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Abstract—Barcode encoding schemes impose symbolic constraints which fix certain segments of the image. We present, implement,

and assess a method for blind deblurring and denoising based entirely on Kullback-Leibler divergence. The method is designed to

incorporate and exploit the full strength of barcode symbologies. Via both standard barcode reading software and smartphone apps, we

demonstrate the remarkable ability of our method to blindly recover simulated images of highly blurred and noisy barcodes. As proof of

concept, we present one application on a real-life out of focus camera image.
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divergence, Fenchel-Rockafellar duality, L-BFGS
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1 INTRODUCTION

DEBLURRING in image processing addresses a notoriously
difficult ill-posed problem. In this article we present a

novel algorithm for deblurring and denoising of barcodes.
The strength of our method lies in its effective incorporation
(at all stages) of the precise symbology of barcodes. In princi-
ple, our method could apply to any class of images possess-
ing some a priori set structure. We present and test the
method for barcodes for the following reasons: (i) Barcodes
remain ubiquitous objects for the encoding of information,
and are the simplest class of images which follow a fixed
symbology. (ii) For large amounts of blurring and noise,
there is a less ambiguous test of the success of the algorithm
than the eye norm – their readability by standard commercial
software and smartphone apps.

One dimensional (1D) UPC barcodes remain popular for
coding merchandise while Quick Response (QR) barcodes, a
type of matrix 2D barcode [37], [42], are increasingly popu-
lar because of the ubiquity of smartphone cameras. While
barcode readers and smartphone apps are well-developed,
the issue of deblurring and denoising barcodes remains of
considerable interest with the presence of motion blur from
hand movement and noise intrinsic to the camera sensor.
The interplay between deblurring and barcode symbology
is important for the successful use of mobile smartphones
[8], [12], [24], [50], [51], [53]. Methods for deblurring and
denoising of barcode signals are well-developed; for

example, many techniques have been presented in academic
articles (see, for example, [4], [5], [10], [13], [16], [18], [21],
[22], [25], [27], [28], [31], [32], [33], [39], [41], [49], [51], [52])
while implemented algorithms are hidden in commercial
software (for example, open source readers like Zbar and
apps like Apple’s QR Reader).

The majority of general state-of-the-art blind deblurring
methods approach the problem in two steps. The first step
is to estimate the blurring kernel and the second is to use
non-blind deblurring methods to estimate the original
image using the estimated kernel (cf. [7], Chapter 1 of [43]
and the references therein, [26]). Our approach follows this
structure, however we present novel kernel estimation and
deblurring methods that are based on an approach known
as the Method of Maximum Entropy on the Mean (MMEM)
through the Kullback-Leibler divergence. To this end, we
do not attempt to find the cleaned image directly but rather
we find its probability density function over all binary
arrays. We then take, as our best guess of the cleaned image,
its (thresholded) expectation. While this particular use of
entropy and the Kullback-Leibler divergence has a well-
established record of success in many areas of information
theory (cf. [1], [11]), we believe this is the first implementa-
tion for deblurring of barcodes. In fact, while the Kullback-
Leibler divergence appears in the highly-cited deblurring
paper of Fergus et al. [14], to our knowledge this particular
approach is also new within the wider context of image
deblurring. As can be seen in Figs. 7, 8, 9, and 10, our
method is quite remarkable in its ability to blindly deblur
and denoise data. In each case, the only information used to
reconstruct the barcode from the simulated blurred and
noisy signal is the QR symbology (cf. Fig. 1). Software (Zbar
and smartphones) were all unable to read the initial signal;
however, all can read our processed versions. To our knowl-
edge, we are unaware of any other simple method which
can produce such dramatic results.

The principle ofmaximumentropywas introduced byE.T.
Jaynes in 1957 [19], [20]. This principle states that among all
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probability distributions that are compatible with given
moments, the least biased is the one that maximizes the entr-
opy. If prior knowledge on the unknown distribution is avail-
able, then the Kullback-Leibler relative entropy is themethod
of choice. A particular occurrence of it is named the MMEM
whichwas introducedbyDacunha-Castelle andGamboa [11],
and implemented later on in various applications (see e.g.,
[1], [34]). Applying the MMEM entails solving a convex pro-
gram in possibly infinite dimensions under finitely many
affine equality constraints. This type of problem is efficiently
approached by means of Fenchel-Rockafellar duality [2], [3],
[35], [44]. In our application we consider a finite dimensional
problem; albeit one of “very high” dimension.

We briefly outline our entropic barcode method; the
details of the algorithm are presented in Section 2.

1.1 Outline of Our Kullback-Leibler Approach

We model a barcode by a vector xx 2 f0; 1gN of N indepen-
dent Bernoulli random variables with xi denoting the ith bar
for a UPC barcode or the ith module for a QR code. For UPC
barcodes N ¼ 95 while for QR barcodes N ranges from 441
to 31329. Wemodel the blurring of the barcode xx via discrete
linear convolution of the form bb ¼ Cxx � cc � Uxx, where
C 2 RNm�N , m is an upscaling factor as explained at the start

of Section 2 and U 2 RNm�N is the matrix that upscales xx. C
is therefore responsible for upscaling and blurring xx with

point spread function (PSF) cc 2 RNm, also known as the blur
kernel, and bb 2 RNm the observed blurry signal. Let us for
the moment assume that C is known (this is the case for non-
blind deblurring). The number of possible barcodes is 2N

and we let pp be a probability mass function (PMF) defined over

the space of barcodes f0; 1gN . Hence, pp 2 R2N , where the kth
component of pp, denoted pk (this notation will be used
throughout) represents the probability assigned to the kth

barcode in f0; 1gN . Now, given a prior distribution m over
the space of barcodes, weminimize the function

p 7!
X2N
i¼1

pi log
pi
mi

� �
þ g CEpp½xx� � bb

�� ��2; (1)

over all PMFs pp. With the solution �pp in hand, our cleaned
(processed) barcode is then the thresholded expectation of

�pp, E�pp½xx�. Ideally �pp should be a 1-hot vector such that it gives
full weight to a single barcode. We consider a uniform prior,
a prior based entirely on the symbology (i.e., one which
assigns probability 0 to any xx which does not respect the
symbology), and for UPC-A barcodes an empirically gener-
ated prior based upon a database of 106 barcodes.

