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Abstract
Image deblurring is a notoriously challenging ill-posed inverse problem. In
recent years, a wide variety of approaches have been proposed based upon reg-
ularization at the level of the image or on techniques from machine learning. In
this article, we adapt the principal of maximum entropy on the mean (MEM)
to both deconvolution of general images and point spread function estimation
(blind deblurring). This approach shifts the paradigm toward regularization at
the level of the probability distribution on the space of images whose expecta-
tion is our estimate of the ground truth. We present a self-contained analysis of
this method, reducing the problem to solving a differentiable, strongly convex
finite-dimensional optimization problem for which there exists an abundance
of black-box solvers. The strength of the MEM method lies in its simplicity, its
ability to handle large blurs, and its potential for generalization and modifica-
tions. When images are embedded with symbology (a known pattern), we show
how our method can be applied to approximate the unknown blur kernel with
remarkable effects.
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1. Introduction

Ill-posed inverse problems permeate the fields of image processing and machine learning. Pro-
totypical examples stem from non-blind (deconvolution)and blind deblurring of digital images.
The vast majority of methods for image deblurring are based on some notion of regularization
at the image level. In this article, we present, analyze and test a different method known in
information theory as maximum entropy on the mean (MEM).

The general idea of maximum entropy (ME) dates back to Jaynes in 1957 ([38, 39]).
A vast literature originates in Jaynes’ paper, on conceptual and theoretical aspects, but also
on the multiple applications of the principle of ME. Based upon these ideas, Navaza and oth-
ers developed a method for solving ill-posed problems in crystallography ([21, 24, 54, 55]).
Further applications were made to deconvolution problems in astrophysics3 ([5, 53, 80, 87]).

In image reconstruction (as in other fields of applied sciences), it is necessary to distinguish
between the method of ME and the principle of MEM as described in [21, 33]. In the former,
the gray level of each pixel is interpreted as a probability; the image is then normalized, so that
the values add up to one, and the ME principle is applied under the available constraints (see
[80] and the references therein). In the latter (see for example [4, 36, 50]), the pixelated image
is considered as a random vector, and the principle of the ME is applied to the probability
distribution of this vector; the available constraints are imposed on the expectation under the
unknown probability distribution, and thus become constraints on the probability of the image
(see [4, 5, 50]).

A definite advantage of the MEM is that, by moving to an upper level object (a probability
distribution on the object to be recovered), it becomes possible to incorporate nonlinear con-
straints via the introduction of a prior distribution. This results in a very flexible machinery,
which makes the MEM very attractive for a wide variety of applications.

To the best of our knowledge, the first occurrence of the MEM inference scheme appeared
in [79], for the purpose of spectral analysis. Surprisingly, the MEM has not been widely used
for image deconvolution. Indeed, citations from the key articles suggest that MEM is not
well-known in the image processing4 and machine learning communities and, to our knowl-
edge, its full potential has not been explored and implemented in the context of blind deblur-
ring in image processing. One of the goals of this article is to rectify this by demonstrating
that a reformulation of the MEM method can produce a general scheme for deconvolution and
in certain cases, kernel estimation, which compares favourably with the state of the art and is
amenable to very large blurs. Moreover, its ability to elegantly incorporate prior information
opens the door to many possible avenues for generalizations and other applications.

Following the presentation in Le Besnerais, Bercher, and Demoment [4], let us first state the
classical MEM approach introduced by Navaza ([54, 55]) for solving linear inverse problems.
We work with vectors inRd , where in the context of an image, d represents the number of pixels.
Given a d × d convolution matrix C and an observable data z ∈ R

d, we wish to determine the
ground truth x ∈ R

d and noise n ∈ R
d where

3 The setting of astronomical imaging is ideal for deconvolution, as in most situations an accurate estimation of the PSF
can be obtained. Indeed, one can estimate the PSF by calibrating the telescope using reference stars or by analysing
the properties of the optics system for example [51, 81].
4 We remark that Noll [58] did implement a MEM framework for deblurring a few photo images but with only modest
results.
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z = Cx + n or z = Hy, where H = [C, I] and y =

[
x
n

]
. (1)

If ρ, μ are two probability measures on a subset Ω ⊂ R
d, we define the Kullback–Leibler

divergence to be

K(ρ,μ) =

⎧⎪⎨⎪⎩
∫
Ω

log

(
dρ
dμ

)
dρ, ρ,μ ∈ P(Ω), ρ � μ,

+∞, otherwise,
(2)

where P(Ω) denotes the space of probability measures on Ω. One can think of ρ as the prob-
ability distribution associated with x and μ as some prior distribution. In the classical MEM
approach, the best estimate of y is taken to be

ŷ := Eρ̄[X], where ρ̄ = arg minρ {K(ρ,μ)} | HEρ[y] = z} .

This infinite-dimensional variational problem is recast as follows:

setting F(y) :=min
ρ

{K(ρ,μ) | Eρ[X] = y} ,

solve min
y

F(y) s.t Hy = z. (3)

To solve (3), they introduce what they call the log–Laplace transform of μ which turns out to
be the convex conjugate of F under some assumptions on μ:

F∗(s) := log
∫

exp〈s, u〉 dμ(u). (4)

Then, via Fenchel–Rockafellar duality, they show that the primal problem (3) has a dual
formulation

min
Hy=z

F(y) = max
λ∈Rd

D(λ) :=λT z − F∗(HTλ).

The primal-dual recovery formula states that if λ̂ is a maximizer of D and ŝ :=HT λ̂ then the
primal solution is

ŷ = ∇F∗(̂s). (5)

In this article, we present a general MEM based deconvolution approach which does not
directly include a noise component, but rather treats the constraint via an additive fidelity term.
We also treat directly the infinite-dimensional primal problem over probability densities. A
version of this approach was recently implemented by us (cf [68]) for the blind deblurring of
2D QR and 1D UPC barcodes, where we showed its remarkable ability to blindly deblur highly
blurred and noisy barcodes. In this article, we present a self-contained, short (yet complete)
analysis of the general theory including a stability analysis, and then apply it to both non-
blind deblurring and kernel [point spread function (PSF)] estimation (blind deblurring). Our
computational results are dramatic and compare well with the state of the art.

Let us provide a few details of our approach to MEM as a method for deblurring. In our
notation, pixel values are taken from a compact subset of Ω ⊂ R

d , ρ the distribution of the
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image and the prior μ are both in P(Ω), and b ∈ R
d is a measured signal representing the

blurred and possibly noisy image. Our best guess of the ground truth is determined via

x̄ := Eρ̄[X], where ρ̄ := arg min
ρ∈P(Ω)

{
K(ρ,μ) +

α

2
||b − CEρ[X]||22

}
.

Here α > 0 is the fidelity parameter, directly linked to the fidelity of CEρ[X] to the blurred
image b (see (18)). This primal problem has a finite-dimension dual (cf theorem 2) and a recov-
ery formula for the minimizer ρ̄ in terms of the optimizer λ̄ of the dual problem. To compute
the expectation of ρ̄, we use the moment-generating function MX[t] of the prior μ ∈ P(Ω) to
show in section 3.3 that

Eρ̄[X] =∇t log (MX[t])|CT λ̄. (6)

This is the analogous statement to (5). When the moment generating function of μ is known,
finding our estimate of the ground has thus been reduced to the optimization in d dimensions
of an explicit strongly convex, differentiable function.

Of course, effective implementation of deconvolution is directly tied to the presence of
noise. In our MEM formulation, we do not directly include noise as a (solved for) variable. We
thus make three important remarks about noise:

• In theorem 3 we prove a stability estimate valid for any prior μ which supports the fact
that our method is stable with respect to small amounts of noise.

• With only a very modest prior (with a sole purpose of imposing box constraints), we
demonstrate that for moderate to large amounts of noise, our method works well by
preconditioning with expected patch log likelihood (EPLL) denoising [102].

