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Abstract

We explore a method of statistical estimation called Maximum Entropy on the Mean
(MEM) which is based on an information-driven criterion that quantifies the compliance
of a given point with a reference prior probability measure. At the core of this approach
lies the MEM function which is a partial minimization of the Kullback-Leibler divergence
over a linear constraint. In many cases, it is known that this function admits a simpler
representation (known as the Cramér rate function). Via the connection to exponential
families of probability distributions, we study general conditions under which this repre-
sentation holds. We then address how the associated MEM estimator gives rise to a wide
class of MEM-based regularized linear models for solving inverse problems. Finally, we
propose an algorithmic framework to solve these problems efficiently based on the Breg-
man proximal gradient method, alongside proximal operators for commonly used reference
distributions. The article is complemented by a software package for experimentation and
exploration of the MEM approach in applications.
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1 Introduction

Many models for modern applications in various disciplines are based on some form of sta-
tistical estimation, for example, the very common maximum likelihood (ML) principle. In
this study, we consider an alternative approach known as the maximum entropy on the mean
(MEM). At its core lies the MEM function κP induced by some reference distribution P and
defined as

κP (y) := inf {DKL(Q || P ) : EQ = y,Q ∈ P(Ω)} ,

where P(Ω) stands for the set of probability measures on Ω ⊆ Rd, EQ is the expected value
of Q ∈ P(Ω) and DKL(Q || P ) stands for the Kullback-Leibler (KL) divergence of Q with
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respect to P [40] (see Section 2 for precise definitions). Thus, the MEM modeling paradigm
stems from the principle of minimum discrimination information [39] which generalizes the
well-known principle of maximum entropy [38]. In the context of information theory [26],
the argmin of κP (y) is often referred to as the information projection of P onto the set
{Q ∈ P(Ω) : EQ = y}, the closest member of the set to P .

Various forms and interpretations of MEM have been studied (see, for example, [28,
32, 33, 34, 36, 41, 42]) and found applications in various disciplines, including earth sciences
[31, 44, 45, 47, 54], and medical imaging [1, 21, 24, 35, 37]. A version of the MEM method was
recently explored for blind deblurring of images possessing some form of fixed symbology (for
example, in barcodes) [49, 48]. There one exploited the ability of of the MEM framework to
facilitate the incorporation of nonlinear constraints via the introduction of a prior distribution.

Despite its many interesting properties in both theory and applications, the MEM method-
ology has yet to find its place as a mainstream tool for statistical estimation, particularly as it
pertains to solving inverse problems. One factor that might have contributed to this centers
on the practical issue that there are no dedicated optimization algorithms designed to tackle
models based on the MEM methodology. Indeed, the MEM function is defined by means of
an infinite-dimensional optimization problem. Previous attempts to solve models involving
the MEM function relied on its finite-dimensional dual problem. To the best of the authors’
knowledge, there are no dedicated optimization algorithms designed to tackle models based
on the MEM methodology. Therefore, any researcher or practitioner wishing to employ the
MEM framework must first overcome a notable barrier of deriving an appropriate optimiza-
tion algorithm for its solution. In this work, our goal is to fill in this gap, providing an access
gate to the MEM methodology.

Our approach is based on the fundamental work by Brown [20, Chapter 6] and comple-
ments [41] by first proving the equivalence of the MEM function to the Cramér’s rate function,
mostly known from its role in large deviation theory. Cramér’s rate function is defined by
means of a finite-dimensional optimization problem as it is simply the convex conjugate of
the log-normalizer (aka the cumulant generating function) of the reference distribution P . In
many cases (i.e., choices of P ) it admits a closed-form expression while in others it can still
be evaluated efficiently. The connection between these seemingly different functions is well
established in the large deviations [29], statistics [20], and information theory [41] literature.
Nonetheless, various assumptions imposed in the aforementioned works limit the scope of
existing results. Employing the framework of exponential families of probability distributions
[20], we establish the equivalence between the two functions under very mild and natural con-
ditions, allowing us to cover many distributions of practical interest. Thus, models involving
MEM functions can be explicitly stated using the corresponding Cramér functions.

Central to our study is the MEM estimator which is shown to be well-defined under very
mild conditions. We further recall an insightful connection between the MEM and ML esti-
mators as presented in [20] for the case of a reference distribution from an exponential family.
As with the ML counterpart, the MEM estimator has vast applications, and hence we restrict
the remainder of the paper to a wide class of regularized linear models for solving inverse
problems. Each model in this class involves two MEM functions, one in the role of a fidelity
term and another as a regularizer (comparable to the maximum a priori (MAP) estimation
framework which extends ML). Let us provide an example: given a measurement matrix
A ∈ Rm×d, an observation vector ŷ ∈ Rm and an additional vector p ∈ [0, 1]d representing
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some prior knowledge, the following optimization problem

min

{
1

2
‖Ax− ŷ‖22 +

d∑
i=1

[
xi log

(
xi
pi

)
+ (1− xi) log

(
1− xi
1− pi

)]
: x ∈ [0, 1]d

}
,

︸ ︷︷ ︸
Fidelity

︸ ︷︷ ︸
Regularization

fits the MEM framework with normal (Gaussian) and Bernoulli reference distributions of
the fidelity and regularization terms, respectively. Other choices of reference distributions
will lead to additional models that admit similar additive composite structure. Moreover,
the closed-form expressions of the two functions in our example follow from the definition of
Cramér’s rate function. In models of these forms, concrete expressions and structures with
distinct geometry can be exploited to customize appropriate optimization strategies. Here
we highlight the class of Bregman proximal gradient (BPG) methods as an especially suitable
choice for this family of models. Nevertheless, other methods are also viable alternatives; for
example, adaptive and scaled, accelerated variants and dual decomposition methods which
are defined by means of the same operators developed here.

Our overall aim is to provide a self-contained, mathematically sound toolbox for working
with the MEM methodology for a wide variety of models. To achieve this goal, we include
a rigorous presentation of the method and a comprehensive review of the current literature.
Additionally, we make several novel contributions:

(i) We present rigorous proof (under mild and natural assumptions) establishing the equiv-
alence between the MEM function and the Cramér rate function. Notably, our proof
encompasses the scenario where the variable lies on the boundary of the domain, which
holds particular significance when dealing with discrete reference distributions.

(ii) We compile an extensive list of Cramér rate functions, which includes distributions
that seem to have previously been overlooked in the literature (including multivariate
Normal-inverse Gaussian, Laplace, and Logistic distributions).

(iii) We expand upon a modeling paradigm initially introduced in [20] for exponential fam-
ilies, extending it to the general setting. This paradigm involves the MEM estimator,
which exhibits an intriguing relationship with the ML estimator when the reference dis-
tribution belongs to an exponential family. We demonstrate how the MEM estimator
enables the creation of a diverse range of models for addressing linear inverse problems,
leveraging a custom-designed regularizer derived from MEM.

(iv) All of the above paves the way to the most important outcome of this work. Building
upon the concrete expressions of the Cramér rate functions and their distinct geome-
try, we introduce novel optimization strategies tailored to the suggested models. We
emphasize the utilization of Bregman proximal gradient method, which proves to be
particularly well-suited for these families of models. Remarkably, despite the wide ap-
plicability of the MEM model and the vast literature, to the best of our knowledge, this
is the first attempt to design tailored optimization algorithms to tackle the resulting
problems. Finally, we provide an extensive software package to complement our findings
that includes some numerical illustrations for classical image processing applications.

We believe that this sets the basis for, and hopefully triggers, further experimentation
and exploration of the MEM approach in contemporary applications.
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The paper is organized as follows. In Section 2, we recall some concepts and preliminary
results from convex analysis and probability theory which will be used in this work. In
Section 3, we study the MEM and Cramér rate functions and establish the equivalence between
the two under very mild and natural conditions. This allows us to use the accessible definition
of the Cramér function and derive tractable expressions for a wide class of possible reference
distributions which closes this section (see Table 1). Section 4 is devoted to the MEM models
considered in this work, and in Section 5, we present the algorithms for solving such models.
We end with a few concrete examples of problems and corresponding algorithms crafted from
the operators derived in this work. An appendix provides the details of a variety of Cramér
rate function computations.

2 Preliminaries

2.1 Convex Analysis

We recall here some definitions and results from convex analysis. Further details and proofs
can be found in various textbooks such as [11, 13, 50].

The affine hull of a set S ⊆ Rd is the smallest affine subspace containing S. For any point
y ∈ S, we have the following relation

aff S = y + span (S − y), (2.1)

where spanS stands for the linear hull of S.The dimension of aff S is defined as dim(aff S) :=
dim (span (S − y)). The interior, closure, and boundary of a set are denoted as intS, clS and
bdS, respectively.

The (Fenchel) conjugate of ψ : Rd → [−∞,∞] is defined as

ψ∗(y) := sup{〈y, x〉 − ψ(x) : x ∈ Rd}.

The function ψ is proper if ψ(x) > −∞ for all x ∈ Rd and domψ := {x ∈ Rd : ψ(x) <∞} 6= ∅.
In addition, ψ is closed, if its epigraph {(x, α) ∈ Rd × R : ψ(x) ≤ α} is a closed set.

If ψ is proper and convex then ψ∗ is closed, proper, and convex. For a proper function
ψ : Rd → (−∞,+∞], the Fenchel-Young inequality states that ψ(x) + ψ∗(y) ≥ 〈y, x〉. If ψ is
proper, closed and convex then we obtain that [13, Theorem 4.20]

ψ(x) + ψ∗(y) = 〈y, x〉 ⇐⇒ y ∈ ∂ψ(x) ⇐⇒ x ∈ ∂ψ∗(y), (2.2)

where ∂ψ(x) := {g ∈ Rd : ψ(y) ≥ ψ(x) + 〈g, y − x〉 (y ∈ Rd)} is the subdifferential of ψ at
x ∈ Rd.

The indicator function of a set S ⊆ Rd is denoted by δS and defined as δS(x) = 0 if
x ∈ S and δS(x) = +∞ otherwise. Its convex conjugate is known as the support function
σS(y) := δ∗S(y) = sup{〈y, x〉 : x ∈ S}.

Definition 2.1 (Essential smoothness and Legendre type). Let ψ : Rd → (−∞,+∞] be
proper and convex. Then, ψ is called essentially smooth if it satisfies the following conditions:

1. int (domψ) 6= ∅;

2. ψ is differentiable on int (domψ);
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3. ‖∇ψ(xk)‖ → ∞ for any sequence {xk ∈ int (domψ)}k∈N → x̄ ∈ bd (domψ).

The last condition listed above is called steepness. An essentially smooth function ψ is said
to be of Legendre type if it is strictly convex on int (domψ).

For ψ : Rd → (−∞,+∞] closed and of Legendre type, the following hold [50, Theorem
26.5]:

1. ψ∗ is of Legendre type.

2. ∇ψ : int (domψ)→ int (domψ∗) is a bijection with (∇ψ)−1 = ∇ψ∗.

The Bregman distance induced by a function ψ of Legendre type is defined as [19]

Dψ(y, x) = ψ(y)− ψ(x)− 〈∇ψ(x), y − x〉 (x ∈ int (domψ), y ∈ domψ).

For any (x, y) ∈ int (domψ)×domψ, the Bregman distance is nonnegative Dψ(y, x) ≥ 0, and
equality holds if and only if x = y due to strict convexity of ψ [19]. However, in general, Dψ

is not symmetric, unless ψ = (1/2)‖ · ‖2 [9, Lemma 3.16]. The Bregman distance induced by
a function ψ of Legendre type satisfies the following additional properties [10, Theorem 3.7]:
For any x, y ∈ int (domψ) it holds that

Dψ(y, x) = Dψ∗(∇ψ(x),∇ψ(y)). (2.3)

The Bregman distance is strictly convex with respect to its first argument. Moreover, for two
functions ψ1 and ψ2 differentiable at x ∈ int (domψ1) ∩ int (domψ2)

Dαψ1+βψ2(y, x) = αDψ1(y, x) + βDψ2(y, x) (y ∈ domψ1 ∩ domψ2, α, β ∈ R). (2.4)

2.2 Probability Theory and Exponential Families

We recall some concepts from probability theory with an emphasis on exponential families.
For further detail, see e.g. [5, 20].

Let M(Ω) be the set of σ-finite measures defined over a measurable space (Ω,Σ) where
Ω ⊆ Rd and Σ is a σ-algebra on Ω. The support of ρ, namely the minimal closed measurable
set A ∈ Σ such that ρ(Ω \ A) = 0, is denoted by Ωρ. We denote by Ωcc

ρ := cl (conv Ωρ)
the closure of the convex hull of the support Ωρ, which is known as the convex support of ρ.
Recall further that, if µ is another measure defined over (Ω,Σ), then µ is absolutely continuous
with respect to ρ (denoted by µ � ρ) if for every A ∈ Σ such that ρ(A) = 0 it holds that
µ(A) = 0. In this case, the Radon-Nikodym derivative is the unique function h = dµ

dρ such

that µ(A) =
∫
A hdρ for any A ∈ Σ. For a measurable space (Ω,Σ) we denote by ν ∈ M(Ω)

the dominating measure. Throughout, we restrict ourselves to two scenarios: either Ω = Rd
and ν is the Lebesgue measure or Ω is a countable subset of Rd and ν is the counting measure.
Let P(Ω) be the set of probability measures defined over Ω and absolutely continuous with
respect to ν. We emphasize that for P ∈ P(Ω) the support ΩP might be a proper subset of
Ω, and thus there is no loss of generality in our setting even when Ω = Rd. Furthermore,
for any set A ⊆ Rd the expression P (A) should be understood as P (A ∩ Ω). For P ∈ P(Ω),
the Radon-Nikodym derivative fP := dP

dν is either a probability density or mass function,
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depending on the set Ω. In both cases, we will refer to fP as the density of the distribution.1

The expected value (if it exists) and moment generating function of P ∈ P(Ω) are given by

EP :=

∫
Ω
ydP (y) ∈ Rd and MP [θ] :=

∫
Ω

exp(〈·, θ〉)dP,

respectively. For P ∈M(Ω) absolutely continuous with respect to ν, we define

ΘP :=

{
θ ∈ Rd :

∫
Ω

exp(〈·, θ〉)dP <∞
}
,

and consider the function ψP : Rd → (−∞,+∞] given by

ψP (θ) :=

log

∫
Ω

exp (〈·, θ〉) dP, θ ∈ ΘP ,

+∞, θ /∈ ΘP .
(2.5)

Then FP := {fPθ(y) := exp (〈y, θ〉 − ψP (θ)) : θ ∈ ΘP }, is a standard exponential family gener-
ated by P . Note that, the probability measure Pθ satisfying dPθ = fPθdP is, by construction, a
probability measure such that Pθ and P are mutually absolutely continuous, hence ΩPθ = ΩP

for all θ ∈ ΘP [5, Section 8.1]. The function ψP is called the log-normalizer (also known as
the log-partition or log-Laplace transform of P ). The vector θ ∈ Rd is known as the natural
parameter and the set ΘP = domψP is called the natural parameter space.2

The following results summarize some well-known properties of the log-normalizer ψP .