Even with C known, problem (1) with our range of N , is
numerically intractable. To this end, we employ the follow-
ing strategy. First, we exploit Fenchel-Rockafellar duality
with a significantly simplified dual problem which has Nm

degrees of freedom as opposed to 2N for the primal problem
(1). While this presents a fundamental reduction in com-
plexity, it is still too costly to compute �pp via the solution to
the dual problem. On the other hand, we do not need to
find �pp but rather its expectation, and to this end we present
a probabilistic version of the dual which allows for the
quick and efficient computation of �xx ¼ E�pp½xx�.

The above outlines the method when C is known. For
blind deblurring, i.e., when C is unknown, we perform an
iterative process which couples the above with an entropy
based optimization (cf. (5) in the following section) to esti-
mate cc from the observed signal bb and �xx, where �xx is the out-
come of the previous entropic image estimation. The
iteration begins with an initial estimation of cc based upon bb
and �xx ¼ Em½xx�.

2 THE ENTROPIC BLIND DEBLURRING METHOD

Throughout, the process of capturing an image will be mod-

eled via bb ¼ cc � Uxx ¼ Cxx where xx 2 f0; 1gN is the original
barcode, C 2 RNm�N is a matrix that upsamples and blurs
the image via discrete linear convolution by the PSF cc and
bb 2 RNm is the acquired image. We model the unknown true
barcode xx as a vector XX ¼ ðX1; . . . ; XNÞ of N independent
Bernoulli random variables and recall N 2 N is the total
number of the barcode modules. We letm 2 N be an upscal-
ing factor, as the pixels of a camera will seldom align in a
one-to-one manner with the bars of the barcode. For exam-
ple, if m ¼ 3, one module of a QR code will correspond to a
block of 3� 3 pixels rather than just one pixel. Moreover,
upscaling is necessary in our model to consider realistic
quantities of blurring as demonstrated in Fig. 4.

We represent the probability mass function as a vector
pp 2 D2N , where the ith component of pp corresponds to the
probability pðxiÞ of the ith binary sequence in f0; 1gN under
some arbitrary ordering of the set. We use the symbol Dn to
denote the unit simplex in Rn defined as

Dn ¼ uu 2 Rn :
Xn
i¼1

ui ¼ 1; ui � 0 i ¼ 1; . . . ; nð Þ
( )

:

The unit simplex Dn is the space of probability distributions
over a finite sample space of cardinality n.

The Kullback-Leibler relative entropy quantifies the
divergence between two probability distributions and is
defined in [29, Eqn. 2.4] as

K ðpp;mÞ ¼
P

i2I pilog
pi
mi

� �
for pp 2 D2n

þ1 otherwise

(
;

Fig. 1. A depiction of the symbolic constraints in UPC-A and QR codes
(Source (top image): Wikipedia [42] (image by Bobmath, CC BY-SA 3.0).
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where I ¼ fj : mj > 0g. Working in the convention that
0log 0 ¼ 0 and that pk ¼ 0 for some k if and only if mk ¼ 0,
summing over I is equivalent to summing from i ¼ 1; . . . ; 2N ,
as if mj ¼ 0 for some j, the jth summand is 0. These con-
straints ensure that the entropy term is well-defined. More-
over, m denotes a prior probability distribution which
encodes certain characteristics which a valid barcode should
exhibit.

The constraint on the mean can be rephrased by noting

that EppðxxÞ ¼ App where A 2 f0; 1gN�2N is a matrix formed by
ordering the set of all binary sequences of length N and let-
ting the ith column of A be the ith element of this ordering.
Thus, A computes the expectation value. This constraint will
be enforced bymeans of the penalty function

pp 7! g cc � UApp� bbk k2: (2)

Here, g > 0 is a scalar which can be varied in order to penal-
ize deviations from the mean to a variable extent. We make
precise that the standard euclidean norm will be used
throughout. This form of penalization is flexible enough to
permit the presence of additive noise in the image acquisition
process without needing to explicitly account for it. Indeed,
with noise, the observed barcode bbwill not generally be equal
to cc � UApp for any pp. Hence, a hard constraint on the mean
enforcing that cc � UAppmust equal bb is inadequate.

In the case of blind deblurring, we seek to determine the
PMF �pp and the convolution kernel �ccwhich solve

infpp;cc K ðpp;mÞ þ K ðcc; nÞ þ g cc � UApp� bbk k2
n o

; (3)

as �pp will allow us to estimate the original barcode and the
PSF responsible for the blurring is unknown. In this equa-
tion, m and n are distinct prior probability distributions and
the particular characteristics that m and n encode will be dis-
cussed in the following sections, as they play a fundamen-
tally different role. In this framework, the Kullback-Leibler
divergence also guarantees that �pp, �cc are elements of the
2N -simplex by its very definition. The utility of this property
will be made clear later. Our approach to tackling problem
(3) is by iteratively coupling the following subproblems.

1. Image estimation based on cc (non-blind deblurring):
Determine �p�p as a solution of

infpp K ðpp;mÞ þ a
2 cc � UApp� bbk k2

n o
: (4)

Here, based on the PSF cc we determine an approxi-
mation of the image through A�p�p.

2. Kernel estimation based on pp: Determine �c�c as a solu-
tion of

infcc K ðcc; nÞ þ b
2 cc � UApp� bbk k2

n o
: (5)

Here, based on the image App we approximate the
PSF �c�c.

Alternating between image and kernel estimation is com-
mon in state of the art deblurring methods (see e.g., [6],
[38]). In the following section we first discuss how to solve
the problems (4) and (5), respectively, and then we discuss

the coupling mechanism which constitutes the basis for our
algorithm.