• While the inclusion of noise-based priors will be addressed elsewhere, we briefly comment
on directly denoising with our MEM deconvolution method in section 6.

Our MEM deconvolution scheme can equally well be used for PSF estimation, hence blind
deblurring. Indeed, given some approximation of the ground truth image, say x̃, we estimate
the ground truth PSF c̄ as

c̄ := Eη̄[X], where η̄ := arg min
η∈P(Ω)

{
K(η, ν) +

γ

2
||Eη[X] ∗ x̃ − b||22

}
. (7)

Many blind deblurring algorithms iterate between estimating the image x and the PSF c. One
could take a similar iterative approach by invoking prior information about c in ν. However,
here we proceed via symbology; that is, we assume the image contains a known pattern anal-
ogous to a finder pattern in a QR or UPC barcode (cf [68]). In these cases, one focuses (7) on
x̃, the part of the image which is known. While our numerical results (cf figures 2–4) are dra-
matic, the presence and exploitation of a finder pattern is indeed restrictive and does weaken
our notion of blind deblurring. Moreover, it renders comparisons with other methods unfair.
Nevertheless, we feel that, besides synthetic images like barcodes, there are many possible
applications wherein some part of an image is a priori known. As a matter of fact, let us stress
that the ability of the MEM to incorporate nonlinear constraints (via the prior measure) may
tremendously improve the estimation of the convolution kernel. For example, the choice of
the support of the prior will enable us to confine the kernel to any prescribed closed con-
vex subset. In the paper, we exploit very little of this potential yet already obtain remarkable
reconstructions.

We reiterate that our approach directly treats the infinite-dimensional primal problem over
probability measures ρ and its finite-dimensional dual, a setting often referred to as partially

4



Inverse Problems 37 (2021) 015011 G Rioux et al

finite programming [8]. While we can also reformulate our primal problem in terms of a finite-
dimensional analogue of (3) defined at the image level (see section 6.1), an advantage to our
approach lies in the fact that one may be interested in computing the optimal ρ̄ or a general
linear functional L of ρ̄ for which a simple closed form formula (analogous to (5) and (6) for
the expectation) fails to exist. Here one could adapt a stochastic gradient descent algorithm
to compute Lρ̄ wherein the only requirement on the prior would be that one can efficiently
sample from μ.

The paper is organized as follows. We start by briefly recalling current methods for deblur-
ring, highlighting the common theme of regularization at the level of the image, or level of the
PSF (for blind deblurring). After a brief section on preliminaries, we present in sections 3.1–3.3
our MEM deconvolution method which we have just outlined. We then address PSF estima-
tions via the exploitation of symbology in section 3.4. We prove a stability estimate in section 4.
Numerical examples with comparisons for both deconvolution and blind deblurring with sym-
bology are presented in section 5. We present a short discussion of the role of the prior and
future work in section 6. Finally we end with a short conclusion, highlighting the MEM method
and the novelties of this article.

1.1. Current methods

The process of capturing one channel of a blurred image b ∈ R
n×m from a ground truth

channel x ∈ R
n×m is modeled throughout by the relation b = c ∗ x, where ∗ denotes the two-

dimensional convolution between the kernel c ∈ R
k×k (k < n, m) and the ground truth; this

model represents spatially invariant blurring. For images composed of more than one channel,
blurring is assumed to act on a per-channel basis. Therefore, we derive a method to deblur one
channel and apply it to each channel separately.

Most current blind deblurring methods consist of solving

inf
x∈Rn×m

c∈Rk×k

{
R(x, c) +

α

2
||c ∗ x − b||22

}
, (8)

where R : Rn×m × R
k×k → R serves as a regularizer which permits the imposition of certain

constraints on the optimizers and α > 0 is a fidelity parameter. This idea of regularization
to solve ill-posed inverse problems dates back to Tikhonov [85]. The inherent difficulties in
solving (8) depend on the choice of regularizer. A common first step is to iterately solve the
following two subproblems,

c̃ ∈ inf
c∈Rk×k

{
R(x̃, c) +

α

2
||c ∗ x̃ − b||22

}
,

x̃ ∈ inf
x∈Rn×m

{
R(x, c̃) +

α

2
||c̃ ∗ x − b||22

}
,

the first subproblem is a kernel estimation and the second is a deconvolution. We will utilize
this approach in the sequel.

Taking Rc = ||·||22 and replacing x̃ and b by their derivatives to estimate the kernel has
yielded good results in different methods (see e.g. [16, 47, 60, 62, 97]) and can be efficiently
solved using spectral methods. The deconvolution step often involves more elaborate regu-
larizers which may be non-differentiable (such as the �1 regularizer) or non-convex (such as
the �0 regularizer), thus it is often the case that new optimization techniques must be devel-
oped to solve the resulting problem. For example, the half-quadratic splitting method [94] has
been used to great effect when the �0 regularizer is employed [47, 60, 62, 97]. Optimization
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methods that are well-suited for the �1 regularizer include primal-dual interior-point methods
[42], iterative shrinkage thresholding algorithms [3, 23], and the split Bregman method [34]. In
our case, standard convex optimization software can be used regardless of the choice of prior,
as the problem to be solved is strongly convex and differentiable.

Approaches that are not based on machine learning differ mostly in the choice of regular-
izer; common choices include �2, �1, and �0-regularization (and combinations thereof), which
promote sparsity of the solution to varying degrees (see [16, 40, 45, 99, 100], [6, 13, 26, 65,
73, 77, 90, 92, 98], and [47, 60–62] for some examples which employ, respectively, �2, �1 and
�0 regularizers on the image or its derivatives).

Such regularizers may be employed to enforce sparsity on other quantities related to the
image. For example, one can employ �0-regularization of the dark or bright channel to pro-
mote sparsity of a channel consisting of local minima or maxima in the intensity channel
[63, 97]. Further, one can regularize the coefficients of some representation of the image. In
particular, many natural images have sparse representations in certain transformation domains.
Some frames which have seen use in deblurring and deconvolution include wavelets [2, 29, 31],
discrete cosine transform [56], contourlets [86], and framelets [11]. Moreover, combinations
of different frames to exploit their individual properties can also be utilized [10, 30, 82].

Other notable choices of regularizer include the ratio of the l1 and l2 norm to enforce spar-
sity [43], the weighted nuclear norm, which ensures that the image or gradient matrices have
low rank [67, 96], a penalization based on text-specific properties [15], the spatially-variant
hyper-Laplacian penalty [14, 78], a surface-aware prior which penalizes the surface area of the
image [47], and approximations of the �0 penalty via concatenation of a quadratic penalty and
a constant [93] or via a logarithmic prior [64].

Approaches based on machine learning include modeling the optimization problem as a
deep neural network [76, 91] and estimating the ground truth image from a blurred input
without estimating the kernel using convolutional neural networks (CNNs) [52, 59], recur-
rent neural networks [84] or generative adversarial networks (GANs) [44, 66]. Other popular
methods consist of estimating the kernel via CNNs and using it to perform deconvolution
[83], deconvolving via inversion in the Fourier domain and denoising the result using a neural
network [20, 22, 75], and learning dictionaries for sparse representations of natural images
[27, 28, 37, 48, 57, 95].

2. Preliminaries

We begin by recalling some standard definitions and establishing notation. We refer to [101]
for convex analysis in infinite dimensions and [69] for the finite-dimensional setting. We follow
[74] as a standard reference for real analysis.