Proposition 2.1 (Convexity, [20, Theorem 1.13]). Let FP be an exponential family generated
by P ∈M(Ω). Then, the natural parameter space ΘP is a convex set, and the log-normalizer
function ψP : Rd → (−∞,+∞] is closed, proper, and convex.

Proposition 2.2 (Differentiability, [20, Theorem 2.2, Corollary 2.3]). Let FP be an ex-
ponential family generated by P ∈ M(Ω) and let θ ∈ int ΘP . Then, the log normalizer
ψP : Rd → (−∞,+∞] is infinitely differentiable at θ and it holds that ∇ψP (θ) = EPθ .

The dimension of a convex set S ⊆ Rd, denoted by dimS, is equal to the affine dimension
of aff S. We assume that the exponential family generated by P ∈ M(Ω) is minimal, i.e.,
dim ΘP = dim Ωcc

P = d or, equivalently, int ΘP 6= ∅ and int Ωcc
P 6= ∅. This is not restrictive

as a non-minimal exponential family can be always reduced to a minimal form [20, Theorem
1.9]. The following result strengthens Proposition 2.1 for minimal exponential families.

Proposition 2.3 (Strict convexity, [20, Theorem 1.13]). Let FP be a minimal exponential
family generated by P ∈ M(Ω). Then, the log-normalizer function ψP : Rd → (−∞,+∞] is
strictly convex over ΘP .

If the log-normalizer ψP is essentially smooth (or ’steep’ in the exponential family terminology,
see, e.g., [5, Theorem 5.27] and [20, Definition 3.2]), we say that the exponential family FP is
steep. This condition is automatically satisfied when ΘP is open [5, Theorem 8.2]. While most
exponential families encountered in practice have this property, there are relevant cases when
this assumption is too restrictive (e.g., [20, Example 3.4]). Thus, in order to cover all examples
provided in this work, we will assume that the exponential family is steep. Summarizing the
above discussion and recalling Definition 2.1 we have the following corollary.

1We will interchangeably refer to P ∈ P(Ω) as either a distribution or measure.
2It is possible to define the exponential family FP over a subset of the natural parameter space [20, Definition

1.1], but this is not needed for our study.
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Corollary 2.1. Let FP be a minimal and steep exponential family generated by P ∈ M(Ω).
Then, the log normalizer function ψP is of Legendre type.

From the last corollary we can see that ∇ψP forms a bijection between int (domψP ) = int ΘP

and int (domψ∗P ). This relation provides a dual representation of the log-normalizer ψP
and, consequently, the distribution in question. The so-called mean value parametrization
is obtained by applying a change of variables where the natural parameter θ is replaced by
µ ∈ Rd such that µ = EPθ = ∇ψP (θ), i.e., θ = ∇ψ∗P (µ).

The Kullback-Leibler (KL) divergence (also known as the relative entropy) of a probability
measure Q ∈ P(Ω) with respect to P ∈ P(Ω) is given by (see [40])

DKL(Q || P ) :=


∫

Ω
log

(
dQ

dP

)
dQ, Q� P,

+∞, otherwise.

It holds that DKL(Q || P ) ≥ 0 with equality if and only if Q = P [40, Lemma 3.1]. Thus, the
Kullback-Leibler information quantifies the dissimilarity between two probability measures.
We note that, in general, DKL(Q || P ) is not symmetric. Furthermore, DKL(Q || P ) is jointly
convex in (Q|P ). We record a special case for which the KL divergence is of particular interest.

Remark 2.1 (Kullback-Leibler divergence for exponential family). Let FP be an exponential
family generated by P ∈ M(Ω). Let θ1 ∈ ΘP and θ2 ∈ int ΘP , thus for i = 1, 2 we have that
fPθi ∈ FP . In this case, the KL divergence between the two measures Pθi ∈ P(Ω) such that
dPθi := fPθidP (i = 1, 2) satisfies DKL(Pθ2 || Pθ1) = DψP (θ1, θ2) [20, Proposition 6.3]. ♦

3 Maximum entropy on the mean and Cramér’s rate function

For y ∈ Rd, the density

fP (y) :=
dP

dν
(y) (3.1)

provides an indication of the likelihood of y under the distribution P ∈ P(Ω). The method of
Maximum Entropy on the Mean (MEM) suggests an alternative, information-driven function
κP : Rd → (−∞,+∞] given by

κP (y) := inf {DKL(Q || P ) : EQ = y,Q ∈ P(Ω)} . (3.2)

Here, κP measures how y complies with the distribution P , by seeking a distribution Q with
expected value y that minimizes DKL(· || P ). The distance, in terms of the KL divergence
(the information gain) between the resulting and the original distributions, quantifies the
compliance of y with P . We will refer to κP as the MEM function and to P as the reference
distribution. Since DKL(Q || P ) ≥ 0 and DKL(Q || P ) = 0 if and only if Q = P , we find that
the MEM function satisfies κP (y) ≥ 0 for any y ∈ Rd and κP (y) = 0 if and only if y = EP .

In most cases of interest, the MEM function admits an alternative representation that
sheds light on many of its additional properties (cf. Theorem 3.2). More precisely, under
suitable conditions (cf. Theorem 3.1), the MEM function coincides with the Cramér rate
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function [27], to which we turn now. For a given reference distribution P ∈ P(Ω), recall the
log-normalizer previously defined for a general measure in (2.5):

ψP (θ) := logMP [θ] = log

∫
Ω

exp (〈·, θ〉) dP.

In the context of probability measures P , ψP is often known as the cumulant generating
function. The Cramér rate function ψ∗P associated with P is the conjugate of ψP , that is,

ψ∗P (y) = sup{〈y, θ〉 − ψP (θ) : θ ∈ Rd}.

Our central assumption (which is not too restrictive in view of our discussion above) on the
prior P and its exponential family FP is provided below. The additional condition 0 ∈ int ΘP

ensures the existence of EP .

Assumption A. The reference distribution P ∈ P(Ω) generates a minimal and steep expo-
nential family FP such that 0 ∈ int ΘP .

The equivalence between the two seemingly different functions3 ψ∗P and κP was previously
established under various assumptions: the authors of [29, Theorem 5.2] (see also [30]) impose
the (restrictive) assumption that ψP is finite. On the other hand, the results in [20, Theorem
6.17] and [41, Proposition 1] (see also [15] and a closely related result in [56, Theorem 3.4]) do
not address the challenging case when y resides on the boundary of the domain. This scenario
turns out to be important if (and only if) the reference distribution is defined over a countable
set. Here, we provide complete proof that overcomes these assumptions previously imposed.
Our approach emphasizes the role played by the convex support of the reference distribution
and leads to natural and easy-to-verify conditions. To this end, we will first need to examine
the domains domκP and domψ∗P . For Cramér’s rate function ψ∗P , a characterization of the
domain is summarized in the following proposition.

Proposition 3.1 (Domain of the Cramér rate function ψ∗P [5, Theorems 9.1, 9.4 and 9.5]). Let
P ∈ P(Ω) be a reference distribution satisfying Assumption A. Then, int Ωcc

P ⊆ domψ∗P ⊆ Ωcc
P .

Moreover, the following hold:

(a) If ΩP is finite, then domψ∗P = Ωcc
P .

(b) If ΩP is countable, then domψ∗P ⊇ conv ΩP .

(c) If ΩP is uncountable, then domψ∗P = int Ωcc
P .

In order to establish a similar characterization for the domain of the MEM function, we
will need to make precise the relation between ΩP and the expected value EP for a given
probability measure P ∈ P(Ω). To this end, we first recall some additional definitions and
results (see, for example, [50, Section 6]). Consider two subsets S, Ŝ ⊆ Rd and assume further
that S ⊆ Ŝ. Then clS ⊆ cl Ŝ, intS ⊆ int Ŝ and convS ⊆ conv Ŝ.

Denote the closed Euclidean unit ball in Rd by Bd. The relative interior [50, Section 6]
of a convex set S ⊆ Rd is defined as

riS :=
{
x ∈ Rd : ∃τ > 0 such that (x+ τBd) ∩ aff S ⊆ S

}
.

3ψ∗
P appears in Cramér’s Theorem central in large deviations theory [30]. A more general form of κP

appears in Sanov’s Theorem.
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E.g., for the unit simplex ∆d := {y ∈ Rd+ : 〈e, y〉 = 1} we have ri ∆d := {y ∈ Rd++ : 〈e, y〉 = 1}.
Some facts which will be used in the sequel are summarized in the following lemma. Further
details and proofs can be found in [50, Section 6, Theorem 13.1].

Lemma 3.1 (On the relative interior). Let S ⊆ Rd be nonempty and convex. Then:

(a) It holds that ri (clS) = riS and riS ⊆ S ⊆ clS.

(b) If dimS = d then riS = intS and, in particular, intS 6= ∅.

(c) It holds that x ∈ riS if and only if σS−x(v) ≥ 0 where the last inequality is strict for
every v ∈ Rd such that −σS(−v) 6= σS(v).

Lemma 3.2 (Domain of expected value). Let P ∈ P(Ω) and assume that EP exists. Then
EP ∈ ri Ωcc

P = ri (conv ΩP ).

Proof. By definition of σΩP , for any v ∈ Rd, it holds that −σΩP (−v) ≤ 〈v, y〉 ≤ σΩP (v). As
P ∈ P(Ω), this implies, for all v ∈ Rd, that

〈v,EP 〉 =

∫
ΩP

〈v, y〉dP (y) ≤ σΩP (v)

∫
ΩP

dP (y) = σΩP (v). (3.3)

If there exists some subset A ⊆ ΩP such that P ({y ∈ A : 〈v, y〉 < σΩP (v)}) > 0, then the
inequality in (3.3) is strict. We will show that, for any v ∈ Rd such that −σΩP (−v) 6= σΩP (v),
such a subset exists; the desired result then follows from Lemma 3.1 (c) and the equivalence
σΩccP

(v) = σΩP (v) [51, Theorem 8.24]. Indeed, let v ∈ Rd such that −σΩP (−v) 6= σΩP (v), i.e.
−σΩP (−v) < σΩP (v). Pick τ ∈ (−σΩP (−v), σΩP (v)) and consider A = {y ∈ ΩP : 〈v, y〉 ≤ τ}.
As τ < σΩP (v), we have A ⊂ {y ∈ ΩP : 〈v, y〉 < σΩP (v)}, and

P (A) = P ({y ∈ ΩP : 〈−v, y〉 ≥ −τ}) = P ({y ∈ ΩP : σΩP (−v) ≥ 〈−v, y〉 ≥ −τ}) > 0,

where the strict inequality follows from the definition of σΩP (−v) and σΩP (−v) > −τ . Hence,
A satisfies the desired conditions, which establishes the result.

We are now in a position to present and prove a characterization for the domain of the MEM
function, analogous to Proposition 3.1. We will use the following notation

QP (y) := {Q ∈ P(Ω) : EQ = y, Q� P}.

Observe that y ∈ domκP if and only if QP (y) 6= ∅.

Lemma 3.3 (Domain of the MEM function κP ). Let P ∈ P(Ω) be a reference distribution
satisfying Assumption A. Then:

(a) If ΩP is countable, then domκP = conv ΩP . Hence, if ΩP is finite, then domκP = Ωcc
P .

(b) If ΩP is uncountable, then domκP = int Ωcc
P .

Proof. (a) Let y ∈ domκP , hence there exists Q ∈ QP (y). As Q� P , we obtain ΩQ ⊆ ΩP ,
thus conv ΩQ ⊆ conv ΩP . Hence, by Lemma 3.1 (a) and Lemma 3.2, we know that
y = EQ ∈ ri Ωcc

Q ⊆ conv ΩQ ⊆ conv ΩP . Thus, domκP ⊆ conv ΩP . For the converse
inclusion, let y ∈ conv ΩP . By Carathéodory’s theorem [22], there exist n ≤ d+1 points
p1, . . . , pn in ΩP such that y =

∑n
i=1 λipi for some λ ∈ ∆n. Consider a distribution

Q ∈ P(Ω) satisfying Q({pi}) = λi for all i = 1, . . . , n. Then, Q ∈ QP (y) by construction.
Thus, y ∈ domκP , and we can conclude that conv ΩP ⊆ domκP .
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(b) First, let y ∈ domκP , then there exists Q ∈ QP (y). Since Q � P which satisfies
Assumption A, it holds that dim Ωcc

Q = Ωcc
P = d. Otherwise, the probability measure Q

(Q(ΩQ) = 1) is concentrated on a lower dimensional affine subspace in contradiction to
the absolute continuity of Q with respect to P . Hence, using Lemma 3.2 and Lemma 3.1
(b), we obtain that y = EQ ∈ ri Ωcc

Q = int Ωcc
Q ⊆ int Ωcc

P . For the converse inclusion, by
Proposition 3.1, y ∈ int Ωcc

P = domψ∗P = int (domψ∗P ) = dom∇ψ∗P , and we conclude
that y = EPθ for θ = ∇ψ∗P (y). Since Pθ � P for Pθ from the exponential family
generated by P , we find that Pθ ∈ QP (y) and therefore y ∈ domκP .