2.1 The Image Estimation

Throughout this section, (4) will be referred to as the primal
problem. Recalling that both the convolution and expecta-
tion operators can be written in matrix form, we define

M ¼ CA with M 2 RNm�2N for the sake of convenience. We
note, moreover that solving this problem is not a straightfor-

ward endeavour, as it is a 2N -dimensional minimization
problem. Even in the simpler case of UPC-A encoding, a bar-

code is composed of 95 bars, hence pp 2 R295 . In such a high
dimensional minimization problem, attempting to compute
a solution directly is infeasible and thus an alternative
methodmust be determined to solve (4).

2.1.1 A Convex Analytic Approach to Solving

the Primal Problem

We employ Fenchel-Rockafellar duality for a first simplifica-
tion of the problem (4). To this end, we present a brief exposi-
tion of this duality scheme following [45, Example 11.41]: For
f : R‘ ! R [ fþ1g its domain is dom f :¼ fxx 2 R‘ jfðxxÞ <
þ1g. Its conjugate f� : R‘ ! R [ f	1g is given by f�ðyyÞ ¼
supxxfyyTxx� fðxxÞg and the subdifferential of f at �xx 2 dom f is

@fð�xxÞ :¼ fvv j gðxxÞ � gð�xxÞ þ vvT ðxx� �xxÞ ðxx 2 dom fÞg.
Given two lower semicontinuous convex functions with

nonempty domain k : Rn ! R [ fþ1g; h : Rm ! R [ fþ1g,
a matrix A 2 Rm�n and bb 2 Rm this duality scheme makes a
connection between the optimization problem

minxx kðxxÞ þ hðbb�AxxÞ; (6)

called the primal problem, with its associated dual problem

maxyy bb
T yy� k�ðATyyÞ � h�ðyyÞ: (7)

Fenchel-Rockafellar duality now states that, under the qual-
ification condition

bb 2 int Adom kþ dom hð Þ;
the optimal value of the primal and dual problem coincide
and that, given a solution �yy of the dual problem, a solution of
the primal can be recovered from the relation �xx 2 @k�ðAT�yyÞ:
We will from now on refer to (4) as the primal problem. To
apply the Fenchel-Rockafellar scheme, we need to compute
the conjugates of the functions in play. The conjugate of
K ð
;mÞ can be computed by considering the log exp function
log exp : yy 7! log

Pn
i¼1 expðyiÞ

� �
and noting that

log exp�ðqqÞ ¼
Pn

i¼1 qilog ðqiÞ for qq 2 Dn

þ1 otherwise

	
;

as discussed in [45, Ex. 11.12]. Observe that we can express
the Kullback-Leibler entropy as

K ðpp;mÞ ¼
X2N
i¼1

pilog ðpiÞ � hpp; logmi:

As log exp is finite-valued and convex (hence lower
semicontinuous and proper), the Fenchel-Moreau theorem
(see e.g., [45, Theorem 11.1]) yields log exp ¼ ðlog exp�Þ�.
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Therefore, also using [45, Eq. 11(3)], the conjugate of K ð
;mÞ
is given by

K �ðqq;mÞ ¼ log
X2N
i¼1

mi exp ðqiÞ
 !

: (8)

The same reference [45, Eq. 11(3)] togetherwith [45, Ex. 11.11]
also gives

a

2

k k2

� ��
¼ 1

2a

k k2 ða > 0Þ:

We now obtain the dual problem by setting

k ¼ K ð 
 ;mÞ; h ¼ a
2 
k k2. Hence

sup�� hbb; ��i � a
2 
k k2
� ��

ð��Þ � K �ðMT��;mÞ
n o

;

is the resulting dual problem with �� denoting the dual vari-
able, bb the acquired image, M ¼ CA and m the prior. Substi-
tuting the conjugates computed previously into this
expression, this problem can be written explicitly as

sup�� hbb; ��i � 1
2a ��k k2�log

X2N
i¼1

mi exp MT
i ��

� � !( )
: (9)

We note that, on Rm, the domain of a2 
k k2 is the entire space,
so

bb 2 int M dom ðK Þ þ dom
a

2

k k2

� �� �
;

is trivially satisfied. This condition ensures that the optimal
value of (4) is attained for at least one �pp 2 D2N , this is a prop-
erty of the duality scheme that has been used. Note more-
over that �pp is guaranteed to be an element of the unit
simplex as otherwise the Kullback-Leibler divergence takes
on a value of infinity. Similarly, since

00 2 int MT dom
a

2

k k2

� ��
�dom K �ð Þ

� �
;

the optimal value of (9) is also attained for at least one ���.
Together, these conditions ensure that these problems share
the same finite optimal value. Moreover, given a solution ���
of (9) one can perform primal-dual recovery via

�pp ¼ rK �ðMT ���;mÞ; (10)

which is another property of this duality scheme. The previ-
ous equation is formulated in terms of the gradient, as K � is
differentiable at every point of its domain such that its sub-
gradient at a given point is a singleton, namely its gradient
at that point by [46, Theorem 25.1].

One of the advantages of this dual formulation is that
solving the primal problem, a minimization problem in

pp 2 R2N , is now analogous to solving the dual problem, a
maximization problem in �� 2 RNm and recovering a solu-
tion to the primal problem via (10). This foray into Fenchel-
Rockafellar duality has therefore yielded a tremendous
dimensionality reduction. Despite this amelioration, solving
the dual problem is still intractable as the conjugate of the

entropy contains an immense sum over 2N elements and
the matrix M has dimensions Nm� 2N . This matrix cannot
feasibly be stored in memory for largeN .