Letting (X, τ ) be a separated locally convex space, we denote by X∗ its topological dual.
The duality pairing between X and its dual will be written as (·, ·) : X × X∗ → R in order to
distinguish it from the canonical inner product on R

d, 〈·, ·〉 : Rd × R
d → R. For f : X → R̄ ≡

R ∪ {−∞,+∞}, an extended real-valued function on X, the (Fenchel) conjugate of f is f ∗ :
X∗ → R̄ defined by

f ∗(x∗) = sup
x∈X

{(x, x∗) − f (x)} ,

using the convention a − (−∞) = +∞ and a − (+∞) = −∞ for every a ∈ R. The subdif-
ferential of f at x̄ ∈ X is the set

∂ f (x̄) = {x∗ ∈ X∗|(x − x̄, x∗) � f (x) − f (x̄) ∀ x ∈ X} .

6
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We define dom f := {x ∈ X| f (x) < +∞}, the domain of f , and say that f is proper if dom
f �= ∅ and f(x) > −∞ for every x ∈ X. f is said to be lower semicontinuous if f−1([−∞,α])
is τ -closed for every α ∈ R.

A proper function f is convex provided for every x, y ∈ dom f and λ ∈ (0, 1),

f (λx + (1 − λ)y) � λ f (x) + (1 − λ) f (y).

If the above inequality is strict whenever x �= y, f is said to be strictly convex. If f is proper
and for every x, y ∈ dom f and λ ∈ (0, 1),

f (λx + (1 − λ)y) + λ(1 − λ)
c
2
||x − y||2 � λ f (x) + (1 − λ) f (y),

then f is called c-strongly convex.
For any set A ⊆ X, the indicator function of A is given by

δA : X → R ∪ {+∞}, x �→
{

0, x ∈ A,

+∞, otherwise.

For any Ω ⊆ R
d, we denote by P(Ω) the set of probability measures on Ω. The set of all

signed Borel measures with finite total variation on Ω will be denoted by M(Ω). We say that
a measure is σ-finite (on Ω) if Ω = ∪i∈NΩi with |μ(Ωi)| < +∞.

Let μ be a positive σ-finite Borel measure on Ω and ρ be an arbitrary Borel measure on
Ω, we write ρ � μ to signify that ρ is absolutely continuous with respect to μ, i.e. if A ⊆ Ω
is such that μ(A) = 0, then ρ(A) = 0. If ρ � μ there exists a unique function dρ

dμ ∈ L1(μ) for
which

ρ(A) =
∫

A

dρ
dμ

dμ, ∀ A ⊆ Ωmeasurable.

The function dρ
dμ is known as the Radon–Nikodym derivative (cf [74, theorem 6.10]). These

measure-theoretic notions were used previously to define the Kullback–Leibler divergence
(2).

For Ω ⊆ R
d, η ∈ M(Ω) we denote, by a slight abuse of notation, Eη[X] to be a vector

whose kth component is (Eη[X])k =
∫
Ωxk dη(x). Thus, E(·)[X] is a map from M(Ω) to R

d

whose restriction to P(Ω) is known as the expectation of the random vector X = [X1, · · · , Xd]
associated with the input measure.

Finally, the smallest (resp. largest) singular value σmin(C) (resp. σmax(C)) of the matrix
C ∈ R

m×n is the square root of the smallest (resp. largest) eigenvalue of CT C.

3. The MEM method

3.1. Kullback–Leibler regularized deconvolution and the maximum entropy on the mean
framework

Notation: we first establish some notation pertaining to deconvolution. The convolution oper-
ator c∗ will be denoted by the matrix C : Rd → R

d acting on a vectorized image x ∈ R
d for

d = nm and resulting in a vectorized blurred image for which the kth coordinate in R
d

corresponds to the kth pixel of the image. We assume throughout that the matrix C is
nonsingular.

We recall that traditional deconvolution software functions by solving (8) with a fixed con-
volution kernel c. Our approach differs from previous work by adopting the MEM framework
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which posits that the state best describing a system is given by the mean of the probability
distribution which maximizes some measure of entropy [38, 39]. As such, taking Ω ⊆ R

d to
be compact, μ ∈ P(Ω) to be a prior measure and b ∈ R

d to be a blurred image, our approach
is to determine the solution of

inf
ρ∈P(Ω)

{
K(ρ,μ) +

α

2
||b − CEρ[X]||22

}
= inf

P(Ω)
{ f + g ◦ A} , (9)

for

f = K(·,μ), g =
α

2
||b + (·)||22 , A = −CE(·)[X]. (10)

The following lemma establishes some basic properties of f.

Lemma 1. The functional f : M(Ω) → R̄ is proper, weak∗ lower semicontinuous and
strictly convex.

Proof. We begin with strict convexity of f. Let x ∈ Ω and t ∈ (0, 1) be arbitrary moreover
let ρ1 �= ρ2 be elements of P(Ω) and ρt = tρ1 + (1 − t)ρ2. We have

log

(
dρt
dμ (x)

t + (1 − t)

)
dρt

dμ
(x) = log

(
t dρ1

dμ (x) + (1 − t) dρ2
dμ (x)

t + (1 − t)

)(
t
dρ1

dμ
(x) + (1 − t)

dρ2

dμ
(x)

)

� t log

(
dρ1

dμ
(x)

)
dρ1

dμ
(x) + (1 − t) log

(
dρ2

dμ
(x)

)
dρ2

dμ
(x).

The inequality is due to the log-sum inequality [19, theorem 2.7.1], and since ρ1 �= ρ2, dρ1
dμ and

dρ2
dμ differ on a set E ⊆ Ω such that μ(E) > 0. The strict log-sum inequality therefore implies

that the inequality is strict for every x ∈ E. Since integration preserves strict inequalities,

f (ρt) =
∫
Ω\E

log

(
dρt

dμ

)
dρt

dμ
dμ+

∫
E

log

(
dρt

dμ

)
dρt

dμ
dμ < t f (ρ1) + (1 − t) f (ρ2)

so f is, indeed, strictly convex.
It is well known that the restriction of f to P(Ω) is weak∗ lower semicontinuous and proper

(cf [25, theorem 3.2.17]). Since f ≡ +∞ on M(Ω) \ P(Ω), f preserves these properties. �
Problem (9) is an infinite-dimensional optimization problem with no obvious solution and

is thus intractable in its current form. However, existence and uniqueness of solutions thereof
is established in the following remark.

Remark 1. First, the objective function in (9) is proper, strictly convex and weak∗ lower
semicontinuous since f is proper, strictly convex and weak∗ lower semicontinuous whereas
g ◦ A is proper, weak∗ continuous and convex.

Now, recall that the Riesz representation theorem [32, cor. 7.18] identifies M(Ω) as being
isomorphic to the dual space of (C(Ω), ||·||∞). Hence, by the Banach–Alaoglu theorem, [32,
theorem 5.18] the unit ball of M(Ω) in the norm-induced topology5 (B∗) is weak∗-compact.

Since dom f ⊆ P(Ω) ⊆ B
∗, standard theory for the existence of minimizers of τ -lower

semicontinuous functionals on τ -compact sets [1, cor. 3.2.3] imply that (9) has a solution and
strict convexity of f guarantees that it is unique.

5 The norm here is given by the total variation, we remark, however, that the weak∗ topology will be the only topology
considered in the sequel.

8



Inverse Problems 37 (2021) 015011 G Rioux et al

Even with this theoretical guarantee, direct computation of solutions to (9) remains infeasi-
ble. In the sequel, a corresponding finite-dimensional dual problem will be established which
will, along with a method to recover the expectation of solutions of (9) from solutions of this
dual problem, permit an efficient and accurate estimation of the original image.

3.2. Dual problem

In order to derive the (Fenchel–Rockafellar) dual problem to (9) we provide the reader with
the Fenchel–Rockafellar duality theorem in a form expedient for our study, cf e.g. [101, cor.
2.8.5].