Combining Lemma 3.3 with Proposition 3.1 yields the following corollary.

Corollary 3.1. Let P ∈ P(Ω) be a reference distribution satisfying Assumption A. Then,

(a) If ΩP is countable and conv ΩP is closed (i.e., conv ΩP = Ωcc
P ), then domκP = domψ∗P =

Ωcc
P . In particular, domκP = domψ∗P = Ωcc

P if ΩP is finite.

(b) If ΩP is uncountable, then domκP = domψ∗P = int Ωcc
P .

The following lemma will be crucial for proving the equivalence between the MEM function
κP and Cramér’s rate function ψ∗P . The proof of the lower bound follows similar arguments
as in [20, Theorem 6.17] and [41, Proposition 1] and we include it here for completeness.

Lemma 3.4. Let P ∈ P(Ω) be a reference distribution satisfying Assumption A. Then:

ψ∗P (y) ≤ κP (y) ≤ ψ∗P (y) +DKL(Q || Pθ)−Dψ∗
P

(y,∇ψP (θ)) ,

for any y ∈ domκP , Q ∈ QP (y) and θ ∈ int ΘP .

Proof. For any θ ∈ int ΘP and Q ∈ QP (y) we obtain that Q� Pθ due to the mutual absolute
continuity between Pθ and P . Hence,

DKL(Q || P ) =

∫
Ω

log

(
dQ

dP

)
dQ =

∫
Ω

log

(
dQ

dPθ

)
dQ+

∫
Ω

log

(
dPθ
dP

)
dQ

= DKL(Q || Pθ) +

∫
Ω

[〈z, θ〉 − ψP (θ)]dQ(z) = DKL(Q || Pθ) + 〈y, θ〉 − ψP (θ), (3.4)

where the last identity uses y = EQ. Since (3.4) holds for all θ ∈ int ΘP and DKL(Q || Pθ) ≥ 0,

DKL(Q || P ) ≥ sup{〈y, θ〉 − ψP (θ) : θ ∈ int ΘP } = ψ∗P (y), (3.5)

due to the closedness of ψP , see Proposition 2.1. The lower bound for κP follows immediately
from its definition and the above inequality.

As for the upper bound: by (3.4) and (2.2), for any Q ∈ QP (y) and θ ∈ int ΘP , we have

DKL(Q || P ) = DKL(Q || Pθ) + 〈y, θ〉 − ψP (θ)

= DKL(Q || Pθ) + 〈y −∇ψP (θ), θ〉+ 〈∇ψP (θ), θ〉 − ψP (θ)

= DKL(Q || Pθ)− [ψ∗P (y)− ψ∗P (∇ψP (θ))− 〈y −∇ψP (θ), θ〉] + ψ∗P (y)

= DKL(Q || Pθ)−Dψ∗
P

(y,∇ψP (θ)) + ψ∗P (y).

Then the result follows due to the fact that κP (y) ≤ DKL(Q || P ) for all Q ∈ QP (y).
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Theorem 3.1 (Equivalence between Cramér’s rate function and the MEM function). Let
P ∈ P(Ω) satisfy Assumption A, and assume that one of the following two conditions holds:

(i) ΩP is uncountable.

(ii) ΩP is countable and conv ΩP is closed (as is the case when ΩP is finite).

Then, κP = ψ∗P . In particular, κP is closed, proper, and convex.

Proof. First, let y ∈ int Ωcc
P . By Assumption A, ∇ψP is a bijection between int (domψP )

= int ΘP and int (domψ∗P ) = int Ωcc
P , where the latter uses Proposition 3.1. Thus, there

exists θ ∈ int ΘP such that y = ∇ψP (θ) = EPθ . Applying Lemma 3.4 with Q = Pθ yields

κP (y) = ψ∗P (y) (y ∈ int Ωcc
P ). (3.6)

Due to Corollary 3.1, this establishes the result when ΩP is uncountable. To complete the
proof, we only need to address the case when y ∈ bd Ωcc

P under assumption (ii). By Corol-
lary 3.1, in this case domκP = domψ∗P = Ωcc

P and QP (y) 6= ∅ for y ∈ bd Ωcc
P . Consider any

Q ∈ QP (y), then, by definition of κP , we have that

κP (y) ≤ DKL(Q || P ) < +∞. (3.7)

Choose any ŷ ∈ int Ωcc
P and set θ̂ = ∇ψ∗P (ŷ) (i.e., ŷ = ∇ψ(θ̂)). For any λ ∈ [0, 1) consider

Qλ = λQ+ (1− λ)Pθ̂. Then, by linearity of Q 7→ EQ [48, Lemma 2], we obtain

yλ := EQλ = λEQ + (1− λ)EPθ̂ = λy + (1− λ)ŷ.

By convexity of Ωcc
P and the line segment principle [12, Lemma 6.28] we conclude that

yλ ∈ int Ωcc
P . Set θλ := ∇ψ∗P (yλ) and observe that, by Lemma 3.4 and the nonnegativity

of the Bregman distance, it holds that

ψ∗P (y) ≤ κP (y) ≤ ψ∗P (y) +DKL(Q || Qλ). (3.8)

In addition, due to (3.7) and the fact that Q� P � Pθ̂, we conclude that DKL(Q || Pθ̂) <∞.
Thus, by (3.8) and convexity of DKL(Q || ·), we obtain

DKL(Q || Qλ) ≤ λDKL(Q || Q) + (1− λ)DKL(Q || Pθ̂)→ 0 as λ→ 1.

We refer to a solution of the optimization problem (3.2) as the MEM distribution and denote
it as QMEM . By similar arguments to the ones used in order to establish the lower bound in
Lemma 3.4, one can show that, when y ∈ int(domκP ) = int(conv ΩP ), the MEM distribution
is a particular member of the exponential family generated by the reference distribution P .
More precisely, it holds that QMEM = Pθ where θ = ∇ψ∗P (y) and consequently

fQMEM
(x) =

dPθ
dP

(x) = exp

(
〈x, θ〉 − log

∫
Ω

exp(〈·, θ〉)dP
)

=
exp(〈x, θ〉)∫

Ω exp(〈·, θ〉)dP
.

This, again, highlights the intimate connection between the MEM function and exponential
families. The case y ∈ bd (domκP ) is more subtle and will be the topic of future research.

In what follows, we assume that the reference distribution of the MEM function satisfies
the conditions stated in Theorem 3.1, that is:

11



Assumption B. The distribution P ∈ P(Ω) satisfies one of the following conditions:

(i) ΩP is uncountable.

(ii) ΩP is countable and conv ΩP is closed (as is the case when ΩP is finite).

Under Assumptions A and B, the MEM function and the Cramér rate function coincide.
As an immediate consequence, we obtain that the MEM function κP is of Legendre type.
More importantly, we will see that the alternative representation by means of Cramér’s rate
function is more tractable compared to the original definition given in (3.2).

Theorem 3.2 (Properties of the MEM function). Let P ∈ P(Ω) satisfy Assumptions A
and B. Then the following hold:

(a) κP (y) ≥ 0 and equality holds if and only if y = EP .

(b) κP is of Legendre type.

(c) κP is coercive in the sense that lim‖y‖→∞ κP (y) = +∞ [11, Definition 11.10]. In
particular, κP (y) is level bounded.

(d) If MP is finite (which holds, in particular, when ΩP is bounded), then κP is supercoercive
in the sense that lim‖y‖→∞ κP (y)/‖y‖ = +∞ [11, Definition 11.10].

Proof. Part (a) is evident from the definition of κP as given in (3.2) and [20, Proposition
6.2]. Part (b) follows directly from the equivalence to the Cramér rate function ψ∗P and
Corollary 2.1. To see (c), observe that (a) implies that κP admits a unique minimizer EP which
combined with the fact that κP is closed, proper and convex (since κP is of Legendre type
due to (b)) establishes the result by [3, Proposition 3.1.3]. Lastly, if the moment generating
function is finite, then so is ψP , and the supercoercivity of κP = ψ∗P follows from [51, Theorem
11.8(d)].4 If ΩP is bounded then domκP is bounded due to Lemma 3.3. In this case, κP = ψ∗P
is trivially supercoercive and the claim that ψP is finite follows from [51, Theorem 11.8(d)].

The results presented in the remainder of this work are established under Assumptions A
and B which, in particular, ensure the equivalence between the MEM and Cramér rate func-
tions. For this reason, we take this opportunity to standardize our nomenclature: between
the two options (κP or ψ∗P ) we will opt for the one that corresponds to the Cramér rate
function ψ∗P . This choice is motivated by our intent to emphasize the more computationally
appealing definition and the connection to the log-normalizer function ψP . Nevertheless, in
the definition of some new concepts defined by means of Cramér’s rate function, we will adopt
the MEM terminology in order to emphasize the motivation in the context of estimation.

If the reference distribution belongs to an exponential family generated by some measure
P ∈ M(Ω), i.e., if for some θ̂ ∈ ΘP we consider a new exponential family generated by the
probability measure Pθ̂,

5 then the corresponding moment-generating function takes the form

MPθ̂
[θ] = exp

(
ψP (θ̂ + θ)− ψP (θ̂)

)
. (3.9)

In this case, the Cramér rate functions that corresponds to Pθ̂ and P share a useful relation
summarized in the following lemma.

4The definition of supercoercive convex functions we use here follows [11, Definition 11.10]. In [51] the
authors refer to such functions as coercive (see [51, Definition 3.25]).

5Recall from the definition of FP that Pθ̂ is the probability measure with
dP
θ̂

dP
(y) = exp(〈y, θ̂〉 − ψP (θ̂)).
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Lemma 3.5. Let FP be a minimal and steep exponential family generated by P ∈M(Ω) and
assume further that, for any θ ∈ int ΘP , Assumption B holds for Pθ ∈ P(Ω). Then, for any
θ̂ ∈ int ΘP and y ∈ domψ∗P , we have ψ∗Pθ̂

(y) = Dψ∗
P

(y, ŷ) where ŷ := ∇ψP (θ̂) ∈ int Ωcc
P .

Proof. For y ∈ domψ∗P , we have

ψ∗Pθ̂
(y)

(3)
= sup

{
〈y, θ〉 − log

(
MPθ̂

[θ]
)

: θ ∈ Rd
}

(3.9)
= sup

{
〈y, θ〉 − [ψP (θ̂ + θ)− ψP (θ̂)] : θ ∈ Rd

}
= ψ∗P (y) + ψP (θ̂)− 〈y, θ̂〉.

The result follows from the definition of the Bregman distance, (2.2) and θ̂ ∈ int (domψP ).

We list in Table 1 below a number of examples of Cramér rate functions that correspond
to most of the popular distributions (i.e. choices of the reference distribution P ∈ P(Ω)).
Some of the functions admit a closed form expression while others are given implicitly.6 The
derivations and further details are included in Appendix A. Observe that all cases considered
below satisfy Assumptions A and B which guarantees the equivalence established in Theo-
rem 3.1: indeed, with some exceptions, all the distributions in Table 1 are minimal with a
natural parameter space ΘP open which implies steepness. These exceptions are: the multi-
nomial distribution which is minimal under an appropriate reformulation and the multivariate
normal-inverse Gaussian which is steep (see Appendix A). Here, we provide the Cramér rate
function of the multinomial distribution in minimal form. Thus, Assumption A holds for all
the distributions given in Table 1. This comprehensive list complements and extends some
previously established formulas [41, 56].

Many computations are facilitated in the presence of separability as described in the
following remark.

Remark 3.1 (Separability of ψ∗P ). In most examples, the reference distribution P ∈ P(Ω)
admits a separable structure of the form P (y) = P1(y1)P2(y2) · · ·Pd(yd) where Pi ∈ P(Ωi),
Ωi ⊂ R, i.e., each component corresponds to an i.i.d. random variable. In this case, since
MP [θ] =

∏d
i=1 MPi [θi] [52, Section 4.4], we have

ψ∗P (y) = sup
{
〈y, θ〉 − log (MP [θ]) : θ ∈ Rd

}
=

d∑
i=1

sup {yiθi − log (MPi [θi]) : θi ∈ R} .

Hence, in most of our examples below we will consider only the case d = 1. ♦

In Table 1 we employ the convention that 0 log(0) = 0 and define

∆(d) :=

{
y ∈ Rd+ :

d∑
i=1

yi ≤ 1

}
and I(p) := {y ∈ Rd : yi = 0 (pi = 0)} (p ∈ Rd).