2.1.2 Exploiting the Probabilistic Structure of the Dual

Problem

Recall that, by definition, M ¼ CA where A is a N � 2N

matrix whose columns consist of the binary sequences of
length of N . In particular, AT

i is the ith binary sequence in
some arbitrarily chosen ordering of f0; 1gN . The sum in (9)
can therefore be rewritten as

X2N
i¼1

mðAT
i Þ expðhAT

i ; C
T��iÞ: (11)

This expression equals Em exphCT��;XXi
 �
with Em½hðXXÞ�

denoting the expected value of the random variable hðXXÞ,
where XX has probability distribution m [47, Definition 1
p.141]. This expectation is simply the moment generating
function (MGF) MXX of XX evaluated at CT��. By assumption,
XX ¼ ðX1; . . . ; XNÞ where the Xi are independent Bernoulli
random variables. Therefore, using [47, Theorem 5 p.155],
the MGF in (11) can be written as

YN
i¼1

MXi
ðCT

i ��Þ: (12)

The MGF of a Bernoulli random variable is made explicit in
[47, Section 5.2.2 p.180]. Hence (12) is equivalent to

YN
i¼1
ð1� ri þ ri expðCT

i ��ÞÞ;

where ri is the probability that the ith bar in xx is white.
Replacing the sum in (8) with this product yields the follow-
ing expression for the conjugate of the Kullback-Leibler
divergence:

K �ðMT��;mÞ ¼
XN
i¼1

log 1� ri þ ri expðCT
i ��Þ

� �
: (13)

This expression is easily evaluated given some ��. Using this
form for K � renders the dual problem (9) tractable via stan-
dard numerical optimization algorithms. However, we
recall that �pp 2 D2N , hence determining an expression for �pp is
infeasible regardless of the fact that we can solve the dual
problem. We opt therefore to recover the original image
directly from ���.

2.1.3 Determining the Original Image from the Argmax

of the Dual Problem

In the following we seek to compute the expectation of (10)
which serves as the estimate of the original image. Perform-
ing this calculation naively leads to (14) which includes the
large matrix M. Thus we use the probabilistic argument of
the previous section to derive an analogous expression (15)
which can be computed explicitly.

Given an optimal solution �pp of the primal problem (4),
we can recover an estimate of the original image xx via
�xx ¼ A�pp. We refer to �xx as an estimate of xx, as the penalty
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function (2) does not guarantee that C�xx ¼ bb. Using our
expression from (10), we can write

�xx ¼ ArK �ðMT ���;mÞ:
We first writerK �ðMT ���;mÞ componentwise yielding

rK �ðMT ���;mÞ
 �
k
¼

mk expðMT
k
���ÞP2N

i¼1 mi expðMT
i
���Þ

for k 2 I;

0 otherwise;

8<
:

such that �xx can be written componentwise by multiplying
the previous expression by A, i.e.

�xk ¼
P2N

i¼1 akimi expðMT
i
���ÞP2N

i¼1 mi expðMT
i
���Þ

: (14)

Here aij is the value in the ith row of the jth column of A.
We now consider

r log
X2N
i¼1

mi exphAT
i ; 
 i

 !
;

the kth component of which is simply

P2N

i¼1 akimi exphAT
i ; 
 iP2N

i¼1 mi exphAT
i ; 
 i

:

Evaluating this expression at the point CT ��� demonstrates
that it is equivalent to (14) (since M ¼ CA) with the advan-
tage that we can simplify it using the same probabilistic
argument that was derived previously. Thus, xx can be esti-
mated whilst bypassing the matrix A via

�xx ¼ r
XN
i¼1

log ð1� ri þ ri expðCT
i
���ÞÞ: (15)

Consequently, once the argmax of the dual problem has
been determined we can estimate the original image dir-
ectly, without determining A or the PMF �pp.

Each step of the image estimation has now been made
computationally tractable.

2.1.4 A Summary of the Steps for Image Estimation

The previous developments can be summarized in the fol-
lowing procedure for deblurring an image for which the
convolution kernel is known or approximated.

First, a prior m must be formed. This prior will assign a
probability of being white to each bar, so encoding the sym-
bolic constraints of the barcode of interest into the prior will
ensure that the solution to (4) is at least correct on these bars.
Other types of priors and a more detailed discussion of the
construction of this symbolic prior is found in the results
section.

Next, the dual problem (9) with the expression for the
conjugate of the Kullback-Leibler divergence given in (13) is
solved. This step can be performed efficiently by standard
optimization software. Our choice of algorithm is discussed
in the results section.

Finally, an estimate of the initial image is determined via
(15). The resulting image will not be identical to xx due to

rounding errors and the choice of tolerance in the optimiza-
tion algorithm.

We choose to subsequently perform a thresholding step to
guarantee that all of the segments of the barcode are either 0 or
1. This step ensures that the barcode will be readable if it was
accurately deblurred and thus the information encoded in the
original image can be extracted if ourmethod has succeeded.

2.2 The Kernel Estimation

We now focus on solving (5), keeping in mind that it shares a
similar paradigm to (4). Again, since the convolution is linear
and discrete, cc � UApp can be written as Xcc. We enforce that
cc 2 RNm, as the convolution kernel should not be larger than
the size of the image. Thus, X 2 R95m�95m such that (5) can
be solved directly as a constrained minimization problem,
since it is not as high-dimensional a problem as (4). However
mimicking the previous foray into Fenchel-Rockafellar
duality will yield a simpler unconstrained analogue to this
primal problem.

2.2.1 Advantages of the Dual Formulation

The dual problem to (5) is nearly identical to (9), hence we
simply state the dual problemusing the same duality scheme

sup�� hbb; ��i � 1
2b ��k k2�K �ðXT��; nÞ

n o
: (16)

The same argument used to show that (4) and (9) share the
same optimal value and that this solution is attained in both
problems implies that (5) and (16) satisfy the same property.
Consequently, the argmin �cc of (5) is given by

�cc ¼ r log
X95m
i¼1

ni expðXT
i ð
ÞÞ

 ! !
ð���Þ; (17)

in the same vein as (10). Here, ��� denotes the argmax of the
unconstrained dual problem.

Regularizing problem (5) via a Kullback-Leibler diver-
gence term guarantees that the optimal kernel estimate �cc is
nonnegative and that its elements sum to 1 as explained.
This property is characteristic of any normalized blur kernel
which is precisely the type of PSF that occurs in image acqui-
sition. Moreover, n is used to limit the size of the considered
kernel by setting all but a square of the desiredwidth centred
at themiddle of its matrix representation to 0 and setting uni-
form values summing to 1 in this square. Hence, adopting a
coarse-to-fine approach as in [18], [48] is analogous to simply
increasing the size of the kernel being considered at each
stepwhich can be accomplished by varying n.

