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We prove that both the liquid drop model in R3 with an attractive background nucleus
and the Thomas-Fermi-Dirac-von Weizsäcker (TFDW) model attain their ground-
states for all masses as long as the external potential V (x) in these models is of
long range, that is, it decays slower than Newtonian (e.g., V (x)� |x |−1 for large |x|.)
For the TFDW model, we adapt classical concentration-compactness arguments by
Lions, whereas for the liquid drop model with background attraction, we utilize a
recent compactness result for sets of finite perimeter by Frank and Lieb. Published by
AIP Publishing. https://doi.org/10.1063/1.4999495

I. INTRODUCTION

In this note, we consider ground-states of two mass-constrained variational problems containing
an external attractive potential to the origin which is super-Newtonian at long ranges. The first problem
consists of a variant of Gamow’s liquid drop problem1–3 perturbed by an attractive background
potential V (x), with long range decay, in the sense that V (x)� |x |−1 for large |x|. The second problem
is a variant of the Thomas-Fermi-Dirac-von Weizsäcker (TFDW) functional, again subject to an
external attractive potential V (x) which is “super-Newtonian.”

Let us first state the two problems precisely. The variant of the liquid drop problem is given
by

eV (M) B inf

{
EV (u) : u ∈ BV (R3; {0, 1}),

∫
R3

u dx =M

}
, (LD)

where the energy functional EV is defined as

EV (u)B
∫
R3
|∇u| +

∫
R3

∫
R3

u(x)u(y)
|x − y|

dxdy −
∫
R3

V (x)u(x) dx. (1)

Here the first term in EV computes the total variation of the function u, i.e.,∫
R3
|∇u| = sup

{∫
R3

u div φ dx : φ ∈C1
0 (R3;R3), |φ| 6 1

}
and is equal to PerR3 ({x ∈R3 : u(x)= 1}) since u takes on only the values 0 and 1.

The variant of the TFDW problem we consider here is to find

IV (M) B inf

{
EV (u) : u ∈H1(R3),

∫
R3
|u|2 dx =M

}
, (TFDW)
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where

EV (u)B
∫
R3

(
|∇u|2 + |u|10/3 − |u|8/3 − V (x)|u|2

)
dx +

1
2

∫
R3

∫
R3

|u(x)|2 |u(y)|2

|x − y|
dxdy. (2)

In the original TFDW problem (see the works of Benguria, Brézis, Lieb,4 Le Bris, Lions,5 and
Lieb6 for detailed surveys on this classical theory), the potential is taken to be

VZ (x)B
Z
|x |

,

simulating an attracting point charge at the origin with charge Z. With this physical choice of potential,
both the liquid drop and TFDW problems have been shown to exhibit existence for small M and
nonexistence for large M. In particular, for the liquid drop model, it has recently been shown by Lu
and Otto, and by Frank, Nam, and van den Bosch that

� (nonexistence, Theorem 1.4 of Frank, Nam, and van den Bosch7) if EVZ has a minimizer, then
M 6min{2Z + 8, Z + CZ1/3 + 8} for some C > 0; and

� (existence, Theorem 2 of Lu and Otto8) there exists a constant c > 0 so that for M 6 Z + c, the
unique minimizer of EVZ is given by the ball χB(0,R),

where R = (M/ω3)1/3 and ω3 denotes the volume of the unit ball in R3. Similar (and older) existence
results hold for the TFDW problem. The existence of solutions to the classical TFDW problem was
established by Lions9 for M 6 Z and extended to M 6 Z + c for some constant c > 0 by Le Bris.10 The
nonexistence of ground-states for large values of M (or small values of Z) is only recently proved
by Frank, Nam, and van den Bosch.7,11 In a separate paper, Nam and van den Bosch11 also consider
more general external potentials which are short-ranged, i.e., lim |x |→∞ |x |V (x)= 0. Motivated by
their result, here we look at the complementary case, in which the external potential is asymptotically
larger than Newtonian at infinity.

These functionals can be viewed as mathematical paradigms for the existence and nonexistence
of coherent structures based upon a mass parameter. Since both problems are driven by a repulsive
potential of Coulombic (Newtonian) type, it is natural to expect that if the confining external potential
V was even slightly stronger (at long ranges) than Newtonian, global existence would be restored for
all masses. In this note, we prove that this is indeed the case.

For the liquid drop problem eV , we consider the external potentials V which satisfy the following
hypotheses:

(H1) V > 0 and V ∈ L1
loc(R3).