6One can evaluate Cramér’s rate function value at a point of interest by solving a nonlinear system.
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Reference Distribution (P ) Cramér Rate Function (ψ∗
P (y)) domψ∗

P

Multivariate Normal
(µ ∈ Rd,Σ ∈ Sd : Σ � 0)

1
2 (y − µ)TΣ−1(y − µ) Rd

Multivar. Normal-inverse Gaussian(
µ, β ∈ Rd, α, δ ∈ R,Σ ∈ Rd×d:
δ > 0, Σ � 0, α ≥

√
βTΣβ

)
γ :=

√
α2 − βTΣβ

α
√
δ2 + (y − µ)TΣ−1(y − µ)− βT (y − µ)− δγ Rd

Gamma (α, β ∈ R++) βy − α+ α log
(
α
βy

)
R++

Laplace (µ ∈ R, b ∈ R++)

0, y = µ,√
1 + ρ(y)2 − 1 + log

(√
1+ρ(y)2−1

ρ(y)2/2

)
, y 6= µ,

(ρ(y) := (y − µ)/b)

R

Poisson (λ ∈ R++) y log(y/λ)− y + λ R+

Multinomial (n ∈ N, p ∈ ∆(d):∑d
i=1 pi < 1)

∑d
i=1 yi log

(
yi
npi

)
+
(
n−

∑d
i=1 yi

)
log
(

n−
∑d
i=1 yi

n(1−
∑d
i=1 pi)

)
n∆(d) ∩ I(p)

Negative Multinomial (p ∈ [0, 1)d,

y0 ∈ R++, p0 := 1−
∑d
i=1 pi > 0)

∑d
i=0 yi log

(
yi
piȳ

)
(ȳ :=

∑d
i=0 yi) Rd+ ∩ I(p)

Discrete Uniform(
a, b ∈ Z : a ≤ b,
µ := (a+ b)/2, n := b− a+ 1

)
{

0, y = µ,

(y − µ)θ − log
(
e(b−µ+1)θ−e(a−µ)θ

n(eθ−1)

)
, y 6= µ,

where θ ∈ R : y + eθ

eθ−1
= (b+1)e(b+1)θ−aeaθ

e(b+1)θ−eaθ

[a, b]

Continuous Uniform(
a, b ∈ R : a < b, µ := (a+ b)/2

) {
0, y = µ,

(y − µ)θ − log
(
e(b−µ)θ−e(a−µ)θ

(b−a)θ

)
, y 6= µ,

where θ ∈ R : y + 1
θ = bebθ−aeaθ

ebθ−eaθ

(a, b)

Logistic (µ ∈ R, s ∈ R++)

{
0, y = µ,

(y − µ)θ − log (B(1− sθ, 1 + sθ)) , y 6= µ,

where θ ∈ R+ : y − µ = 1
θ + πs

tan (−πsθ)

R

Table 1: Cramér rate functions for popular distributions.

Remark 3.2 (On Table 1). We provide some additional comments on Table 1 here.

(a) (Special cases)

– As special cases of the Gamma distribution we obtain Chi-squared with parameter
k (α = k/2, β = 1/2), Erlang (α positive integer), and exponential (α = 1)
distributions.

– As special cases of the multinomial distribution, we obtain binomial (d = 1, n > 1),
Bernoulli (d = 1, n = 1), and categorical (d > 1, n = 1) distributions.
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– As special cases of the negative multinomial distribution we obtain the negative
binomial (d = 1) and (shifted) geometric (d = 1, y0 = 1) distributions.

(b) (Statistical interpretation) For many reference distributions, ψ∗P recovers well-known
functions from information theory and related areas. Here, the MEM provides an
information-driven, statistical interpretation for these functions. Examples include the
squared Mahalanobis distance (multivariate normal), pseudo-Huber loss (multivariate
normal-inverse Gaussian), Itakura-Saito distance (Gamma), Burg entropy (exponen-
tial), Fermi-Dirac entropy (Bernoulli), and the generalized cross entropy (Poisson).

♦

4 The MEM Estimator and Models for Inverse Problems

In this section, we show how the MEM function can be used in various modeling paradigms.
We start by presenting the MEM estimator and exploring some of its properties. We then
discuss its (primal and dual) analogy to the maximum likelihood (ML) estimator. Finally,
we will illustrate its efficacy by considering a class of linear models involving a regularization
term.

4.1 The Maximum Entropy on the Mean Estimator

The maximum entropy on the mean (MEM) function gives rise to an information-driven
criterion for measuring the compliance of given data with a prior distribution. Based on
this function, we can define the MEM estimator as given in Definition 4.1 below. First, we
introduce some additional terminology and notation that will be used in the sequel. Let
Ω ⊆ Rd and let FΛ = {Pλ : λ ∈ Λ ⊆ Rd} ⊂ P(Ω) be a parameterized family of distributions
indexed by λ ∈ Λ such that EPλ1

= EPλ2
if and only if λ1 = λ2. We call FΛ as the reference

family and say that it satisfies Assumptions A and B if they hold for each Pλ ∈ FΛ. When FΛ

is an exponential family (in this case Λ is the natural parameter space ΘP for some P ∈M(Ω))
the MEM estimator was studied in [20, Chapter 6]. We stress that, in our presentation, FΛ

need not be an exponential family.

Definition 4.1 (MEM estimator). Let FΛ ⊂ P(Ω) be a reference family satisfying Assump-
tions A and B and assume that EPλ1

= EPλ2
if and only if λ1 = λ2. For an observation

ŷ ∈ Rd, let Pλ̂ ∈ FΛ be such that ŷ = EPλ̂ , and let S∗ ⊆ Rd be (nonempty) closed. The MEM
estimator is defined as

yMEM(ŷ, FΛ, S
∗) := argmin{ψ∗Pλ̂(y) : y ∈ S∗}.

In order to simplify notation, in what follows, we will write yMEM := yMEM(ŷ, FΛ, S
∗) when

the dependence on the triple (ŷ, FΛ, S
∗) is clear from the context.

Remark 4.1 (The observation vector and its domain). In Definition 4.1, the condition that
Pλ̂ ∈ FΛ is chosen such that ŷ = EPλ̂ implies that the reference distribution is indexed by the
observation vector ŷ. This condition combined with Assumption A entails that ŷ ∈ int Ωcc

Pλ̂
must hold due to Lemma 3.2. ♦

In order to establish the well-definedness of the MEM estimator, we will use the following
extension of [20, Lemma 5.4].
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Lemma 4.1. Let φ : Rd → (−∞,+∞] be closed and Legendre-type, let ϕ : Rd → (−∞,+∞] be
proper, closed and convex such that int (domφ)∩domϕ 6= ∅. Assume that one of the functions
is coercive while the other is bounded from below. Then there exists a unique solution y∗ ∈ Rd
to min{φ(y) + ϕ(y) : y ∈ Rd}, which also satisfies y∗ ∈ int (domφ) ∩ domϕ.

Proof. The existence and uniqueness of the solution follow from [11, Corollary 11.15]. It
remains to show that y∗ ∈ int (domφ) ∩ domϕ. Evidently, y∗ ∈ domφ ∩ domϕ thus it is
sufficient to show that y∗ ∈ int (domφ). Using [11, Theorem 16.2] and [11, Corollary 16.38]
we have 0 ∈ ∂φ(y∗) + ∂ϕ(y∗), in particular ∂φ(y∗) 6= ∅. Since φ is of Legendre type we
conclude that y∗ ∈ int (domφ) [50, Theorem 26.1].

Theorem 4.1 (Well-definedness of the MEM estimator). Let FΛ ⊂ P(Ω) be a reference
family satisfying Assumptions A and B. For ŷ ∈ Rd, let Pλ̂ ∈ FΛ such that ŷ = EPλ̂, and let

S∗ ⊆ Rd be closed with S∗ ∩ domψ∗Pλ̂
6= ∅. Then, the MEM estimator yMEM exists. If, in

addition, S∗ is convex and int (domψ∗Pλ̂
)∩S∗ 6= ∅, yMEM is unique and in int (domψ∗Pλ̂

)∩S∗.

Proof. Recall that, by Theorem 3.2, ψ∗Pλ̂
is coercive and of Legendre type (proper, closed,

steep and strictly convex on the interior of its domain). Observe that S∗ ⊂ Rd is closed and
S∗ ∩ domψ∗Pλ̂

6= ∅. Thus, the function ψ∗Pλ̂
+ δS∗ is proper, closed and coercive. Hence, the

existence of the MEM estimator follows from [3, Remark 3.4.1, Theorem 3.4.1]. The case
when S∗ is convex and int (domψ∗Pλ̂

) ∩ S∗ 6= ∅ follows from Lemma 4.1 with φ = ψ∗Pλ̂
and

ϕ = δS due to the coercivity of ψ∗Pλ̂
and the fact that δS is bounded from below.

4.1.1 Analogy Between MEM and ML (for Exponential Families)

Maximum likelihood (ML) is arguably the most popular principle for statistical estimation.
Here, the estimated parameters are chosen as the most likely to produce a given sample of
observed data while satisfying model assumptions. More precisely, for some Ω ⊆ Rd, the
model is defined by means of a nonempty, closed set S ⊆ Rd of admissible parameters and a
parameterized family of distributions FΛ = {Pλ : λ ∈ Λ ⊆ Rm} ⊂ P(Ω) with densities fPλ .
Given a sample of observed data ŷ ∈ Rd, the ML estimator λML(ŷ, FΛ, S) is defined as

λML(ŷ, FΛ, S) := argmax{log fPλ(ŷ) : λ ∈ S ∩ Λ}.

In order to simplify notation, we will write λML := λML(ŷ, FΛ, S) when the dependence on
the triple (ŷ, FΛ, S) is clear from the context.

An intriguing connection between the ML and MEM estimator comes to light when Λ is
the natural parameter space ΘP of an exponential family induced by P ∈M(Ω). The MEM
estimator can then be retrieved by solving one of two alternative optimization problems each
of which has a closely related problem that yields the ML estimator. One problem is driven
by information-theoretic arguments, while the other emphasizes a connection motivated by
convex duality. These connections were previously observed in [20, Chapter 6] (also [16]) and
are summarized in the following theorem. For consistency, we denote the ML estimator as
θML.

Theorem 4.2 (MEM and ML estimator analogy). Let FP be a minimal and steep exponential
family generated by P ∈M(Ω) and assume that, for any θ ∈ int ΘP , Assumption B holds with
respect to Pθ ∈ P(Ω). Let S, S∗ ⊆ Rd such that S∩domψP 6= ∅ and S∗∩domψ∗P 6= ∅. Finally,

let ŷ ∈ int Ωcc
P and set θ̂ := ∇ψ∗P (ŷ). Then the following hold:
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(a) (Primal analogy) If S∗∩int (domψ∗P ) 6= ∅ and ∇ψ∗P (S∗∩int (domψ∗P )) = S∩int (domψP ),
then yMEM = ∇ψP (θMEM) where

θMEM ∈ argmin{DKL(Pθ || Pθ̂) : θ ∈ S} and θML ∈ argmin{DKL(Pθ̂ || Pθ) : θ ∈ S}.
(4.1)

(b) (Dual analogy): We have

yMEM ∈ argmin{Dψ∗
P

(y, ŷ) : y ∈ S∗} and θML ∈ argmin{DψP (θ, θ̂) : θ ∈ S}. (4.2)

Proof. Since FP is assumed to be minimal and steep, it is easy to verify (recall (3.9)) that Pθ
satisfies Assumption A for any θ ∈ int ΘP . As we assume S∩domψP 6= ∅ and S∗∩domψ∗P 6= ∅,
the MEM and ML estimator exist due to Theorem 4.1 and [20, Theorem 5.7], respectively.
We now prove (b). Since FP is an exponential family, we have log fPθ(ŷ) = 〈ŷ, θ〉−ψP (θ) and
the ML estimator is a solution to

max{log fPθ(ŷ) : θ ∈ S} = max{〈ŷ, θ〉 − ψP (θ) : θ ∈ S}

= −min{DψP (θ,∇ψ∗P (ŷ)) : θ ∈ S} − ψP (∇ψ∗P (ŷ)) + 〈ŷ,∇ψ∗P (ŷ)〉.

Omitting terms independent of the minimization and using that θ̂ = ∇ψ∗P (ŷ), the formulation
for the ML estimator follows. To obtain the formulation for the MEM estimator, observe that,
due to Lemma 3.5, we have

min{ψ∗Pθ̂(y) : y ∈ S∗} = min{Dψ∗
P

(y,∇ψP (θ̂)) : y ∈ S∗}.

Thus, the result follows by recalling that ŷ = ∇ψP (θ̂).
We now turn to prove (a). Since S∗ ∩ int (domψ∗P ) 6= ∅ we obtain by Theorem 4.1 that

yMEM ∈ S∗∩int (domψ∗P ). This fact combined with the assumption∇ψ∗P (S∗∩int (domψ∗P )) =
S ∩ int (domψP ) implies that ∇ψ∗P (yMEM) ∈ S ∩ int (domψP ). Thus, (a) follows from (b) due
to the Bregman distance dual representation property (2.3) and Remark 2.1.

The primal and dual analogy between the MEM and ML estimator for exponential families
clarifies that the two are symmetric principles.

4.2 Examples - Linear Models

To illustrate the versatility of the MEM estimation framework, we will consider the broad class
of linear models which are among the most popular paradigms in statistical estimation with
applications in numerous fields such as image processing, bio-informatics, machine learning
etc.

We assume that the set S∗ of admissible mean value parameters is the image of a convex
set X ⊆ Rd under a linear mapping defined by a measurement matrix A ∈ Rm×d. In many
practical scenarios, this matrix satisfies some application-related properties, which in combi-
nation with the set X restricts the image space to a subset of Rm. We will denote by C the
set of all matrices that satisfy such a condition for the application in question. The second
component in the model is FΛ = {Pλ : λ ∈ Λ ⊆ Rm} ⊂ P(Ω), a reference family indexed by
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λ ∈ Λ such that EPλ1
= EPλ2

if and only if λ1 = λ2. The reference distribution is specified
from this family by means of the observation vector ŷ. From Remark 4.1 it follows that such
a family of distributions must satisfy ŷ ∈ int Ωcc

Pλ̂
for λ̂ such that EPλ̂ = ŷ. In some cases, this

condition imposes additional assumptions that must be satisfied by the measurement vector.
We will denote the set of measurement vectors that satisfy such an assumption with respect
to the family of distributions under consideration by D := {y ∈ Rm : EPλ = y (λ ∈ Λ)}. To
summarize, an MEM estimator of the linear model outlined above is obtained by solving

min
{
ψ∗Pλ̂

(Ax) : x ∈ X
}

(λ̂ ∈ Λ : EPλ̂ = ŷ), (4.3)

under the following set of assumptions:

Assumption C (MEM estimation for linear models).