2.3 The Algorithm

We summarize the development of the prior probability dis-
tributions and outline an algorithm that implements our
blind deblurring method.

Barcode symbologies impose constraints which typically
fix certain segments of an image. We outline a method to
generate a prior which captures these constraints. Recall
that we have modeled a barcode by a vector of N inde-
pendent Bernoulli random variables. The distribution of a
Bernoulli random variable is completely determined by a
single parameter r. As a barcode is a vector of independent
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Bernoulli random variables, its distribution is determined
by N parameters ri as in Eq. (13) above, where each ri rep-
resents the probability that the ith bar in a barcode is white.
This suggests that a natural prior distribution m has the fol-
lowing probability mass function

mðxxÞ ¼
YN
i¼1

r
xi
i ð1� riÞ1�xi ;

where xi is the ith bar of xx. We let ri ¼ 0 if the ith bar is fixed
as black by the barcode symbology, ri ¼ 1 if the ith bar is
fixed aswhite, and ri ¼ 1

2 if the ith bar is not fixed by the sym-
bology. (This choice reflects our lack of prior knowledge of
the state of the ith bar when it is not fixed by a symbology.)

The algorithm is summarized with references to the rele-
vant equations in Algorithm 1. The algorithm features two
loops. The outer loop iterates through a set of fixed widths
for our kernel estimate. The inner loop repeatedly solves
problems (4) and (5).

We begin by setting i ¼ 1 and hence initially assume that
the size of the convolution kernel is 2iþ 1 ¼ 3. We take our
initial best guess of the true barcode to be the image which is
black or white in regions which are fixed as such by the rele-
vant barcode symbology, and gray in all other regions. (See
the lower image in Fig. 1 for an example of such an initial
guess for UPC barcodes.) We substitute this image for A�pp in
the kernel estimation step (5), solve its dual problem (16),
and then compute (17) to obtain our initial estimate �cc of the
true convolution kernel. We then use this estimate �cc to solve
the image estimation problem (4) via the methods outlined
in the previous sections and obtain a first estimate �xx of the
true barcode.

This estimated barcode is subsequently read by a soft-
ware barcode scanner. If the barcode is readable, the algo-
rithm terminates successfully. If the algorithm does not
terminate after the first iteration of the inner loop, we con-
tinue to iterate through the alternating kernel estimation
and image estimation steps, each time substituting our
image estimate for A�pp in the kernel estimation step, and our
subsequent kernel estimate for cc in the image estimation
step. This yields progressive improvements in the estimates
of the convolution kernel and the image.

Algorithm 1. Entropic Blind Deblurring

Input: Blurred image bb, prior m
for i ¼ 1 to (width of bbÞ=2, do
�xx m

width ð2iþ 1Þ
for j ¼ 1 to 5 do
�cc ð17Þ at argmax of (16) with size width
C  �ccwritten as a convolution matrix
�xx ð15Þ at argmax of (9) using expression (13)
threshold �xx
if �xx is readable then
return �xx

end if
end for

end for
return �xx

Output: approximated image �xx

If the barcode is still not readable after a fixed number of
iterations (5 in our implementation), we infer that the initial
width 2iþ 1 of the estimated convolution kernel was too
small.We therefore increment i and iterate through the inner
loop once again. We iterate through the outer loop until the
width of the convolution kernel reaches that of the image. If
the barcode is still not readable at this point, the algorithm
terminates unsuccessfully.

We have therefore set up a framework that permits blind
deblurring for both QR and UPC-A barcodes that effectively
utilizes prior knowledge of their respective structure.

3 RESULTS

In the following, we will discuss some of the results obtained
while testing ourmethod.Wewill refer to graphs in the online
supplementarymaterial,which canbe found on theComputer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2019.2927311, for more details of our
experiments. First, we explain themethodology used to gener-
ate all of the relevant quantities used for testing.

3.1 Implementation Details

We began by generating barcodes in both the UPC-A andQR
symbologies. In the case of UPC-A barcodes, we considered
200000 valid barcodes from the Open Product Data database
[36]. In the case of QR codes, we chose various phrases to
encode and used an online QR code generator to get the rele-
vant images. Each phrase was encoded in all four levels of
error tolerance supported by the symbology, namely low
(7 percent tolerance), medium (15 percent tolerance), quartile
(25 percent tolerance) and high (30 percent tolerance) as
explained in [42].

In order to blur images synthetically, normalized PSFs
were generated. For Gaussian convolution kernels, this pro-
cess is straightforward in both the 1D and 2D cases, as for a
PSF of width k one need only sample a 1D or 2D Gaussian
function with mean 0 at k points on an interval centred at 0.
For box blurs in the 1D case, we simply initialize all k points
of the PSF to the value 1

k. For linear motion blurs in the 2D
case, the motion blur is simply a line through the centre of
the kernel at a prescribed angle. Examples of these kernels
are compiled in Fig. 2.

Moreover, general motion blur kernels such as those in
[30] were tested on QR codes, yielding adequate results on
barcodes of a reasonable size relative to the kernel as dem-
onstrated in Fig. 3 (other examples are presented in Fig.
Sup. 1 of the supplementary material, available online). In
what follows we concentrate on Gaussian and linear motion
blur as their testing can be readily automated.

Fig. 2. A graphical depiction of the types of kernel used with width 5. The
left kernel generates Gaussian blur and the right one generates linear
motion blur at an angle of p4. Note that they are normalized such that the
intensity values sum to 1.
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The barcodes are upscaled prior to convolution in order
to access a greater range of blurring magnitudes. Indeed,
even blur kernels of width 3 (the smallest tested) produce
dramatic quantities of blur when one bar is the size of one
pixel as demonstrated in Fig. 4. Thus, upscaling allows us to
consider more realistic levels of blurring.

In preliminary testing, the PSF was turned into a convolu-
tionmatrixC by examining the result of the discrete convolu-
tion as demonstrated in [17, Fig. 4.7] and inferring a matrix
that performs the same operation. A similar method was
used to determine the matrix X in (16). We worked with the
0 boundary conditions in the formation of these matrices, as
it is simpler to construct the convolution matrix in this case.
In reality the barcode is encased in a white quiet zone so one
can simply invert the colours of the captured signal such that
the 0 boundary condition in the inverted image is equivalent
to a 1 boundary condition in the original. Hence, in a real
image, the 0 boundary condition would be sufficient, as the
barcode would not be convolved with data outside this quiet
zone for blur kernels of a reasonable size.