(H2) lim
t→∞

t

(
inf
|x |=t

V (x)

)
=∞.

(H3) lim
|x |→∞

V (x)= 0.

On the other hand, to ensure that the energy EV is bounded below, we assume that V satisfies

(H1′) V > 0 and V ∈ L3/2(R3) + L∞(R3),

instead of (H1), along with (H2) and (H3). Hypothesis (H2) implies that these potentials are long-
ranged but only slightly more attractive than Newtonian. A typical example of such an external
potential is

V (x)=
1

|x |1−ε

for 0 < ε < 1 or a linear combination of functions of this form. Although these potentials have only
slightly longer range than |x|�1, this is sufficient to ensure the existence of ground-states for the
modified liquid drop and TFDW problems, eV and IV , for all M > 0.

Theorem 1 (Liquid drop model). Suppose V satisfies (H1)–(H3), then for any M > 0, the problem
eV (M) given by (LD) has a solution.
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Theorem 2 (TFDW model). Suppose V satisfies (H1′), (H2), and (H3), then for any M > 0, the
problem IV (M) given by (TFDW) has a solution.

Remark 3. While we do obtain the existence of ground-states for all masses M, we do not expect
that the attractive potential V stabilizes the single droplet solution χB(0,(M/ω3))1/3 for large values of
M. Rather, we expect that mass splitting does indeed occur (as it does for the unperturbed liquid drop
problem3,12,13), but the resulting components are confined by the external potential V and cannot
escape to infinity. This expectation is reflected in our approach to the proof of the two theorems
above.

While the mathematical motivations for these results are clear, let us now comment on the
physicality of the long-range super-Newtonian attraction. For the quantum TFDW model, we do
not know of any physical situation which would support an “exterior” potential producing super-
Newtonian attraction. However we note that these functionals, in particular, the liquid drop energy,
can be used as phenomenological models for charged or gravitating masses at all length scales.
Consideration of super-Newtonian forces appears in several theories at the cosmological level, and
in fact, the validity of Newton’s law at long distances has been a longstanding interest in physics.
As Finzi notes,14 for example, stability of cluster of galaxies implies stronger attractive forces at
long distances than that predicted by Newton’s law. Motivated by similar observations, Milgrom15

introduced the modified Newtonian dynamics (MOND) theory which suggests that the gravitational
force experienced by a star in the outer regions of a galaxy must be stronger than Newton’s law (see
also works of Bugg16 and Milgrom17 for a survey, and Bekenstein’s work18).

A. Outline of the paper

The proofs of Theorems 1 and 2 follow the same basic strategy: to obtain a contradiction, we
assume that minimizing sequences lose compactness, and use concentration compactness techniques
to show that it is because of the splitting and dispersion of mass to infinity (“dichotomy”). For the
liquid drop model, we utilize a recent technical concentration-compactness result for sets of finite
perimeter by Frank and Lieb19 to prove a lower bound on the energy in case minimizing sequences
un lose compactness via splitting of the form

lim
n→∞

EV (un) > eV (m0) + e0(m1) + e0(M − m0 − m1), (3)

where 0 <mi <M with m0 + m1 6M. However, thanks to the super-Newtonian decay of V, we
then show that eV (M) actually lies strictly below the value given in (3). This is a variant on the
original “strict subadditivity” argument introduced by Lions9 for the classical TFDW model with
V (x) = |x|�1 and subsequently used in innumerable treatments of variational problems with loss of
compactness.

In Sec. III, we adapt recent arguments by Nam and van den Bosch11 along with estimates of
Lions9 and Le Bris10 to prove Theorem 2. Although the variational structure of TFDW is nearly
the same as the liquid drop model, the components are not compactly supported, so we require an
additional argument to verify that they decay sufficiently rapidly (in fact exponentially) in order to
calculate the interaction between components.

II. PROOF OF THEOREM 1

Our proof relies on a recent concentration-compactness type result for sets of finite perimeter
by Frank and Lieb.19 While similar compactness results are known and could be adapted here (for
example, the classical theory of Lions,20 and results for minimizing clusters which can be found in
Chap. 29 of Maggi21), the results of Frank and Lieb are particularly well-suited for our purposes.
Throughout the proof of Theorem 1, we specifically use Proposition 2.1 and Lemmas 2.2 and 2.3 of
Frank and Lieb.19



103503-4 Alama et al. J. Math. Phys. 58, 103503 (2017)

As noted in the Introduction, our goal is to obtain a splitting property (3) for eV (M) involving
the “minimization problem at infinity” e0 given by

e0(M) B inf

{
E0(u) : u ∈ BV (R3; {0, 1}), and

∫
R3

u dx =M

}
,

where

E0(u) B
∫
R3
|∇u| +

∫
R3

∫
R3

u(x)u(y)
|x − y|

dxdy.