Theorem 1 (Fenchel–Rockafellar duality theorem). Let (X, τ ) and (Y, τ ′) be locally
convex spaces and let X∗ and Y∗ denote their dual spaces. Moreover, let f : X → R ∪ {+∞}
and g : Y → R ∪ {+∞} be convex, lower semicontinuous (in their respective topologies) and
proper functions and let A be a continuous linear operator from X to Y. Assume that there
exists ȳ ∈ A dom f ∩ dom g such that g is continuous at ȳ. Then

inf
x∈X

{ f (x) + g(−Ax)} = max
y∗∈Y∗

{− f ∗(A∗y∗) − g∗(y∗)} (11)

with A∗ denoting the adjoint of A. Moreover, x̄ is optimal in the primal problem if and only if
there exists ȳ∗ ∈ Y∗ satisfying A∗ȳ∗ ∈ ∂ f (x̄) and ȳ∗ ∈ ∂g(−Ax̄).

In (11), the minimization problem is referred to as the primal problem, whereas the maxi-
mization problem is called the dual problem. Under certain conditions, a solution to the primal
problem can be obtained from a solution to the dual problem.

Remark 2 (primal-dual recovery). In the context of theorem 1, f∗ and g∗ are proper,
lower semicontinuous and convex, also ( f ∗)∗ = f and (g∗)∗ = g [101, theorem 2.3.3]. Suppose
additionally that 0 ∈ int(A∗dom g∗ − dom f∗).

Let ȳ∗ ∈ arg maxY∗ {− f ∗ ◦ A∗ − g∗}. By the first order optimality conditions, [101,
theorem 2.5.7]

0 ∈ ∂
(

f ∗ ◦ A∗ + g
)

(ȳ∗) = A∂ f ∗(A∗ȳ∗) + ∂g(y∗),

the second expression is due to [7, theorem 2.168] (the conditions to apply this theorem
are satisfied by assumption). Consequently, there exists z̄ ∈ ∂g∗(ȳ∗) and x̄ ∈ ∂ f ∗(A∗ȳ∗) for
which z̄ = −Ax̄. Since f and g are proper, lower semicontinuous and convex we have [101,
theorem 2.4.2(iii)]:

A∗ȳ∗ ∈ ∂ f (x̄), ȳ∗ ∈ ∂g(̄z) = ∂g(−Ax̄).

Thus theorem 1 demonstrates that x̄ is a solution of the primal problem, that is if ȳ∗ is a solution
of the dual problem, ∂ f ∗(A∗ȳ∗) contains a solution to the primal problem.

If, additionally, f ∗(A∗ȳ∗) < +∞ [7, proposition 2.118] implies that,

x̄ ∈ ∂ f ∗(A∗ȳ∗) = arg max
x∈X

{(
x, A∗ȳ∗

)
− f (x)

}
. (12)

We refer to (12) as the primal-dual recovery formula.

A particularly useful case of this theorem is when A is an operator between an infinite-
dimensional locally convex space X and R

d, as the dual problem will be a finite-dimensional
maximization problem. Moreover, the primal-dual recovery is easy if f∗ is Gâteaux differen-
tiable at A∗ȳ∗, in which case the subdifferential and the derivative coincide at this point [101,

9
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cor. 2.4.10], so (12) reads x̄ = ∇ f ∗(A∗ȳ∗). Some remarks are in order to justify the use of this
theorem.

Remark 3. It is clear that P(Ω) endowed with any topology is not a locally convex space,
however it is a subset ofM(Ω). Previously,M(Ω) was identified with the dual of (C(Ω), ||·||∞),
thus the dual of M(Ω) endowed with its weak∗ topology (M(Ω),w∗)∗ can be identified with
C(Ω) [18, theorem 1.3] with duality pairing (φ, ρ) ∈ C(Ω) ×M(Ω) �→

∫
Ωφ dρ.

Since dom f ⊆ P(Ω), the inf in (9) can be taken over M(Ω) or P(Ω) interchangeably.

In the following we verify that A is a bounded linear operator and compute its adjoint.

Lemma 2. The operator A : M(Ω) → R
d in (10) is linear and weak∗ continuous. Moreover,

its adjoint is the mapping z ∈ R
d �→

〈
CT z, ·

〉
∈ C(Ω).

Proof. We begin by demonstrating weak∗ continuity of E(·)[X] : M(Ω) → R
d. Letting πi :

R
d → R denote the projection of a vector onto its ith coordinate, we have

Eρ[X] = ((π1, ρ), . . . , (πn, ρ)) . (13)

Thus, A is the composition of a weak∗ continuous operator from M(Ω) to R
d and a continuous

operator from R
d to R

d and hence is weak∗ continuous.
Equation (13) equally establishes linearity of A, since the duality pairing is a bilinear form.
The adjoint can be determined by noting that

〈Eρ[X], z〉 =
d∑

i=1

∫
Ω

xi dρ(x)zi =

∫
Ω

d∑
i=1

xizi dρ(x) =
(
〈z, ·〉 , ρ

)
,

so,

〈CEρ[X], z〉 =
〈
Eρ[X], CTz

〉
=

(〈
CTz, ·

〉
, ρ
)

,

yielding A∗(z) =
〈
CTz, ·

〉
. �

We now compute the conjugates of f and g, respectively and provide an explicit form for
the dual problem of (9).

Lemma 3. The conjugate of f in (10) is f ∗ : φ ∈ C(Ω) �→ log
(∫

Ω exp(φ)dμ
)
. In particu-

lar, f ∗ is finite-valued. Moreover, for any φ ∈ C(Ω), argmaxP(Ω) {(φ, ·) −K(·,μ)} = {ρ̄φ}, the
unique probability measure on Ω for which

dρ̄φ
dμ

=
exp φ∫

Ω exp φ dμ
. (14)

Proof. We proceed by direct computation:

f ∗(φ) = sup
ρ∈M(Ω)

{(φ, ρ) −K(ρ,μ)} = sup
ρ∈P(Ω)

{(φ, ρ) −K(ρ,μ)}

= sup
ρ∈P(Ω)

{∫
Ω

log

(
exp φ

dρ
dμ

)
dρ

}
,

where we have used the fact that dom f ⊆ P(Ω) as noted in remark 3. Note that expφ ∈
C(Ω) ⊆ L1(ρ) and since t �→ log t is concave, Jensen’s inequality [74, theorem 3.3] yields

f ∗(φ) � sup
ρ∈P(Ω)

{
log

(∫
Ω

exp φ
dρ
dμ

dρ

)}
= log

(∫
Ω

exp φ dμ

)
. (15)

10
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Letting ρ̄φ be the measure with Radon–Nikodym derivative

dρ̄φ
dμ

=
exp φ∫

Ω exp φ dμ
,

one has that

(φ, ρ̄φ) −K(ρ̄φ,μ) = (φ, ρ̄φ) −
∫
Ω

log

(
exp φ∫

Ω exp φ dμ

)
dρ̄φ = log

(∫
Ω

exp φ dμ

)
,

so ρ̄φ ∈ argmaxP(Ω) {(φ, ·) −K(·,μ)} as ρ̄φ saturates the upper bound for f∗(φ) established
in (15), thus f ∗(φ) = log

(∫
Ω exp φ dμ

)
. Moreover ρ̄φ is the unique maximizer since the

objective is strictly concave.
With this expression in hand, we show that dom f∗ = C(Ω). To this effect, let φ ∈ C(Ω) be

arbitrary and note that,

exp (φ(x)) � exp

(
max
Ω

φ

)
, (x ∈ Ω).

Thus,

f ∗(φ) = log

(∫
Ω

exp φ dμ

)
� log

(
exp

(
max
Ω

φ

))
= max

Ω
φ < +∞,

since C(Ω) = Cb(Ω) by compactness of Ω. Since φ is arbitrary, dom f∗ = C(Ω) and, coupled
with the fact that f∗ is proper [101, theorem 2.3.3], we obtain that f∗ is finite-valued. �

Lemma 4. The conjugate of g from (10) is g∗ : z ∈ R
d �→ 1

2α ||z||
2
2 − 〈b, z〉.