1. The reference family FΛ satisfies Assumptions A and B.

2. The set X ⊆ Rd is nonempty and convex.

3. A ∈ C and for any x ∈ X it holds that Ax ∈ domψ∗P .

4. The observation vector satisfies ŷ ∈ D.

In the following table, we present some examples of MEM linear models that correspond to
particular choices of a reference family. In all cases, we assume that the reference family
admits a separable structure as outlined in Remark 3.1. The vectors ai (i = 1, . . . ,m) stand
for the ith row of the matrix A. We set

C0 := {A ∈ Rm×d+ : A has no zero rows or columns}.

Reference family Objective function (ψ∗
Pλ̂
◦A) C X D

Normal
1

2
‖Ax− ŷ‖22 Rm×d Rd Rm

Poisson

m∑
i=1

[〈ai, x〉 log (〈ai, x〉/ŷi)− 〈ai, x〉+ ŷi] C0 Rd+ Rm++

Gamma (β = 1)

m∑
i=1

[〈ai, x〉 − ŷi log (〈ai, x〉)− (ŷi − ŷi log (ŷi))] C0 Rd++ Rm+

Table 2: Linear models under the MEM estimation framework for various reference families.

Remark 4.2. Additional models are readily available by choosing any of the reference distri-
butions presented in Table 1. Alternatively, one may consider a family of linear models where
the natural parameters are the ones restricted to the image of a convex set under a linear
mapping. This class of models is commonly referred to as generalized linear models with a
canonical link function [46]. ♦
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The MEM linear model with reference family that corresponds to the normal distribution
coincides with its ML counterpart, resulting in the celebrated least-squares model [17]. This
phenomenon is unique for the normal distribution and is a direct consequence of the fact that
the squared Euclidean norm is the only self-conjugate function [50, Section 12].

Linear inverse models under the Poisson noise assumption have been successfully applied in
various disciplines including fluorescence microscopy, optical/infrared astronomy, and medical
applications such as positron emission tomography (PET) (see, for example, [16, 55]). The
MEM linear model with Poisson reference distribution outlined in Table 2 was previously
suggested in [8, Subsection 5.3] as an example for the algorithmic setting considered in that
work (see further details in Section 5 where we expand on the framework considered in [8]).

If, for example, X = Rd and rgeA = Rm with m < d, then x ∈ Rd such that yML =
yMEM = Ax = ŷ. This outcome is not a result of a deep statistical characteristic but a simple
consequence of the model’s ill-posedness, a situation when the desired solution is not uniquely
characterized by the model. Situations like this are among the reasons which motivate the
use of regularizers which allow for the incorporation of some additional (prior) knowledge of
the solution. This approach gives rise to the following extended version of model (4.3)

min
{
ψ∗Pλ̂

(Ax) + ϕ(x) : x ∈ X
}

(λ̂ ∈ Λ : EPλ̂ = ŷ), (4.4)

where, in our setting, ϕ : Rd → (−∞,+∞] stands for a proper, closed, and convex function.
In (4.4), the optimization formulation is designed to find a solution (model estimator) that
balances between two criteria represented by the fidelity term ψ∗Pλ̂

◦A and the regularization

term ϕ. While the fidelity term penalizes the violation between the model and observations,
the regularization term incorporates prior information (belief) on the solution, and in many
cases, when the problem with the fidelity term alone is ill-posed, it also serves as a regularizer.
In the context of MEM, the Cramér rate function can be used to penalize violations of the
solution vector x ∈ Rd with respect to some prior reference measure R ∈ P(Ω) that satisfies
Assumptions A and B. In other words, we can set ϕ(x) = ψ∗R(x).

In many applications, the desired reference distribution of the regularizer will admit a
separable structure (à la Remark 3.1). While this is advantageous from an algorithmic per-
spective (cf. Remark 5.1), other alternatives are viable. Non-separable priors can be consid-
ered in order to promote desirable correlations between the entries of the solution to problem
(4.4). E.g., by considering the multinomial, negative multinomial, multivariate normal in-
verse Gaussian or multivariate normal (with non-diagonal correlation matrix in the latter)
reference distributions intrinsically give rise to non-separable modeling. But there are other
options that involve separable reference distributions with a composite structure such as

ϕ(x) = ψ∗R(Lx) or ϕ(x) =

d∑
i=1

ψ∗R(Lix), (4.5)

where L ∈ Rr×d, Li ∈ Rr×d. For example, new variants of the well-known (discrete) total vari-
ation (TV) regularizer [53] can be considered by replacing the norm appearing in the original
definition with a Cramér rate function while keeping the first-order finite difference matrix
(further details are given at the end of Section 5). Different reference distributions might be
used to promote desirable, application-specific, properties of the solution. Nevertheless, for all
choices of reference distribution, the resulting function will admit some desirable properties,
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including convexity, differentiability, and coerciveness as established in Theorem 3.2. As we
will see in the following section, these properties allow us to consider a unified algorithmic
approach for tackling problem (4.4).

5 Algorithms

The optimization formulations of statistical estimation problems as presented in the previous
section are solved by optimization algorithms. Customized methods, such as the ones we
consider here, allow us to leverage the structure of a given problem, thus resulting in a
significant efficiency improvement compared to general-purpose solvers. The structure of
problems which are of interest to us is given by the additive composite model

min{f(x) + g(x) : x ∈ Rd}, (5.1)

where f, g : Rd → (−∞,+∞] are proper, closed, and convex.

We will assume that both the fidelity and regularization terms, represented by f and g,
respectively, are continuously differentiable on the interior of their domain. This assumption
holds for all the modeling paradigms discussed in the previous section. In particular, model
(4.4) is recovered with f = ψ∗P ◦ A and g = ψ∗R. Our focus on this type of problem is for
convenience only as our goal is merely to illustrate how modern first-order methods can be used
for computing MEM estimators, much like their popular ML counterparts. We point out that
we are not limited to this setting. Other models can be considered as well, e.g., by blending
a fidelity term originating from an MEM modeling paradigm with a traditional regularizer or
vice versa. In this case, similar algorithms are applicable under suitable adjustments.

The method we consider is the Bregman proximal gradient (BPG) method. This first-
order iterative algorithm admits a comparably mild per-iteration complexity and as such, it
is particularly suitable for contemporary large-scale applications. It is important to notice
that many other methods, including second-order and primal-dual decomposition methods,
can be also considered in some scenarios and can benefit from the operators derived in this
work. Before we present the BPG method, we need to define its fundamental components
[8, 18].

Smooth adaptable kernel: Let f : Rd → (−∞,+∞] be proper, closed and continuously
differentiable on int (dom f). Then h : Rd → (−∞,+∞] of Legendre type is a smooth adapt-
able kernel with respect to f if domh ⊆ dom f and there exists L > 0 such that Lh − f is
convex.

Bregman proximal operator: Let g : Rd → (−∞,+∞] be closed and proper and h : Rd →
(−∞,+∞] of Legendre type. Then the Bregman proximal operator is defined as

proxhg (x̄) := argmin {g(x) +Dh(x, x̄) : x ∈ Rn} (x̄ ∈ int (domh)). (5.2)

The BPG method is applicable under the following assumption.

Assumption D. Consider problem (5.1) and assume that there exists a function of Legendre
type h : Rd → (−∞,+∞] such that:

1. h is a smooth adaptable kernel with respect to f .

2. h induces a computationally efficient Bregman proximal operator with respect to g.
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The BPG method reads:

(BPG Method) Pick t ∈ (0, 1/L] and x0 ∈ int (domh). For k = 0, 1, 2, . . . compute

xk+1 = proxhtg
(
∇h∗

(
∇h(xk)− t∇f(xk)

))
.

For h = (1/2)‖ · ‖22 and f convex, Lh − f is convex if and only if ∇f is L-Lipschitz. In this
case, the Bregman proximal operator reduces to the classical proximal operator and the BPG
method is the well-known proximal gradient algorithm [13].

The BPG method for solving (5.1) exhibits a sublinear convergence rate [8]. Under suitable
assumptions, the convergence improves to linear [7]. Accelerated variants, which improve
practical performance and have superior theoretical guarantees under additional assumptions,
are also available [4, 14]. For simplicity’s sake, we confine ourselves to the basic BPG scheme,
but the operators to be presented can be readily applied to the enhanced algorithms.

In order to customize the method to a particular instance of problem (5.1), a smooth
adaptable kernel and corresponding Bregman proximal operator must be specified. To illus-
trate this idea for MEM estimation, we focus on the linear models discussed in the previous
section. In particular, we consider the model (4.4) where ϕ = ψ∗R. We assume that Assump-
tion C holds and that the prior reference measure R ∈ P(Ω) satisfies Assumptions A and B.
Furthermore, we assume that domψR ⊆ X which allows us to disregard the constraint x ∈ X.
The latter assumption holds in many practical situations and we assume it here for simplicity.
Otherwise, one can simply apply the BPG method with g = ψ∗R + δX (under the appropriate
adjustments to the proximal operator). In Table 3 below, we summarize the smooth adapt-
able kernels suitable for the models described in the previous section, see Table 2. In all cases,

the smooth adaptable function admits a separable structure of the form h(x) =
∑d

j=1 hj(xj)

where hj : R→ (−∞,+∞] (j = 1, . . . , d) is a (univariate) function of Legendre type. As we
will see in what follows, this property is very desirable as it gives rise to a computationally
efficient implementation of the Bregman proximal operator. For completeness, we include the
explicit formulas for the operators involved in the BPG method.

Reference family Kernel (hj) Constant (L) [∇h(x)]j [∇h∗(z)]j

Normal (1/2)x2
j ‖A‖2 :=

√
λmax(ATA) xj zj

Poisson xj log(xj) ‖A‖1 := max
j=1,2,...,d

m∑
i=1

|Ai,j | log(xj) + 1 exp(zj − 1)

Gamma (β = 1) − log(xj) ‖ŷ‖1 :=

m∑
i=1

|ŷi| −1/xj −1/zj

Table 3: Smooth adaptable kernels and related operators that correspond to the objective
function (f = ψ∗Pθ̂

◦A) of the linear models listed in Table 2.

The kernel and related constant that corresponds to the normal reference family is a well-
known consequence due to the Lipschitz gradient continuity, a special case of the smooth
adaptability property considered here.7 The kernel and related constant that corresponds to

7More precisely, the equivalence holds for convex functions such as the ones considered here. For the
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the Poisson reference family is due to [8, Lemma 8]. The kernel and related constant that
corresponds to the Gamma distribution follows from [8, Lemma 7].

We now discuss the special form of the Bregman proximal operator in the setting of the
linear model (4.4) with ϕ = ψ∗R. According to (5.2), for any t > 0, the Bregman proximal
operator is defined by the smooth adaptable kernel h and the regularizer g = ψ∗R as follows:

proxhtψ∗
R

(x̄) = argmin
{
tψ∗R(u) +Dh(u, x̄) : u ∈ Rd

}
. (5.3)

The following theorem records that, in our setting, the above operator is well-defined.

Theorem 5.1 (Well-definedness of the Bregman proximal operator). Let h : Rd → (−∞,+∞]
be of Legendre type and let R ∈ P(Ω) be a reference distribution satisfying the conditions in
Assumptions A and B. Assume further that int (domh) ∩ domψ∗R 6= ∅. Then, for any t > 0
and x̄ ∈ int (domh), the Bregman proximal operator defined in (5.3) produces a unique point
in int (domh) ∩ domψ∗R.

Proof. Since x̄ ∈ int (domh), the function Dh(·, x̄) is proper. In addition, since h is of
Legendre type, so is Dh(·, x̄). Finally, Dh(·, x̄) is bounded below (by zero) by the convexity of
h. The result follows from Lemma 4.1 with φ = Dh and ϕ = tψ∗R due to the aforementioned
properties of Dh and the coercivity of tψ∗R (Theorem 3.2 and t > 0).

We now show that this operator is also computationally tractable. For many reference distri-
butions, this fact stems from the following separability property.

Remark 5.1 (Separability of the Bregman proximal operator). In all cases under con-
sideration, the smooth adaptable kernel h : Rd → (−∞,+∞] admits a separable struc-
ture h(x) =

∑d
j=1 hj(xj). Therefore, by (2.4), the induced Bregman distance satisfies:

Dh(x, y) =
∑d

i=1Dhi(xi, yi). If, in addition, the Cramér rate function admits a separable

structure ψ∗R =
∑d

i=1 ψ
∗
Ri

(cf. Remark 3.1), then the optimization problem defining the
Bregman proximal operator is separable and can be evaluated for each component of x̄. ♦

Given a particular instance of problem (5.1), with fidelity term f = ψ∗Pλ̂
◦A and regularizer

g = ψ∗R, one can derive a formula for the corresponding Bregman proximal operator. These
formulas are summarized in Tables 4 to 6 for each of the combinations of linear models (by us-
ing a compatible kernel generating distance from Table 3) and regularizers from Table 1. Some
formulas are given in a closed form, others must be evaluated numerically through a solution
of a nonlinear system.8 Due to Remark 5.1, for most of the regularizer reference distributions
(excluding only the multivariate normal, multinomial and negative multinomial) the resulting
subproblem is separable. Thus, for the sake of simplicity and without loss of generality, we
assume that d = 1, i.e., the resulting formulas correspond to one entry of the vector produced
by the operator. The general case follows by applying the operator components-wise on all
the elements of a vector x̄ ∈ Rd. An implementation of the operators along with selected
algorithms, applications, and detailed derivations of the operators can be found under:

nonconvex case see an extension of the smooth adaptability condition presented in [18].
8The solution of the nonlinear system can be efficiently approximated by various methods. In our imple-

mentation, building upon the fact that the systems involve monotonic functions (since they stem from the
optimality conditions of a convex problem), we used a variant of safeguarded Newton-Raphson method.
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https://github.com/yakov-vaisbourd/memmpy.