We will also use the following simple weak compactness result for the confinement term, which
is convenient to state in general terms.

Lemma 4. Let An ⊂R3 be a sequence of sets with |An | 6M which converge to zero locally, i.e.,
χAn→ 0 in L1

loc(R3). Then ∫
An

V dx =
∫
R3

V χAn dx→ 0 as n→∞.

Proof. By hypothesis (H3), for any ε > 0, there exists R > 0 so that if V∞BV χBc
R
, then

0 6 V∞ < ε
3M . By (H1), on the other hand, we define V1BV χBR\EK , where EK = {x ∈ BR : 0 6 V (x)

6K } and K is chosen with ‖V1‖L1(R3) <
ε
3 . Finally, let V2BV χEK , which is supported in BR, and

satisfies ‖V2‖L∞(R3) 6K .
Now with these choices, we have a decomposition of V into V1 + V2 + V∞, depending on ε and

K. Using this decomposition

0 6
∫

An

V dx 6 ‖V1‖L1 + K |An ∩ BR | +
ε

3M
|An | <K |An ∩ BR | +

2ε
3
< ε ,

for all n large enough, since |An ∩ BR | → 0 as n→∞ by local convergence of the sets An. �

Proof of Theorem 1. First, by (H1) and (H3), we may write V =V χBR + V χBc
R
∈ L1 + L∞, where

R is chosen so that ‖V χBc
R
‖L∞(R3) 6 1. Then, for any u= χΩ with |Ω| =M,∫

R3
Vu dx 6 ‖V ‖L1(BR) + M,

hence, eV (M)>−∞. Now, let {un}n∈N ⊂ BV (R3; {0, 1}) with
∫
R3

un dx =M be a minimizing sequence

for the energy EV , i.e., limn→∞ EV (un)= eV (M). By the above estimate on the confinement term, the
minimizing sequence has uniformly bounded perimeter, ∫R3 |∇un | 6C independent of n. Define the
sets of finite perimeter Ωn ⊂R3 so that χΩn = un, and |Ωn | =M for all n ∈N.

Step 1. First, we set up our contradiction argument. By the compact embedding of BV (R3)
in L1

loc(R3) (see, e.g., Corollary 12.27 in Maggi21), there exists a subsequence and a set of finite
perimeter Ω0 ⊂R3 so that Ωn→Ω

0 locally, that is, un→ χΩ0 B w0 in L1
loc(R3). At this point, we

admit the possibility that w0 ≡ 0, i.e., |Ω0 | = 0. However, in Step 4, we show that w0 . 0.
If the limit set |Ω0 | =M, then we are done. Indeed, since {un}n∈N is locally convergent in L1,

a subsequence converges almost everywhere in R3. In addition, the norms converge, ‖un‖L1 =M
= ‖ χΩ0 ‖L1 , so by the Brézis-Lieb Lemma (see Theorem 1.9 in Lieb and Loss22), we may then
conclude that (along a subsequence) un→ w0 = χΩ0 in L1 norm. By the lower semicontinuity of the
perimeter (Proposition 4.29 in Maggi21) and of the interaction terms (Lemma 2.3 of Frank and Lieb19)∫

R3
|∇w0 | 6 lim inf

n→∞

∫
R3
|∇un |

∫
R3

∫
R3

w0(x)w0(y)
|x − y|

dxdy 6 lim inf
n→∞

∫
R3

∫
R3

un(x)un(y)
|x − y|

dxdy.

To pass to the limit in the confinement term, we apply Lemma 4 to the sequence un − w
0→ 0 in

L1(R3), and together with the above, we have

EV (w0) 6 lim inf
n→∞

EV (un).
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Therefore we conclude that w0 = χΩ0 attains the minimum value of EV , and the proof is complete.
To derive a contradiction, we now assume that m0B |Ω

0 | <M.