Proof. The assertion follows from the fact that 1
2 ||·||

2
2 is self-conjugate [70, example 11.11]

and some standard properties of conjugacy [70, equation 11(3)]. �
Combining these results we obtain the main duality theorem.

Theorem 2. The (Fenchel–Rockafellar) dual of (9) is given by

max
λ∈Rd

{
〈b,λ〉 − 1

2α
||λ||22 − log

(∫
Ω

exp
〈
CTλ, x

〉
dμ(x)

)}
. (16)

Given a maximizer λ̄ of (16) one can recover a minimizer of (9) via

dρ̄ =
exp

〈
CT λ̄, ·

〉∫
Ω exp

〈
CT λ̄, ·

〉
dμ

dμ. (17)

Proof. The dual problem can be obtained by applying the Fenchel–Rockafellar duality
theorem (theorem 1), with f and g defined in (10), to the primal problem

inf
ρ∈M(Ω)

{
K(ρ,μ) +

α

2
||b − CEρ[X]||22

}
,

and substituting the expressions obtained in lemmas 2–4. All relevant conditions to apply this
theorem have either been verified previously or are clearly satisfied.

Note that 0 ⊆ dom g∗ = R
d and A∗0 = 0 ∈ C(Ω), so

A∗(dom g∗) − dom f ∗ ⊇ −dom f ∗ = {φ| − φ ∈ dom f ∗} = C(Ω),

11
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since dom f∗ = C(Ω) by lemma 3. Thus 0 ∈ int (A∗ dom g∗ − dom f ∗) = C(Ω), and remark
2 is applicable. The primal-dual recovery formula (12) is given explicit form by lemma 3 by
evaluating dρ̄〈CT λ̄,·〉. �

The utility of the dual problem is that it permits a staggering dimensionality reduction,
passing from an infinite-dimensional problem to a finite-dimensional one. Moreover, the form
of the dual problem makes precise the role of α in (9). Notably in [8, cor. 4.9] the problem

inf
ρ∈P(Ω)∩domK(·,μ)

K(ρ,μ) s.t. ||CEρ[X] − b||22 � 1
2α

(18)

is paired in duality with (16). Thus the choice of α is directly related to the fidelity of CEρ[X]
to the blurred image. The following section is devoted to the choice of a prior and describing
a method to directly compute Eρ̄[X] from a solution of (16).

3.3. Probabilistic interpretation of dual problem

If no information is known about the original image, the prior μ is used to impose box con-
straints on the optimizer such that its expectation will be in the interval [0, 1]d and will only
assign non-zero probability to measurable subsets of this interval. With this consideration in
mind, the prior distribution should be the distribution of the random vector X = [X1, X2, . . .]
with the Xi denoting independent random variables with uniform distributions on the interval
[ui, vi]. If the kth pixel of the original image is unknown, we let [uk, vk] = [0 − ε, 1 + ε] for
ε > 0 small in order to provide a buffer for numerical errors.

However, if the kth pixel of the ground truth image was known to have a value of �, one
can enforce this constraint by taking the random variable Xk to be distributed uniformly on
[�− ε, �+ ε]. Constructing μ in this fashion guarantees that its support (and hence Ω) is
compact.

To deal with the integrals in (16) and (17) it is convenient to note that (cf [71, section 4.4])∫
Ω

exp
(〈

CTλ, x
〉)

dμ = MX[CTλ],

the moment-generating function of X evaluated at CTλ. Since the Xi are independently dis-
tributed, MX[t] = Πd

i=1MXi [t] [71, section 4.4], and since the Xi are uniformly distributed on
[ui, vi] one has

MX[t] =
d∏

i=1

etivi − etiui

ti(vi − ui)
,

and therefore the dual problem (16) with this choice of prior can be written as

max
λ∈Rd

{
〈b,λ〉 − 1

2α
||λ||22 −

d∑
i=1

log

(
eCT

i λvi − eCT
i λui

CT
i λ(vi − ui)

)}
, (19)

where Ci denotes the ith column of C. A solution of (19) can be determined using a number
of standard numerical solvers. We opted for the implementation [9] of the L-BFGS algorithm
due to its speed and efficiency.

Since only the expectation of the optimal probability measure for (9) is of interest, we com-
pute the ith component of the expectation (Eρ̄[X])i of the optimizer provided by the primal-dual

12
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recovery formula (17) via∫
Ωxi e〈CT λ̄,x〉dμ∫
Ωe〈CT λ̄,x〉dμ

= ∂ti log

(∫
Ω

e〈t,x〉 dμ

)∣∣∣∣
t=CT λ̄

.

Using the independence assumption on the prior, we obtain

Eρ̄[X] = ∇t

d∑
i=1

log
(
MXi [t]

)
such that the best estimate of the ground truth image is given by

(
Eρ̄[X]

)
i
=

vi eCT
i λ̄vi − ui eCT

i λ̄ui

eCT
i λ̄vi − eCT

i λ̄ui

− 1
CT

i λ̄
. (20)

With (19) and (20) in hand, our entropic method for deconvolution can be implemented.

3.4. Exploiting symbology for PSF calibration

In order to implement blind deblurring on images that incorporate a symbology, one must
first estimate the convolution kernel responsible for blurring the image. This step can be per-
formed by analyzing the blurred symbolic constraints. We propose a method that is based on
the entropic regularization framework discussed in the previous sections.

In order to perform this kernel estimation step, we will use the same framework as (9)
with x taking the role of c. In the assumption that the kernel is of size k × k, we take
Ω = [0 − ε, 1 + ε]k2

for ε > 0 small (again to account for numerical error) and consider the
problem

inf
η∈P(Ω)

{
K(η, ν) +

γ

2

∣∣∣∣∣∣Eη[X] ∗ x̃ − b̃
∣∣∣∣∣∣2

2

}
. (21)

Here, γ > 0 is a parameter that enforces fidelity. x̃ and b̃ are the segments of the original and
blurred image which are known to be fixed by the symbolic constraints. That is, x̃ consists
solely of the embedded symbology and b̃ is the blurry symbology. By analogy with (9), the
expectation of the optimizer of (21) is taken to be the estimated kernel. The role of ν ∈ P(Ω)
is to enforce the fact that the kernel should be normalized and non-negative (hence its com-
ponents should be elements of [0, 1]). Hence we take its distribution to be the product of k2

uniform distributions on [0 − ε, 1 + ε]. As in the non-blind deblurring step, the expectation of
the optimizer of (21) can be determined by passing to the dual problem (which is of the same
form as (19)), solving the dual problem numerically and using the primal-dual recovery for-
mula (20). A summary of the blind deblurring algorithm is compiled in algorithm 1. We would
like to point out that the algorithm is not iterative, rather only one kernel estimate step and one
deconvolution step are used.

This method can be further refined to compare only the pixels of the symbology which are
not convolved with pixels of the image which are unknown. By choosing these specific pixels,
one can greatly improve the quality of the kernel estimate, as every pixel that was blurred to
form the signal is known; however, this refinement limits the size of convolution kernel which
can be estimated.

13
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Algorithm 1. Entropic blind deblurring.

Require: blurred image b, prior μ, kernel width k, fidelity parameters γ,α;
Ensure: deblurred image x̄

ν ← density of k2 uniformly distributed independent random variables
λc̄ ← argmax of analog of (19) for kernel estimate.
c̄ ← expectation of argmin of (21) computed via analog of (20) for kernel estimate evaluated at λc̄

λx̄ ← argmax of (19)
x̄ ← expectation of argmin of (9) with kernel c̄ computed via (20) evaluated at λx̄

Return x̄

4. Stability analysis for deeconvolution

In contrast to, say, total variation methods, our ME method does not actively denoise. However,
its ability to perform well with a denoising preprocessing step highlights that it is ‘stable’ to
small perturbations in the data. In this section, we show that our convex analysis framework
readily allows us to prove the following explicit stability estimate.