The following table lists the formulas of Bregman proximal operators for the normal linear
family. In this case, the operator reduces to the classical proximal operator [43].

Reference Distribution (R) Proximal Operator (x+ = proxtψ∗
R

(x̄))

Multivariate Normal
(µ ∈ Rd,Σ ∈ Sd : Σ � 0)

x+ = (tI + Σ)−1(Σx̄+ tµ)

Multivariate Normal-inverse
Gaussian

(
µ, β ∈ Rd, α, δ ∈ R,

Σ ∈ Rd×d : δ > 0, Σ � 0,

α2 ≥ βTΣβ, γ :=
√
α2 − βTΣβ

) x+ =
(
I + ρΣ−1

)−1 (
tβ + x̄+ ρΣ−1µ

)
, where ρ ∈ R+ :

(ρδ)2 + ‖
(
ρ−1I + Σ−1

)−1
(tβ + x̄− µ) ‖2Σ−1 = (αt)2

Gamma (α, β ∈ R++) x+ =
(
x̄− tβ +

√
(x̄− tβ)2 + 4tα

)
/2

Laplace (µ ∈ R, b ∈ R++) x+ =

{
µ, x̄ = µ,

µ+ bρ, x̄ 6= µ,

where ρ ∈ R : α1ρ
3 + α2ρ

2 + α3ρ+ α4 = 0,

with α1 = (b/t)2b2, α2 = 2(b/t)2b(µ− x̄),

α3 = (b/t)2(µ− x̄)2 − 2(b/t)b− 1, α4 = −2(b/t)(µ− x̄)

Poisson9 (λ ∈ R++) x+ = tW
(
λex̄/t

t

)
Multinomial (n ∈ N, p ∈ ∆(d):∑d
i=1 pi < 1)

x+ ∈ Rd+ ∩ I(p) : (x+
i − x̄i)/t+ log

(
x+
i (1−

∑d
j=1 pj)

pi(n−
∑d
j=1 x

+
j )

)
= 0

Negative Multinomial (p ∈ [0, 1)d,

x0 ∈ R++, p0 := 1−
∑d
i=1 pi > 0)

x+ ∈ Rd+ ∩ I(p) : (x+
i − x̄i)/t+ log

(
x+
i

pi(x0+
∑d
j=1 x

+
j )

)
= 0,

Discrete Uniform
(a, b ∈ R : a < b)

x+ = x̄− tθ+ where θ+ = 0 if x̄ = (a+ b)/2,

otherwise: θ+ ∈ R \ {0}:

t(θ+ − x̄/t) + (b+1)e(b+1)θ+−aeaθ
+

e(b+1)θ+−eaθ+
= eθ

+

eθ+−1

Continuous Uniform
(a, b ∈ R : a ≤ b) x+ = x̄− tθ+ where θ+ = 0 if x̄ = (a+ b)/2,

otherwise: θ+ ∈ R \ {0}:

t(θ+ − x̄/t) + bebθ
+
−aeaθ

+

ebθ+−eaθ+
= 1

θ+

Logistic (µ ∈ R, s ∈ R++): x+ = x̄− tθ+ where θ+ = 0 if x̄ = µ,

otherwise: θ+ ∈ R \ {0}:

tθ+ + 1
θ+ + πs

tan (−πsθ+) = x̄− µ

Table 4: Bregman Proximal Operators - Normal Linear Model (h = 1
2‖ · ‖

2).
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Recall that the Cramér rate function induced by a uniform (discrete/continuous) or logistic
reference distribution does not admit a closed form. To compute their proximal operator
we appeal to the corresponding dual of the subproblem in (5.3). This is done via Moreau
decomposition (see, e.g., [13, Theorem 6.45]) which applies when the Bregman proximal
operator (5.3) reduces to the classical proximal operator (i.e., when h = (1/2)‖ · ‖22). For
the general case, we will employ a result summarized in Lemma 5.1 and Corollary 5.1 below.
Some notation is needed: for a function g : Rd → (−∞,+∞] proper, closed and convex and
of h : Rd → (−∞,+∞] of Legendre type we set

iconvhg (x̄) := argmin
{
g(x) + h(x̄− x) : x ∈ Rd

}
. (5.4)

This is the (possibly empty) solution of the optimization problem defining the infimal convo-
lution (g�h)(x̄) := inf

{
g(x) + h(x̄− x) : x ∈ Rd

}
.

Lemma 5.1. Let g : Rd → (−∞,+∞] be proper, closed, and convex, and let h : Rd →
(−∞,+∞] be of Legendre type. Let x̄ ∈ int (domh) and assume that there exists a unique
point x+ := proxhg (x̄) satisfying x+ ∈ int (domh)∩dom g. Then, y+ := iconvh

∗
g∗ (∇h(x̄)) exists

and it holds that ∇h(x+) + y+ = ∇h(x̄).

Proof. By the optimality condition of the optimization problem in the definition of the Breg-
man proximal operator (5.2) we obtain that

∇h(x̄)−∇h(x+) ∈ ∂g(x+).

Since g is assumed to be proper, closed and convex, (2.2) yields

x+ ∈ ∂g∗
(
∇h(x̄)−∇h(x+)

)
. (5.5)

Setting ỹ := ∇h(x̄)−∇h(x+) and observing that x+ = ∇h∗(∇h(x̄)− ỹ) we can rewrite (5.5)
as

∇h∗(∇h(x̄)− ỹ) ∈ ∂g∗(ỹ).

It is now easy to verify that the above is nothing else but the optimality condition for ȳ, thus,
ỹ = y+ and we can conclude that ∇h(x+) + y+ = ∇h(x̄), establishing the desired result.

The following corollary adapts the above lemma to the setting considered in our study. Fur-
thermore, we complement this result with a simple observation which is particularly useful
for Bregman proximal operator computations.

Corollary 5.1. Let h : Rd → (−∞,+∞] be of Legendre type and let R ∈ P(Ω) satisfy
Assumptions A and B. Assume further that int (domh) ∩ domψ∗R 6= ∅. For t > 0 and x̄ ∈
int (domh), let x+ := proxhtψ∗

R
(x̄) and θ+ := iconvh

∗

tψR(·/t)(x̄). Then, ∇h(x+) + θ+ = ∇h(x̄).

In particular, θ+ = 0 (and x+ = x̄) if and only if x̄ = ER.

Proof. By Theorem 3.2 we have that ψ∗R is proper, closed and convex and thus ψ∗∗R = ψR due
to [13, Theorem 4.8]. By Theorem 5.1 we know that x+ is well-defined. The proof of the first
part then follows directly from Lemma 5.1 (with g = tψ∗R and y+ = θ+) and [13, Theorem
4.14(a)]. To see that θ+ = 0 if and only if x̄ = ER, observe that the objective function in
the subproblem defining the Bregman proximal operator (5.3) is greater equal than zero, and
equality holds if and only if x̄ = ER with x+ = x̄. Thus, the statement holds true in view of
the first part of the current corollary.

9We denote by W : R→ R the Lambert W function (see, for example, [25]).
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The following tables list the formulas of Bregman proximal operators for the Poisson and
Gamma (β = 1) linear families, respectively. Observe that by Theorem 5.1 the Bregman
proximal operator is well defined if int (domh) ∩ domψ∗R 6= ∅. Since int (domh) = Rd++ this
implies that for the multinomial and negative multinomial distributions we must assume that
pi > 0 for all i = 1, 2, . . . , d. Furthermore, for the sake of simplicity, we include the normal
and normal inverse-Gaussian distributions. The multivariate variants can be found in the
software documentation along with further explanations.

Reference Distribution (R) Bregman Proximal Operator (x+ = proxhtψ∗
R

(x̄))

Normal
(µ, σ ∈ R : σ > 0)

x+ = σ
tW

(
t
σ x̄e

tµ
σ

)
Normal-inverse Gaussian(
µ, α, β, δ ∈ R : δ > 0,

α ≥ |β|, γ :=
√
α2 − β2

) x+ ∈ R++ :

(tα/σ)(x+ − µ) = (tβ − log(x+/x̄))
√
δ2 + (x+ − µ)2/σ

Gamma (α, β ∈ R++) x+ = αt

W(αt exp(tβ)
x̄ )

Laplace (µ ∈ R, b ∈ R++) x+ =

{
µ, x̄ = µ,

µ+ bρ, x̄ 6= µ,

where ρ ∈ R : ρ+ 2b
t log

(
µ+bρ
x̄

)
= b2ρ

t2 log2
(
µ+bρ
x̄

)
Poisson (λ ∈ R++) x+ = x̄1−τλτ (τ := t

t+1 )

Multinomial (n ∈ N, p ∈ int ∆(d)) x+
i = γi (n− ρ)

τ

(
τ := t

t+1 , γi :=

[
pix̄i

1/t

1−
∑d
j=1 pj

]τ)
where ρ ∈ R : ρ = (n− ρ)

t
t+1

(∑d
i=1 γi

)
Negative Multinomial (p ∈ (0, 1)d,

x0 ∈ R++, p0 := 1−
∑d
i=1 pi > 0)

x+ ∈ Rd+ ∩ I(p) : log
(
x+
i

x̄i

)
+ t log

(
x+
i

pi(x0+
∑d
j=1 x

+
j )

)
= 0,

Discrete Uniform
(a, b ∈ R : a < b)

x+ = x̄e−tθ
+

where θ+ = 0 if x̄ = (a+ b)/2,

otherwise: θ+ ∈ R \ {0}:
(b+1)exp((b+1)θ+)−aexp(aθ+)

exp((b+1)θ+)−exp(aθ+) = exp(θ+)
exp(θ+)−1 + exp(x̄− tθ+ − 1)

Continuous Uniform
(a, b ∈ R : a ≤ b) x+ = x̄e−tθ

+

where θ+ = 0 if x̄ = (a+ b)/2,

otherwise: θ+ ∈ R \ {0}:
bexp(bθ+)−aexp(aθ+)
exp(bθ+)−exp(aθ+) = 1

θ+ + exp(x̄− tθ+ − 1)

Logistic (µ ∈ R, s ∈ R++): x+ = x̄e−tθ
+

where θ+ = 0 if x̄ = µ,

otherwise: θ+ ∈ R \ {0}:
1
θ+ + πs

tan(−πsθ+) + µ = exp (x̄− tθ+ − 1)

continued . . .
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. . . continued

Reference Distribution (R) Proximal Operator

Table 5: Bregman Proximal Operators - Poisson Linear Model (hj(x) = xj log xj)

Reference Distribution (R) Bregman Proximal Operator (x+ = proxhtψ∗
R

(x̄))

Normal
(µ, σ ∈ R : σ > 0)

x+ =
(

(t/σ)µ− 1/x̄+
√

((t/σ)µ− 1/x̄)2 + 4(t/σ)
)
/(2t/σ)

Normal-inverse Gaussian(
µ, α, β, δ ∈ R : δ > 0,

α ≥ |β|, γ :=
√
α2 − β2

) x+ ∈ R++ :

tα(x+ − µ)x+ =
(
(tβ − 1/x̄)x+ + 1

)√
δ2 + (x+ − µ)2

Multivariate Normal-inverse

Gaussian
(
µ, β ∈ Rd, α, δ ∈ R,

Σ = σI, σ > 0 : δ > 0, Σ � 0,

α2 ≥ βTΣβ, γ :=
√
α2 − βTΣβ

) x+
i = (wi + ρµi +

√
(wi + ρµi)2 + 4ρ)/(2ρ),

with wi = tβi − 1/x̄i and ρ ∈ R+ :

(ρδ)2 + 1
4σ

∑d
i=1

(
wi +

√
(wi + µiρ)2 + 4ρ

)2

= (αt/σ)2

Gamma (α, β ∈ R++) x+ = x̄(tα+ 1)/(x̄tβ + 1)

Laplace (µ ∈ R, b ∈ R++) x+ =

{
µ, x̄ = µ,

µ+ bρ, x̄ 6= µ,

where ρ ∈ R : α1ρ
3 + α2ρ

2 + α3ρ+ α4 = 0,

with α1 = b2((b/x̄)2 − t2), α2 = 2b(µ((b/x̄)2 − t2)− b2(t+ 1)/x̄),

α3 = b2((1− µ/x̄)2 + 2t(1− 2µ/x̄))− t2µ2, α4 = 2tbµ(1− µ/x̄)

Poisson (λ ∈ R++) x+ ∈ R+ : t log
(
x+

λ

)
= 1

x+ − 1
x̄

Multinomial (n ∈ N, p ∈ ri ∆(d)) x+ ∈ rin∆(d) : t log

(
x+
i (1−

∑d
j=1 pj)

pi(n−
∑d
j=1 x

+
j )

)
= 1

x+
i

− 1
x̄i

Negative Multinomial (p ∈ (0, 1)d,

x0 ∈ R++, p0 := 1−
∑d
i=1 pi > 0)

x+ ∈ Rd++ : t log

(
x+
i

pi(x0+
∑d
i=j x

+
j )

)
= 1

x+
i

− 1
x̄i
,

Discrete Uniform
(a, b ∈ R : a < b)

x+ = x̄/(x̄tθ+ + 1) where θ+ = 0 if x̄ = (a+ b)/2,

otherwise: θ+ ∈ R \ {0}:
(b+1) exp((b+1)θ)−a exp(aθ)

(exp((b+1)θ)−exp(aθ)
= exp(θ)

exp(θ)−1
+ x̄

tx̄θ++1

Continuous Uniform
(a, b ∈ R : a ≤ b) x+ = x̄/(x̄tθ+ + 1) where θ+ = 0 if x̄ = (a+ b)/2,

otherwise: θ+ ∈ R \ {0}:
b exp(bθ+)−a exp(aθ+)

exp(bθ+)−exp(aθ+)
= 1

θ+
+ x̄

tx̄θ++1
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Logistic (µ ∈ R, s ∈ R++): x+ = x̄/(x̄tθ+ + 1) where θ+ = 0 if x̄ = µ,

otherwise: θ+ ∈ R \ {0}:
1
θ+

+ πs
tan (−πsθ+)

+ µ = x̄
x̄tθ++1

Table 6: Bregman Proximal Operators - Gamma (β = 1) Linear Model (hj(x) = − log(xj))

We close our study with particular models and algorithms.