Step 2. Next, we show that the energy splits. First, assume that 0 < |Ω0 | <M. We apply Lemma
2.2 of Frank and Lieb19 (with xn = x0

n = 0): there exists rn > 0 such that the sets

U 0
n =Ωn ∩ Brn and V 0

n =Ωn ∩ (R3 \ Brn )

satisfy

χU0
n
→ χΩ0 in L1(R3), χV0

n
→ 0 in L1

loc(R3),

lim
n→∞
|U0

n | = |Ω
0 | =m0, PerΩ0 6 lim inf

n→∞
Per U 0

n ,

and lim
n→∞

(PerΩn − Per U 0
n − Per V0

n)= 0.

We now define w0
n (x)B χU0

n
(x), w0(x)B χΩ0 (x), Ω0

nBV0
n, and u0

n(x)B χΩ0
n
(x) so that un = w

0
n

+ u0
n = w

0 + u0
n + o(1) in L1(R3), and u0

n→ 0 in L1
loc. In particular, by Lemma 4,∫

R3
Vun dx =

∫
R3

Vw0 dx + o(1).

Using Lemma 2.3 in the work by Frank and Lieb,19 the nonlocal interaction term in EV splits in a
similar way as the perimeter,∫

R3

∫
R3

un(x) un(y)
|x − y|

dxdy=
∫
R3

∫
R3

w0
n (x) w0

n (y)
|x − y|

dxdy +
∫
R3

∫
R3

u0
n(x) u0

n(y)
|x − y|

dxdy + o(1)

=

∫
R3

∫
R3

w0(x) w0(y)
|x − y|

dxdy +
∫
R3

∫
R3

u0
n(x) u0

n(y)
|x − y|

dxdy + o(1),

and thus the energy splits, up to a small error,

EV (un)=EV (w0
n ) + E0(u0

n) + o(1) >EV (w0) + E0(u0
n) + o(1). (4)

In the case |Ω0 | = 0 (which we eliminate in Step 4 below), this splitting becomes trivial, with
w0 ≡ 0 and u0

n = un.

Step 3. Now we repeat the above procedure to locate a concentration set for the remainder u0
n.

We argue as above, but with u0
n replacing un, that is, the remainder set Ω0

n =V0
n replacing Ωn. We

know that u0
n = χΩ0

n
→ 0 locally in L1(R3), |Ω0

n | =M − m0 + o(1) ∈ (0, M], and EV (u0
n) (and hence

PerΩ0
n) are uniformly bounded. By Proposition 2.1 in the work by Frank and Lieb,19 there exists a

setΩ1 with 0 < |Ω1 | 6M −m0 and a sequence of translations xn ∈R3 such that for some subsequence
χΩ0

n−xn
→ χΩ1 in L1

loc(R3). Since χΩ0
n
→ 0 L1

loc(R3), we have that the translation points |xn | →∞ as

n→∞. Again, by Lemmas 2.2 and 2.3 of Frank and Lieb,19 and Lemma 4 as in Step 2, we similarly
obtain a disjoint decomposition Ω0

n − xn =U1
n ∪ V1

n, with χU1
n
→ χΩ1 in L1(R3), χV1

n
→ 0 in L1

loc(R3),
and for which the energy splits as in (4), namely,

EV (u0
n)=E0(u0

n) + o(1) >E0(w1) + E0(u1
n) + o(1),

where w1B χΩ1 , u1
n = χV1

n+xn
→ 0 in L1

loc(R3), and |V1
n | = |V0

n | −m1 + o(1). We denote the re-centered

remainder set Ω1
nBV1

n + xn so that u1
n(x)= χΩ1

n
(x). Combining with the previous step, we now have

EV (un) >EV (w0) + E0(w1) + E0(u1
n) + o(1) and M =m0 + m1 + |Ω1

n | + o(1).

This, combined with the continuity of e0 (see, e.g., Lemma 4.8 in the work of Knüpfer, Muratov, and
Novaga13) yields a lower bound estimate in case of splitting,

eV (M) > eV (m0) + e0(m1) + e0(M − m0 − m1). (5)

Step 4. We claim that w0 . 0. For a contradiction, assume w0 ≡ 0. Define a sequence by wn(x)
B un(x + xn) using the translation sequence found above. Then wn→ w1 in L1(R3) and wn − u0

n→ 0
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in L1
loc(R3). This implies, by Lemma 4, that limn→∞ ∫R3 V (wn − u0

n) dx = 0. Now this limit and the
translation invariance of the first two terms of EV yield

EV (wn) − EV (un)=−
∫
R3

V (wn − un) dx −→−
∫
R3

Vw1dx < 0,

hence, a contradiction.