Theorem 3. Let b1, b2 ∈ R
d, C be non-singular, and let

ρi = arg min
ρ∈P(Ω)

{
K(ρ,μ) +

α

2
||CEρ[X] − bi||

}
(i = 1, 2).

Then

||Eρ1 [X] − Eρ2 [X]||2 � 2
σmin(C)

||b1 − b2||2.

where σmin(C) is the smallest singular value of C.

We remark that the identical result holds true (with minor modifications to the proof) if the
expectation is replaced with any linear operator P(Ω) → R

d.
The proof will follow from a sequence of lemmas. To this end we consider the optimal value

function for (9), which we denote v : Rd → R, as

v(b) := inf
ρ∈P(Ω)

{
K(ρ,μ) +

α

2
||CEρ[X] − b||22

}
= inf

ρ∈P(Ω)
{k(ρ, b) + h ◦ L(ρ, b)} , (22)

where

k : (ρ, b) ∈ M(Ω) × R
d �→ K(ρ,μ), h =

α

2
||·||22 , L(ρ, b) = CEρ[X] − b. (23)

The following results will allow us to conclude that ∇v is (globally) α-Lipschitz.

Lemma 5. The operator L in (23) is linear and continuous in the product topology, its
adjoint is the map z �→ (

〈
CT z, ·

〉
,−z) ∈ C(Ω) × R

d.

Proof. Linearity and continuity of this operator from the linearity and weak∗ continuity of
the expectation operator (cf lemma 2). The adjoint is obtained as in lemma 2,

〈CEρ[X] − b, z〉 = (
〈
CT z, ·

〉
, ρ) + 〈b,−z〉 .

�
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Next, we compute the conjugate of k + h ◦ L.

Lemma 6. The conjugate of k + h ◦ L defined in (23) is the function

(φ, y) ∈ C(Ω) × R
d �→ (K(·,μ))∗(φ+

〈
CT y, ·

〉
) +

1
2α

||y||22 , (24)

where (K(·,μ))∗ is the conjugate computed in lemma 3.

Proof. Since dom h = R
d, h is continuous and k is proper, there exists x ∈ L dom k ∩ dom h

such that h is continuous at x. The previous condition guarantees that, [101, theorem 2.8.3]

(k + h ◦ L)∗(φ, y) = min
z∈Rd

{k∗((φ, y) − L∗(z)) + h∗(z)} . (25)

The conjugate of k is given by

k∗(φ, y) = sup
ρ∈M(Ω)
b∈Rd

{(φ, ρ) + 〈y, b〉 − K(ρ,μ)} .

For y �= 0, sup
Rd 〈y, ·〉 = +∞. Thus,

k∗(φ, y) = sup
ρ∈M(Ω)

{(φ, ρ) −K(ρ,μ)}+ δ{0}(y) = (K(·, ρ))∗(φ) + δ{0}(y).

The conjugate of h was established in lemma 4 and the adjoint of L is given in lemma 5.
Substituting these expressions into (25) yields,

(k + h ◦ L)∗(φ, y) = min
z∈Rd

{
(K(·,μ))∗((φ−

〈
CT z, ·

〉
)+ δ{0}(y + z) +

α

2
||z||22

}
= (K(·,μ))∗(φ+

〈
CT y, ·

〉
) +

1
2α

||y||22 .

�

The conjugate computed in the previous lemma can be used to establish that of the optimal
value function.

Lemma 7. The conjugate of v in (22) is v∗ : y ∈ R
d �→ (K(·,μ))∗(

〈
CT y, ·

〉
) + 1

2α ||y||
2
2 which

is 1
α

-strongly convex.

Proof. We begin by computing the conjugate,

v∗(y) = sup
b∈Rd

{
〈y, b〉 − inf

ρ∈M(Ω)
{k(ρ, b) + h ◦ L(ρ, b)}

}
= sup

ρ∈M(Ω)
b∈Rd

{(0, ρ) + 〈y, b〉 − k(ρ, b) − h ◦ L(ρ, b)} = (k + h ◦ L)∗(0, y).

In light of (24), v∗(y) = (K(·,μ))∗(
〈
CT y, ·

〉
) + 1

2α ||y||
2
2 which is the sum of a convex function

and a 1
α

-strongly convex function and is thus 1
α

-strongly convex. �

Remark 4. Theorem 2 establishes attainment for the problem defining v in (22), so
dom v = R

d and v is proper. Moreover, [7, proposition 2.152] and [7, proposition 2.143] estab-
lish, respectively, continuity and convexity of v. Consequently, (v∗)∗ = v [101, theorem 2.3.3]
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and since v∗ is 1
α -strongly convex, v is Gâteaux differentiable with globally α-Lipschitz

derivative [101, remark 3.5.3].

We now compute the derivative of v.

Lemma 8. The derivative of v is the map b �→ α
(
b − CEρ̄[X]

)
, where ρ̄ is the solution of

the primal problem (9), which is given in (17).

Proof. By [101, theorem 2.6.1] and [101, theorem 2.8.3],

s ∈ ∂v(b) ⇐⇒ (0, s) ∈ ∂ (k + h ◦ L) (ρ̄, b) = ∂k(ρ̄, b) + L∗(∂h(L(ρ̄, b))),

for ρ̄ satisfying v(b) = k(ρ̄, b) + h ◦ L(ρ̄, b). Since k is independent of b, ∂k(ρ̄, b) = ∂K(ρ̄,μ) ×
{0}. By lemma 5,

L∗(∂h(L(ρ̄, b))) = L∗(α
(
CEρ̄[X] − b

)
) =

(〈
αCT (CEρ̄[X] − b), ·

〉
,α(b − CEρ̄[X])

)
,

so s = ∂v(b) = α(b − CEρ̄[X]). �
We now prove theorem 3.

Proof of theorem 3. By lemma 7, v∗ is 1
α

-strongly convex, so ∇v computed in lemma 8
is globally α-Lipschitz (cf remark 4), thus

||∇v(b1) −∇v(b2)||2 � α||b1 − b2||2

and

||∇v(b1) −∇v(b2)||2 = α||b1 − b2 + C(Eρ2 [X] − Eρ1 [X])||2
� α

∣∣∣∣C (
Eρ2 [X] − Eρ1 [X]

)∣∣∣∣
2
− α||b2 − b1||2

� ασmin(C)||Eρ1 [X] − Eρ2 [X]||2 − α||b1 − b2||2.

Consequently, ||Eρ1 [X] − Eρ2 [X]||2 � 2
σmin(C) ||b1 − b2||2. �

5. Numerical results

We present results obtained using our method on certain simulated images. We begin with
deconvolution, i.e. when the blurring kernel c is known. Figure 1 provides an example in
which a blurry and noisy image has been deblurred using the non-blind deblurring method.
We note that the method does not actively denoise blurred images when a uniform prior is
used, so a preprocessing step consisting of EPLL denoising [102] is first performed. For the
sake of consistency, the same preprocessing step is applied prior to using Cho et al’s decon-
volution method [17] (this step also improves the quality of the restoration for this method).
The resulting image is subsequently deblurred and finally TV denoising [72] is used to smooth
the image in our case (this step is unnecessary for the other method as it already results in a
smooth restoration). Note that for binary images such as text, TV denoising can be replaced
by a thresholding step (see figure 3).

Results for blind deblurring are compiled in figures 2–4. In this case γ = 105 and α = 106

provide good results in the noiseless case and γ = 103,α = 104 is adequate for the noisy case,
these parameters require manual tuning to yield the best results however. Comparisons are
provided with various state of the art methods [47, 63, 97]. These methods estimate the kernel
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Figure 1. Deconvolution with noise: original image is 512 × 512 pixels. (a) is the blurred
image which is further degraded with 1% Gaussian noise along with the 23 pixel wide
convolution kernel. (b) is the result obtained using Cho et al’s deconvolution method
[17]. (c) is the result obtained from the blurred image via our non-blind deblurring
method.

and subsequently use known deconvolution algorithms to generate the latent image, the same
deconvolution method [17] was used for all three methods as it yielded the best results.