Thereafter, the convolutions were performed by means
of the fftconvolve method from the scipy python library
[15]. The advantage to this approach is that it is both faster
and less memory intensive than forming the convolution
matrix and storing it in memory. We make precise that the
Hermitian adjoint of the discrete convolution operator is
obtained by performing a discrete convolution with one of
the arrays reversed about its axes as discussed in [9, Section
5.1.1]. Hence, passing from the matrix methodology to this
one is akin to replacing the transposed matrices in the dual
problems and the recovery of the solutions to the primal
problems by the adjoint of the corresponding convolution.

We employ a downscaling step once we have estimated
our image by averaging together the blocks of pixels that cor-
respond to one pixel once upscaled. We subsequently round
the pixel intensities to the nearest integer as discussed

previously. The utility of this step is highlighted in Fig. 5.
The critical task of decoding the QR estimate is delegated to
the Zbar Python implementation provided by [57] which
permits automation for checking readability of the iterates
during testing. Hence, if a barcode is readable post thresh-
olding, we terminate the algorithm and return the data
which has been decoded. We use both Zbar and various
smartphone applications in order to compare the perfor-
mance of our algorithm to state of the art QR code scanners.

We equally examine how our method performs in the
presence of noise. We consider both additive Gaussian and
salt and pepper noise throughout, as they are the most com-
mon in practice (cf. Fig. 6). To generate Gaussian noise, we
generate a matrix of the same size as the image to which
each pixel is associated a random sample from a normal dis-
tribution with prescribed variance and simply add both
matrices to add noise to the image. Similarly, to generate
salt and pepper noise of a given percentage, we generate at
each pixel a random real number between 0 and 1. If this
number is higher than our prescribed percentage, we add
nothing to the image. If it is lower, we randomly choose
between 0 or 1; if 0 is selected, the pixel is made black in the
image, if 1 is selected, it is made white. Visuals are provided
below to better illustrate the magnitude and types of noise.

All that remains before our algorithm can be tested is to
make explicit how the various priors are generated in the dif-
ferent symbologies. Without considering the intricacies of
the various encoding schemes, it is possible to form a uni-
form prior in which every bar is given a probability of 0.5 of
being white. It is obvious that such a prior will not perform
as well as a symbolic one which encodes all of the fixedmod-
ules within a symbology and assigns a uniform probability
of 0.5 to the bars that have not been fixed. Note that QR codes
have varying sizes, thus a prior must be generated for the
various sizes. In the UPC-A case, a third prior was equally
constructed in which our library of more than 200000UPC-A
barcodes was analyzed and each bar was given a probability
reflecting the percentage of barcodes of the library having

Fig. 4. The image on the left presents a QR code which has not been
upscaled prior to being blurred by a 3x3 Gaussian blur kernel. Note that
this magnitude of blur is rather large, hence the need for upscaling the
image prior to convolution. The right hand side is the result we obtain
upon applying our blind deblurring algorithm with a symbolic prior. The
right hand QR code can be read by any conventional QR code reader.

Fig. 3. The leftmost image is a general motion blur kernel. The center
image is the corresponding blurred QR code. The rightmost image,
which is readable, is the result obtained by applying our method. The
kernel was normalized such that its intensity values summed to 1 prior to
blurring and the QR code was upscaled by a factor of 3. The size of the
barcode image is 111�111 pixels and the size of the kernel is 19�19.

Fig. 5. This figure demonstrates the utility of the thresholding step. The
left hand side is the deblurred image prior to the downscaling and round-
ing. The original image was subjected to linear motion blur with large ker-
nel size at an angle of � p

4. Note that some degree of distortion along a
diagonal axis remains prior to thresholding and downscaling. The right
side displays the barcode post-thresholding; it is readable.

Fig. 6. A demonstration of types and magnitudes of noise tested. The
leftmost image represents the noiseless case, the centre-left image
depicts 1 percent salt and pepper noise, the centre-right image is 0.01
variance Gaussian noise and the rightmost image is 0.05 variance
Gaussian noise.
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that bar white, this prior is referred to as empirical. Testing
for UPC-A barcodes was performed first and it was deemed
that the symbolic and empirical priors yield similar perfor-
mance. As no tangible performance improvements were
expected, we did not construct an empirical prior for
QR codes.

With this framework in place to generate blurred and
noisy barcodes, we are ready to test the performance of our
method.

3.2 Non-Blind Deblurring

As mentioned previously, non-blind deblurring can be done
by performing the image estimate step with the exact kernel
cc known. We wish to determine the performance of our
method for this step and examine the effects of prior choice.
Moreover, we wish to quantify the flexibility of our method
with respect to the presence of noise in the acquired image.

3.2.1 Non-Blind Deblurring for UPC-A Barcodes

In order to gauge the performance of this method for non-
blind deblurring of 1D barcodes, we begin by observing its
noiseless performance.

We do so by choosing 5 random barcodes, upscaling them
by a factor of 5 and blurring them with progressively larger
blur kernels until the barcode was no longer successfully
readable when using the method. We repeat this process for
every prior as well as with both Gaussian and box blurs. The
results of the five barcodes are then averaged in order to pro-
vide a general idea of the non-blind, noiseless performance.
We set a ¼ 1000000 in order to give great importance to the
error term thus incentivizing the proximity of CEpp½xx� to bb.
The results of this test are shown in Table 1.

We note that the empirical prior outperforms the sym-
bolic prior in the case of box blur specifically and that they
both outperform the uniform prior by a significant margin.
Clearly, the structure encoded in the non-uniform priors
account for their superior performance. Moreover, despite
the assumption that the empirical prior should encode
some form of correlation between the various bars, it per-
forms essentially identically to the symbolic prior. There-
fore, the intrinsic symbology of the barcode appears to take
precedence over any additional structure gained by a statis-
tical learning approach. Finally, the blur widths at which
these priors first fail are so large that they would not occur
in real life applications, this is a testament to the strength of

our method in the case of noiseless image acquisition for
UPC-A barcodes.