Step 5. Now we prove that eV (m0)=EV (w0) and e0(m1)=E0(w1). By subadditivity (see Lemma
4 of Lu and Otto8 and Lemma 3 in their earlier work,12 or Step 5 below), we have a rough upper
bound estimate of the form

eV (M) 6 eV (m0) + e0(m1) + e0(M − m0 − m1).

Combined with (5), this yields

eV (m0) + e0(m1) + e0(M − m0 − m1) > eV (M)

>EV (w0) + E0(w1) + lim inf
n→∞

E0(u1
n)

> eV (m0) + e0(m1) + e0(M − m0 − m1).

Hence, (EV (w0) − eV (m0)
)

+
(EV (w1) − eV (m1)

)
+

(
lim inf

n→∞
E0(u1

n) − e0(M − m0 − m1)
)
= 0,

and since every term in this sum are nonnegative, we must conclude that

EV (w0)= eV (m0) and E0(w1)= e0(m1).

Step 6. Finally, we show, by means of an improved upper bound, that splitting leads to a con-
tradiction, and hence the minimum must be attained. It is here that we use the super-Newtonian
attraction hypothesis (H2). Since w0 = χΩ0 (x), w1 = χΩ1 (x) are minimizers of eV and e0 respectively,
by regularity of minimizers,3,8 we may choose R > 0 for which Ω0, Ω1 ⊂ BR(0). Let b ∈ S2 be any
unit vector. For t sufficiently large so that Ω0 ∩ (Ω1 + tb)= ∅, let

F(t)B
∫
R3

∫
R3

w0(x)w1(y − tb)
4π |x − y|

dxdy, and G(t)B
∫
R3

V (x)w1(x − tb) dx.

We now estimate each; first,

F(t) 6
∫

BR(0)

∫
BR(tb)

1
4π |x − y|

dx dy 6
|BR |

2

4π(t − 2R)
6
|BR |

2

2πt
,

for all t large enough.
To estimate G(t) from below, we recall from (H2) that for any A> 0, there exists t1 > 0 such that

for all t > t1,

inf
|x |=t

V (x) >
A
t

.

Thus, for each i= 1, . . . , N , as t→∞,

t
∫
R3

V (x)w1(x − tb) dx =
∫
Ω1

tV (x + tb) dx >
∫
Ω1

tA
|x + tb|

dx −→A|Ω1 |,

by dominated convergence, and hence limt→∞ tG(t)=∞. Thus, t(F(t)−G(t))→−∞ as t→∞. Choose
ε > 0 and t0 > 0 such that

F(t0) − G(t0)<−ε < 0.

With this choice of ε > 0, we may choose a compact set K =K(ε) for which |K | = M � m0 � m1

and
E0(χK )< e0(M − m0 − m1) +

ε

3
.

Choose τ > 0 large enough so that Kτ BK − τb satisfies∫
Ωi

∫
Kτ

1
4π |x − y|

dx dy <
ε

3
, for i= 0, 1.
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Using v(x)= w0(x) + w1(x − t0b) + χKτ as a test function, which is admissible for eV (M), we have

eV (M) 6EV (v)=EV (w0) + E0(w1) + E0(χKτ ) + F(t0) − G(t0)

+
∑
i=0,1

∫
Ωi

∫
Kτ

1
4π |x − y|

dxdy −
∫

Kτ

V (x) dx

6 eV (m0) + e0(m1) + e0(M − m0 − m1) −
ε

3
,

which contradicts the lower bound in case of splitting, (5). Thus we must have |Ω0 | =M and eV (M)
=EV (w0), for any M > 0. �

III. PROOF OF THEOREM 2

Now we turn our attention to EV and IV (M) given by (2) and (TFDW), respectively. As in Sec. II,
we define the “problem at infinity” by

I0(M) B inf

{
E0(u) : u ∈H1(R3),

∫
R3
|u|2 dx =M

}
,

where

E0(u)B
∫
R3

(
|∇u|2 + |u|10/3 − |u|8/3

)
dx +

1
2

∫
R3

∫
R3

|u(x)|2 |u(y)|2

|x − y|
dxdy.

First we note that problems IV and I0 satisfy the following “binding inequality,” which is the
standard subadditivity condition from concentration-compactness principle. For the proof of the
following lemma, we refer to Lemma 5 in Nam and van den Bosch.11

Lemma 5. For all 0 <m <M, we have that

IV (M) 6 IV (m) + I0(M − m).

Moreover, IV (M)< I0(M)< 0, IV (M) is continuous and strictly decreasing in M.