We have stressed that the other methods in our comparison do not exploit the presence
of a finder pattern; they are fully blind where ours are symbology-based. Hence it would be
natural to ask if these methods can also benefit from known symbology. It is not immediate
how to successfully use these methods with symbology. Most of these methods iterate between
optimizing for the image and the kernel, and employ �0 regularization which is non-convex
and can therefore terminate in a local minimum. Hence iteration could prove problematic.
Following what we have done here, one could use a strictly convex regularization scheme to
first estimate c using the finder pattern as the sole image and then deconvolute. But this was
precisely the approach taken by van Gennip et al in [88] using a strictly convex regularization
scheme of the form (8) to exploit the known finder patterns in QR barcodes. Its performance
was significantly inferior to our MEM method as presented in [68]. The ability of MEM to
incorporate nonlinear constraints via the introduction of a prior is a definite advantage.

In appendix D, we compensate for the bias (in our favor) in the comparisons of our
symbology-based blind deblurring method with fully blind methods by presenting a compari-
son which clearly gives the favorable bias to the other method. We consider the same examples
as in figures 2 and 4 but compare our symbology-based blind method with the deconvolution
(non-blind) method of Cho et al [17]; that is, we give the comparison method the advantage of
knowing the PSF.

5.1. The effects of noise

In the presence of additive noise, attempting to deblur images using methods that are not
tailored for noise is generally ineffective. Indeed, the image acquisition model b = c ∗ x is
replaced by b = c ∗ x + n where n denotes the added noise. The noiseless model posits that
the captured image should be relatively smooth due to the convolution, whereas the added
noise sharpens segments of the image randomly, so the two models are incompatible. How-
ever, figures 1 and 2 show that our method yields good results in both deconvolution and blind
deblurring when a denoising preprocessing step (the other methods use the preprocessed ver-
sion of the image as well for the sake of consistency) and a smoothing postprocessing step are
utilized (cf. figure B1).
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Figure 2. Blind deblurring with and without noise: original image is 256 × 256 pixels.
The performance, with varying amounts of noise and different blurring kernels, of our
blind deblurring method with EPLL denoising preprocessing and TV denoising postpro-
cessing to that of other contemporary methods with the EPLL denoising preprocessing
step. The blurred and noisy image is on the left with the original convolution kernel
below it. (a) is noiseless with a 33 pixel wide kernel. (b) has 1% Gaussian noise with a
27 pixel wide kernel. (c) has 5% Gaussian noise with a 13 pixel wide kernel. We repeat
the strong caveat of this comparison: unlike the other methods, ours directly exploits
the known symbology.

Remarkably, with a uniform prior, the blind deblurring method is more robust to the pres-
ence of additive noise in the blurred image than the non-blind method. Indeed, accurate results
were obtained with up to 5% Gaussian noise in the blind case whereas in the non-blind case,
quality of the recovery diminished past 1% Gaussian noise. This is due to the fact that the
preprocessing step fundamentally changes the blurring kernel of the image. We are therefore
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Figure 3. Blind text deblurring with and without noise: original image is 500 × 155
pixels. Top: blurred and noisy image. Middle: original convolution kernel on the left
and estimated kernel on the right. Bottom: deblurred image obtained using our method
with an EPLL denoising preprocessing step and a thresholding postprocessing step. (a) is
noiseless with a 57 pixel kernel. (b) has 1% Gaussian noise with a 45 pixel wide kernel.

Figure 4. Blind deblurring in color: original image is 512 × 512 pixels. (a) is the image
which has been blurred with a 17 × 17 kernel (no noise). (b)–(e) are the latent image
and estimated kernel obtained with different methods. We repeat the strong caveat of
this comparison: unlike the other methods, ours directly exploits the known symbology.

attempting to deconvolve the image with the wrong kernel, thus leading to aberrations. On the
other hand, the estimated kernel for blind deblurring is likely to approximate the kernel modi-
fied by the preprocessing step, leading to better results. Moreover, a sparse (Poisson) prior was
used in the kernel estimate for the results in figure 2 so as to mitigate the effects of noise on
the symbology.

Finally, we note that there is a tradeoff between the magnitude of blurring and the magnitude
of noise. Indeed, large amounts of noise can be dealt with only if the blurring kernel is relatively
small and for large blurring kernels, only small amounts of noise can be considered. This is due
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Figure 5. Deconvolution with different priors: original image is 256 × 256 pixels.
(a) is the blurred image with added 5% Gaussian noise along with the 19 pixel wide
convolution kernel. (b) is the result obtained using a uniform prior. (c) is obtained using
an exponential prior.

to the fact that for larger kernels, deviations in kernel estimation affect the convolved image to
a greater extent than for small kernels.

6. The role of the prior, denoising and further extensions

Our method is based upon the premise that a priori the probability density ρ at each pixel is
independent from the other pixels. Hence in our model, the only way to introduce correlations
between pixels is via the prior μ. Let us first recall the role of the prior μ in the deconvolution
(and ν in the kernel estimation). In deconvolution for general images, the prior μ was only
used to impose box constraints; otherwise, it was unbiased (uniform). For deconvolution with
symbology, e.g. the presence of a known finder pattern, this information was directly imposed
on the prior. For kernel estimation, the prior ν was used to enforce normalization and positivity
of the kernel; but otherwise unbiased.

Our general method, on the other hand, facilitates the incorporation of far more prior infor-
mation. Indeed, we seek a prior probability distribution μ over the space of latent images that
possesses at least one of the following two properties:

(a) μ has a tractable moment-generating function (so that the dual problem can be solved via
gradient-based methods such as L-BFGS),

(b) It is possible to efficiently sample from μ (so that the dual problem can be solved via
stochastic optimization methods).

As a simple example, we provide a comparison between a uniform and an exponential prior
with large rate parameter (β = 400 at every pixel) to deblur a text image corrupted by 5%
Gaussian noise with no preprocessing or postprocessing in figure 5. In the former case, we set
the fidelity parameterα = 3 × 104 and in the latter, α = 104. It is clear from this figure that the
noise in the blurred image is better handled by the exponential prior. This fact will be further
discussed in section 6.1 which also introduces an efficient implementation of the MEM with
an exponential prior. In this case, sparsity has been used to promote the presence of a white
background by inverting the intensity of the channels during the deblurring process.

More generally, we believe our method could be tailored to contemporary approaches for
priors used in machine learning, and this could be one way of blind deblurring without the
presence of a finder pattern. A natural candidate for such a prior μ is a GAN (cf [35]) trained
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on a set of instances from a class of natural images (such as face images). GANs have achieved
state-of-the-art performance in the generative modeling of natural images (cf [41]) and it is
possible, by design, to efficiently sample from the distribution implicitly defined by a GAN’s
generator. Consequently, when equipped with a pre-trained GAN prior, our dual problem (12)
would be tractable via stochastic compositional optimization methods such as the ASC-PG
algorithm of Wang et al in [89].

6.1. A return to the classical formulation at the image level

It can be advantageous, for example in directly relating the role of the prior to the image regu-
larization, to reformulate our MEM primal problem (9) at the image level. Recall that previous
MEM approaches for inverse problems (3), what we called the classical approach, were all
based on a primal problem on the space of images. Our formulation can also be rephrased at
the image level as follows: find x̄, the estimate of the ground truth image, where

arg min
x∈Rd

{
v(x) +

α

2
||Cx − b||22

}
with v(x) := inf

ρ
{K(ρ,μ) | Eρ[X] = x} . (26)

In this problem, which essentially appears in [4, 49], one can think of v(x) as a regularizer for
the image estimate x.