As for the performance of this method as it pertains to a
noisy image acquisition process, we determine a cutoff vari-
ance for Gaussian noise for various blur widths before
which we can read all of the blurred and noisy barcodes
generated. Again, we pick 5 random barcodes and begin by
blurring with blur width 3 Gaussian noise. Next, we itera-
tively increase the variance of the additive Gaussian noise
that is added to the image until we first fail to successfully
deblur the barcode. We then increase the blur width by 2
and repeat this procedure until we reach a width such that
even the lowest variance noise (0.005) cannot be read. At
this point, we repeat the entire process with a box blur.

We note that salt and pepper noise was not tested for the
UPC-A symbology, as in our one-dimensional formulation,
this type of noise is equivalent to changing the color of the
entire bar. In practical applications this noise would only
effect a segment of a bar which our model is not designed to
account for.

In these tests, a ¼ 1000 in order to account for the fact that
bb will not be in the range of C. These tests are performed
with the three different priors and the results are compiled
in Fig. Sup. 2 of the supplementary material, available
online. We note again that the symbolic and empirical priors
outperform the uniform prior by a significant margin for
larger blur widths.

We note again that the symbolic and empirical priors out-
perform the uniform prior by a significant margin for larger
blur widths.

3.2.2 Non-Blind Deblurring for QR Codes

We test our method for QR codes by picking five of the
encoded messages and determining the blur width at which
our method first fails to recover the information contained in
the QR code. The barcodes are upscaled by a factor of 3 in
order to consider a greater range of blurring kernels.We pro-
ceed similarly to the UPC-A testing, however, rather than
considering different types of priors, we compare the differ-
ent levels of error tolerance and use only a symbolic prior.
We equally compare our method to the ZBar algorithm by
attempting to read the blurred barcode prior to deblurring it.
If it fails to read, we deblur the barcode using our method
and verify if the image is now readable. Throughout these

TABLE 1
This Table Compares the Performance
of the Various Priors in the Presence

of Both Types of Noise

Prior
Type of
Blur

Cut-off
Width

Uniform
Gaussian 173.0

Box 129.8

Symbolic
Gaussian 259.8

Box 210.6

Empirical
Gaussian 259.4

Box 259.4

The cut off width is the width of the kernel at which the
method first fails.

TABLE 2
This Table Compares the Performance of the Various Error

Tolerances in QRCodes in the Presence of Different Types of
Blur

Error
Tolerance

Type of
Blur

Cut-off Width
(ZBar)

Cut-off Width
(Ours)

Low
Gaussian 5.0 29.4
Motion 6.6 30.6

Medium
Gaussian 5.4 32.2
Motion 7.0 37.8

Quartile
Gaussian 5.4 33.8
Motion 7.0 50.2

High
Gaussian 5.8 35.4
Motion 7.0 65.8

The cut off width is the width of the kernel for which the method first fails.
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tests, we set a ¼ 10000000 in order to enforce the constraint
on the mean. The averaged results of this testing are shown
in Table 2.

We note in particular that the algorithm performs notice-
ably better in the presence of motion blur as compared to
Gaussian blur. Letting l denote the width of the blur, motion
blur kernels yield convolutions such that the value at one
point is determined by the values of l points, whereas in the
Gaussian case, l2 points are considered. Hence, Gaussian
blurs producemore dramatic blurring for the same size of ker-
nel, so this observation is reasonable. The various error toler-
ances perform as expected, with the low tolerance performing
the worst and the high tolerance performing the best. We
note, moreover, that with every error tolerance, we are able to
successfully recover images that are blurred far beyond what
can be considered normal for real life applications.

In order to gauge the effects of additive noise on this
method, we again approach the problem in a similar fashion
to the 1-dimensional problem. The effects of salt and pepper
noise can now be studied, as QR codes include a degree of
error correction. Hence, even if the noise does not permit us
to reconstruct the same QR code as the original, the
deblurred image may still be read. We compile our results
in Fig. Sup. 3 of the supplementary material, available
online, here awas set at 750 to promote flexibility.

We note that, as expected, our method is more robust to
Gaussian noise as it is less dramatic, changing the value of
almost every module by a small amount as opposed to salt
and pepper noise which makes a certain number of modules

black or white. In comparing the various error tolerances, it
is clear that the low level performs much worse than the
others which perform almost identically. Regardless, the
amounts of noise considered are far larger than those that
would occur in realistic applications hence, this method
performs adequately for reasonable noise levels.

Finally, the method employed by ZBar performs excep-
tionally well for very small quantities of blur. However our
method greatly outperforms it for every blur width other
than the smallest one.

3.3 Blind Deblurring

We now test the performance of our method as it pertains to
the problem of blind deblurring.

3.3.1 Blind Deblurring for UPC-A Barcodes

We wish to quantify the performance of our blind deblur-
ring method in the presence of additive noise at various
blur widths. We employ an identical series of tests to those
used in the non-blind case. The only difference is that we
utilize our non-blind method to deblur the resulting images.
The noiseless results are shown in Table 3.

Comparing these results to those obtained with the non-
blind method reveals, unsurprisingly, that the blind method
is not as robust to the size of the blur width. This is to be
expected, as the blur kernel is being estimated rather than
provided. However, we note that these results are certainly
adequate for real life conditions.

We equally examine the case in which noise is present in
the image acquisition process by performing tests identical to
those used in the non-blind section. The results are compiled
in Fig. Sup. 4 of the supplementarymaterial, available online.

We note that the symbolic and empirical priors perform
nearly identically. Notably, they greatly outperform their
uniform counterpart. Moreover, this blind method actually
appears to outperform the non-blind method. This slight
improvement may be due to the fact that the non-blind
method enforces the use of the original convolution kernel
of which bb is often not in the range of. The blind deblurring
method offers greater flexibility in terms of the convolution
kernel and hence with the thresholding step we employ, it
is conceivable that performance is improved.