Next we prove that the ground-state value IV (M) is bounded.

Lemma 6. Let {un}n∈N ⊂H1(R3) be a minimizing sequence for the energy EV with ∫R3 |un |
2 dx

=M. Then there exists constant C0 > 0 such that ‖un‖
2
H1(R3)

6C0 M.

Proof. First, we note that IV (M)< 0 for any M > 0. Indeed, in the proof Lemma 5 of Nam
and van den Bosch,11 it is shown that I0(M)< 0, and EV (u) 6 E0(u) holds for all u ∈H1(R3) with
∫R3 |u|2 dx =M. We first claim that the quadratic form defined by the Schrödinger operator �∆ � V (x)
is bounded below, i.e., that there exists λ > 0 with∫

R3

(
|∇u|2 − V (x)|u|2

)
dx >

1
2
‖u‖2H1 − λ‖u‖

2
L2 ,

for all u ∈H1(R3). To see this, we note that by (H1′), we may write V = V1 + V2 with V1 ∈ L3/2(R3)
and V2 ∈ L∞(R3). Moreover, we may assume that ‖V1‖L3/2(R3) < ε for some ε > 0 to be chosen later.
By the Hölder and Sobolev inequalities, it follows that∫

R3
|V1 | |u|

2 dx 6 ‖V1‖L3/2(R3)‖u‖
2
L6(R3)

6 ε S3 ‖∇u‖2
L2(R3)

,

where S3 > 0 is the Sobolev constant. Thus,∫
R3

(
|∇u|2 − V (x)|u|2

)
dx > (1 − ε S3)‖∇u‖2

L2(R3)
− ‖V2‖L∞(R3)‖u‖

2
L2(R3)

,

and the lower bound is obtained by choosing

ε =
1

2S3
and λ = ‖V2‖L∞(R3) +

1
2

.
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Using the elementary inequality

|u|10/3 − |u|8/3 =

(
|u|5/3 −

1
2
|u|

)2

−
1
4
|u|2 > −

1
4
|u|2

to estimate the nonlinear potential, we obtain the lower bound

EV (un) >
∫
R3

(
|∇un |

2 − V (x)|un |
2) dx −

1
4
‖un‖

2
L2(R3)

>
1
2
‖un‖

2
H1 −

(
λ +

1
4

)
‖un‖

2
L2(R3)

=
1
2
‖un‖

2
H1 −

C0

2
M.

Since IV (M)< 0, for n ∈N sufficiently large, we have that EV (un)< 0. Referring back to the above
inequalities, we obtain ‖un‖

2
H1(R3)

6C0 M. �

We now begin the proof of Theorem 2.

Proof of Theorem 2. Let {un}n∈N be a minimizing sequence for the energy functional EV such
that ∫R3 |un |

2 dx =M.

Step 1. First, note that by the uniform H1-bound in Lemma 6, we may extract a subsequence so
that un ⇀v0 weakly in H1(R3) and strongly in Lq

loc(R3) for all 2 6 q < 6. Let vnB un − v
0, so vn ⇀ 0

weakly in H1(R3) and strongly in Lq(R3) on compact sets as n→∞. In particular, by hypotheses
(H1′), (H3), we have that ∫

R3
V (x)|vn |

2 dx→ 0 (6)

as n→∞. Combining this with the arguments in Eqs. (62)–(64) of Nam and van den Bosch,11 we
may conclude that the energy EV splits as

lim
n→∞

(
EV (un) − EV (v0) − E0(vn)

)
= 0. (7)

(Note that at this point, it is possible that v0 = 0, i.e., the first component is trivial, but later, we will
in fact show that v0 . 0, and thus it is a ground-state of EV .) Define

m0 B

∫
R3
|v0 |2 dx ∈ [0, M].

Note also that weak convergence implies ‖vn‖
2
L2(R3)

→M − m0. In case m0 > 0, we observe that (7)

also implies

IV (M)=EV (v0) + lim
n→∞

E0(vn) > IV (m0) + lim
n→∞

I0(‖vn‖
2
L2(R3)

)= IV (m0) + I0(M − m0),

by the continuity of I0. As the result of Lemma 5 gives the opposite inequality, we conclude that

IV (M)= IV (m0) + I0(M − m0).

In addition, EV (v0)= IV (m0); hence, v0 is a ground-state, and {vn}n∈N is a minimizing sequence for
I0(m1) with m1 = M � m0, i.e., I0(m1)= limn→∞ E0(vn).

