 random initial phase fields.

ata was first captured when the domain contained roughly 2200 grains

Early PFC) and the simulations ended with an average of 135 grains

Late PFC). The grain extraction procedure was carried out using the

arameters found optimal in [12] , ℎ = −0 . 035 , 𝛾 = 0 . 001 , 𝜃 = 2 . 5 ◦ and

= 40 . 
We briefly compare the statistics obtained by varying the PFC pa-

ameters, the domain size and the grid resolution, showing that the

FC model gives rise to robust statistics over a variety of input pa-

ameters. The comparison is shown for the reduced equivalent diameter

istribution but other metrics behave similarly. In Fig. 6 (a), we varied

he PFC parameters ( m, 𝛽) away from (0.07, 0.025) to include (0.05,

.016), (0.06, 0.025), (0.07, 0.016), (0.07, 0.034), (0.08, 0.025) and

0.09, 0.034). These lie within the hexagonal regime close to the order

isorder transition curve [2] . The parameters C and h were varied to

ccommodate the resulting atoms but the numerical domain was kept

xed. In Fig. 6 (b), we varied the domain size to fit 256 2 , 512 2 and 1024 2 

toms, keeping the grid resolution fixed at about 8 2 pixels per atom. In
ig. 6 (c), we varied the grid resolution from 8 2 , 16 2 to 32 2 pixels per

toms while keeping the domain size fixed to fit 256 2 atoms. 
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