3.3.2 Blind Deblurring for QR Barcodes

In the noiseless case, we employ the same tests as we did in
non-blind deblurring. The results are shown in Table 4.

As expected, the results of this method are not as good as
those obtained with its non-blind analogue. They are how-
ever acceptable for real world image acquisition.

TABLE 3
This Table Compiles the Blur Widths at Which Our

Method First Fails to Recover the Information
Contained in the UPCA Barcode When Using

the Blind Deblurring Method

Prior
Type of
Blur

Cut off
Width

Uniform
Gaussian 19.4

Box 19.0

Symbolic
Gaussian 76.6

Box 75.0

Empirical
Gaussian 74.2

Box 89.0

TABLE 4
This Table Compares the Performance of the Various Error

Tolerances inQRCodes in the Presence of Different Types of Blur

Error
Tolerance

Type of
Blur

Cut-off Width
(ZBar)

Cut-off Width
(Ours)

Low
Gaussian 5.0 9.0
Motion 6.6 25.0

Medium
Gaussian 5.0 10.2
Motion 7.0 27.0

Quartile
Gaussian 5.4 10.2
Motion 7.0 33.8

High
Gaussian 5.8 10.6
Motion 7.0 31.8

The cut off width is the width of the kernel for which this blind method first
fails.

Fig. 7. This figure demonstrates the strength of our method even in the
case where very large Gaussian blur is present. The right hand side is
the result we obtain upon applying our blind deblurring algorithm with a
symbolic prior. The right hand QR code can be read by any conventional
QR code reader.
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We equally perform the same tests as those considered in
the non-blind case and compile the results in Fig. Sup. 5 of
the supplementary material, available online.

The various levels of error tolerance perform as expected
and we note that the flexibility with respect to both the
Gaussian and salt and pepper noise is considerable, as they
greatly surpass what could be considered reasonable at low
widths of blur.

3.4 Possible Improvements

Given that our aim throughout was to explain our method
and demonstrate the power of symbology in barcode recon-
struction, we did not explore some avenues for improving
it. We list some improvements for those who wish to imple-
ment them. First, we did not attempt to optimize solving
either of the dual problems of interest, opting rather to
implement the stock l-bfgs algorithm from the scipy pack-
age [56]. A further analysis of these two problems could
yield a tailor-made approach to solving these problems that
outperforms our current approach. This modification could
significantly improve the run time of the algorithm, but
would not likely improve its accuracy in terms of reproduc-
ing the original barcode.

Next, our preliminary tests were performed in the
Python programming language using the Jupyter Notebook
application as well as in the Matlab computing environ-
ment. All final testing was performed in Python, which is
known to be slower than C/C++ especially as speed was
not the main consideration when the code was written, as
explained in [40]. One could conceivably decrease runtimes
in a significant fashion by rewriting the code in a different
language or simply by optimizing the code already written.

Moreover, the parameters a and b used during testing
were determined empirically during testing. A more
detailed analysis of these parameters may prove fruitful in
enhancing the performance of this method depending on
the context in which it is used.

Furthermore, recall the algorithm terminates either when
the approximate barcode has been read or when the itera-
tions terminate. Thus, no supplementary processing is per-
formed on the intermediate approximations of the image
before attempting to read them. In the case of UPC-A barco-
des, we are simply verifying each segment against a dictio-
nary of digits, hence if even a single bar fails the entire
barcode will fail to read and the algorithm will continue to
run. It would be possible to implement a method that would
attempt to correct errors in the barcode prior to the reading
step which could improve performance. Moreover, deter-
mining optimal values for the number of iterations to per-
form and verifying if one could increase the size of the
blurring kernel quicker could significantly reduce runtime.

4 CONCLUSION AND REAL WORLD APPLICATIONS

Throughout this article, our focus has been on developing
and testing a novel entropy-based method to solve a diffi-
cult ill-posed problem: blind and non-blind barcode deblur-
ring of barcodes. The strength of our method is that it
efficiently exploits the symbology innate to barcodes. Our
results were tested on simulated images with moderate
amounts of noise and large amounts of blurring. Moreover,
many barcode reading software packages were considered.
A natural question is to what extend our method can be
used for real life camera images, i.e., industrial applications.
Such applications are in no way immediate from our current
set up. Note that our method depends heavily on the sym-
bology and it is assumed that the scaling is uniform
throughout the image; thus any implementation would
require a significant amount of preprocessing to obtain data
to which our algorithm can be directly applied. This depen-
dence on symbology suggests that our method is ill-suited

Fig. 8. This figure presents a blurred image on the left hand side. The
blurring is a linear motion blur of kernel size 9 with angle � p

4 which has
been performed on a 29� 29 pixel QR code upscaled to 87� 87 pixels.
The right hand side is the result we obtain upon applying our blind
deblurring algorithm with a symbolic prior. The right hand QR code can
be read by any conventional QR code reader.

Fig. 9. On the left, a QR code with an upscaling factor of 3, subject to
width 11 motion blur at an angle of p4 with 1 percent salt and pepper noise
is presented. The right hand side is the result we obtain upon applying
our blind deblurring algorithm with a symbolic prior. The right hand QR
code can be read by any conventional QR code reader.

Fig. 10. On the left, a QR code with an upscaling factor of 3, subject to
width 7 Gaussian blur with 0.05 variance Gaussian noise is presented.
The right hand side is the result we obtain upon applying our blind
deblurring algorithm with a symbolic prior. The right hand QR code can
be read by any conventional QR code reader.

Fig. 11. Out of focus image of a QR code.
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for situations where the blur is not uniform. While the gen-
eral details of such preprocessing are beyond the scope of
this article, we include, as proof of concept for the applica-
bility of this method to real life situations, one example in
Fig. 11. Here, we present a picture of a barcode with signifi-
cant out of focus blur. Zbar and our smart phones are
unable to read this picture. Fig. 12 is the readable barcode
obtained by applying our method after isolating the barcode
from the image. As explained in Section 3.1, the boundary
conditions were accounted for by inverting the colours of
the signal before the method was applied.
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