If m0 = M, then the minimizing sequence is compact, and the proof is complete. Therefore, we
will assume for the remainder of the proof that m0 <M.

Step 2. Concentration-compactness for 0 6m0 <M: there is a subsequence of {un} (not rela-
beled), a sequence of points {yn} ⊂R3, constants mi > 0, and functions v i ∈H1(R3) for i = 0, 1 with

un −
(
v0 + v1( · − yn)

)
→ 0 in L2(R3),

m0 + m1 6M,
∫
R3
|v i |2 dx =mi, EV (v0)= IV (m0), E0(v1)= I0(m1),

and IV (M)= IV (m0) + I0(m1) + I0(M − m0 − m1).




(8)

This concentration-compactness result is very similar to Steps 1–3 of the proof of Theorem 1,
and in fact, it follows immediately from steps (i) and (ii) of the proof of Lemma 9 of Nam and van
den Bosch11 (see also the Appendix of Lions9).



103503-9 Alama et al. J. Math. Phys. 58, 103503 (2017)

Step 3. Next, we claim that v0 . 0. This follows by the same arguments as in Step 4 of the proof
of Theorem 1. Indeed, assume the contrary, so m0 = 0. Then by Lemma 5 and (8), we would have

IV (M) 6 I0(M) 6 I0(m1) + I0(M − m1)= IV (M),

and so IV (M) = I0(M). But the energy functional E0 is translation invariant; hence, we may pull back
the component, ũn(x)B un(x + yn) with the same E0 value, and obtain

IV (M)= I0(M)= lim
n→∞

E0 (̃un)= lim
n→∞

[
EV (̃un) +

∫
R3

V (x) |̃un |
2 dx

]

> IV (M) + lim inf
n→∞

∫
R3

V (x) |̃un |
2 dx = IV (M) +

∫
R3

V (x)|v1 |2 dx

> IV (M),

a contradiction. Therefore m0 > 0 and v0 is a nontrivial ground-state of IV (m0).

Step 4. Both v0 and v1 are strictly positive and have exponential decay, i.e., 0 < v i(x) 6Ce−ν |x | ,
for constants C, ν > 0 and for i = 0, 1. To show this, we first follow the Appendix in Lions9 and note
that, by Ekeland’s variational principle,23 we may find a minimizing sequence ũn for IV (M), with

‖ũn − un‖H1(R3)→ 0 (9)

and which approximately solve the Euler-Lagrange equations, ‖DEV (ũn)− µnũn‖H−1(R3)→ 0, that is,

−∆ũn +
[
f (ũn) − V (x)(|ũn |

2 ∗ |x |−1) − µn

]
ũn −→ 0,

in H−1(R3), with f (t)= 5
3 t4/3− 4

3 t2/3, and Lagrange multiplier µn. As ‖ũn‖H1(R3) is uniformly bounded,
using ũn as a test function, we readily show that the Lagrange multipliers µn are bounded, and
passing to a limit along a subsequence, µn→ µ. Furthermore, by Step 2 and (9), ũn admits the same
decomposition (8) into components v i as does un, and using weak convergence, we obtain a limiting
PDE for each component,

−∆v0 +
[
f (v0) − V (x) +

(
(v0)2 ∗ |x |−1

)]
v0 = µv0,

−∆v1 +
[
f (v1) +

(
(v1)2 ∗ |x |−1

)]
v1 = µv1,

with the same Lagrange multiplier µ. By minimization, v i > 0 and by the strong maximum principle,
we may conclude that each v i > 0 for i = 0, 1.

Next, we show that the Lagrange multiplier µ < 0. Following the proof of Theorem 1 of Le Bris,10

we define the spherical mean of an integrable ψ as ψ̄(x)= 1
4π ∫σ∈S2 ψ(|x |σ) dS(σ), and note that by

Newton’s Theorem (see Theorem 9.7 of Lieb and Loss22),

(v0)2 ∗ |x |−1 = (v0)2 ∗ |x |−1 6 |x |−1
∫
R3

(v0)2 dx 6
M
|x |

.

By (H2), there exists R > 0 for which V (x) > M
|x | for all |x | > R, and hence

(v0)2 ∗ |x |−1 − V 6 0 for all |x | > R. (10)

Assume for a contradiction that µ> 0. Set W B 5
3 |v

0 |4/3 + [(v0)2 ∗ |x |−1] − V , so v0 satisfies the
differential inequality,

−∆v0 + W v0 =

(
2
3

(v0)5/3 + µ

)
v0 > 0

in R3. By (10), outside BR, W+ =
5
3 (v0)4/3 ∈ L3/2. Applying Theorem 7.18 of Lieb,6 we conclude that

v0 <L2(Bc
R), a contradiction. Thus, µ < 0.