Barcode Image Deblurring. Restoration of a blurred and noisy image represented by a
vector ŷ ∈ Rd can be cast as the following optimization problem:

min

{
1

2
‖Ax− ŷ‖22 + τϕ∗R(x) : x ∈ Rd

}
. (5.6)

A ∈ Rd×d is the blurring operator and τ > 0 is a regularization parameter. The noise is
assumed to be Gaussian which explains the least-squares fidelity term which can be justified
from the viewpoint of both the ML and, as we know from our study, the MEM framework.
If the original image is a 2D barcode, a natural choice for the reference measure R ∈ P(Ω)
inducing ϕ∗R is a separable Bernoulli distribution with p = 1/2 due to the binary nature of
each pixel and no preference at each pixel to take either value.10 Additional information
(symbology) can be easily incorporated by an appropriate adjustment of the parameter for
each known pixel (see [49]). Using the appropriate proximal operator from Table 4, the BPG
method for solving the model takes the form

xk+1
i ∈ R : xk+1

i + tτ log

(
xk+1
i

1− xk+1
i

)
= xki − t[AT (Axk − ŷ)]i, (i = 1, 2, . . . , d).

As mentioned above, our focus on the Bregman proximal gradient method is only for illustra-
tion purposes. Favorable accelerated algorithms that employ the proximal operators derived
in this work are readily available and should be used in practice. The acceleration scheme
applicable here is known as the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) [14].

Natural Image Deblurring. For natural image deblurring there is no obvious structure
such as the binary one for barcodes. However, it is customary to assume that the image
is piecewise smooth. A popular model that promotes piecewise constant restoration is the
Rudin, Osher, and Fatemi (ROF) model [53] based on the total variation (TV) regularizer∑d

i=1 g(Lix). Here, Li ∈ R2×d extracts the difference between the pixel i and two adjacent
pixels while g stands for either the l1 (isotropic TV) or l2 (anisotropic TV) norm. Variants
that admit the same structure with other choices of g are also considered in the literature: in
[23, Subsection 6.2.3], a model with the Huber norm for g was shown to promote restoration
prone to artificial flat areas. Alternatively, one may consider the pseudo-Huber norm that
corresponds to an MEM regularizer induced by the multivariate normal inverse-Gaussian
reference distribution with parameters µ = β = 0, α = 1, and Σ = I. The resulting
model is similar to (5.6) where the regularization term is substituted by

∑d
i=1 ψ

∗
R(Lix). This

10As mentioned in Remark 3.2, Bernoulli is a special case of the multinomial distribution. This, one dimen-
sional, distribution is used to form a d-dimensional i.i.d as described in Remark 3.1.
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model can be tackled by a primal-dual decomposition method that employs the appropriate
proximal operator from Table 4. For example, using the separability of the proximal operator
[13, Theorem 6.6] and the extended Moreau decomposition [13, Theorem 6.45], the update
formula of the Chambolle-Pock algorithm [23, Algorithm 1] reads

yk+1
i = ρi

1+ρi
(yk + sLiz

k) (i = 1, 2, . . . , d),

with ρi ∈ R+ : ρ2
i (sδ)

2 +
(

ρi
1+ρi

)2
‖yki + sLiz

k‖22 = 1,

xk+1 = (I + τATA)−1
(
xk − τ(LT yk+1 −AT ŷ)

)
,

zk+1 = 2xk+1 − xk,

where LT = [LT1 , . . . , L
T
d ] ∈ Rd×2d, yk ∈ R2d : (yk)T = [(yk1 )T , . . . , (ykd)T ] with yki ∈ R2 for all

i = 1, 2, . . . , d) and s, τ are some positive step-sizes satisfying sτ‖L‖22 < 1.

We point out that an efficient implementation of the above algorithm that takes into ac-
count the sparse and structured nature of the matrices L and A, respectively, will result in a
per-iteration complexity of the order O(d log d). The same statement is true with regard to
the BPG method in the previous and following examples.

Poisson Linear Inverse Problem. Poisson linear inverse problems play a prominent role
in various physical and medical imaging applications. The linear model proposed in [8, Sub-
section 5.3] is simply the MEM linear model with Poisson reference distribution. The authors
of [8] suggest l1-regularization to deploy their BPG method. Alternatively, one may consider
the MEM function induced by the Laplace distribution with parameters µ = 0 and b = 1.
This setting leads to the following update formula of the BPG method. For i = 1, 2, . . . , d:

x̄k+1
i = exp

log(xki )− t
m∑
j=1

aji log(〈aj , xk〉/ŷj)

 ,

xk+1
i ∈ R : t2xk+1

i + 2t log

(
xk+1
i

x̄k+1
i

)
= xk+1

i

[
log

(
xk+1
i

x̄k+1
i

)]2

.
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A Cramér Rate Functions

We present here the computations of all Cramér rate functions provided during our study.
To this end, recall that the Cramér rate function ψ∗P is the conjugate

ψ∗P (y) := sup{〈y, θ〉 − ψP (θ) : θ ∈ Rd}

of the cumulant-generating function

ψP (θ) := logMP [θ],

where MP [θ] is the moment-generating function of the reference distribution P ∈ P(Ω) (which
one can simply look up at various places in the literature for the distributions considered here).

Multivariate Normal

For a normal distribution with mean µ and covariance Σ � 0, its moment generating function
is MP [θ] = exp(〈µ, θ〉+ 1

2〈θ,Σθ〉). Therefore, we find

ψ∗P (y) = sup
{
〈y, θ〉 − log

(
exp(〈µ, θ〉+ 1

2〈θ,Σθ〉)
)

: θ ∈ Rd
}

= sup
{
〈y, θ〉 − 〈µ, θ〉 − 1

2〈θ,Σθ〉 : θ ∈ Rd
}
.

The maximumizer of the above quadratic optimization problem is θ∗ = Σ−1(y − µ), hence

ψ∗P (y) =
1

2
(y − µ)TΣ−1(y − µ).

Multivariate Normal-inverse Gaussian

The Multivariate Normal-inverse Gaussian distribution is defined by means of location (µ ∈
Rd), tail heaviness (α ∈ R), asymmetry (β ∈ Rd), and scale (δ ∈ R, Σ ∈ Rd×d) parameters
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satisfying α ≥
√
〈β,Σβ〉, δ > 0 and Σ � 0 [6]. In addition, let γ :=

√
α2 − 〈β,Σβ〉. Its

moment-generating function is

MP [θ] = exp
(
〈µ, θ〉+ δ(γ −

√
α2 − 〈β + θ,Σ(β + θ)〉)

)
(θ ∈ Bα),

for the ellipsoid Bα = {θ ∈ Rd :
√
〈β + θ,Σ(β + θ)〉 ≤ α}. Observe that in this case ψP (θ) =

log (MP [θ]) is indeed steep and minimal.

Now, in order to compute the Cramér rate function, we find that

ψ∗P (y) = sup
{
〈y − µ, θ〉 − δ(γ −

√
α2 − 〈β + θ,Σ(β + θ)〉) : θ ∈ Bα} (A.1)

We consider two cases: if y = µ, then it is evident that the optimal solution of the problem
above is given by θ = −β and thus ψ∗P (µ) = δ(α− γ). Consider the case y 6= µ. Disregarding
the feasibility constraints (which will be justified in the sequel), the first-order optimality
condition is given by

y − µ =
δΣ(β + θ)√

α2 − 〈β + θ,Σ(β + θ)〉
.

From the above, we can derive

〈β + θ,Σ(β + θ)〉 =
α2〈y − µ,Σ−1(y − µ)〉
δ2 + 〈y − µ,Σ−1(y − µ)〉

and θ = −β +
αΣ−1(y − µ)√

δ2 + 〈y − µ,Σ−1(y − µ)〉
.

It is straightforward to verify that θ ∈ intBα, which retroactively justifies our choice to
disregard the constraint before. Now, we can write the Cramér rate function as

ψ∗P (y)

= 〈y − µ,−β +
αΣ−1(y − µ)√

δ2 + 〈y − µ,Σ−1(y − µ)〉
〉 − δ

(
γ −

√
α2 − α2〈y − µ,Σ−1(y − µ)〉

δ2 + 〈y − µ,Σ−1(y − µ)〉

)

= α
√
δ2 + (y − µ)TΣ−1(y − µ)− 〈β, y − µ〉 − δγ.

Gamma

The Gamma distribution is parametrized by α, β > 0 and its moment generating function is
given by

MP [θ] =

[
1− θ

β

]−α
(θ < β).

Hence, its Cramér rate function reads

ψ∗P (y) = sup

{
yθ − log

([
1− θ

β

]−α)
: θ < β

}
= sup

{
yθ + α log

(
1− θ

β

)
: θ < β

}
.
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If y ≤ 0, then ψ∗P (y) = +∞ (with θ → −∞). If y > 0 then the first-order optimality
conditions imply

y − α

β

(
1− θ

β

)−1

= 0 ⇒ θ = β − α

y
.

Thus,

ψ∗P (y) = βy − α+ α log

(
α

βy

)
, y ∈ R++.

Laplace

The Laplace distribution is parameterized by its mean µ ∈ R and scale b > 0. Its MGF reads

MP [θ] =
exp(µθ)

1− b2θ2
(|θ| < 1/b)

Hence, its Cramér rate function reads

ψ∗P (y) = sup
{

(y − µ)θ + log
(
1− b2θ2

)
: |θ| < 1/b

}
.

It is easy to see that log
(
1− b2θ2

)
≤ 0 for any θ such that |θ| < 1/b and that log

(
1− b2θ2

)
→

−∞ when |θ| → 1/b. Thus, we can conclude that ψ∗P (µ) = 0 and for any y 6= µ the maximum
of the above problem is attained at some point in the open interval (0, 1/b) for y > µ or in
(−1/b, 0) for y < µ. The first-order optimality conditions boil down to the quadratic equation

θ2 +

(
2

y − µ

)
θ − 1

b2
= 0

Evaluating the roots of the resulting quadratic equation we conclude that the optimal solution
is

θ =
1

y − µ

√1 +

(
y − µ
b

)2

− 1

 =
1

bρ

(√
1 + ρ2 − 1

)
,

where we set ρ := y−µ
b . Evidently, |θ| < 1/b holds for the solution we just derived. Thus

ψ∗P (y) = (y − µ)θ + log
(
1− (bθ)2

)
= ρ(bθ) + log

(
1− (bθ)2

)
=
√

1 + ρ2 − 1 + log
(

1− 1
ρ2 (
√

1 + ρ2 − 1)2
)

=
√

1 + ρ2 − 1 + log
(

1− 1
ρ2 (1 + ρ2 + 1− 2

√
1 + ρ2)

)
=
√

1 + ρ2 − 1 + log
(

2
ρ2 (
√

1 + ρ2 − 1)
)
,

and we can conclude that

ψ∗P (y) =

0, y = µ,√
1 +

(y−µ
b

)2 − 1 + log

(
2
(y−µ

b

)−2
[√

1 +
(y−µ

b

)2 − 1

])
, y 6= µ.
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Poisson

The Poisson distribution is parameterized by its rate λ > 0. Its MGF reads

MP [θ] = exp(λ(exp(t)− 1)

Consequently, its Cramér rate function is given by

ψ∗P (y) = sup {yθ − λ(exp(θ)− 1) : θ ∈ R} .

If y < 0 then it is evident from the above that ψ∗P (y) = +∞ (indeed, take θ → −∞). Similarly,
we can see that ψ∗P (0) = λ. Otherwise, due to the first-order optimality conditions

y = λ exp(θ) ⇒ θ = log(y/λ),

we obtain that ψ∗P (y) = y log(y/λ)− y + λ.

Multinomial

We will use the following notation. The ith canonical unit vector is denoted by ei and the
vector of all ones is denoted by e. The unit simplex is given by ∆d := {y ∈ Rd+ : 〈e, y〉 = 1}.

For n ∈ N and p ∈ ∆d+1 we can write

ψ∗P (θ) = sup
{
l(y, θ) := 〈y, θ〉 − log (MP [θ]) : θ ∈ Rd+1

}
= sup

{
〈y, θ〉 − n log

(
d+1∑
i=1

pi exp(θi)

)
: θ ∈ Rd+1

}
.

Let I(p) :=
{
y ∈ Rd+1 : yi = 0 (pi = 0, i = 1, 2, . . . , d+ 1)

}
. We can see that domψ∗P =

n∆d ∩ I(p). Indeed, if there exists k ∈ {1, 2, . . . , d + 1} such that yk < 0 then by setting
θ = −αek we obtain that

l(y, θ) = α|yk| − n log

pk exp(−α) +
∑
i 6=k

pi

 .

If, y ∈ Rd+1 but 〈e, y〉 6= n then by choosing θ = ασe where σ = sign(〈e, y〉 − n) we obtain
that

l(y, θ) = ασ〈e, y〉 − n log (exp(ασ)〈e, p〉) = α|〈e, y〉 − n|.

If there exists k ∈ {i ∈ {1, 2, . . . , d+ 1} : pi = 0} such that yk > 0 then by setting θ = αek we
obtain

l(y, θ) = αyk − n log

∑
i 6=k

pi

 .