Given the structure of the above problem as the sum of a potentially, lower semicontinuous
convex function and a smooth convex function with L-Lipschitz gradient, the fast iterative
shrinkage-thresholding algorithm (FISTA) [3] can be utilized provided the proximal operator,
defined for t > 0 by

proxtv(u) := arg min
x∈Rd

(
v(x) +

1
2t
||x − u||22

)
,

can be computed efficiently. As before, one can consider a dual formulation to the problem
defining the proximal operator (see (4) for the conjugate of v)

max
λ∈Rd

{
〈u,λ〉 − t

2
||λ||22 − log

(
Mμ[λ]

)}
, (27)

such that

proxtv(u) =∇t log
(
Mμ[t]

)∣∣
λ̄
,

for λ̄ a solution to (27). Note that the Lipschitz constant of the derivative of α
2 ||Cx − b||22

(which dictates the step size used in the FISTA iterations) is ασmax(C). Even if the largest
singular value of C is unknown, one can determine the step size using a line search.

One example for which the proximal operator can be computed efficiently is when the prior
consists of independent exponential distributions at each pixel with respective rate parameters
βi > 0. Indeed, (27) reads in this case

max
λ∈Rd

{
〈u,λ〉 − t

2
||λ||22 +

d∑
i=1

log

(
1 − λi

βi

)}
,

whose solution can be written componentwise as

(λ̄±)i =
ui + βit ±

√
(ui + βit)2 − 4t(uiβi − 1)

2t
=

ui + βit ±
√

(ui − βit)2 + 4t
2t

,
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thus one takes the smaller root (λ̄−) since the log moment-generating function is well-defined
for λi

βi
< 1, thus

(
proxtv(u)

)
i
=

1
βi − (λ̄−)i

.

As such, one can implement the FISTA algorithm to perform deblurring via the MEM with an
exponential prior. This method was used to generate the example in figure 5.

It is natural to seek a correspondence between regularization at the level of the probability
measure using a fixed prior and the regularization at the image level (i.e. the reformulation). In
the case of an exponential distribution, one has the following expression for the image space
regularization [4, table 1]

v(x) =
d∑

i=1

xiβi − 1 − log(xiβi), (xi > 0).

Note that if xiβi is large, the contribution of that summand is dominated by the linear term.
As such, taking an exponential prior with large rate parameter yields results in an image space
regularization which approximates �1 regularization.

This subsection is simply meant to highlight this approach: a full study (theory and
applications) of the formulation (26) is in progress.

6.2. Further extension

We have used throughout the duality pairing between M(Ω) and C(Ω) with Ω ⊂ R
d compact.

Notice that, since the Kullback–Leibler entropy takes finite values only for measures that are
absolutely continuous with respect to the reference measure, it is also possible to work with
the Radon–Nikodym derivatives, as in [49]. The primal problem is then expressed in a space
of measurable functions. This setting also facilitates an interesting extension to the case where
Ω is not bounded. As a matter of fact, in the latter case, first-order moment integrals such that

(πk, ρ) =
∫
Ω

xk dρ(x)

are not necessarily well-defined since the coordinate functions πk : x �→ xk may be unbounded
on Ω. As shown in [49], partially finite convex programming can still be carried out in this set-
ting, offering interesting possible extensions to our analysis. In essence, in caseΩ is unbounded
one must restrict the primal problem to spaces of functions defined by an integrability condi-
tion against a family of constraint functions. Such spaces are sometimes referred to as Köthe
spaces, and their nature was shown to allow for the application of the convex dual machinery
for entropy optimization [49]. The corresponding extensions are currently under consideration,
and will give rise to interesting future work.

7. Conclusion

The MEM method for the regularization of ill-posed deconvolution problems garnered much
attention in the 80s and 90s with imaging applications in astrophysics and crystallography.
However, it is surprising that since that time it has rarely been used for image deblurring (both
blind and non blind), and is not well-known in the image processing and machine learning
communities. We have shown that a reformulation of the MEM principle produces an efficient
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(comparable with the state of the art) scheme for both deconvolution and kernel estimation for
general images. It is also amenable to large blurs which are seldom used for testing methods.
The scheme reduces to an unconstrained, smooth and strongly convex optimization problem
in finite dimensions for which there exist an abundance of black-box solvers. The strength of
this higher-level method lies in its ability to incorporate prior information, often in the form of
nonlinear constraints.

For kernel estimation (blind deblurring), we focused our attention on exploiting a priori
assumed symbology (a finder pattern). While this situation/assumption is indeed restrictive: (i)
there are scenarios and applications, in addition to synthetic images like barcodes; (ii) it is far
from clear how standard regularization based methods of the form (8) can be used to exploit
symbology to obtain a similar accuracy of kernel estimation.

In general, the MEM method is stable with respect to small amounts of noise and this
allowed us to successfully deblur noisy data by first pre conditioning with a state of the art
denoiser. However, as shown in section 6, the MEM method itself can be used for denoising
with a particular choice of prior.

Finally, let us reiterate that in our numerical experiments we use only a modest amount of the
potential of MEM to exploit prior information. Future work will concern both kernel estimation
without the presence of finder patterns as well as a full study of effects of regularization via
the image formulation discussed in section 6.1.
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Appendix A. Implementation details

All figures were generated by implementing the methods in the Python programming language
using the Jupyter notebook environment. Images were blurred synthetically using motion
blur kernels taken from [46] as well as Gaussian blur kernels to simulate out of focus blur.
The relevant convolutions are performed using fast Fourier transforms. Images that are not
standard test bank images were generated using the GNU image manipulation program, more-
over this software was used to add symbolic constraints to images that did not originally
incorporate them. All testing was performed on a laptop with an Intel i5-4200U processor.
The running time of this method depends on a number of factors such as the size of the image
being deblurred, whether the image is monochrome or color, the desired quality of the repro-
duction desired (controlled by the parameter α) as well as the size of the kernel and whether
or not it is given. If a very accurate result is required, these runtimes vary from a few seconds
for a small monochrome text image blurred with a small sized kernel to upwards of an hour
for a highly blurred color image.

Appendix B. The pre and post-processing steps

We provide an example of the intermittent images generated in the process of deblurring a
noisy image via our method.
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Figure B1. (a) is the blurred and noisy image from figure 2(c). (b) is the denoised image
obtained via the method of Zoran and Weiss [102]. (c) is the deblurred image obtained
using our method. (d) is a smoothed version of (c) obtained via TV denoising [72] using
the implementation of Chambolle [12].

Figure C1. This table compiles the parameter values used to estimate the kernels for
the various methods. For all methods, the �0 gradient parameter is set to 4 × 10−3, the
parameters for the surface-aware prior, dark channel prior and the extreme channel prior
are all set to 4 × 10−3 in their respective methods.

Appendix C. Parameters for comparisons

We compile the parameters used for the kernel estimation step of the deblurring methods to
which we compared our method (figure C1).

Once the kernel has been estimated, the deconvolution method for images with outliers [17]
was used to obtain the latent image. For this method, we set the standard deviation for inlier
noise to 5

255 and set the regularization strength for the sparse priors to 0.003 and decrease it
iteratively (with the same kernel) until we obtain a balance between the sharpness of the image
and the amount of noise.
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Figure D1. Comparison of our symbology-based blind deblurring method with the non-
blind method Cho et al [17].
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Appendix D. Comparison of our symbology-based blind method to a
non-blind deblurring method

Here we consider the same examples as in figures 2 and 4 but compare our symbology-based
blind method with a state of art method deconvolution method of Cho et al [17]; that is, we
give the comparison method the advantage of knowing the PSF. PSNR values for Cho’s method
were computed with a cropped version of the latent image to reduce the effects of the boundary
conditions for the convolution. The choice of boundary condition accounts for some of our the
higher PSNR values. In images with noise, the non-blind deconvolution method was applied
to both the noisy image and the denoised image (via our pre-denoising step), the better result
is presented in the figure D1.
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