Finally, from Eq. (66) of Lions,9 we may conclude that the solutions are exponentially localized,

|∇v i(x)| + |v i(x)| 6Ce−ν |x | (11)

for i = 0, 1 with 0 < ν <
√
−µ.
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Step 5. We are ready to complete the existence argument. Assume, for a contradiction, that un

is a minimizing sequence for IV (M) with no convergent subsequence. By Step 2, we obtain mi > 0,
v i ∈H1(R3) for i = 0, 1 satisfying (8). Moreover, we claim that

IV (m0 + m1)< IV (m0) + I0(m1). (12)

Assuming the claim holds, taking m = m0 + m1 in Lemma 5, and using (8), we obtain that

IV (M) 6 IV (m0 + m1) + I0(M − m0 − m1)
< IV (m0) + I0(m1) + I0(M − m0 − m1)
= IV (M),

a contradiction. We therefore conclude that m0 = M, and the minimizing sequence converges.
In order to prove (12), we will construct a family of functions based on the elements obtained in

(8). For t > 0, let
wt(x) B v0(x) + v1(x − tξ),

where ξ ∈R3 with |ξ | = 1, and define the admissible function

w̃t(x) B

√
m0 + m1 wt(x)

‖wt ‖L2(R3)

so that ∫R3 w̃2
t dx =m0 + m1. However, by the exponential decay (11), we note that

|EV (w̃t) − EV (wt)| 6Ce−νt ,

and hence in order to estimate EV (w̃t), it suffices to estimate EV (wt).
Again using the exponential decay of the component functions v i, i = 0, 1, and arguing as in the

proof of Corollary II.2(ii) in Lions,9 for t > 0 large, we obtain the decomposition

EV (wt)=EV (v0) + I0(mi)

+ 2
∫
R3

∫
R3

|v0(x)|2 |v1(y − tξ)|2

4π |x − y|
dxdy −

∫
R3

V (x)|v1(x − tξ)|2 dx + o

(
1
t

)
.

Now we show that for large t > 0, the second line above is strictly negative. First, note that

t
∫
R3

∫
R3

|v0(x)|2 |v1(y − tξ)|2

4π |x − y|
dxdy=

1
4π

∫
R3

∫
R3

|v0(x)|2 |v1(y)|2

|ξ − (x − y)/t |
dxdy

−−−−−→
t→∞

‖v0‖2
L2(R3)

‖v1‖2
L2(R3)

4π |ξ |
=

mi mj

4π

by dominated convergence theorem. That is, this term is O(t�1).
To estimate the other term, first note that (H2) implies that for every A> 0 there exists t0 > 0 such

that tV (x) > A for |x| = t whenever t > t0, i.e.,

inf
|x |=t

V (x) >
A
|x |

when |x | = t > t0. Next, choose r0 and C > 0 such that ∫Br0 (0) |v
1 |2 dx >C > 0. Then, for t > 2r0, we

have that

t
∫
R3

V (x)|v1(x − tξ)|2 dx > t
∫

Br0 (0)
V (x + tξ)|v1(x)|2 dx

>C t inf
x∈Br0 (0)

V (x + tξ)

>C t inf
t−r06 |x |6t+r0

A
|x |
=

C t A
t + r0

>
C A
2

for large enough t > 0. Since the above holds for all A> 0, we have that

t
∫
R3

V (x)|v1(x − tξ)|2 dx −−−−−→
t→∞

∞.
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In particular, the confinement term dominates the other cross terms for t > 0 sufficiently large, and
thus

IV (m0 + m1) 6 EV (w̃t)< IV (m0) + I0(m1),

proving our claim (12). �
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Comm. Pure Appl. Math. (to appear); preprint arXiv:1606.07355 (2016).
8 J. Lu and F. Otto, “An isoperimetric problem with Coulomb repulsion and attraction to a background nucleus,” preprint

arXiv:1508.07172 (2015).
9 P.-L. Lions, “Solutions of Hartree-Fock equations for Coulomb systems,” Commun. Math. Phys. 109, 33–97 (1987).

10 C. Le Bris, “Some results on the Thomas-Fermi-Dirac-von Weizsäcker model,” Differ. Integr. Equations 6, 337–353 (1993),
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