In all cases, by taking α→∞ it is evident that the problem is unbounded.
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We now address the case when y ∈ domψ∗P = n∆d+1∩I(p). From the first-order optimality
condition, we can deduce that for any j = 1, . . . , d+ 1 such that pj > 0

yj =
npj exp(θj)∑d+1
i=1 pi exp(θi)

⇒ θj = log

(
yj
npj

)
,

for all j = 1, 2, . . . , d+ 1. Thus, under the convention that 0/0 = 1, we can conclude that for
y ∈ n∆d+1 ∩ I(p)

ψ∗P (y) =
d+1∑
i=1

yi log

(
yi
npi

)
.

Cramér’s rate function that corresponds to the multinomial distribution after reduction to
a minimal form can be obtained from the above by eliminating one component of the vectors
y ∈ Rd+1 and p ∈ Rd+1. Assuming, without the loss of generality, that pd+1 > 0 we can plug
in the above

yd+1 = n−
d∑
i=1

yi, and pd+1 = 1−
d∑
i=1

pi,

in order to obtain the Cramér rate function ψ∗P : Rd → (−∞,+∞]. Hence, for y ∈ Rd and
p ∈ ∆(d) := {z ∈ Rd+ : 〈e, z〉 ≤ 1} such that 〈e, p〉 < 1

ψ∗P (y) =
d∑
i=1

yi log

(
yi
npi

)
+ (n− 〈e, y〉) log

(
n− 〈e, y〉
n(1− 〈e, p〉)

)
,

where, in this case, domψ∗P = I(p) ∩∆(d).

Negative Multinomial

Observing that ΘP := {θ ∈ Rd :
∑d

i=1 pi exp(θi) < 1} and using the definition of Cramér’s
rate function we can write

ψ∗P (θ) = sup
{
l(y, θ) := 〈y, θ〉 − log (MP [θ]) : θ ∈ Rd

}
= sup

{
〈y, θ〉 − log

([
p0

1−
∑d

i=1 pi exp(θi)

]y0
)

: θ ∈ ΘP

}

= sup

{
〈y, θ〉+ y0 log

(
1−

d∑
i=1

pi exp(θi)

)
: θ ∈ ΘP

}
− y0 log(p0).

Let I(p) :=
{
y ∈ Rd : yi = 0 (pi = 0, i = 1, 2, . . . , d)

}
. We can see that domψ∗P = Rd+ ∩

I(p). Indeed, if there exists k ∈ {1, . . . , d} such that yk < 0 then by setting θ = −αek (recall
that ek stands for the kth canonical unit vector) we obtain that

l(y, θ) + y0 log(p0) = α|yk|+ y0 log

1− pk exp(−α)−
∑
i 6=k

pi

 .
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If there exists k ∈ {i ∈ {1, 2, . . . , d} : pi = 0} such that yk > 0 then by setting θ = αek we
obtain that

l(y, θ) + y0 log(p0) = αyk + y0 log

1−
∑
i 6=k

pi

 .

In both cases, by taking α→∞ it is evident that the problem is unbounded.

We now address the case when y ∈ domψ∗P = Rd+ ∩ I(p). From the first-order optimality
condition, we can deduce that

yj =
y0pj exp(θj)

1−
∑d

i=1 pi exp(θi)
⇒ yj

y0

(
1−

d∑
i=1

pi exp(θi)

)
= pj exp(θj), (A.2)

for all j = 1, 2, . . . , d. Denoting σ :=
∑d

i=1 pi exp(θi), ȳ :=
∑d

i=0 yi and summing (A.2) for
j = 1, 2, . . . , d yields

(ȳ − y0)

(
1− σ
y0

)
= σ ⇒ σ =

ȳ − y0

ȳ
.

The above, combined with (A.2) we obtain that for any j = 1, 2, . . . , d such that pj 6= 0

θj = log

(
yj
pj ȳ

)
.

Thus, we can conclude that for y ∈ Rd+ ∩ I(p)

ψ∗P (y) =

d∑
i=1

yi log

(
yi
piȳ

)
+ y0 log

(
y0

ȳ

)
− y0 log(p0) =

d∑
i=0

yi log

(
yi
piȳ

)
.

It is important to note that in the above y ∈ Rd is the function variable while y0 ∈ R is a
fixed parameter.

Discrete Uniform

The discrete uniform distribution is parameterized by a, b ∈ Z with a ≤ b. We set µ :=
(a+ b)/2 and n := b− a+ 1. Its MGF reads

MP [θ] =

{
exp((b+1)θ)−exp(aθ)

n(exp(θ)−1) , θ 6= 0,

1, θ = 0.

If b = a then it is straightforward to verify that ψ∗P = δ{a} (degenerate distribution). We now
turn to consider the case b > a. Since MP [θ] is continuous at zero, we have

ψ∗P (y) = sup
{
yθ − log

(
exp((b+1)θ)−exp(aθ)

n(exp(θ)−1)

)
: θ ∈ R

}
= sup

{
(y − b)θ − log

(
exp(θ)−exp(−(b−a)θ)

n(exp(θ)−1)

)
: θ ∈ R

}
= sup

{
(y − a)θ − log

(
exp((b−a+1)θ)−1
n(exp(θ)−1)

)
: θ ∈ R

}
= sup

{
(y − µ)θ − log

(
exp((b−µ+1)θ)−exp((a−µ)θ)

n(exp(θ)−1)

)
: θ ∈ R

}
.

(A.3)
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If y > b then from the second formulation above we can conclude that ψ∗P (y) = +∞ by taking
θ → +∞. Similarly, if, y < a, then from the third formulation above we can conclude that
ψ∗P (y) = +∞ by taking θ → −∞. If y = µ then the last formulation of (A.3) can be written
as

sup

{
− log

(
exp (γθ)− exp (−γθ)

2γ (exp(θ/2)− exp(−θ/2))

)
: θ ∈ R

}
= − log (inf {φ(θ) : θ ∈ R}) ,

where γ := (b− a+ 1)/2 > 1/2 and

φ(θ) :=

{
exp(γθ)−exp(−γθ)

2γ(exp(θ/2)−exp(−θ/2)) , θ 6= 0,

1, θ = 0.

By using L’Hôpital’s rule and some straightforward arguments, it is easy to verify that

lim
|θ|→+∞

φ(θ) = +∞, lim
|θ|→0

φ(θ) = 1 and φ(θ) = φ(−θ).

Thus, φ is continuous at zero (which justifies its definition), coercive and symmetric. Since the
log-normalizer function ψP (θ) = log (MP [θ]) is strictly convex, we conclude that if a solution
exists it must be unique. The coercivity of φ implies that a solution exists, and due to the
symmetry of φ we can conclude that it must be zero. To summarize, in this case, ψ∗P (µ) = 0
(with θ = 0). If y 6= µ such that a ≤ y ≤ b then the optimal solution to (A.3) is nonzero and
by the first-order optimality conditions it must satisfy

y − (b+ 1) exp((b+ 1)θ)− a exp(aθ)

exp((b+ 1)θ)− exp(aθ)
+

exp(θ)

exp(θ)− 1
= 0. (A.4)

Therefore, using (A.3) we can summarize that for y ∈ [a, b] = domψ∗P :

ψ∗P (y) =

{
0, y = µ,

(y − µ)θ − log
(

exp((b−µ+1)θ)−exp((a−µ)θ)
n(exp(θ)−1)

)
, y 6= µ,

where θ is the root of (A.4).

Continuous Uniform

By definition

ψ∗P (y) = sup {yθ − log (MP [θ]) : θ ∈ R} ,

where for a < b we have that

MP [θ] =

{
exp(bθ)−exp(aθ)

(b−a)θ , θ 6= 0,

1, θ = 0.
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Since MP [θ] is continuous at zero, then, without loss of generality, we obtain

ψ∗P (y) = sup
{
yθ − log

(
exp(bθ)−exp(aθ)

(b−a)θ

)
: θ ∈ R

}
= sup

{
(y − b)θ − log

(
1−exp(−(b−a)θ)

(b−a)θ

)
: θ ∈ R

}
= sup

{
(y − a)θ − log

(
exp((b−a)θ)−1

(b−a)θ

)
: θ ∈ R

}
= sup

{
(y − µ)θ − log

(
exp((b−µ)θ)−exp((a−µ)θ)

(b−a)θ

)
: θ ∈ R

}
.

(A.5)

where µ = (a+ b)/2. If y ≥ b then from the second formulation above we can conclude that
ψ∗P (y) = ∞ by taking θ → ∞. Similarly, if, y ≤ a, then from the third formulation above
we can conclude that ψ∗P (y) = ∞ by taking θ → −∞. If y = µ then the last formulation of
(A.5) can be written as

sup

{
− log

(
exp(γθ)− exp(−γθ)

2γθ

)
: θ ∈ R

}
= − log (inf {φ(θ) : θ ∈ R}) ,

where γ := (b− a)/2 > 0 and

φ(θ) :=

{
exp(γθ)−exp(−γθ)

2γθ , θ 6= 0,

1, θ = 0.

By using L’Hôpital’s rule and some straightforward arguments, it is easy to verify that

lim
|θ|→+∞

φ(θ) = +∞, lim
|θ|→0

φ(θ) = 1 and φ(θ) = φ(−θ).

Thus, φ is continuous at zero (which justifies its definition), coercive and symmetric. Since
the log-normalizer function ψP (θ) = log (MP [θ]) is strictly convex we can conclude that if
a solution exists it must be unique. The coercivity of φ implies that a solution exists, and
due to the symmetry of φ we can conclude that it must be zero. To summarize, in this case,
ψ∗P (µ) = 0 (with θ = 0). If y 6= µ such that a < y < b then the optimal solution to (A.5) is
nonzero and by the first-order optimality conditions it must satisfy

y − b exp(bθ)− a exp(aθ)

exp(bθ)− exp(aθ)
+

1

θ
= 0. (A.6)

Therefore, using (A.5) we can summarize that for y ∈ (a, b) = domψ∗P :

ψ∗P (y) =

{
0, y = µ,

(y − µ)θ − log
(

exp((b−µ)θ)−exp((a−µ)θ)
(b−a)θ

)
, y 6= µ,

where θ is the root of (A.6).
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Logistic

The moment generating function for Logistic distribution with location and scaling parameters
µ and s > 0, respectively, is given by

MP [θ] = exp(µy)B(1− sθ, 1 + sθ), sθ ∈ (−1, 1),

where B(·, ·) stands for the Beta function

B(α, β) =

∫ 1

0
tα−1(1− t)β−1dt.

The beta function and the closely related gamma function

Γ(α) =

∫ ∞
0

tα−1 exp(−t)dt, α > 0,

share the following well-known relation

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
. (A.7)

The gamma function is an extension of the factorial as for a positive integer α it holds that
Γ(α) = (α− 1)!. In the following, we will use the well-known function equations

B(α+ 1, β) = B(α, β)
α

α+ β
, (A.8)

and

B(α, 1− α) = Γ(1− α)Γ(α) =
π

sin(πα)
, α /∈ Z. (A.9)

The latter is known as Euler’s reflection formula or Euler’s function equation. Further details
and proofs for both (A.8) and (A.9) can be found, for example, in [2].

Since sθ ∈ (−1, 1), the above relations imply that for any θ 6= 0

φs(θ) := B(1− sθ, 1 + sθ)
(A.8)
= B(−sθ, 1 + sθ)

−sθ
−sθ + 1 + sθ

(A.9)
=

−πsθ
sin(−πsθ)

.

For θ = 0 we can verify by (A.7) that

φs(θ) = Bs(1− sθ, 1 + sθ) = 1.

Thus, we can summarize

φs(θ) = B(1− sθ, 1 + sθ) =

{
1, sθ = 0,
−πsθ

sin(−πsθ) , sθ ∈ (−1, 1) \ {0}.
(A.10)

Using L’Hôpital’s rule we can verify that φs is continuous at θ = 0. Since −πsθ ≥ sin(−πsθ)
for all sθ ∈ (−1, 1) we can conclude that φs(θ) ≥ 1 for all sθ ∈ (−1, 1) and equality (φs(θ) = 1)
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holds if and only if sθ = 1. Taking |sθ| → 1 it is evident that φs(θ) → ∞. In addition, for
any θ 6= 0 the derivative of φ is given by

φ′s(θ) = −πs
[

sin(−πsθ) + πsθ cos(−πsθ)
sin2(−πsθ)

]
,

and consequently

φ′s(θ)

φs(θ)
=

sin(−πsθ) + πsθ cos(−πsθ)
θ sin(−πsθ)

. (A.11)

We are now ready to evaluate Cramér’s rate function that corresponds to the logistic distri-
bution.

ψ∗P (y) = sup {yθ − log (MP [θ]) : θ ∈ R}

= sup {(y − µ)θ − log (φs(θ)) : θ ∈ R} .
(A.12)

If y = µ then the discussion that follows equation (A.10) implies that sup{− log(φs(θ)) :
θ ∈ R} ≤ 0 where the upper bound is attained for θ = 0 (since φs(θ) ≥ 1 and φs(0) = 1).
Thus, we can conclude that ψ∗P (µ) = 0. If y 6= µ then the optimal solution to (A.12)
satisfies θ 6= 0. Since, in addition, for |sθ| → 1 we have that φs(θ) → ∞, and consequently,
− log(φs(θ)) → −∞, an optimal solution to (A.12) for the case y 6= µ must satisfy the
first-order optimality conditions

0 = y − µ− φ′s(θ)

φs(θ)
= y − µ− 1

θ
− πs

tan (−πsθ)
, (A.13)

where the above follows from (A.11). To summarize,

ψ∗P (y) =

{
0, y = µ,

(y − µ)θ − log (B(1− sθ, 1 + sθ)) , y 6= µ,

where θ ∈ R is the nonzero root of (A.13).
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